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We study the dynamical behavior of ultracold fermionic atoms loaded into an optical lattice under the presence
of an effective magnetic flux, induced by spin-orbit-coupled laser driving. At half-filling, the resulting system
can emulate a variety of iconic spin-1/2 models such as an Ising model, an XY model, a generic XXZ model
with arbitrary anisotropy, or a collective one-axis twisting model. The validity of these different spin models is
examined across the parameter space of flux and driving strength. In addition, there is a parameter regime where
the system exhibits chiral, persistent features in the long-time dynamics. We explore these properties and discuss
the role played by the system’s symmetries. We also discuss experimentally viable implementations.
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I. INTRODUCTION

Understanding and quantifying the behavior of interacting
quantum particles in lattices is a fundamental goal of mod-
ern quantum science. While there is a plethora of research
directions, one vital aspect is the response of particles to
externally imposed magnetic fields. Such fields induce an
effective flux that threads through the plaquettes of the lattice
[1,2], coupling the charge and spin degrees of freedom and
modifying the particle dynamics. Interpreting the dynamical
response to an applied flux is important for many applications
in condensed matter, including ferroelectrics [3], spintronics
[4,5], and spin-glass physics [6,7].

One of the best ways to study such phenomena is with
ultracold atomic experiments. State-of-the-art ultracold sys-
tems provide exceptional levels of cleanliness, isolation, and
tunability. They allow for pristine implementations of iconic
Fermi- or Bose-Hubbard models that describe interacting par-
ticles in a lattice, with additional terms to account for the
synthetic magnetic fields [8]. A magnetic flux is easy to im-
pose and control with tools such as laser driving, using Raman
couplings or direct optical transitions.

There has been a great deal of theoretical work on Fermi-
or Bose-Hubbard models with synthetic gauge fields that ul-
tracold experiments could investigate, exploring ground-state
phases [9–11] or phenomena such as many-body localization
[12]. However, the interplay of magnetic flux together with
particle interactions can lead to complex dynamical behavior
that still lacks a good theoretical understanding. In the case
of fermions, even noninteracting atoms can exhibit nontrivial
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behavior due to Pauli exclusion, while the addition of Hubbard
repulsion renders the dynamics even more complex.

In this work, we focus on fermionic atoms loaded into
three-dimensional (3D) optical lattices. In the Mott insulating
limit with one atom per site, each atom acts as an effective
spin and the physics can be simplified by mapping to an effec-
tive spin model. This spin model emerges via virtual atomic
tunneling processes that lead to second-order superexchange
interactions between these spins. Conventional lattice systems
are often captured by isotropic Heisenberg models, while the
presence of magnetic flux allows for tunability of the spin
interactions. As we show here, the flux leads to more elaborate
spin models such as anisotropic XXZ models, collective one-
axis twisting Hamiltonians [13], and Dzyaloshinskii-Moriya
(DM) interactions [14,15]. The latter is particularly intrigu-
ing, as it exhibits chirality, topological features, and complex
phase diagrams depending on the flux [16,17]. A system that
can realize several different spin models with easy tunability
can be very useful to the field, as current-generation opti-
cal lattice experiments have only recently begun to probe
anisotropic interacting spin physics [18,19].

Here we study the case when the internal atomic states are
driven by an external laser, which imprints a site-dependent
phase that emulates a magnetic flux. We use the drive strength
and the magnetic flux as tuning parameters and show the
different types of spin interactions that can be realized. We
explore the dynamical properties of these interactions and
specify regimes in the parameter space of flux and driving
strength where the system’s time evolution can be captured by
simple models such as Ising, XY , XXZ, and collective-spin
one-axis twisting (OAT). We also study a regime where the
corresponding spin model maps to a Heisenberg model in
a twisted frame, causing the long-time dynamics to develop
nontrivial features such as infinite-time magnetization and
chiral spin imbalance. These latter features are not limited to
the strongly interacting regime but also hold in the weakly
interacting limit of the Fermi-Hubbard model where atomic
motion is relevant. We discuss the role that symmetry plays
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in preventing the system from relaxing. Our predictions can
be readily implemented in many ultracold systems, and are
especially relevant for alkaline-earth-metal or earth-like atoms
in 3D lattices or tweezer arrays, which provide exceptional
coherence times [20–22] to overcome the inherent slow inter-
action rates while avoiding issues from heating given the very
low spontaneous emission rates of their low-lying electronic
levels.

The outline of the paper is as follows. Section II introduces
the underlying Fermi-Hubbard model and derives the corre-
sponding effective spin models that emerge at half-filling. A
dynamical classification of the spin model behavior in dif-
ferent parameter regimes is given. Section III focuses on the
low drive regime and discusses the persistent magnetization or
chiral features that can be observed due to the additional sym-
metry of a Heisenberg model in a twisted frame. Section IV
provides a detailed discussion on possible experimental
implementations.

II. TUNABLE SPIN DYNAMICS

A. Fermi-Hubbard and spin model

The system we describe is a three-dimensional (3D) optical
lattice loaded with ultracold fermionic atoms cooled into the
lowest motional band. Each atom has two internal states σ ∈
{g, e} corresponding to a spin-1/2 degree of freedom, such
as nuclear-spin polarized clock states split by an optical fre-
quency or two different nuclear-spin states within the ground
hyperfine manifold. The effective system dimensionality is
freely tuned by changing the lattice confinement strengths.
We focus on the case where the system is effectively one
dimensional (1D) by considering a strong confinement in two
directions that suppresses tunneling along them. Along the
direction atoms can tunnel, we assume a lattice of L sites
populated by N atoms. The system is depicted in Fig. 1(a).
The Hamiltonian of the system is

Ĥ = ĤFH + Ĥ�,

ĤFH = −J
∑
j,σ

(ĉ†
j,σ ĉ j+1,σ + H.c.) + U

∑
j

n̂ j,en̂ j,g,

Ĥ� = �

2

∑
j

(ei jφ ĉ†
j,eĉ j,g + H.c.). (1)

Here ĉ j,σ annihilates an atom with spin σ on site j. Atoms
tunnel at rate J and exhibit onsite repulsion of strength U , pro-
portional to the a−

eg singlet scattering length. We have assumed
equal tunneling rates for both g and e, which implies a magic-
wavelength lattice if the internal states are clock states. In
addition to the standard Fermi-Hubbard term ĤFH, we include
a laser-driving term Ĥ� that induces the desired flux φ through
a spatially dependent phase ei jφ , providing model tunability.
The differential phase imprinted by the laser implements a
net spin-orbit coupling (SOC) by generating a momentum
kick to the atoms while flipping their spin [1,2,23–26]. The
realization of this effective flux in 1D is depicted in Fig. 1(b).
The drive can be implemented with a direct interrogating laser
(if g, e are clock states) or a Raman coupling (if g, e are
ground hyperfine levels); see Sec. IV for details. We assume
φ ∈ [0, π ] without loss of generality.

FIG. 1. (a) Schematic of Fermi-Hubbard dynamics in an optical
lattice, with nearest-neighbor tunneling rate J , on-site repulsion U ,
and on-site driving �. When the laser drive has a wavelength that
is incommensurate with the underlying optical lattice wavelength,
the laser induces spin-orbit coupling (SOC) through a spatially de-
pendent phase ei jφ in the drive term, with φ controlled by the drive
implementation (e.g., laser alignment or lattice spacing; see Sec. IV).
(b) The SOC phase creates effective magnetic flux on plaquettes
of the ladder state structure in 1D, with lattice index j along the
length of the ladder and internal states e, g corresponding to the
individual rungs. An atom tunneling around one plaquette picks up a
total phase of φ. (c) At half-filling and strong interactions U/J � 1,
the atomic spin σ at different lattice sites can be dressed by the
laser drive, which modifies the resulting spin dynamics dominated
by second-order virtual superexchange processes with rate ∼J2/U ,
up to possible normalization from the drive �.

For sufficiently strong interactions U/J � 1 at half-filling
N/L = 1 with one atom per site, double occupancies of lattice
sites are strongly suppressed. The system dynamics in this
regime may be approximated with a spin model, as depicted
in Fig. 1(c). We define a dressed spin basis at different lat-
tice sites by making a gauge transformation, defining new
fermionic operators {â j,↑, â j,↓} to remove the SOC phase,

ĉ†
j,e |0〉 ≡ â†

j,↑ |0〉 ↔ |↑〉 j ,

e−i jφ ĉ†
j,g |0〉 ≡ â†

j,↓ |0〉 ↔ |↓〉 j ,
(2)

and define conventional spin operators for these dressed
atoms,

σ̂ x
j = (â†

j,↑â j,↓ + H.c.),

σ̂
y
j = −i(â†

j,↑â j,↓ − H.c.),

σ̂ z
j = â†

j,↑â j,↑ − â†
j,↓â j,↓. (3)

This is just the Abrikosov pseudofermion representation
[27,28]. Standard second-order perturbation theory then leads
to the following general superexchange (SE) spin model (see
Appendix A for derivation):

ĤSE ≈ J‖
∑

j

(
σ̂ x

j σ̂
x
j+1 + σ̂

y
j σ̂

y
j+1

) + J⊥
∑

j

σ̂ z
j σ̂

z
j+1

+ JDM

∑
j

(
σ̂ x

j σ̂
y
j+1 − σ̂

y
j σ̂

x
j+1

) + J�

∑
j

σ̂ x
j . (4)

The first two terms correspond to an XXZ model. The third
term is a DM interaction with a plane axis of ẑ [thus also
taking the form of ẑ · (σ j × σ j+1)]. The interaction

013178-2



TUNABLE-SPIN-MODEL GENERATION WITH … PHYSICAL REVIEW RESEARCH 3, 013178 (2021)

TABLE I. Table of experimentally realistic parameters, using
ultracold alkaline-earth-metal 87Sr with its 1S0, 3P0 clock states as
e, g. Laser drive parameters (�,φ) are given for different spin model
regimes of Ising, XY, and one-axis twisting (OAT) as described in
Sec. II B. The second column gives values that correspond to U/J ≈
50, matching the benchmarking in Sec. II C. The third column gives
a set of values with a smaller U/J ≈ 25 and thus faster dynamics.

Parameter Value Value (faster)

(Vx,Vy,Vz )/Er (13,100,100) (10,100,100)
J 34 Hz 66 Hz
U 1.8 kHz 1.7 kHz
(�, φ) (1.5 kHz, π ) (1.1 kHz,π )
For Ising J‖ = −2 Hz J‖ = −5 Hz
(�, φ) (1.5 kHz,1.0) (1.1 kHz,1.3)
For XY J⊥/2 = 0.5 Hz J⊥/2 = 2 Hz
(�, φ) (1.5 kHz,0.3) (1.1 kHz,0.3)
For OAT 2(J‖ − J⊥) = −0.2 Hz 2(J‖ − J⊥) = −0.4 Hz

coefficients are

J‖ = J2

U

U 2 cos(φ) − �2 cos2
(

φ

2

)
U 2 − �2

,

J⊥ = J2

U

U 2 − �2 cos2
(

φ

2

)
U 2 − �2

,

JDM = J2

U

(�2 − 2U 2) sin(φ)

2(U 2 − �2)
,

J� = �

2
− 2J2� sin2

(
φ

2

)
U 2 − �2

. (5)

These share the conventional J2/U superexchange energy
scale, with different normalization factors coming from the
interplay between the drive and flux. This model is valid in
the Mott insulating limit U/J � 1, for all flux values φ and all
drive frequencies � far from the resonance point |�| = |U |,
requiring a spacing of ||U | − |�|| � J to prevent higher order
effects. Table I shows some experimentally realistic parameter
values for which the model is expected to be valid, for the case
of nuclear-spin polarized ultracold 87Sr atoms using their 1S0,
3P0 clock states as the internal states e, g. The lattice depth
(Vx,Vy,Vz )/Er (with Er being the recoil energy), tunneling
rate J , and Hubbard repulsion U are provided. Typical laser
drive parameters of Rabi frequency and flux (�,φ) are also
given for some specific regimes of the general spin model
above, which will be discussed in Sec. II B. There are two
sets of sample parameters; the first has a very large U/J ≈ 50,
which we will use for model benchmarking later in Sec. II C
to avoid additional error from not being in the Mott insulating
limit U/J � 1. The second set offers more experimentally
realistic parameters. This case will have additional corrections
from a moderate U/J value, but still at a level low enough
to clearly observe the desired superexchange dynamics in an
experimental setting.

Note that there can also be other resonances such as |�| �=
|U |/2, as considered in, e.g., Ref. [29], though the relevant
width is far smaller, as will be seen in the next section. These
spin interactions are anisotropic even if the drive is turned off,
� = 0, because we are using a dressed basis to absorb the

SOC phase (see Appendix A). In the context of the underlying
Fermi-Hubbard model, one can use a fast pulse of a SOC drive
to prepare a desired initial state such as a product state in
the dressed basis, after which the drive may be turned off if
desired (see Sec. IV for details). There is also a single-particle
term J� corresponding to the drive. This term contains an
additional single-particle superexchange contribution, but this
is typically negligible compared to the bare drive, and so we
can approximate J� ≈ �/2.

If the drive is off, � = 0, this spin model commutes with
and thus conserves total 〈Ŝz〉, where Ŝγ = 1

2

∑
j σ̂

γ
j . When

the drive is instead very strong, � � J‖, J⊥, JDM, total 〈Ŝx〉
is approximately conserved instead because the drive imposes
an energy penalty to flipping spins along the ±x Bloch sphere
direction. Note that while the superexchange coefficients can
be modified by the drive, as a first rough estimate the high-
drive condition � � J‖, J⊥, JDM may be interpreted as a drive
faster than the bare superexchange rate, � � J2/U .

B. Spin model regimes

While the general spin model of Eq. (4) is complex, there
are parameter regimes where its form simplifies, allowing the
dynamical emulation of other more conventional spin models.
For a strong drive � � JDM, the DM interaction is averaged
out and can be neglected. Furthermore, assuming the drive
also satisfies � � J‖, J⊥, the σ̂

y
j σ̂

y
j+1 and σ̂ z

j σ̂
z
j+1 terms are

equivalent in unitary evolution under a rotating-wave approx-
imation, allowing us to interchange and collect them together
via σ̂

y
j σ̂

y
j+1 ≈ σ̂ z

j σ̂
z
j+1 ≈ 1

2 (σ̂ y
j σ̂

y
j+1 + σ̂ z

j σ̂
z
j+1). This leaves an

XXZ-type model,

ĤXXZ = J‖
∑

j

σ̂ x
j σ̂

x
j+1 + J‖ + J⊥

2

∑
j

(
σ̂

y
j σ̂

y
j+1 + σ̂ z

j σ̂
z
j+1

)

+ J�

∑
j

σ̂ x
j [� � J‖, J⊥, JDM]. (6)

Note that this model is not the same as simply taking the
XXZ-like piece from the first line of Eq. (4), as here the
single-particle drive term commutes with the XXZ term, mak-
ing it easy to account for in unitary evolution. One could
also write an XXZ model for the no-drive limit � = 0 (see
Appendix B), for which we would just keep the XXZ portion
of Eq. (4); this can be valid in the no-drive limit if the JDM term
vanishes parametrically due to its sin(φ) factor for φ ≈ 0, π .

As one limiting regime of the XXZ model, in the strong-
drive regime � � J‖, J⊥, JDM if we also have φ ≈ π , the
coefficients J‖ and J⊥ are approximately equal and opposite
(J‖ ≈ −J⊥), causing them to cancel each other out and leave
an Ising model,

ĤIsing = J‖
∑

j

σ̂ x
j σ̂

x
j+1+J�

∑
j

σ̂ x
j

[φ ≈ π , � � J‖, J⊥, JDM]. (7)

As another special regime of the XXZ model, there is a line
in parameter space where the J‖ coefficient vanishes, requir-
ing � = ±U

√
cos(φ) sec(φ/2), which causes the (σ̂ x

j σ̂
x
j+1 +

σ̂
y
j σ̂

y
j+1) terms of Eq. (4) to vanish. Assuming that we also

still have a strong drive � � J‖, J⊥, JDM, the DM interaction
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remains averaged out as well, leaving only the σ̂ z
j σ̂

z
j+1 term

along with the drive (which is now transverse to the inter-
action). If we again make the rotating-wave approximation
σ̂ z

j σ̂
z
j+1 ≈ 1

2 (σ̂ y
j σ̂

y
j+1 + σ̂ z

j σ̂
z
j+1), we arrive at an XY model,

ĤXY = J⊥
2

∑
j

(
σ̂

y
j σ̂

y
j+1 + σ̂ z

j σ̂
z
j+1

) + �

2

∑
j

σ̂ x
j

[� = U
√

cos(φ) sec(φ/2),� � JDM]. (8)

We emphasize that this XY model with a strong (commuting)
field and the underlying Ising model with a strong transverse
field are only equivalent under unitary time evolution [30].

For the strong drive regime � � J‖, J⊥, JDM with small
flux, the coefficients J‖, J⊥ are almost equal to J2/U . We
can thus collect the XXZ model of Eq. (6) into an isotropic
Heisenberg term and a perturbative σ̂ x

j σ̂
x
j+1 component. In this

regime, the system can be approximated with a collective-spin
one-axis twisting (OAT) model, whose dynamical properties
can be explored using restrictions to the fully symmetric
Dicke manifold [31–34]. The model is written as

ĤOAT = P̂DickeĤXXZ P̂Dicke

= 2(J‖ + J⊥)

L − 1
S · S + 2(J‖ − J⊥)

L − 1
ŜxŜx + 2J�Ŝx,

[φL � 1,� � J‖, J⊥, JDM]. (9)

The operator P̂Dicke projects to the Dicke manifold, spanned by
the collective-spin states |S = L/2, M〉 which are eigenstates
of Ŝx |S, M〉 = M |S, M〉 and S · S |S, M〉 = S(S + 1) |S, M〉,
with S = (Ŝx, Ŝy, Ŝz ). Here M takes values −S,−S +
1, . . . S − 1, S. The flux must be small compared to 1/L rather
than to 1, because the collective regime validity depends
on the Dicke manifold gap, which shrinks with system size
for nearest-neighbor interactions. Note that while the above
model requires a strong drive, like the XXZ model we can
also write a one-axis twisting model in the � = 0 regime as
well (see Appendix B). Similar low-drive collective physics
were explored in Ref. [35] for the weakly interacting regime;
in contrast, here we have a strongly interacting model that
nonetheless allows us to map the nearest-neighbor superex-
change interactions to a collective-spin model through gap
protection. Moreover, as discussed in Ref. [34], the collective
behavior can be more robust when mapping from an XXZ
model with anisotropy slightly below unity (on the easy-plane
side), which this model can realize as discussed in the next
section.

Finally, for a small drive � � J‖, J⊥, JDM, we must use the
full model of Eq. (4). If the drive is turned off completely
(� = 0), the resulting interaction can be written as

ĤHeisen+T = J2

U

∑
j

[
cos(φ)

(
σ̂ x

j σ̂
x
j+1 + σ̂

y
j σ̂

y
j+1

) + σ̂ z
j σ̂

z
j+1

− sin(φ)
(
σ̂ x

j σ̂
y
j+1 − σ̂

y
j σ̂

x
j+1

)]
, [� = 0]. (10)

We label the spin interaction in this regime as Heisenberg +
twist (Heisen + T). While a DM interaction is present, its
effect for the above parameters can be simplified to Heisen-
berg model physics in a twisted frame of reference, as will
be discussed in Sec. III. Having a small nonzero � � JDM

will not significantly change this picture aside from adding
the corresponding single-particle term J�

∑
j σ̂

x
j , since the

coefficients of the model are only weakly dependent on �

in this regime. For a larger � � JDM, the DM term will be
rotated out.

In addition to all of the above, we can also add an extra field
through the use of the laser drive’s detuning δ, which would
take the form of δ

2

∑
j (n̂ j,e − n̂ j,g) in the basis of the bare

Fermi-Hubbard model, thus adding a spin term of the form
∼ δ

2

∑
j σ̂

z
j . While such a term does not commute with the rest

of the Hamiltonian, if |δ| � |U 2 − �2|, the superexchange
model will remain the same to good approximation. This
permits the addition of an extra single-particle term without
changing the spin interactions. We do not explicitly do so
in this work, but such a detuning nonetheless provides yet
another tuning parameter that can be implemented without the
need for additional experimental ingredients.

C. Dynamical model comparisons

It is useful to know where the various simplified models
discussed in the previous section are applicable. The most
rigorous metric of dynamical model agreement is state fidelity,
but such a comparison tends to be unnecessarily harsh be-
cause the fidelity can drop with increasing system size while
experimentally relevant observables remain in agreement. We
instead evaluate the validity of the spin models through com-
parison of simple collective observables.

We examine two typical time evolutions of the system,
starting from product initial states. The first evolution is∣∣ψ (Z )

0

〉 =
⊗

j

|↑〉 j measuring C (Z ) = 2

L

√
〈Ŝy〉2 + 〈Ŝz〉2.

(11)

The observable C (Z ) is the spin contrast, chosen such that there
are no fast single-particle oscillations coming from the drive.
The second evolution is∣∣ψ (X )

0

〉 =
⊗

j

|→〉 j measuring C (X ) = 2

L
〈Ŝx〉, (12)

where |→〉 j = (|↑〉 j + |↓〉 j )/
√

2. Here we label our contrast
C (X ) as the magnetization. For a large drive � � J‖, J⊥, JDM

only the first C (Z ) evolution will see nontrivial dynamics, as
C (X ) is approximately conserved by the drive. On the other
hand, for a weak drive � � J‖, J⊥, JDM we can have non-
trivial dynamics for both evolutions depending on the model
in question. In principle, a full rigorous comparison should
consider all possible high-energy state properties rather than
the two selected above. Since we mainly seek a qualitative
understanding of model regimes, we have chosen a pair of
experimentally simple evolutions for which at least one will
have nontrivial dynamics at every point in parameter space.

To determine the validity of a particular spin model,
we compute the time dependence of C (α) for both evolu-
tions α ∈ {Z, X } using a spin model C (α)

Spin (where Spin ∈
{Ising, XY, OAT, XXZ, Heisen+T}) and the Fermi-Hubbard
model C (α)

Fermi [rewritten to reflect the basis rotation of Eq. (2)],
out to a time of

t f = 4/max(|J‖|, |J⊥|), (13)
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FIG. 2. (a) Dynamical regimes of the driven Fermi-Hubbard model compared to various spin models. The system (size L = 8) is evolved to
a fixed time t f (four times the fastest superexchange rate), and the contrast observable of the Fermi model is compared to each listed spin model
through an error metric [Eq. (15)]. The color scheme depicts regions where the error metric of the corresponding spin model is small; the color
of a given model fully vanishes when 
Spin � 0.25, corresponding to an average error of 0.25 in a contrast measurement (see Appendix B for
more details on the color scaling). Regions in black indicate regimes where the spin model description breaks down altogether due to higher
order processes from resonances such as � = U or � = U/2, with the red, green, blue (RGB) color coordinates scaled down by the error
of the full spin model 
SE. [(b)–(e)] Snapshots of contrast evolutions for the Ising, XY , OAT, XXZ, and Heisen + T (Heisenberg + twist)
models respectively, for specific points in the parameter regime as indicated by filled circles in panel (a). The former three plot the evolution
of the high-drive contrast C (Z ), while the Heisen + T plot shows evolution of the low-drive contrast C (X ). (f) Anisotropy of the XXZ model as a
function of flux for different fixed values of drive strength relative to Hubbard repulsion. (g) Characteristic timescale td needed for the contrast
to decay down to 1/e, using C (Z ) for high drive �/J � J2/U and C (X ) for no drive � = 0. Black regions are points where � = U , and the spin
model description is invalid due to resonance. Purple points indicate parameters for which the contrast does not decay below 1/e at any time.
This occurs trivially for φ = 0 (where the spin model is a pure Heisenberg model and no dynamics occur for product states) and for the special
regime of φ � 1, � = 0 (which is discussed in Sec. III).

which is four times the timescale of the fastest superexchange
interaction strength at any given point in parameter space.
This timescale is used for every model except the OAT,
for which we instead use t f = 8/|J‖ − J⊥| [16 time units of
the twisting term (Ŝx )2 without the L dependence, which is
sufficient to observe entanglement properties such as spin
squeezing]. A dynamical error metric for a given spin model
is defined as



(α)
Spin =

√
1

t f

∫ t f

0
dt

[
C (α)

Fermi(t ) − C (α)
Spin(t )

]2
. (14)

This metric is a root-mean-square error giving the average
difference between a contrast measurement of the Fermi and
spin model being considered over the time interval [0, t f ]. For
every choice of φ, � in the parameter space there will be two
error metrics for the two evolutions α ∈ {Z, X }, and we take
the worse of the two,


Spin = max
[



(Z )
Spin,


(X )
Spin

]
. (15)

Of course, the disagreement between the models will tend to
grow at longer times, and to an extent this analysis is quali-
tative. We choose four times the superexchange rate because
this should be sufficient to see nontrivial contrast decay and
be useful for applications such as spin squeezing or entangled
state generation.

Figure 2(a) shows a color plot of the resulting error metrics
for the different spin models. The color scheme is chosen
such that a given model’s color completely vanishes when
its error metric reaches 
Spin � 0.25, corresponding to an
average error of 0.25 in measurements of C (X ) or C (Z ). The
Hubbard interaction strength is chosen to be U/J = 50 as
in the first sample set of parameters in Table I, well into
the Mott-insulating regime to ensure that finite U/J does not
contribute additional error. We see the parameter regimes as
described in Sec. II B. Large flux φ ≈ π and strong drive
corresponds to the Ising model (red). The line in parameter
space satisfying J‖ = 0 corresponds to the XY model (green).
There is a narrow red line adjacent to this regime where the
Ising model also looks to be valid, but this is a spurious effect
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caused by the Ising evolution happening to align with the
Fermi-Hubbard out to the specific timescale t f we use. For
small flux φL � 1 and large drive, we have the OAT model
(yellow). Underlying the other models is the XXZ model
in white, which is valid throughout most of the parameter
regime. The XXZ anisotropy parameter 
 = 2J‖/(J‖ + J⊥)
is plotted in Fig. 2(f); we can attain any ferromagnetic or
easy-plane value for �/U < 1, and any antiferromagnetic
value for �/U > 1. Finally, for low drive � = 0, we have
the Heisenberg + twist model (blue). Note that the system in
this regime can also be described by a low-drive version of
the XXZ or OAT models (see Appendix B), which is why the
corresponding colors are also present for � = 0. The regions
in blue are points in parameter space where the chiral DM
interaction exclusive to the Heisenberg + twist is necessary to
capture the correct time evolution.

Figures 2(b)–2(e) show snapshots of the relevant models’
time evolution from different points of the diagram. The dark
region near � = U is the resonance point where the superex-
change denominators vanish and second-order perturbation
theory breaks down, causing no spin model to be valid. There
is an additional resonance point near � = U/2 corresponding
to a second-order resonant process not captured by the spin
model [29], although the width of this resonance is smaller.
We also note that the associated timescales speed up as the
resonance point � = U is approached. Figure 2(g) plots a
characteristic timescale td defined as the time needed for the
contrast to decay down to 1/e, using the C (Z ) contrast for
�/J � J2/U (the high drive limit, all data points except the
� = 0 line) and C (X ) for � = 0. This allows for an evaluation
of experimental tradeoff, where one can move closer to the
resonance for faster timescales at the cost of weaker model
agreement. There is also a region of φ � 1, � = 0 where the
contrast does not fully decay at any time despite no obvious
conservation law protecting it. This persistent magnetization
effect will be discussed in Sec. III.

While these simulations are for relatively small system size
L = 8, in general the regimes of validity do not undergo sig-
nificant change as the size increases because the interactions
are nearest neighbor. The only exception is the OAT model,
for which the regime will shrink with increasing L because it
requires φL � 1 (the yellow region looks relatively large here
because we use a small L). We also note that open boundary
conditions are used for the above simulations with all models
except the OAT; this is to ensure that the chiral properties
of the DM interaction are captured, as will be explored in
Sec. III. Comparisons with the OAT use a periodic Fermi-
Hubbard model because open boundaries can lead to a minor
but nonzero offset to the contrast even in the thermodynamic
limit.

For the simpler regimes such as the Ising or one-axis twist-
ing model, the dynamics are well understood and can have
analytic solutions [36]. More general XXZ-type dynamics can
be complex to treat, as even exact 1D Bethe ansatz techniques
are difficult for full dynamical evolution. However, the param-
eter regime of low drive � = 0 where the Heisenberg + twist
model is valid offers a special case. The dynamics there are
nontrivial but exhibit special long-time features that can be
understood from even the noninteracting limit, offering ana-
lytic tractability while still simulating the dynamical behavior

of a strongly interacting model. In the next section, we will
focus on this regime in more detail.

III. PERSISTENT LONG-TIME BEHAVIOR

A. Long-time magnetization profiles

Having shown the different regimes of spin models that can
be realized with laser-driven SOC optical lattice systems, we
focus on the regime of � = 0 where the DM interaction plays
a role. Conventionally, the ground-state properties of systems
including DM interactions can already be quite complex [17].
In our case, we can work directly with the Heisenberg + twist
model of Eq. (10). For clarity, we write it again:

ĤHeisen+T = J2

U
cos(φ)

∑
j

[
σ̂ x

j σ̂
x
j+1 + σ̂

y
j σ̂

y
j+1 + 
�=0σ̂

z
j σ̂

z
j+1

+ D
(
σ̂ x

j σ̂
y
j+1 − σ̂

y
j σ̂

x
j+1

)]
. (16)

Here 
�=0 is an XXZ anisotropy (note that it differs from
the anisotropy of the model in Eq. (6) because we are in the
low-drive limit here), and D describes the relative strength
of the DM term. In our system, the coefficients are (again,
maintaining � = 0),


�=0 = sec(φ), D = − tan(φ). (17)

The nonzero flux causes this model to deviate away from a
conventional Heisenberg model by a set of position-dependent
local rotations of the spin variables [37] because we are in a
dressed basis; see Eq. (2). However, we can map back to a
Heisenberg model at the price of changing the initial state.
More concretely, the dynamics of

ĤHeisen+T evolving
∣∣ψ (X )

0

〉 =
⊗

j

|→〉 j, (18)

which correspond to the low-drive evolution from the prior
section, are equivalent to

ĤHeisen = J2

U

∑
j

σ j · σ j+1

evolving
∣∣ψSpiral

0

〉 = e
i
2

∑
j jφσ̂ z

j

⊗
j

|→〉 j, (19)

with the initial state becoming a spiral in the plane of the
DM interaction, rotating by an angle φ per lattice site under a
unitary transformation Û = e

i
2

∑
j jφσ̂ z

j . The mapping is exact
for open boundary conditions and � = 0. Periodic boundaries
can lead to incommensurate mismatch if the flux is not a
multiple of 2π/L (see discussion in Appendix D). Hereafter,
we refer to the dynamics under ĤHeisen+T as the gauged frame
(working in a dressed basis), and the equivalent dynamics un-
der ĤHeisen as the ungauged frame (for which the quantization
axis of the Bloch sphere is set by the bare atomic states g, e
with no site-dependent phases).

The spiral structure from nonzero flux causes the system’s
dynamics to exhibit nontrivial features due to the additional
underlying symmetry of the Heisenberg model. As the sim-
plest example of such features, in Figs. 3(a)–3(d) we plot
the time evolution of the collective magnetization 〈Ŝx〉 in
the gauged frame (starting from |ψ (X )

0 〉) for different values
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FIG. 3. [(a)–(d)] Time evolution of the magnetization 〈Ŝx〉 for the Fermi-Hubbard model with U/J = 0, 0.5, 1, and � = 0 [panels (a)–(c)]
and the Heisenberg + twist spin model (U/J → ∞ limit) [panel (d)], for different values of flux φ. System size is L = 8. After a short initial
decay, the magnetization stabilizes to a nonzero value depending on the flux. (e) Long-time mean magnetization for the different models in
panels (a)–(d). Up to small deviations, the mean is the same for all interaction strengths. (f) Long-time mean magnetization for the spin model
as a scaling function of flux times system size φL for different system sizes. For smaller flux, the curves fall on top of each other. Larger flux
causes them to deviate, as the system is periodic under φ → φ + 2π (with no L scaling). Error bars denote 1 standard deviation of the long-time
fluctuations about the mean. (g) Site-resolved transverse magnetization 〈σ̂ y

j 〉 for different time snapshots using the spin model (L = 14). An
infinite-time chiral lattice-wide imbalance 
y is established, as plotted in the inset. (h) Plot of infinite-time imbalance, also showing scaling
behavior. Dots are the spin model, while the dark blue line is the U/J = 0 exact analytic result in the thermodynamic limit L → ∞.

of flux. We consider both the Fermi-Hubbard model in the
appropriate basis for different values of Hubbard repulsion
U/J [panels (a)–(c)] and the spin model ĤHeisen+T [panel (d)].
We find that in all cases that after an initial decay there is a
nonzero mean magnetization that persists to infinite time,

〈Ŝx〉t→∞ = lim
T →∞

1

T

∫ T

0
dt〈Ŝx〉(t ), (20)

while the other in-plane component 〈Ŝy〉 averages to zero. This
dependence of this mean magnetization on the flux is shown

in Fig. 3(e). If we had started with a product state along the
ŷ direction of the Bloch sphere we would have a nonzero
mean 〈Ŝy〉 and zero mean 〈Ŝx〉 instead. Interestingly enough,
we find that while the amplitude of fluctuations about the
mean depends strongly on the Hubbard parameter U/J (recall
that the spin model is only valid for U/J � 1), the mean
value remains largely the same independently of U/J . This
permits us to write an approximate analytic expression for the
mean by solving the U/J = 0 interactionless case (with open
boundaries),

2

L
〈Ŝx〉t→∞ ≈ 4

L(L + 1)2

L∑
j, j′,k=1

sin2

(
π jk

L + 1

)
sin2

(
π j′k
L + 1

)
cos [φ( j − j′)] = 1

(L2)

sin2
(

φL
2

)
sin2

(
φ

2

) as L → ∞. (21)

As an even more intriguing feature, in Fig. 3(f) we find that
at small flux φL � 1 there is a scaling behavior as a function
of φL, or flux times total system size, which eventually peels
off once φ gets large enough. The first minimum of this
scaling long-time magnetization occurs at φL = 2π , which
corresponds to a full-period twisting of a spiral state in the
ungauged frame. We see a nonzero magnetization even at a
full period twist because we use open boundary conditions.

Periodic boundaries see a similar profile, except with 〈Ŝx〉t→∞
falling to zero at φ = 2πn/L for any n ∈ N (see Appendix D
for further discussion on boundary effects).

An infinite-time nonzero magnetization independent of
U/J for this model is surprising. Naively, one would expect
a relaxation to zero magnetization, as the system has rota-
tional symmetry in the x̂-ŷ plane of the Bloch sphere, and
there is no obvious conservation law that discriminates 〈Ŝx〉
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from 〈Ŝy〉. One could expect this to be a consequence of 1D
integrability, since the model maps to a Heisenberg model
in the ungauged frame, but we also find similar effects in
equivalent 2D systems (see Sec. III B). One may also consider
this to be a fine-tuned regime, but in addition to its persistence
for all U/J Hubbard repulsion strengths, we find that this
nonzero magnetization is robust to perturbative effects such
as harmonic trapping or imperfect filling fraction N/L < 1,
which only slightly change the outcome (see Appendix C).
Furthermore, the scaling behavior maintaining a nonzero av-
erage at φL = 2π implies that boundary conditions play a
nontrivial role even in the thermodynamic limit (this is unique
to the interacting spin model; see Appendix D for details).

Aside from simple observables like magnetization, the
system can also develop long-time lattice-wide chiral spin
imbalances. Figure 3(g) shows the other site-resolved in-plane
magnetization 〈σ̂ y

j 〉 across the lattice for different snapshots of
the time evolution (with open boundaries). While the mean
〈Ŝy〉 is zero, we find that the system establishes a tilt in
the spin projection along the ŷ direction, indicating that the
DM interaction maintains a nonzero spin current at all times,
opposed by the relaxation dynamics of the XXZ model. This
tilt can be quantified by


y = 1

L

(
L/2∑
j=1

〈
σ̂

y
j

〉 − L∑
j=L/2+1

〈
σ̂

y
j

〉)
, (22)

which is plotted in Fig. 3(h), showing the same character-
istic scaling behavior as the long-time magnetization. The
system generates an extensive spin imbalance depending on
the scaled flux φL. We can again approximate it using the
noninteracting limit U/J = 0,


y ≈ 2

L2

sin
(

φL
2

)
sin2

(
φL
4

)
sin2

(
φ

2

) as L → ∞. (23)

This imbalance is again surprising, especially because it man-
ifests as an extensive chiral feature resulting from an initial
excitation with nonextensive energy in the thermodynamic
limit. Furthermore, for φL � 2π the spin is imbalanced in
one direction, whereas for φL slightly higher than that the
direction is reversed, even though the first 2π only makes
a full-period revolution of the spins and should not set a
preferential spin pumping direction.

B. Symmetry-restricted features

The reason that nontrivial long-time behavior occurs is
because of the underlying exact SU(2) symmetry of the
Heisenberg + twist model, together with its associated reduc-
tion of available phase space at small values of the flux. While
the model we study is in a twisted (gauged) frame, the local
basis rotations still preserve the associated conserved quan-
tities, just in a twisted form. With no flux φ = 0, we have a
Heisenberg model, which is a critical point of the XXZ model
(
�=0 = 1, D = 0). The addition of the DM term causes this

critical point to extend into a line D = ±
√


2
�=0 − 1 (with a

corresponding branch for the 
�=0 = −1 critical point). For
the parameters in Eq. (17), the system remains on the critical
line at some position determined by the flux. The additional

symmetries of the Heisenberg model, while twisted, still cause
the Hilbert space to break into symmetry sectors and restrict
the number of states the system can relax into. By comparison,
a model sitting off the critical line of 
�=0 = sec(φ), D =
− tan(φ) cannot be mapped to the Heisenberg and will have
dynamics that are chaotic even in 1D [38], causing the mag-
netization to decay to zero for all φ �= 0.

Recall that in general, the Heisenberg model conserves
both total angular momentum S2 [with eigenvalues S(S + 1)]
and angular momentum projection Ŝx (with eigenvalues M),
splitting the Hilbert space into S2 shells and Ŝx sectors within
each shell:

[ĤHeisen, S2] = 0, S = L

2
,

L

2
− 1, . . . ,

[ĤHeisen, Ŝx] = 0, M = S, S − 1 · · · − S. (24)

With φ �= 0, the spiral initial state |ψSpiral
0 〉 in the ungauged

frame will be distributed among these symmetry sectors. For
sufficiently small flux, only the highest angular momentum
shells are populated. These include the Dicke manifold S = L

2
and the spin-wave manifold S = L

2 − 1, followed by S = L
2 −

2, etc. The higher angular momentum shells have few states
per symmetry sector [1 in Dicke, L − 1 in spin wave, then
O(L2), O(L3), and so on]. When enough of the initial state
population sits in these highest shells, there are insufficient
states for the system to relax and an infinite-time magnetiza-
tion is generated. The equivalence between the Fermi and spin
models can also be understood from this argument; the un-
driven Fermi-Hubbard model in the ungauged frame also has
SU(2) symmetry regardless of the value of U/J , meaning that
the lack of relaxation should persist. Spin-insensitive pertur-
bations such as external harmonic trapping or imperfect filling
fraction likewise maintain SU(2) symmetry and preserve the
magnetization or imbalance. Non-negligible boundary effects
in the thermodynamic limit are also sensible, as the structure
of the highest angular momentum shells depends strongly
on the boundaries (sinusoidal vs plane wave), causing the
relevant populations as a scaling function of φL to be dif-
ferent. Note that the non-negligible boundary effects are only
maintained in the thermodynamic limit for the interacting spin
model, however, as discussed in Appendix D. In a sense, the
system thermalizes within a restricted set of Hilbert space
manifolds that prevent full relaxation in the conventional
manner.

To help quantify the above arguments, in Fig. 4(a) we plot
the overlap of the initial-state wave function |ψSpiral

0 〉 in the
ungauged frame with the different symmetry sectors of the
Heisenberg model ĤHeisen,

PS =
∑

M

∑
n

∣∣〈ψSpiral
0

∣∣φS,M,n
〉∣∣2

, (25)

where |φS,M,n〉 is the nth eigenstate of ĤHeisen within the sym-
metry sector of angular momentum S and projection M. At
φ = 0, all population sits in the maximally polarized Dicke
state

⊗
j |→〉 j . Increasing φ causes the deeper shells to be-

come populated, increasing the number of states that the
system can explore. We give a metric of this property by
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FIG. 4. (a) Distribution of initial spiral state |ψSpiral
0 〉 wave-function population in different total angular momentum shells PS of the

Heisenberg model ĤHeisen as a function of scaled flux φL, for a system of size L = 12. (c) Weighted average ζ of shell population times
the number of states per symmetry sector of each shell. Note that each shell has a number of symmetry sectors corresponding to the further
conserved quantity Sx . The Dicke manifold has NS = 1, spin waves NS = L − 1, then O(L2), O(L3) and so on. The dashed line corresponds to
φL = 2π . The inset shows the bipartite entanglement entropy dynamics for an L = 10 system for specific snapshots of flux.

defining

ζ = 1

Nmax

∑
S

PSNS, (26)

which is a weighted average of the population in each shell
times the number of states per symmetry sector in that shell
NS , normalized by the number of states in the largest sector
Nmax = NS=1 (for even L). The metric ζ can be understood
as a measure of how big of a Hilbert space the system can
explore. When ζ � 1, the wave function has most of its
weight in symmetry sectors much smaller in dimension NS

than the largest size ones (with size Nmax), and the system will
have trouble relaxing. For ζ approaching order 1, most of the
wave-function weight is in the biggest possible sectors and we
can expect a more conventional decay of magnetization and
imbalance. Note that NS is not simply the number of states in
the S shell, but also the number of states per sector of fixed M
as well. For example, the Dicke manifold has L + 1 states in
total, but each symmetry sector of M = − L

2 , . . . , L
2 within it

only has one state, and thus NS=L/2 = 1. In Fig. 4(b), we plot
this metric as a function of φL, finding a characteristic scaling
crossover in behavior. The regime where mean infinite time

magnetization falls near zero corresponds to the regime where
ζ saturates to a value near 1.

To connect with more conventional metrics, in the inset
of Fig. 4(b) we also plot the dynamics of the bipartite en-
tanglement entropy (partitioning the lattice into left and right
halves) for different values of φL. As ζ ≈ 1 is approached,
the entanglement entropy saturates at its maximum permitted
value based on the system size, while for small flux φL � 1 it
never reaches that value.

The unusual dynamics described above appear reminiscent
to other kinds of unusual dynamics associated with integra-
bility, and indeed the 1D nearest-neighbor Heisenberg model
is integrable. However, here we find that integrability is not
a necessary (and is in general not a sufficient) ingredient for
the observed long-time dynamics. Beyond the mechanism we
propose above, which is unrelated to integrability, additional
evidence for the unimportance of integrability here is our
surprising observation of analogous long-time behavior in an
equivalent 2D Heisenberg model, which is not thought to be
integrable. Figure 5(a) plots the infinite-time magnetization
in 2D, using a similar spiral initial state with a 2D structure

[i.e., a unitary transformation of the form e
iφ(i+ j)

2 σ̂ z
i, j for lattice

FIG. 5. (a) Long-time magnetization for the model of Eq. (16) and its 2D equivalent as a function of φL (in 2D, L = Lx × Ly). System size
is L = 12 in 1D and (Lx, Ly ) = (4, 3) in 2D, using open boundaries. Error bars indicate one standard deviation of the fluctuations about the
mean. Dashed lines estimate the point where the magnetization first reaches a minimum. (b) Hilbert space fragmentation metric from Eq. (26)
for the same 1D and 2D systems.
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coordinates (i,j)]. While the qualitative profile is changed, we
still find nonzero persistent averages, which actually remain
higher out to longer values of φL (with L = Lx × Ly for lattice
length Lx and width Ly). This occurs because 2D systems
retain more population in the highest shells for the same flux
(since the energy gaps between shells scale with coordination
number), and those shells have the same symmetry sector
sizes NS independent of dimension. Figure 5(b) confirms this
prediction by plotting the same metric ζ , showing that it
saturates at ζ ≈ 1 at the same flux that we see the infinite-time
magnetization drop to zero. There have also been studies of
similar physics in 3D using approximate numerical methods
[39], although there persistent infinite-time magnetization was
found for φ = 0, π .

IV. EXPERIMENTAL IMPLEMENTATIONS

The general system described in Eq. (1) can be realized
in several ways. The most straightforward implementation is
with a 3D optical lattice. Dynamics can be restricted to 1D
as explored in this work by increasing the transverse lattice
depths, e.g., a deep lattice along directions ŷ and ẑ and a
shallower depth along a tunneling axis x̂ (though still deep
enough to maintain U/J � 1). Spin-orbit-coupled driving
may be realized through a direct optical transition between
long-lived internal states (g, e), such as clock states used in
conventional atomic clock protocols, which will ensure the
coherence times needed for observing spin dynamics. Flux
is generated whenever the drive laser wave vector kL has
some projection along the tunneling axis x̂ and will take the
value φ = cos(θ )(2πa)/λL, with a the lattice spacing, λL

the driving laser wavelength, and θ the angle between kL and
the tunneling axis x̂.

The most promising platform candidates are alkaline-
earth-metal or earth-like atom experiments, as they provide
long-lived optically separated internal clock states and mag-
netic field insensitivity [24–26]. The sample parameters in
Table I were computed for ultracold fermionic alkaline-earth-
metal 87Sr in a magic-wavelength lattice, using the long-lived
1S0 and 3P0 clock states as the internal states e and g. Unfa-
vorable e-e collisions are mitigated by using a nuclear-spin
polarized gas, as wave-function symmetry forbids any s-wave
interactions between two e atoms both on the ground vibra-
tional state, while p-wave collisions can only act cross-site
and are negligible for the lattice depths of �10Er that we
consider due to the exponential falloff of lattice Wannier func-
tions. Such an implementation is also insensitive to magnetic
field fluctuations, as these will only contribute a time-varying
single-particle detuning term ∼δ(t )Ŝz. Current-generation op-
tical lattice clock experiments have magnetic field control that
permits reduction of δ(t ) to below 0.1 Hz (when using clock
states of a nuclear-spin polarized gas), which is negligible
compared to our bare single-particle drive � on the order of
kHz.

Alternatively, one may emulate these types of spin physics
with nuclear-spin states such as hyperfine states within a given
manifold where the spin-orbit coupling is implemented via
Raman transitions. The relevant flux in this case will come
from the difference in the overall projection of the two Ra-
man beams, e.g., φ = [cos(θ1) − cos(θ2)](2πa)/λL with θ1,

FIG. 6. Schematic for preparing product states in the dressed
eigenbasis of the drive. The system is initialized in a bare atomic
product state

⊗
j |g〉 j . The spin-orbit-coupled drive is turned on, and

a π/2 pulse is made, preparing a spiral state on the equator of the
Bloch sphere (the red lines indicate the drive axes of rotation on
each lattice site). The phase of the drive is then skipped by π/2,
shifting the axes to match the current spin direction on each site
(blue lines). This results in a product state

⊗
j |→〉 j . Measuring

〈Ŝx〉 can also be done by reversing this protocol and then measuring∑
j (〈n̂ j,e〉 − 〈n̂ j,g〉).

θ2 being the angles of the beams to the tunneling axis x̂. Spon-
taneous emission effects can be made negligible by detuning
further from the intermediate excited state; see Ref. [40] for
an example implementation with ultracold 87Sr using 3P1 as
an intermediate state. Depending on the duration of spin dy-
namics one wishes to emulate, other atomic platforms such
as alkali atoms may also prove useful, especially in regimes
near resonance |U | ≈ |�| where the spin model still holds but
the timescales are faster. There have also been discussions on
the use of lanthanide atoms [41], which can avoid some of the
heating issues typically found in alkali atoms.

Preparing the desired product initial states is straightfor-
ward. A product state |ψ (Z )

0 〉 = ⊗
j |↑〉 j in the dressed basis is

trivial to prepare, as it is equal to a product state of all atoms
in the bare atomic basis up to an overall phase,∣∣ψ (Z )

0

〉 =
⊗

j

|e〉 j, (27)

and can thus be initialized with standard optical pumping tech-
niques. Creating a product state |ψ (X )

0 〉 = ⊗
j |→〉 j requires a

little more effort, because it is an eigenstate of the drive and
cannot be generated with the same drive alone. However, such
a state can be prepared by skipping the laser phase. Figure 6
shows such a protocol. One initializes all atoms in the bare
atomic ground-state

⊗
j |g〉 j , implements a π/2 pulse with

the same laser used for driving, and then skips its phase ahead
by π/2. The pulse will create a site-dependent rotation that
transforms the state into the desired dressed product state⊗

j |→〉 j ,

e− iπ
4

∑
j (e

− iπ
2 ei jφ ĉ†

j,eĉ j,g+H.c.)
⊗

j

|g〉 j =
⊗

j

|→〉 j . (28)

The same techniques may be used for measuring collective
observables. Total 〈Ŝz〉 is simply measured from the bare
atomic excitation fraction, as 〈Ŝz〉 = 1

2

∑
j (〈n̂ j,e〉 − 〈n̂ j,g〉).

Total 〈Ŝx〉 can be measured by reversing the above state prepa-
ration protocol; one skips the phase by −π/2, makes a π/2
pulse, and then measures excitation fraction.

In addition to optical lattices, much of the physics can also
be done with optical tweezer arrays placed close enough to
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allow tunneling. These have seen significant recent develop-
ment due to their tunability and control [42–47] and offer
an interesting alternative platform for spin dynamics experi-
ments. If using atoms with long-lived internal clock states, a
single interrogating laser can be applied in exactly the same
way as for the lattice; one simply needs to control either
the angle or tweezer spacing to realize the desired φ. Spin-
orbit-coupled Raman schemes are likewise straightforward
to adapt. As further possibility, higher dimensional systems
are also simple to generate; one makes the lattice shallower
along more than one tunneling direction or uses a 2D tweezer
array. Each direction’s corresponding flux will be controlled
by the projection of the driving laser(s) onto the relevant axis.
This permits studies of the same types of spin models in
2D, as well as interplay between interactions of various types
along different dimensions (such as, for example, an isotropic
interaction along one dimension and an anisotropic one along
another), which can be relevant to emulating real condensed
matter materials.

We note that our discussion has focused on systems with
ideal filling fraction N/L = 1, while real implementations can
have holes in the initial loadout. While explicit benchmarking
for doped Fermi-Hubbard systems is challenging and often
nonrepresentative due to the small numerically accessible sys-
tem sizes, we can make an estimate for how good a filling
fraction one needs to at least observe the effects of superex-
change spin dynamics. A direct comparison of energy scales
suggests that the superexchange rates J‖, J⊥ should be greater
than or comparable to the bare tunneling rate of holes times
the hole fraction, J (1 − N/L). Furthermore, for nonzero flux,
some of the hole motion is mitigated because part of the
tunneling terms acquire a spin flip in the drive + SOC dressed
basis, which is energetically unfavorable when � � J [see
Appendix A for details]. In the case of φ = π , the holes are
completely locked in place, and in general their tunneling
is reduced by a factor of cos(φ/2). Altogether this leads to
the requirement that J‖, J⊥ � J (1 − N/L) cos(φ/2). Current-
generation optical lattice experiments can already reach filling
fractions of (1 − N/L) � 0.1, for which our typical superex-
change rates (Table I) are comparable to this normalized hole
tunneling. Quantum gas microscopes also offer a powerful
means of achieving even higher filling where superexchange
will dominate the dynamics.

V. CONCLUSIONS

We have shown that using a single laser drive to induce
magnetic flux in a fermionic optical lattice system can realize
a wide variety of different spin models across the parameter
regime of flux and driving strength. This system is readily im-
plementable in modern optical lattice or tweezer experiments
using highly coherent atomic states. It opens a path to greatly
improve quantum simulation capabilities using tools already
in reach in current experiments. In addition to studying well-
understood models such as the Ising or one-axis twisting mod-
els, more exotic physics such as lack of relaxation imposed by
symmetry constraints can also be explored with this setup.

In addition, the reduction of the Fermi-Hubbard model
to well-studied spin models provides a significant advantage
for research into the underlying physics. The Fermi-Hubbard

model has proven challenging to study even in its equilib-
rium properties. Transforming the system into a simple spin
model with well-understood properties allows for a significant
coarse graining in the form of collective observable dynamics,
which are more experimentally and theoretically tractable. A
spin model mapping of this form shows that the underlying
Fermi-Hubbard model is more simple than one would expect
if working in the right dressed basis, and conversely allows
for easier probes of the system’s response to additional ingre-
dients like external fields.

There are many possible future directions to explore on
both experimental and theoretical fronts. One may inquire
further as to what happens to similar long-time magnetization
behavior in higher dimensional systems; we find that 2D also
exhibits nonzero steady state averages, but there are quali-
tative differences in the resulting profiles. Boundary effects
can be probed, as we find discrepancies between interacting
and free models (see Appendix D), which could become more
complex in higher dimensions. A more in-depth study of the
persistent magnetization behavior’s breakdown from external
perturbations can also be done. Finally, one can study the
steady-state spin imbalances in the context of spin transport.
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APPENDIX A: SPIN MODEL DERIVATION

We show here how the spin model we use is derived from
the Fermi-Hubbard model. The method is standard second-
order Schrieffer-Wolff perturbation theory, as described in,
e.g., Ref. [48].

The perturbation theory proceeds by first rotating the full
Fermi-Hubbard Hamiltonian Ĥ into the eigenbasis of the drive
by defining new fermionic operators,

b̂ j,+ = 1√
2

(ĉ j,e + ei jφ ĉ j,g),

b̂ j,− = 1√
2

(ĉ j,e − ei jφ ĉ j,g). (A1)

The Hamiltonian becomes

Ĥ ′ = Ĥ ′
J + Ĥ ′

U + Ĥ ′
�,

Ĥ ′
J = −J

2

∑
j

[(1 + e−iφ )(b̂†
j,+b̂ j+1,+ + b̂†

j,−b̂ j+1,−)

+ (1 − e−iφ )(b̂†
j,+b̂ j+1,− + b̂†

j,−b̂ j+1,+) + H.c.],

Ĥ ′
U = U

∑
j

n̂ j,+n̂ j,−,

Ĥ ′
� = �

2

∑
j

(n̂ j,+ − n̂ j,−). (A2)
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Note that the attenuation of possible hole motion with imper-
fect filling can be understood from the above equations, as
the two terms in Ĥ ′

J correspond to spin-conserving and spin-
flipping tunneling with amplitudes of cos(φ/2) and sin(φ/2)
respectively (up to an overall phase), with the latter mitigated
by the energy penalty imposed by the now-diagonal drive Ĥ ′

�.
The next step is to split the full Hilbert space of this sys-

tem into two energetically separated manifolds. The first is a
manifold E0 which contains all states with one atom per site
only (the effective spin states). The second is a manifold EV

containing doubly occupied states (which will not be directly
populated during dynamics but act as virtual intermediate
states). In our case, since the tunneling is nearest neighbor
and we are at half-filling, it is sufficient to work with the
states of a two-site system j = 1, 2 (with two atoms). For
such a system, the Hilbert space may be written in terms of
Fock states with fermionic occupation numbers indexed as
|n1,↑, n1,↓, n2,↑, n2,↓〉, and the two manifolds are

(E0)2sites ={|1, 0, 1, 0〉 , |1, 0, 0, 1〉 , |0, 1, 1, 0〉 , |0, 1, 0, 1〉},
(EV )2sites = {|1, 1, 0, 0〉 , |0, 0, 1, 1〉}. (A3)

General Schrieffer-Wolff theory then prescribes that we split
the Hamiltonian into a diagonal portion Ĥ0 containing the
now-diagonal drive and Hubbard interaction, and a block off-
diagonal portion V̂od that couples the manifolds E0, EV (with
no V̂od matrix elements within the manifolds themselves). To
this end, we define projectors

P̂0 =
∑
a∈E0

|a〉〈a|, P̂V =
∑

a∈EV

|a〉〈a|. (A4)

The Hamiltonian is then separated as

Ĥ ′ = Ĥ0 + V̂od,

Ĥ0 = P̂0(Ĥ ′
U + Ĥ ′

�)P̂0 + P̂V (Ĥ ′
U + Ĥ ′

�)P̂V ,

V̂od = P̂0Ĥ ′
J P̂V + P̂V Ĥ ′

J P̂0. (A5)

There could also be off-diagonal but block-diagonal portions
V̂d , but in our case these do not occur. This is an intentional
result of going to a basis where the drive Ĥ ′

� is diagonal. Oth-
erwise, we would have other high-order perturbative effects
emerge if the drive is strong.

We can now write the second-order Schrieffer-Wolff trans-
formation generator as

Ŝ1 =
∑
a �=b

〈a| V̂od |b〉
〈a| Ĥ0 |a〉 − 〈b| Ĥ0 |b〉 |a〉 〈b| , (A6)

where both sums run over all states in the Hilbert space, a, b ∈
E0

⋃
EV . The summand should be treated as zero whenever

the numerator is zero (i.e., when there is no matrix element
between |a〉, |b〉), ignoring any zero denominator that can arise
from degeneracy. The effective second-order Hamiltonian re-
stricted to the E0 manifold is then written as

ĤSE = P̂0
(
Ĥ0 + 1

2 [Ŝ1, V̂od]
)
P̂0. (A7)

For the specific case of a two-site system j = 1, 2, the result-
ing Hamiltonian is a 4 × 4 matrix,

(ĤSE)2sites =

⎛
⎜⎜⎜⎜⎜⎜⎝

� + J2(cos(φ)−1)
U−�

iJ2(2U−�) sin(φ)
2U (U−�) − iJ2(2U−�) sin(φ)

2U (U−�) − J2U (cos(φ)−1)
U 2−�2

− iJ2(2U−�) sin(φ)
2U (U−�) − J2(cos(φ)+1)

U
J2(cos(φ)+1)

U
iJ2(2U+�) sin(φ)

2U (U+�)

iJ2(2U−�) sin(φ)
2U (U−�)

J2(cos(φ)+1)
U − J2(cos(φ)+1)

U − iJ2(2U+�) sin(φ)
2U (U+�)

− J2U (cos(φ)−1)
U 2−�2 − iJ2(2U+�) sin(φ)

2U (U+�)
iJ2(2U+�) sin(φ)

2U (U+�) −� + J2(cos(φ)−1)
U+�

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A8)

We can rewrite this matrix in terms of Pauli matrices σ̂ γ (with γ ∈ {x, y, z}),

(ĤSE)2sites = J⊥σ̂ x
1 σ̂ x

2 + J‖
(
σ̂

y
1 σ̂

y
2 + σ̂ z

1 σ̂ z
2

) + JDM
(
σ̂ z

1 σ̂
y
2 − σ̂

y
1 σ̂ z

2

) + J2� sin(φ)

2(U 2 − �2)

(
σ̂

y
1 − σ̂

y
2

) +
[

�

2
− J2� sin2

(
φ

2

)
U 2 − �2

](
σ̂ z

1 + σ̂ z
2

)
,

(A9)

where σ̂
γ

1 = σ̂ γ ⊗ 1, σ̂
γ

2 = 1 ⊗ σ̂ γ , and the coefficients are
the same as the ones in main text Eq. (5).

This is the interaction for two lattice sites. For a full chain
of L > 2, we simply interpolate it,

σ̂
γ

1 → σ̂
γ

j , σ̂
γ

2 → σ̂
γ

j+1, (A10)

and sum over j. Note that the term with (σ̂ y
1 − σ̂

y
2 ) → (σ̂ y

j −
σ̂

y
j+1) will end up canceling out aside from boundary terms,

since for any given lattice site j in the bulk it gets added by
the chain link to the left and subtracted by the chain link to
the right. We neglect it altogether. For the (σ̂ z

1 + σ̂ z
2 ) term,

we double the magnitude of the J2-proportional piece of the
coefficient (because it gets added twice in 1D, once by each
chain link touching the lattice site), but keep the bare �/2 as
is (because it comes from a zeroth-order Hamiltonian and not

a superexchange chain link). Overall, we end up with

ĤSE = J⊥
∑

j

σ̂ x
j σ̂

x
j+1 + J‖

∑
j

(
σ̂

y
j σ̂

y
j+1 + σ̂ z

j σ̂
z
j+1

)

+ JDM

∑
j

(
σ̂ z

j σ̂
y
j+1 − σ̂

y
j σ̂

z
j+1

) + J�

∑
j

σ̂ z
j . (A11)

Finally, while we derived this model in the basis where
the drive is diagonal, it is helpful to rotate back to a more
conventional form where the drive is of the σ̂ x type instead.
We thus make the rotation

σ̂ x
j → −σ̂ z

j , σ̂
y
j → σ̂

y
j , σ̂ z

j → σ̂ x
j , (A12)
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FIG. 7. (a) Magnetization dynamics of the undriven (� = 0) system with imperfect filling fraction, modeled using the Fermi-Hubbard
model in the dressed basis {↑,↓}. Lattice size is set to L = 8 with open boundaries. Fillings of 7/8 and 6/8 are implemented by putting a
hole at site j = 4, and at sites j = 4, 6 respectively (as sample representative evolutions). Hubbard repulsion is set to U/J = 1, and flux to
φ = 0.4. (b) Magnetization in the presence of external harmonic trapping of different strengths �ext/J . Filling is kept ideal at N/L = 1, and
other parameters are the same as in panel (a).

which corresponds to a fermionic basis of

â j,↑ = 1√
2

(b̂ j,+ + b̂ j,−) = ĉ j,e,

â j,↓ = 1√
2

(b̂ j,+ − b̂ j,−) = ei jφ ĉ j,g,

(A13)

leading to the Hamiltonian of Eq. (4) in the main text.

APPENDIX B: SPIN MODEL DYNAMIC REGIMES

While the XXZ and OAT models in the main text are
defined in the large drive regime � � J‖, J⊥, JDM, analogous
versions can also be written for the no-drive case � = 0. For
the XXZ , we can simply write the full spin model ĤSE and
ignore the DM term,

ĤXXZ |�=0 = J2

U
cos(φ)

∑
j

(
σ̂ x

j σ̂
x
j+1 + σ̂

y
j σ̂

y
j+1

)

+ J2

U

∑
j

σ̂ z
j σ̂

z
j+1. (B1)

This can be valid if the DM’s prefactor ∼ sin(φ) vanishes for
flux close to 0 or π . For the OAT, we project the above model
into the Dicke manifold,

ĤOAT|�=0 = P̂DickeĤXXZ |�=0P̂Dicke

= 4J2

U

cos(φ)

L − 1
S · S + 4J2

U

1 − cos(φ)

L − 1
ŜzŜz. (B2)

For the dynamical regime diagram in main text Fig. 2,
the color scheme is determined as follows. The error met-
ric 
Spin is obtained for each of the spin models Spin ∈
{Ising, XY, OAT, XXZ, SE}, and truncated to a chosen max-
imum error η = 0.25 via 
Spin → min(
Spin, η), which is the
threshold at which the model’s color will vanish. Note that the
last model “SE” is not the Heisen + T model, but the full spin
model, which we use to determine the relevance of the Heisen
+ T by comparing the SE error to an XXZ error, i.e., checking
whether the DM term is relevant. Each point in parameter
space is assigned an RGB color coordinate (r, g, b) with color

values r, g, b ∈ [0, 1]. The different spin models are likewise
assigned colors, with red (1,0,0) for Ising, green (0,1,0) for
XY , yellow (1,1,0) for OAT, white (1,1,1) for XXZ , and blue
(0,0,1) for Heisen + T (which, again, will be determined by
the difference in error of the SE and XXZ models). The color
coordinates are then determined via

r = 1 −
(

1 − 
XY

η

)
− 
XXZ − 
SE

η
,

g = 1 −
(

1 − 
Ising

η

)
− 
XXZ − 
SE

η
,

b = 1 −
(

1 − 
Ising

η

)
−

(
1 − 
XY

η

)
−

(
1 − 
OAT

η

)
.

(B3)

We essentially subtract (1 − 
Spin/η) from every color that
does not use the corresponding spin model. For example, since
the Ising is red, we subtract one minus its (scaled) error metric
from green and blue. The only exception is the Heisen + T
model, for which we instead subtract the difference in scaled
error between the XXZ and SE models (
XXZ − 
SE)/η, as
error in the XXZ but not in the SE means that the DM term
is relevant. Note that for the row of points with � = 0 (which
are the only points where the DM plays a nontrivial role due
to the scale of the plot), we use the undriven versions of
the XXZ and OAT models, ĤXXZ|�=0 and ĤOAT|�=0. After
computing the colors, we scale them by the overall quality
of the full spin model, ν → ν(1 − 
SE/η) for ν ∈ {r, g, b},
to capture the resonances where no spin model description
works.

APPENDIX C: FILLING FRACTION AND HARMONIC
TRAPPING ROBUSTNESS

The persistent magnetization and imbalance properties we
see are robust to typical optical lattice imperfections like
reduced filling fraction, or harmonic trapping coming from
lattice beam curvature. The filling fraction can be modeled
by directly replacing some of the lattice site atoms with
holes in the product initial state. Figure 7(a) shows the
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FIG. 8. (a) Exact long-time magnetization of the noninteracting U/J = 0 Fermi-Hubbard model in the gauged frame for different system
sizes, using open boundary conditions. The L → ∞ line is the asymptotic formula from main text Eq. (21). (b) Long-time magnetization
comparison between the free and interacting models. The blue line is noninteracting open-boundary U/J = 0 Fermi-Hubbard model in the
thermodynamic limit [same as in panel (a)]. The red dots are the spin model (U/J → ∞ limit) with open boundary conditions and fixed system
sizes. The green dots are the same spin model, using periodic boundary conditions.

magnetization for different filling fractions with a small sys-
tem of L = 8 using the Fermi-Hubbard model. We find that
while there is a reduction of 〈Ŝx〉t→∞, the nonzero infinite-
time average persists, in agreement with our symmetry-based
arguments.

A harmonic trap can be modeled by adding an additional
Hamiltonian term,

ĤTrap = �ext

∑
j

( j − j0)2(n̂ j,e + n̂ j,g), (C1)

with �ext being the trap energy. Figure 7(b) shows the mag-
netization with the trap present, showing that the long-time
averages likewise persist.

APPENDIX D: BOUNDARY CONDITIONS AND
INTERACTION EFFECTS FOR LONG-TIME

MAGNETIZATION

As discussed in the main text, the dynamics of the Heisen-
berg + twist model ĤHeisen+T evolving from a product state
|ψ (X )

0 〉 = ⊗
j |→〉 j lead to a nonzero infinite-time magnetiza-

tion 〈Ŝx〉t→∞. The analogous dynamics of the Fermi-Hubbard
model in the same basis lead to similar infinite-time magneti-
zation values. However, there are some deviations depending
on the boundary conditions and system size.

We first consider the infinite-time magnetization 〈Ŝx〉t→∞
for the Fermi-Hubbard model with open boundaries in the
noninteracting limit U/J = 0. The exact result in this regime
is given in Eq. (21), which we rewrite here for clarity:

2

L
〈Ŝx〉t→∞ ≈ 4

L(L + 1)2

L∑
j, j′,k=1

sin2

(
π jk

L + 1

)

× sin2

(
π j′k
L + 1

)
cos[φ( j − j′)]

= 1

L2

sin2
(

φL
2

)
sin2

(
φ

2

) as L → ∞. (D1)

In Fig. 8(a), we plot this value for a few increasing finite
values of L, as well as the asymptotic form in the thermody-
namic limit. It is evident that while there is a nonzero mean at
the commensurate flux values φL = 2π, 4π , etc., due to the
boundaries, this mean vanishes in the thermodynamic limit,
which should be expected from a noninteracting model.

The situation becomes more complex when considering
the U/J → ∞ limit (i.e., the spin model). Figure 8(b) plots
the infinite-time magnetization for the spin model for a few
system sizes as a scaling function of φL for both open and
periodic boundary conditions. We find that there is a clear
difference between the two that persists in the thermodynamic
limit due to the scaling behavior. The periodic boundary case
sees the magnetization drop to zero at φL = 2π, 4π , matching
the noninteracting model’s thermodynamic limit behavior (as
shown by the blue line in comparison). However, the spin
model with open boundaries maintains a nonzero magnetiza-
tion difference even in the thermodynamic limit, which can be
viewed as the difference between the green and red points in
the figure. We thus see a purely spin-interaction contribution
on top of the persistent magnetization behavior. The SU(2)
symmetry creates a lack of conventional relaxation, leading
to nonzero values. However, open boundaries cause the inter-
acting system to have nonzero values even at commensurate
φL = 2π, 4π , where the thermodynamic limit should expect
to see 〈Ŝx〉t→∞ = 0, since we have a full-period spiral that
should not favor one x̂ direction over another.

As a final note, we point out that the spin models used in
the above plot are in the ungauged frame, meaning that we
evolve under a Heisenberg model ĤHeisen from a spiral initial
state. For open boundary conditions, there is no difference be-
tween this and evolving under ĤHeisen+T with a product initial
state, as discussed in the main text. For periodic boundaries,
however, the two models do not map correctly to one another
unless the flux is commensurate (φL = 2π, 4π, . . . ), and so
we use the ungauged frame. If we were to evolve a product
state with a periodic-boundary version of ĤHeisen+T, we would
find that the magnetization decays to zero for all nonzero
flux.
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