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Spin and density self-ordering in dynamic polarization gradients fields
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We study the zero-temperature quantum phase diagram for a two-component Bose-Einstein condensate in an
optical cavity. The two atomic spin states are Raman coupled by two transverse orthogonally polarized, blue-
detuned plane-wave lasers inducing a repulsive cavity potential. For a weak pump the lasers favor a state with
homogeneous density and predefined uniform spin direction. When one pump laser is polarized parallel to the
cavity mode polarization, the photons coherently scattered into the resonator induce a polarization gradient along
the cavity axis, which mediates long-range density-density, spin-density, and spin-spin interactions. We show that
the coupled atom-cavity system implements central aspects of the t-J-V -W model with a rich phase diagram.
At the mean-field limit we identify at least four qualitatively distinct density- and spin-ordered phases including
ferromagnetic and antiferromagnetic order along the cavity axis, which can be controlled via the pump strength
and detuning. Real-time observation of amplitude and phase of the emitted fields bears strong signatures of the
realized phase and allows for real-time determination of phase transition lines. Together with measurements of
the population imbalance, most properties of the phase diagram can be reconstructed.
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I. INTRODUCTION

Quantum gas cavity QED—ultracold atoms near zero tem-
perature coupled to photons in high-Q cavity modes—has
become an outstanding experimental platform to study coher-
ent many-body quantum dynamics in a precisely controllable
and readily observable form [1,2]. Operating in the dispersive
regime, optical atomic excitations and spontaneous emission
are strongly suppressed so that coherence prevails for times
long enough to observe quantum phases in great detail and
study the corresponding phase transitions in real time. In
essence, the nonlocal collective scattering of photons in and
out of cavity modes by the atoms mediates long-range peri-
odic interactions among the atoms.

In a seminal experiment at the ETH Zürich [3], the Dicke
superradiant quantum phase transition was observed almost
40 years after its prediction in the 1970s [4,5]. In a gener-
alized setup involving an additional optical lattice, detailed
measurements soon after revealed that the interplay between
cavity-induced long-range density-density interactions and lo-
cal contact collisional interactions leads to an even richer
phase diagram including a Mott insulator, a superfluid, a den-
sity wave, and, in particular, a lattice supersolid state [6].

*natalia.masalaeva@yandex.ru

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Making use of several atomic Zeeman sublevels allows one
to emulate pseudospin dynamics in ultracold atomic gases.
It was suggested theoretically [7–12] that cavity-enhanced
Raman transitions can induce long-range periodic spin-spin
interactions. Their feasibility was experimentally confirmed
soon after by several groups independently [13–15].

By tailored spatial arrangements of polarized pump lasers,
a variety of long-range spin Hamiltonians can be implemented
via cavity-mediated spin-spin interactions as highlighted in
Ref. [10]. Note that these cavity-induced long-range spin-
spin interactions are independent of the temperature of the
atomic cloud, reminiscent of dipolar interactions between
polar molecules [16–18], providing a promising route for
simulation of quantum magnetism.

Here, using cavity-enhanced Raman coupling in a �

scheme via two external pump lasers and a cavity mode
blue detuned with respect to the atomic transitions, we en-
counter dynamical polarization gradients. It is known that
strong local polarization gradients in free space induce so-
called nonadiabatic forces for atoms with Raman-coupled
sublevels [19]. For our chosen parameter regimes, however,
such nonadiabatic forces play only a minor role. By contrast,
the polarization modulation of the effective dynamic light
field along the cavity axis induces dominantly long-range
interactions among the atoms via the p-band self-ordering
[20–22]. We demonstrate how these complex dynamics can
be exploited to engineer combined cavity-induced long-range
“density-density,” “spin-spin,” and “density-spin” interac-
tions among the effective two-component bosonic atoms
[23,24]. Our proposal will offer an alternative approach
for simulating t-J-V -W -like models implemented via polar
molecules in optical lattices [25] with interesting topological
phases [26].
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FIG. 1. Schematic illustration of the transversely pumped one-
dimensional spinor BEC inside a cavity.

II. MODEL

Consider a cigar-shaped Bose-Einstein condensate (BEC)
of �-type three-level atoms placed within a high-Q linear
cavity. The atoms are illuminated by two external pump lasers
that impinge in the transverse direction as depicted in Fig. 1.
We assume the atomic motion to be strongly confined in the
transverse directions by an additional trapping potential. The
two atomic ground states {|↑〉, |↓〉} with energies h̄ω↑ and
h̄ω↓ = 0, respectively, are coupled to the excited state |e〉
with energy h̄ωe through the interaction with the cavity field
and the two classical pump fields. The cavity supports one
standing mode of frequency ωc with linear polarization along
the z axis, which is the quantization axis. This mode couples to
the |↓〉 ↔ |e〉 transition with the position-dependent strength
G(x) = G0 cos (kcx), where kc = ωc/c = 2π/λc is the cavity
wave number. The two classical laser fields with Rabi frequen-
cies �1 and �2 are linearly polarized along the z and x axis,
respectively, driving the transitions |↓〉 ↔ |e〉 and |↑〉 ↔ |e〉
(Fig. 1). The total electric field

Ê(x, y) = E1eik1yez + E2e−ik2yex

+
√

h̄ωc

2ε0V
â cos (kcx)ez + H.c. (1)

thus features a polarization gradient along the cavity axis
as the orientation of the polarization vector depends on the
position x. Here, E1 and E2 are complex amplitudes of
the classical fields, â is the bosonic annihilation operator for
the photonic field, V is the cavity quantization volume, and ε0

is the vacuum permittivity.
The cavity and laser frequencies {ωc, ω1, ω2} are assumed

to be blue detuned with respect to the atomic transition
frequencies, e.g., ω1 − ωe � 0, while pump frequencies are
close to resonant with one another, e.g., |ω1 − ω2|/ω1(2) � 1.
This implies that the atoms are attracted to the intensity
minima of the light fields [27] and would, in general, lead
to the suppression of light scattering into the resonator. As
we show in this paper, for some pump strengths, however,
a self-ordered phase is still generated due to the complex
interplay of collective coherent scattering and optical dipole
forces. Similar features were recently also found for spinless
BECs via the p-band coherent photon scattering [20–22] and
polarizable point particles [28].

In typical cavity-QED experiments, the condensates are
rather dilute so that local collisional contact interactions
are negligible compared with the cavity-mediated long-range

interactions. For that reason we do not include two-body con-
tact interactions in our model [29,30].

In the limit of large atom-pump detuning, the atomic ex-
cited state can be adiabatically eliminated [1], leading to the
effective many-body Hamiltonian (see Appendix)

Ĥ =
∫

�̂†(x)H̃�̂(x)dx − h̄	câ†â, (2)

where �̂ := (ψ̂↑, ψ̂↓)� is the bosonic annihilation operators
for the spinor atomic fields and 	c := ω1 − ωc < 0 is the
cavity detuning. As the detuning 	c is negative, the atomic
kinetic energy decreases in a single scattering event, which
leads to atomic cooling of fast atoms [1]. In the {↑,↓} ba-
sis, the single-particle Hamiltonian density has the matrix
representation

H̃ =
(

− h̄2

2m ∂2
x + h̄δ̃ h̄ÛR(x)

h̄Û †
R(x) − h̄2

2m ∂2
x + h̄Û↓(x)

)
, (3)

where δ̃ := ω↑ − (ω1 − ω2) + �2
2/	a − �2

1/	a is the Stark-
shifted two-photon detuning with 	a := ω1 − ωe and the
operators Û↓(x) and Û (†)

R (x) describe various atom-light in-
teractions (see Fig. 2):

(i) The scattering of photons by the spin-| ↓〉 atoms without
changing their internal state results in the λc-periodic dynam-
ical potential

h̄Û↓(x) = h̄U0â†â cos2(kcx) + h̄η(â + â†) cos(kcx). (4)

Its first contribution accounts for the absorption and reemis-
sion of cavity photons by the atoms [see Fig. 2(a)], where
U0 := G2

0/	a is the maximum depth of this potential per pho-
ton. The second contribution, depicted in Fig. 2(b), describes
the coherent scattering of photons between the transverse
pump �1 and the cavity mode with effective strength η :=
G0�1/	a.

(ii) The processes that are accompanied by an atomic
pseudospin flip induce the λc-periodic, dynamical two-photon
Raman coupling

h̄Û (†)
R (x) = h̄�câ(†) cos (kcx) + h̄�p (5)

that describes the exchange of photons between the second
pump laser and the cavity field [Fig. 2(c)] and between the two
pump lasers [Fig. 2(d)], respectively. These scattering events
occur with effective Raman coupling strengths

�c := G0�2/	a, �p := �1�2/	a. (6)

Without loss of generality, we have assumed {G0,�1,

�2} ∈ R+.
The single-particle Hamiltonian density (3) possesses a

discrete Z2 symmetry. Namely, it is invariant under a si-
multaneous spatial translation x 
→ x + λc/2 and a parity
transformation of the field amplitude â 
→ −â. This is the
same symmetry as for transversally pumped two-level (i.e., ef-
fectively single-component) atoms in linear resonators. There,
this symmetry is spontaneously broken above a certain critical
pump strength, which is known as self-organization [31,32].
Hence we expect a similar symmetry breaking in our spinor
BEC system. Owing to its more complex level structure,
however, the intricate interplay between the atomic density,
the atomic pseudospin, and the cavity mode leads to richer
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FIG. 2. Schematic representation of the two-photon processes that contribute to the Hamiltonian density (3). The scattering events devoid
of a spin flip that are comprised in Eq. (4) consist of (a) the absorption and reemission of cavity photons and (b) the scattering of a photon
from the pump laser �1 into the cavity mode. Atomic pseudospin flips |↑〉 
→ |↓〉 as described in Eq. (5) occur in photon-scattering events
(c) from the pump laser �2 into the cavity mode or (d) from the first pump laser into the second. All processes that involve the cavity field
[(a)–(c)] cause a change in the atomic momentum distribution (gray arrows). In the one-dimensional description we assume that any transverse
momenta are absorbed by an external trapping potential.

phase diagrams than for spinless particles [3,6,21,33–37], as
we discuss in the following.

III. CAVITY-INDUCED LONG-RANGE INTERACTIONS
AND THE EFFECTIVE SPIN HAMILTONIAN

For large cavity detuning |	c| and/or large photon decay
rate 2κ the light field instantly follows the atomic distribution
and quickly attains its steady state [33]

âss = η
∫

cos (kcx)n̂↓dx + �c
∫

cos (kcx)ŝ−(x)dx

	c + iκ − U0
∫

cos2 (kcx)n̂↓dx
, (7)

where n̂τ (x) = ψ̂†
τ (x)ψ̂τ (x) is the local atomic density oper-

ator of state τ ∈ {↑,↓} and ŝ−(x) = ψ̂
†
↓(x)ψ̂↑(x) is the local

atomic spin lowering operator. The cavity field is hence cou-
pled to the atomic density n̂↓ and the atomic spin polarization
ŝ−(x), in contrast to the conventional self-ordering of single-
component BECs [33] or spinor BECs [9]. The emission of
photons into the cavity-field mode by the atoms may either
leave the atomic internal state untouched [first term in the
numerator of Eq. (7)] or induce a pseudospin flip |↑〉 
→ |↓〉
[second term in the numerator of Eq. (7)].

Substituting the steady-state light field (7) into the many-
body Hamiltonian (2) leads to an effective spin Hamiltonian

Ĥspin = Ĥkin + ĤJ-V -W + Ĥxz, (8)

where Ĥkin is the kinetic energy,

ĤJ-V -W =
∫∫

{J⊥(x, x′)[ŝx(x)ŝx(x′) + ŝy(x)ŝy(x′)] + Jz(x, x′)ŝz(x)ŝz(x′)}dxdx′ +
∫

B · ŝ(x)dx

+
∫∫

V (x, x′)n̂(x)n̂(x′)dxdx′

+
∫∫

{Wx(x, x′)[n̂(x)ŝx(x′) + ŝx(x′)n̂(x)] − Wz(x, x′)[n̂(x)ŝz(x′) + ŝz(x′)n̂(x)]}dxdx′, (9a)

and

Ĥxz = −
∫∫

Jxz(x, x′)[ŝz(x)ŝx(x′) + ŝx(x′)ŝz(x)]dxdx′. (9b)

Here, we have introduced the total local density opera-
tor n̂(x) = n̂↑(x) + n̂↓(x) and the local pseudospin opera-
tor ŝ(x) = (ŝx(x), ŝy(x), ŝz(x))� = �̂†(x)σ�̂(x), where σ =
(σx, σy, σz )� are the Pauli matrices.

The Hamiltonian ĤJ-V -W [Eq. (9a)] together with the ki-
netic energy Ĥkin corresponds to a long-range anisotropic
t-J-V-W model [25]. The first line of Eq. (9a) corresponds
to a long-range XXZ Heisenberg spin Hamiltonian with an
effective homogeneous magnetic field

B = h̄
(

2�1�2

	a
, 0, δ̃

)�
. (10)

Its x component thereby originates from the Raman coupling
between the two pump lasers, and its z component stems from
the effective detuning between the two pseudospin states.
The second and third lines of ĤJ-V -W contain long-range
density-density and density-spin interactions, respectively.

Finally, the Hamiltonian Ĥxz [Eq. (9b)] describes the long-
range cross couplings between the x and z spin components.

We note that all coupling coefficients in Eqs. (9a) and (9b)
share the same position dependence

c(x, x′) = h̄[2 Re ˆ̃	c − 	c]G2
0

2| ˆ̃	c|2	2
a

cos(kcx) cos(kcx′), (11)

with ˆ̃	c = 	c + iκ − U0
∫

cos2 (kcx)n̂↓dx; namely,

J⊥(x, x′) = 2�2
2c(x, x′),

Jz(x, x′) = 4V (x, x′) = 2Wz(x, x′) = 2�2
1c(x, x′),

Jxz(x, x′) = 2Wx(x, x′) = 2�1�2c(x, x′). (12)

The long-range cavity-induced interactions between the
atoms thus transform the BEC into an array of itinerant inter-
acting spins governed by the Hamiltonian (8) that, depending
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on the parameters, implements different spin models, with all
spin-coupling coefficients [Eq. (12)] widely tunable through
the Rabi frequencies �1,2 of the pump lasers. Choosing Jz =
V = Wx,z = Jxz = 0, one can observe enhanced superconduc-
tivity [38] and d-wave superfluidity [39]. Our model system
therefore opens the possibility to study various quantum mag-
netic phases whose magnetic order can be detected through
the cavity-field emission in real time.

For nonzero average field in the cavity, different cavity-
induced interactions in Eqs. (9a) and (9b) compete with one
another. Depending on operation parameters, a specific in-
teraction can be made dominant and determine the system
behavior. In particular, the sign of the coupling coefficients
J⊥ and Jz sets the magnetic ordering of the spins to either
a ferromagnetic (FM) or antiferromagnetic (AFM) pattern.
In the next section we will characterize the expected spin
textures in various limiting cases in more detail.

IV. MEAN-FIELD PHASE DIAGRAM

In the mean-field regime the quantum fluctuations
are omitted, and the atomic and cavity-field opera-
tors are replaced by their corresponding quantum av-
erages, ψ̂τ (x, t ) → 〈ψ̂τ (x, t )〉 ≡ ψτ (x, t ) = √

nτ (x, t )eiφτ (x,t )

and â(t ) → 〈â(t )〉 ≡ α(t ) = |α(t )|eiφα (t ). The system is then
described by three coupled nonlinear equations

i
∂

∂t
α = −	̃cα + η� + �c�, (13a)

ih̄
∂

∂t
ψ↑ =

[
− h̄2

2m
∂2

x + h̄δ̃

]
ψ↑ + h̄UR(x)ψ↓,

ih̄
∂

∂t
ψ↓ =

[
− h̄2

2m
∂2

x + h̄U↓(x)

]
ψ↓ + h̄U ∗

R (x)ψ↑, (13b)

where U↓(x, α) = U↓(x) = 〈Û↓(x)〉 and UR(x, α) = UR(x) =
〈ÛR(x)〉 are the quantum averages of the corresponding oper-
ators in Eqs. (4) and (5), respectively, and 	̃c = 〈 ˆ̃	c〉. Here,
we have introduced the mean-field density order parameter

� :=
∫

n↓(x) cos (kcx)dx, (14)

which describes the λc-periodic spatial modulation of the
(spin-↓) atoms, and the mean-field spin order parameter

� :=
∫

s−(x) cos (kcx)dx

=
∫

[sx(x) − isy(x)] cos (kcx)dx. (15)

Note also that only the total number of the atoms is conserved,
i.e.,

∑
τ

∫
nτ (x)dx = N .

The total energy of the system can be obtained as
E = −h̄	c|α|2 + ∫

E (x)dx [9], where E (x) is the energy-
functional density,

E (x) = h̄2

2m

(
ψ∗

↑∂2
x ψ↑ + ψ∗

↓∂2
x ψ↓

) + h̄δ̃n↑

+ [h̄U0|α|2 cos2(kcx) + 2h̄η|α| cos φα cos(kcx)]n↓

+ 2
√

n↑n↓[h̄�c|α| cos (φα + 	φ) cos(kcx)

+ h̄�p cos 	φ], (16)

with 	φ := φ↓ − φ↑ being the relative phase of the two con-
densate wave functions. Note that since 	a > 0, therefore
{U0, η,�c,�p} � 0.

Below threshold where α = 0 the Raman coupling energy
∝ �p cos 	φ fixes the relative phase of the spatially homoge-
neous BEC to 	φ = π (recall �p > 0). Namely, the energy
is minimized if two spin states have opposite phase. This is in
contrast to the system studied in Ref. [9], where the relative
phase could be chosen freely.

Above threshold, however, the atoms scatter photons from
the pump lasers into the cavity mode such that α �= 0.
The minimization of the spatial-dependent Raman coupling
energy [last two lines in Eq. (16)] then results in a position-
dependent relative condensate phase 	φ(x). As cos (kcx)
changes sign depending on the atomic position, the relative
phase smoothly varies in space. Such spatial dependence of
the relative condensate phase for colored markers in the phase
diagram in Fig. 3(a) is depicted in the insets of Figs. 4(a)–4(d)
and leads to intriguing phenomena in the spin structure, which
will be shown below.

In order to obtain the mean-field phase diagram, we self-
consistently compute the stationary state of the cavity-field
amplitude ∂α/∂t = 0 [cf. Eq. (7)],

α = 1

	̃c
(η� + �c�), (17)

and the corresponding atomic ground state from the cou-
pled Schrödinger equations [Eq. (13b)]. Note that the
coupled Schrödinger equations depend parametrically on α

via U↓(x) = U↓(x, α) and UR(x) = UR(x, α), indicating the
highly nonlinear nature of the system.

Before proceeding to the main results of our work, let us
briefly clarify the issue regarding the temperature of the gas
at steady state. Since our system is driven-dissipative, the
stationary temperature would be nonzero and limited by the
cavity decay rate. The cavity-induced atomic redistribution
can even lead to nonthermal steady states. However, due to
the long-range cavity-mediated interactions, the corrections
to the noiseless mean-field approach are suppressed by a
factor 1/V [35], with V being the volume of the atomic
cloud. Then the characteristic time for the cavity-induced
atomic redistribution scales with the volume V . There-
fore, in the thermodynamic limit N,V → ∞ with N/V =
const, this characteristic time exceeds a typical experimen-
tal time scale [40], and the mean-field description becomes
exact.

Figure 3(a) shows the mean-field cavity-field amplitude
|α|/√N as a function of the two pump Rabi frequencies
�1/ωr and �2/ωr, where ωr := h̄k2

c /2m is the recoil fre-
quency. The nonzero density order parameter � [Eq. (14)]
shown in Fig. 3(b) reveals the λc-periodic atomic self-
organization. The sign of � reflects the localization of the
atoms either on even (� > 0, kcx = 2π� with � ∈ Z) or odd
[� < 0, kcx = π (2� + 1)] sites. The global magnetization of

013173-4



SPIN AND DENSITY SELF-ORDERING IN DYNAMIC … PHYSICAL REVIEW RESEARCH 3, 013173 (2021)

(a)

0.05 0.10 0.15 0.20 0.25

50 100 150 200 250 300

50

100

150

200

250

300

YZ-AFM

FM

Y-AFM

XY-AFM

(b) (c)

(d) (e)

100 200 300

150

300

1.0

0.0

1.0

100 200 300

150

300

0.5

0.0

0.5

100 200 300

150

300

0.5

0.0

0.5

100 200 300

150

300

0.4

0.0

0.4

FIG. 3. (a) Mean-field phase diagram as a function of the two pump Rabi frequencies �1/ωr and �2/ωr . It reveals four distinct phases:
YZ-antiferromagnetic (YZ-AFM), ferromagnetic (FM), Y-antiferromagnetic (Y-AFM), and XY-antiferromagnetic (XY-AFM). The color code
depicts the rescaled cavity-field amplitude |α|/√N . (b)–(e) Order parameters and global magnetization: (b) density order parameter �

[Eq. (14)], (c) global magnetization m [Eq. (18)], and (d) real and (e) imaginary parts of the spin order parameter � [Eq. (15)]. The other
parameters are (	a, 	c, NU0, δ̃, κ ) = (103, −150, 40, −5, 25)ωr .

the atomic gas [12]

m := N↑ − N↓
N

, (18)

with Nτ := ∫
nτ (x)dx, is depicted in Fig. 3(c). As the Stark-

shifted detuning between the ground levels is chosen as δ̃ =
−5ωr , atoms mostly prefer to occupy the |↑〉 ground state,
except a region where �1 is much larger than �2. The real and
imaginary parts of the spin order parameter � are illustrated
in Figs. 3(d) and 3(e), respectively. Noting Eq. (15), a nonzero
Re � (Im �) signals a λc-periodic nontrivial sx(x) [sy(x)] spin
modulation and hence a λc-periodic spin order.

The mean-field wave functions are related to the compo-
nents of the local pseudospin vector s(x) = 〈ŝ(x)〉 as

sx(x) = √
n↑(x)n↓(x) cos 	φ,

sy(x) = √
n↑(x)n↓(x) sin 	φ,

sz(x) = 1
2 [n↑(x) − n↓(x)]. (19)

The normalized spin texture s̃(x) := s(x)/‖s(x)‖, with
‖s(x)‖ =

√
s2

x (x) + s2
y (x) + s2

z (x), for specific points in the
phase diagram in Fig. 3(a) is shown in Figs. 4(a)–4(d).

From Fig. 3 we can, depending on the Rabi frequen-
cies of the pump lasers, identify four distinct phases. Below
threshold, i.e., for the empty-cavity mode, the system is in a
ferromagnetic (FM) spin state, while above threshold, three
different types of antiferromagnetic (AFM) ordering emerge.
The two distinct areas with finite field amplitudes but opposite
global magnetization m [Eq. (18)] correspond to the YZ-AFM
and Y-AFM or XY-AFM phases. A smooth crossover be-
tween the Y-AFM and XY-AFM orderings is revealed by the
nonzero imaginary part of the spin order parameter Im �. The
nontrivial phases with a finite cavity field emerge due to the

polarization gradient along the cavity axis of the total electric
field originating from interference of cavity and pump field.

A. YZ-AFM phase

The YZ-AFM phase appears in the left upper corner in
the phase diagram in Fig. 3(a) where �1 > �2. Hence the
energy-functional density E (x) [Eq. (16)] is dominated by
the interference term ∝ η|α| cos φα cos (kcx) that pushes the
atoms towards x/λc = � + 1/2 (with � ∈ Z); see Fig. 4(a).
Such a configuration is characterized by a negative value
of the density order parameter � [Eq. (14)], as shown in
Fig. 3(b). This phase is very closely related to the well-known
density self-ordering for two-level (i.e., effectively single-
component) atoms [31].

The position-independent Raman coupling term
∝�p cos 	φ favors the relative phase of the condensate to be
	φ = π . The small influence of the position-dependent
Raman coupling term ∝�c|α| cos (φα + 	φ) cos (kcx)
slightly “shakes” the relative phase around 	φ = π [see
the inset in Fig. 4(a)]. This behavior is consistent with the
spin structure depicted in Fig. 4(a): Whereas the x component
of the spin is large and always negative, its y component
is tiny and changes its sign over a period, as expected for
	φ ≈ π [see Eq. (19)]. Since the y and z components depict
antiferromagnetic ordering in the deep λ/2-lattice limit, we
denote this phase YZ-AFM.

Note that the above considerations hold for Re α > 0; for
negative Re α the energy density E (x) favors the atoms being
located at x/λc = � (with � ∈ Z). These two possibilities thus
reflect the spontaneously broken Z2 symmetry of the Hamil-
tonian (2). In what follows, we likewise always consider the
case Re α > 0.
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One can equivalently describe the resultant magnetic order
via the spin Hamiltonian Ĥspin [Eq. (8)] in a heuristic manner.
The long-range cavity-mediated interactions (12) contained
in the spin Hamiltonian (8) are mainly determined by the
density-density interaction V (x, x′), the z component of the
Heisenberg interaction Jz(x, x′), and the interactions Wz(x, x′)
of the z component of the spin with the density. The period-
ically modulated coupling coefficients ∝ cos (kcx) cos (kcx′)
induce λc-spatial modulations in the spin components and the
total density [see Fig. 4(a)], which minimize the correspond-
ing interaction. The effective homogeneous magnetic field B
[Eq. (10)], especially its x component, also plays an important
role in this case. The main influence on the x component of
the spin stems from the x component of the effective ho-
mogeneous magnetic field Bx. Since Bx is always positive,
it is favorable that sx remains negative. The z component of
the magnetic field Bz competes with the z component of the
Heisenberg interaction Jz(x, x′) and the density-spin interac-
tions Wz(x, x′). The negative Bz tries to align sz completely
in the positive direction, resulting in the smeared cos(kcx)-
periodic sz texture illustrated in Fig. 4(a).

B. FM phase

The FM phase is characterized by the absence of photons
in the cavity and thus appears below threshold. Hence no
optical potential can build up in the cavity, and the BEC stays
homogeneous (� = 0). The relative phase 	φ of the two
components is strictly locked to π , as can be seen from the
inset of Fig. 4(b) fixing the spin direction. The latter results
in Re � = Im � = 0 and vanishing sy. The two orthogonal
spin components follow the effective external magnetic field
B [Eq. (10)], resulting in ferromagnetic order.

C. Y-AFM phase

The Y-AFM phase is characterized by a buildup of a co-
herent field in the cavity mode via Raman gain from the

upper spin level. The atomic density and spin modulations
are then mainly governed by the Raman coupling term [last
two lines in Eq. (16)] that for Re α > 0 forces the atoms
towards the even sites x/λc = � (with � ∈ Z); see Fig. 4(c).
This is confirmed by the positive value of � in Fig. 3(b).
The relative phase 	φ of the two condensate wave functions
is again fixed around π [see inset in Fig. 4(c)] due to the
competition between the position-independent Raman cou-
pling term ∝�p cos 	φ and the position-dependent Raman
coupling term ∝�c|α| cos (φα + 	φ) cos (kcx), as in the YZ-
AFM phase. However, the shaking of the relative condensate
phase around π is larger in this case, as the position-dependent
Raman coupling term is bigger, leading to a more pronounced
modulation in sy compared with the YZ-AFM phase.

From the point of view of the spin Hamiltonian [Eqs. (9a)
and (9b)], this phase is still dominated by the effective mag-
netic field, |Bx|/max(|J⊥|) ≈ |Bz|/max(|Jxz|) ≈ 1.7, such that
the spin orientation is mainly determined by B. As the y
component of the effective magnetic field B is zero, By = 0,
sy is only modulated owing to J⊥(x, x′).

D. XY-AFM phase

Finally, we identify a fourth phase (XY-AFM) in the
regime when the pump field on the cavity transition is very
weak but the Raman coupling is still strong. As for the Y-
AFM phase, the atoms are mostly affected by the Raman
coupling term [last two lines in Eq. (16)], such that the density
order parameter � stays positive. The Rabi frequency �1 is,
however, much smaller than in the former phase such that
the position-dependent term ∝�c|α| cos (φα + 	φ) cos (kcx)
outweighs the constant term ∝�p cos 	φ. The minimization
of the energy then results in a position-dependent relative
phase 	φ(x), as depicted in the inset in Fig. 4(d).

For the parameters in Fig. 3, the pronounced spatially
inhomogeneous relative phase of the two condensate wave
functions manifests itself in three ways: (i) The x (y) com-
ponent of the spin, which is proportional to cos 	φ(x)
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[sin 	φ(x)], changes its sign and exhibits strong modula-
tions, as shown in Fig. 4(d). (ii) The λc-periodic, strongly
modulated sy, in turn, results in nonzero Im � in this phase,
as depicted in Fig. 3(e). (iii) The change in the sign of
cos (φα + 	φ) affects the atomic distribution via the Raman
coupling term ∝√

n↑(x)n↓(x)|α| cos (φα + 	φ) cos (kcx), and
the energy minimization causes a local minimum in sz ∝
n↑(x) − n↓(x), as shown in Fig. 4(d). This phase is char-
acterized by antiferromagnetic order in the spin’s x and y
components.

In terms of the spin model (8), J⊥(x, x′) manages to
overcome the influence of the x component of the effective
magnetic field B. The spatial modulation of the coupling pa-
rameter J⊥(x, x′) then results in the spatial modulation of sx(x)
and sy(x) observed in Fig. 4(d), except the fact that these two
components are out of phase due to the presence of Bx. Note
that both spatial dependencies of sx(x) and sy(x) minimize the
corresponding interactions. The behavior of sz(x) is governed
by the interplay of the z component of the magnetic field and
the cross-couplings interaction Jxz(x, x′). As Bz is always neg-
ative, sz(x) chooses a positive orientation. At the same time,
the λc-spatial modulations in sz(x) induced by Jxz(x, x′) cause
positive values of the z spin component around the edges of a
unit cell and negative ones close to the middle. This interplay
manifests itself in the local minimum of sz(x) in the center of
the unit cell.

V. CONCLUSIONS

We theoretically studied combined spin and density self-
ordering of a spinor BEC inside an optical cavity, transversally
illuminated by two orthogonally polarized pump lasers in a
restricted one-dimensional (1D) geometry. We found that the
long-range cavity-induced interactions among the atoms allow
us to engineer a broad range of density-density, spin-spin, and
density-spin interactions, manifesting a rich phase diagram
with different types of magnetic ordering. All magnetic phases
and quantum phase transitions between them can be moni-
tored by the cavity-field leakage and atomic populations of the
ground states. We have shown that despite the relative sim-
plicity of our model, it opens an alternative way to simulate
an anisotropic t-J-V -W model together with cross couplings
between spin components. Interestingly, besides the conven-
tional interactions between density and the z component of the
spin, our model additionally contains interactions between the
density and the spin’s x component. Moreover, we have inves-
tigated the various phases in terms of the energy-functional
density, whose minimization dictates the spatial variation of
the relative condensate phase.

As a possible generalization of our scheme, we notice that
in the 2D case, besides the emergence of topological spin
textures, as spin spiral behavior, a more precise control of the
coupling coefficients could be implemented by changing the
spatial profiles of the pump fields along the y axis [10]. Fur-
thermore, the range of the cavity-mediated density-density,
spin-spin, and density-spin interactions can be tuned by
exploiting a multimode cavity, therefore implementing tun-
able finite-range interactions among the atoms [41]. As a
consequence of these finite-range density-density, spin-spin,

and density-spin interactions, beyond-mean-field phases in-
cluding Luttinger and Haldane liquids emerge in the system,
which will be presented elsewhere.

Additional physics may also arise by including two-body
contact interactions, neglected in this paper. The influence of
such interactions on atomic self-organization was explored in
Ref. [23].
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APPENDIX: DERIVATION OF THE
MANY-BODY HAMILTONIAN

Within the dipole and rotating-wave approximations the
single-particle Hamiltonian for the system depicted in Fig. 1
reads

Ĥ1 = p̂2

2m
+

∑
τ={↑,e}

h̄ωτ σ̂ττ + h̄ωcâ†â

+ h̄[�1σ̂↓eeiω1t + G(x̂)â†σ↓e + �2σ̂↑eeiω2t + H.c.],

(A1)

where m is the atomic mass, p̂ is the center-of-mass atomic
momentum operator along the cavity axis x, σ̂ττ ′ = |τ 〉〈τ ′| is
the atomic transition operators, and â† is the creation oper-
ator of a cavity photon. Without loss of generality we have
assumed that {�1,�2,G0} ∈ R.

The unitary transformation

U (t ) = exp{i[ω1â†â + (ω1 − ω2)σ̂↑↑ + ω1σ̂ee]t} (A2)

transforms the Hamiltonian (A1) according to ˆ̃H1 =
UH1U † + ih̄(∂tU )U †, yielding the time-independent
Hamiltonian

ˆ̃H1 = p̂2

2m
− h̄	aσ̂ee + h̄δσ̂↑↑ − h̄	câ†â

+ h̄[�1σ̂↓e + G(x̂)â†σ̂↓e + �2σ̂↑e + H.c.], (A3)

where we have defined the detunings 	a := ω1 − ωe, 	c :=
ω1 − ωc, and δ := ω↑ − (ω1 − ω2).

In the large atom-pump detuning limit |�1,2/	a| � 1
and |G0/	a| � 1, the excited state can be adiabatically
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eliminated, leading to the effective pseudospin Hamiltonian

˜̂H1 = p̂2

2m
− h̄	câ†â + h̄δ̃σ̂↑↑

+ h̄[U0â†â cos2(kcx̂) + η(â + â†) cos(kcx̂)]σ̂↓↓

+ h̄�c cos(kcx̂)(âσ̂↑↓ + â†σ̂↓↑) + h̄�p(σ̂↑↓ + σ̂↓↑).
(A4)

Here, we have defined δ̃ := ω↑ − (ω1 − ω2) + �2
2/	a −

�2
1/	a, U0 := G2

0/	a, η := G0�1/	a, �c := G0�2/	a, and
�p := �1�2/	a.

Equation (2) is the many-body counterpart of the single-
particle Hamiltonian (A4).
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