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Capturing non-Markovian dynamics on near-term quantum computers
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With the rapid progress in quantum hardware, there has been an increased interest in new quantum algorithms
to describe complex many-body systems searching for the still-elusive goal of “useful quantum advantage.”
Surprisingly, quantum algorithms for the treatment of open quantum systems (OQSs) have remained under-
explored, in part due to the inherent challenges of mapping non-unitary evolution into the framework of
unitary gates. Evolving an open system unitarily necessitates dilation into a new effective system to incorporate
critical environmental degrees of freedom. In this context, we present and validate a new quantum algorithm to
treat non-Markovian dynamics in OQSs built on the ensemble of Lindblad’s trajectories approach, invoking
the Sz.-Nagy dilation theorem. Here we demonstrate our algorithm on the Jaynes-Cummings model in the
strong-coupling and detuned regimes, relevant in quantum optics and driven quantum system studies. This
algorithm, a key step towards generalized modeling of non-Markovian dynamics on a noisy-quantum device,
captures a broad class of dynamics and opens up a new direction in OQS problems.
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I. INTRODUCTION

Open quantum systems (OQSs), quantum systems that are
coupled to their environment, are ubiquitous in the physi-
cal sciences [1–10] and many classical techniques exist to
describe the dynamics of an OQS beyond the Markov ap-
proximation [11–29]. While the Lindblad formalism gives
an efficient and accurate depiction of the dynamics in
the weak-coupling regime [30,31], the approach does not
extend to systems that are strongly coupled to their environ-
ments [11,21]. Strong coupling can lead to non-Markovian
effects such as recurrences of quantum properties, which are
both important for a fundamental understanding of system
dynamics and show promise for aiding in system con-
trol [32–40]. With the advent of quantum devices and the
corresponding search for useful quantum advantage there
has been an increased interest in algorithm development for
physics and chemistry problems. Surprisingly, algorithm de-
velopment for the treatment of open quantum systems has
been limited to a few theoretical and experimental stud-
ies [3,41–46]. While there have been impressive recent strides
in the field [44,46], the lag in the development of this field
is in part due to the challenge of the non-unitary evolution
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of OQSs being cast into the framework of unitary quantum
gates. To evolve an OQS unitarily, dilation methods must be
used to incorporate the important environmental degrees of
freedom into a new effective system. Early work faced com-
putational scaling challenges with this dilation [42]; however,
recent advances [47–49] have allowed accurate simulation of
Lindbladian dynamics on a noisy-quantum device [44].

In this article, we present a quantum algorithm to treat
non-Markovian dynamics in open quantum systems by ex-
tending the ensemble of Lindblad’s trajectories method onto
a quantum computer (ELT-QC) by invoking the Sz.-Nagy
dilation theorem [44,47–49]. While previous work has looked
at example systems for Markovian and non-Markovian dy-
namics on quantum computers, here we aim to provide the
foundation for a universal and generalizable theory that allows
for the investigation into open quantum system properties. We
start by introducing the theory behind the ELT-QC method,
followed by benchmarking the algorithm and demonstrating
the impact of this approach on problems in quantum optics.

II. THEORY

A. Ensemble of Lindbladian trajectories

Density-matrix methods are a natural choice for modeling
open quantum systems, and there have been a plethora of
methods to capture Markovian and non-Markovian dynam-
ics, from perturbative to numerical techniques [11–29,50–54].
However, in the non-Markovian regime, many of these meth-
ods struggle from the same challenges such as maintaining the
positivity, and therefore physical nature, of the system den-
sity matrix. The ensemble of Lindblad’s trajectories method
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FIG. 1. An ensemble of Lindbladian trajectories whose weighted
ensemble produces the true density matrix at time t .

is a recently developed, formally exact method depicted in
Fig. 1, where true density matrices and auxiliary density
matrices at time t are represented as purple and gray, re-
spectively, and the variable τ represents the time lag [23].
The ELT method extends the Lindbladian formalism beyond
the Markovian regime through the use of an ensemble of
trajectories originating from different points in the system’s
history [23]. Due to the relationship between Lindblad opera-
tors and Kraus maps [55], the density matrix remains positive
semidefinite for all time, and, due to the ensemble average,
non-Markovian behavior is captured. This method was also
generalized to treat systems of multiple fermions with ac-
curate statistics [24]. In the simplest discrete form this is
mathematically equivalent to writing the density matrix as

D(t ) =
T∑

i=1

ω(τi )e
L(τi )D(t − τi ), (1)

where T is the maximum memory, ω(τi ) are the statistical
weights of the ith trajectories, and eL(τi ) are the propagators.
Each trajectory is a Kraus map which we can represent by the
following Lindbladian trajectory:

dD

ds
= L ◦ D (2)

= −i[H, D] +
M∑
i=1

CiDC†
i − 1

2
{C†

i Ci, D}, (3)

where s represents an effective time within the mapping, and
the Lindbladian superoperator L can be written in terms of
the system Hamiltonian H and Lindbladian matrices Ci, which
account for the interaction of the reduced density matrix with
its environment through M different channels [30]. From the
properties of Kraus maps the trajectories produce positive-
semidefinite density matrices whose ensemble is also positive
semidefinite [55].

In the continuous limit, this formulation can be related to a
simplified form of the generalized master equation [23], where
the traditional memory kernel is represented by the ensemble
weights, the Lindbladian superoperator, and a time derivative.
In this representation, just as in traditional use of Lindblad’s
equation, there are multiple avenues of approach to parameter
selection, including but not limited to numerical optimization,
extraction from short-time propagations, and use of experi-
mental data.

B. Quantum algorithm

Recent work by Hu et al. has been done to map the
Lindblad equation into a dilated unitary evolution, following
which they performed this unitary evolution on a quantum
computer [44]. In this work, the Lindblad equation is first
written in operator sum form,

D(t ) =
∑

i

MiDM†
i , (4)

where the Mi are Kraus maps corresponding to the Lindbla-
dian channels represented by each Ci in the original equation.
Since Kraus maps are contraction mappings of a Hilbert
space, the Sz.-Nagy dilation theorem guarantees that there
exists a related unitary operator dilation in a larger Hilbert
space [44]. While different orders of d-dilation exist and
correspond to contraction mappings being applied d times to
a Hilbert space, the 1-dilation is sufficient to consider either
populations or coherence of a two-level system. Here, we
focus on the 1-dilation which produces the unitary operator

UMi =
(

Mi DM†
i

DMi −M†
i

)
, (5)

where I is the identity matrix and DMi = (I − M†
i Mi )1/2.

To perform the unitary evolution, the density matrix is
reformulated in vector form and dilated to account for the
added environmental degrees of freedom. The density matrix
can be represented as an ensemble of vectors {v j} where the
vectors need not be orthogonal. The {v j} vectors are then
dilated by padding with zeros to match the dimension of the
unitary operator. In this work, only the population elements
of the density matrix are considered. Given an ensemble of
vectors {v j} and using this dilation, the population elements
of the system are calculated as

ρk = 1

2

∑
i, j

|(UMi · v j )[k]|2, (6)

where ρk is the occupation number of the kth state and the
summation is over the dilations of all the Kraus operators Mi

acting on all the vectors v j . Each term can be simulated in
parallel, with circuits of gate count on the order of n2, where
n is the dimension of the system [44].

Since the ELT method is an ensemble average of Lind-
bladian trajectories, the recent algorithm used to calculate
Lindbladian trajectories on quantum devices can be used with
the following generalization: In previous work when prac-
tically invoking the ELT method [23,24], each trajectory is
written as

D̃(t, τ ) = eLD(t − τ ), (7)

where the Lindbladian term L is a constant in terms of time,
and D(t − τ ) is the density matrix initialized from τ time
steps in the system’s history. This equation can be directly
cast into the unitary dilation framework; however, it requires
storage of each D(t − τ ) along the way and the production of
a new circuit describing each D(t − τ ), or the production of
an arbitrary state at each time point. While this is possible, it
would be computationally taxing and preclude the possibility
for a quantum speed up.
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Alternatively, using a variable change, we can shift the time
dependence from the density matrix to the Lindbladian,

D̃(t, τ ) = eL(t−τ,t )D, (8)

where the Lindbladian term L depends on the time lag while D
is a constant density matrix. Instead of requiring an arbitrary
state preparation at every step, this formulation requires only
variation in the time input to produce the Lindblad matri-
ces and therefore the unitary dilations. The ELT increases
the computational cost of a single Lindbladian trajectory in
Ref. [44] by a multiplicative prefactor of T , where T is the
number of trajectories in the ensemble average.

III. RESULTS

A. Single Lindbladian trajectory

The unitary evolution matrices of a two-level system in
a single amplitude-damping Lindbladian channel are given
by [44]

UM0 =

⎛
⎜⎜⎜⎝

1 0 0 0

0
√

e−γ t 0
√

1 − e−γ t

0 0 −1 0

0 −√
1 − e−γ t 0 −√

e−γ t

⎞
⎟⎟⎟⎠ (9)

and

UM1 =

⎛
⎜⎜⎜⎝

0
√

1 − e−γ t
√

e−γ t 0
0 0 0 1
1 0 0 0

0
√

e−γ t −√
1 − e−γ t 0

⎞
⎟⎟⎟⎠, (10)

where γ is the rate of decay. An initial density matrix of the
form

D(0) = 1

4

(
1 1
1 3

)
(11)

is decomposed into an ensemble of dilated vectors [44]

v0 =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠ (12)

and

v1 = 1√
2

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠. (13)

With this decomposition, the four necessary terms for each
Lindbladian trajectory are calculated through the circuits
shown in Fig. 2. The circuits were constructed and verified
in both Qiskit [56] and QuTip [57,58]. It should be noted that
the two qubit states follow the conventional notation where
the vector (1, 0, 0, 0) represents both qubits in their ground
states, (0, 1, 0, 0) represents q0 in its excited state and q1 in its
ground state, (0, 0, 1, 0) represents q0 in its ground state and
q1 in its excited state, and (0, 0, 0, 1) represents both qubits in
their excited states.

Using these circuits, we consider a two-level system in
an amplitude-damping channel with a system decay rate of

FIG. 2. Two qubit circuits are presented for the preparation of
the following states: (a) UM0v0, (b) UM0v1, (c) UM1v0, and (d) UM1v1

where X is the σx gate, Z is the σz gate, H is the Hadamard gate, Ut is
a rotation gate equivalent to Ry(θ ) where θ = cos−1[(e−γ t )1/2], and
two-qubit gates are CNOT gates. The preparations are with respect to
an initial state in which both qubits are in their ground states.

γ = 1.52 × 109 s−1. Using the solution from the Lindblad
equation on a classical device, IBM’s Qiskit simulator [56],
and IBM’s London device [59], the ground and excited-state
populations, in purple and teal, respectively, are shown in
Fig. 3. The solid lines represent the solution to the Lindblad
equation on a classical device, the dots represent the result
from the simulator, and the crosses result from the five-qubit
London device. Both the simulator and device data agree well
with the classical solution, producing accurate dynamics for a
two-level system under Markovian conditions.

B. Ensemble of Lindbladian trajectories

Having verified this algorithm for a single trajectory of
the Lindblad equation, we extend these circuits to treat the
damped Jaynes-Cummings model, which consists of a sin-
gle excitation in a two-level system coupled to a reservoir
of harmonic oscillators [11,50,60,61]. This system is both
exactly solvable and known to demonstrate non-Markovian

FIG. 3. Two-level system in an amplitude-damping channel
where purple represents the ground-state population and teal the ex-
cited state population. The solid lines are the solutions on a classical
device, the dots are generated using the IBM Qiskit simulator [56]
and the crosses are generated using IBM’s London device [59].

013182-3



KADE HEAD-MARSDEN et al. PHYSICAL REVIEW RESEARCH 3, 013182 (2021)

FIG. 4. Populations of the Jaynes-Cummings model in the
strong-coupling regime, λ = 0.2γ , where purple represents the
ground-state population and teal the excited state. The solid lines
are the exact solution, the dots are generated using the IBM Qiskit
simulator [56], and the crosses are generated using IBM’s London
device [59].

behavior in the strong-coupling and detuned regimes, making
it an excellent benchmarking system for open quantum system
methods [11,23,60]. The Hamiltonian is given by

ĤJC = h̄ωâ†â + 1
2 h̄ω0σ̂z + h̄λ(σ̂+â + σ̂−â†), (14)

where ω0 is the system’s transition frequency, λ is inversely
proportional to the reservoir correlation time, â† and â are
the creation and annihilation operators, respectively, and σ̂x,
σ̂y, and σ̂z are the Pauli spin operators with σ̂± = σ̂x ± σ̂y. In
lieu of the cavity mode treatment, the bath spectral density is
used [11],

J (ω) = 1

2π

γλ2

(ω0 − 
 − ω)2 + λ2
, (15)

where ω0 is the system transition frequency, ω is the bath fre-
quency, 
 is the detuning, and λ is related to the system-bath
coupling strength.

First we consider the strong-coupling case, where the bath
relaxation parameter is given by λ = 0.2γ . In this regime,
a single Lindbladian trajectory fails to capture accurate dy-
namics and a more involved method is required [11,50]. The
populations of the Jaynes-Cummings model in the strong-
coupling regime are shown in Fig. 4 using the ELT-QC method
with weights numerically optimized as compared with the
exact solution using Maple [62], as was done in Ref. [23].
The solid lines represent the exact solution while the dots and
crosses are results from quantum simulation using the circuits
shown in Fig. 2 using IBM’s simulator and London device,
respectively [56,59].

The ELT on a quantum simulator and device agrees well
with the exact solution, demonstrating the ability of the ELT-
QC algorithm to accurately capture dynamics in the strong-
coupling regime.

Next we consider the strong-coupling and detuned case,
where 
 = ω − ω0 �= 0. In this regime, the bath relax-
ation parameter is given by λ = 0.3γ and the detuning by

 = 2.4γ . The time-evolution of the populations are shown

FIG. 5. Populations of the Jaynes-Cummings model in the
strong-coupling and detuned regime, λ = 0.3γ and 
 = 2.4γ , where
purple represents the ground-state population and teal the excited
state. The solid lines are the exact solution, the dots are generated
using the IBM Qiskit simulator [56], and the crosses are generated
using IBM’s London device [59].

in Fig. 5 where lines represent the exact result and the dots
and crosses represent results from quantum simulation using
the circuits shown in Fig. 2 using IBM’s simulator and London
device, respectively. These results are in excellent agreement
with the exact solution, demonstrating that the ELT-QC algo-
rithm captures accurate dynamics in the detuned regime for
the Jaynes-Cummings model.

IV. CONCLUSIONS AND OUTLOOK

Few algorithms exist for the treatment of open quantum
systems on quantum devices, and existing algorithms are
either restricted to Markovian systems or inconsistent with
complete positivity. Our work presents an algorithm inspired
by the ensemble of Lindblad’s trajectories method [23] using
an efficient dilation theorem [44] which allows for the treat-
ment of non-Markovian dynamics of open quantum systems
on a quantum device. The ELT-QC method is benchmarked
on the Jaynes-Cummings model in the strong-coupling and
detuned cases on both a quantum simulator and real five-
qubit quantum computer, showing excellent agreement with
the exact dynamics. While the Jaynes-Cummings model is
a benchmark system, these results show our algorithm’s
ability to capture a wide variety of open quantum system
dynamics accurately with tractable scaling. These regimes
include strictly Markovian, or dissipative, dynamics and non-
Markovian dynamics induced by either strong or detuned
system-environment coupling.

Moreover, this quantum algorithm retains the significant
advantages of its classical counterpart, including an exact
treatment of non-Markovian dynamics and complete positiv-
ity of the density matrices, meaning that the density matrices
remain positive semidefinite with non-negative probabilities
for all time. The ELT-QC algorithm offers a path towards
polynomial time evolution of an electronic system in the
presence of a complex environment. An accurate yet tractable
description of open quantum systems on quantum devices has
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a myriad of significant applications from catalytic chemistry
and correlated materials physics to descriptions of hybrid
quantum systems and spin systems.
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