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Charge qubit in a triple quantum dot with tunable coherence
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The energy landscape of a single electron in a triple quantum dot can be tuned such that the energy separation
between ground and excited states becomes a flat function of the relevant gate voltages. These so-called sweet
spots are beneficial for charge coherence since the decoherence effects caused by small fluctuations of gate
voltages or surrounding charge fluctuators are minimized. We propose a new operation point for a triple quantum
dot charge qubit, a so-called CQ3-qubit, having a third-order sweet spot. We show strong coupling of the qubit
to single photons in a frequency tunable high-impedance SQUID-array resonator. In the dispersive regime, we
investigate the qubit linewidth in the vicinity of the proposed operating point. In contrast to the expectation
for a higher-order sweet spot, we there find a local maximum of the linewidth. We find that this is due to a
non-negligible contribution of noise on the quadrupolar detuning axis not being in a sweet spot at the proposed
operating point. While the original motivation to realize a low-decoherence charge qubit was not fulfilled, our
analysis provides insights into charge decoherence mechanisms relevant also for other qubits.
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I. INTRODUCTION

A single electron occupying two tunnel coupled quantum
dots can be operated as a charge qubit [1–8]. Control param-
eters of this qubit are the interdot tunnel coupling t as well as
the detuning δ defined as the energy difference between the
left and right dot electrochemical potentials. Noise protection
to first-order in detuning is obtained by operating the qubit at
δ = 0 [9]. This operation point is called a first-order ”sweet
spot” since the first derivative of the qubit energy with respect
to the detuning parameter vanishes. At this point, dephasing
due to detuning noise is minimal [3,10,11] and charge qubit
linewidths below 3 MHz have been reported [9,12].

Additional qubit control parameters are obtained by in-
creasing the number of quantum dots in the linear array by
one, i.e., by using a linear triple quantum dot (TQD) [13–16].
For this system, the qubit parameters are the tunnel coupling
tL between the left and the middle and tR between the right
and the middle quantum dots, as well as the left to right dot
asymmetry δ = εL − εR and the middle to outer dot detuning
EM = εM − (εL + εR)/2. Here, εL, εM, and εR are the single-
particle energies of electrons in the left, middle, and right
quantum dot, respectively.

One promising TQD qubit in terms of noise protection
is the charge quadrupole qubit [17,18], which we briefly in-
troduce in this paragraph. This single electron qubit utilizes
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the TQD ground and second excited states with the qubit
excitation energy E02, whereas the first excited state is a leak-
age state not connected to the other states by a quadrupole
moment. The quadrupole qubit has recently been investigated
experimentally [18] by strongly coupling it to a single photon
in a superconducting microwave resonator. It has a single
sweet spot at δ = EM = 0 in both detuning parameters, since
at this point ∂E02/∂δ = ∂E02/∂EM = 0. Improved coherence
was detected operating the qubit on the quadrupolar axis EM

with δ = 0 compared to operating the qubit on the detuning
axis δ with EM = 0.

In this work, we experimentally explore a different TQD
qubit that hosts a single electron, which we will call the
CQ3-qubit. The device layout is the same as for the quadrupo-
lar qubit [18], but here, the qubit states are chosen to be
the ground and first excited state of the TQD system. For
symmetric tunnel coupling, the qubit excitation energy E01

possesses a third-order sweet spot with respect to the detun-
ing δ at δ = 0 and the specific value EM = EOpt

M , meaning
that ∂E01/∂δ = ∂2E01/∂δ2 = ∂3E01/∂δ3 = 0 at this point (see
Sec. II for details).

To operate the CQ3-qubit, the resonator is coupled to the
left quantum dot [see Fig. 1(a)], leading to a dipolar coupling
between the qubit states. This is in contrast to the quadrupole
qubit, where the resonator is coupled to the middle quantum
dot [18] in order to avoid dipolar coupling. The CQ3 regime
has the potential advantage that the two logical qubit states
are the two lowest energy levels and there is no intermediate
leakage state as for the quadrupolar qubit [18]. However, the
CQ3-qubit has no sweet spot in EM. Sacrificing the sweet spot
in EM for a higher-order sweet spot in δ is useful when the
dominant noise originates from charge fluctuations at large
distances from the qubit [17]. We find this to be crucial for
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FIG. 1. (a) Schematic diagram of the triple dot device. The left,
middle and right quantum dots are indicated by |L〉, |M〉, and |R〉,
respectively. We can independently tune the chemical potentials and
the interdot tunnel couplings tL and tR as well as the couplings to the
reservoirs by electrostatic gating. A frequency tunable λ/4 SQUID
array resonator is coupled to the left dot. We apply a drive tone to
the qubit through the right dot plunger gate. (b) Spectrum of the
Hamiltonian for equal tunnel couplings at EM = EOpt

M as a function of
detuning δ. Solid lines show the energy levels for t/h = 2.5 GHz and
the dashed lines for t = 0. (c) Energy differences E01 and E12 of the
spectrum from (b). (d) Plot of the coupling strength of the resonator
to the qubit as a function of detuning δ.

understanding the properties of charge noise in semiconductor
devices.

In this paper, we start by presenting the theory of the CQ3-
qubit. We then show measurements of the qubit-resonator
system in the dispersive and resonant limits, investigate the
qubit linewidth as a function of detuning δ. We also develop a
noise model explaining our experimental findings.

II. THEORY

In the following, we explore the Hamiltonian of a sin-
gle electron confined in a TQD, as schematically shown in
Fig. 1(a). We first consider the bare qubit Hamiltonian ne-
glecting coupling to the resonator. Subsequently we calculate
the coupling matrix element to the resonator which is capaci-
tively coupled to the left plunger gate.

In the position basis {|L〉 , |M〉 , |R〉}, referring to an elec-
tron residing in either the left, middle, or right dot, the
Hamiltonian reads [17]

H =
⎛
⎝δ/2 tL 0

t�
L EM tR
0 t�

R −δ/2

⎞
⎠, (1)

where tL and tR describe the tunnel coupling between the
middle-left and middle-right quantum dots, respectively. The
charge occupation of the TQD as a function of δ and EM

is shown in Fig. 2(a). In the following we do not consider
excited states of the quantum dots as they are several hundred
GHz away and can therefore be neglected. In the follow-
ing, we are interested in the symmetric coupling case, where
|tL| = |tR| = |t |. Assuming that the quantity |δ/t | is small, we
separate the Hamiltonian H into the part H0 = H (δ = 0, EM),
which can be diagonalized analytically, and the perturbation
H1(δ) = H − H0. We then perform second-order perturbation
theory to obtain the following approximate expression for the
qubit excitation energy at O[|δ/t |2]:

E01 = −1

2

(
EM −

√
E2

M + 8|t |2
)

−
E2

M + 4|t |2 + 3EM

√
E2

M + 8|t |2

8|t |2
√

E2
M + 8|t |2

δ2. (2)

In order to have a second-order sweet spot
(∂2E01/∂δ2|δ=0 = 0), we set the prefactor of δ2 in (2) to
zero. This leads to

EOpt
M = −|t |

√
3
√

2 − 4 ≈ −0.493 |t |, (3)

where the point (δ = 0, EM = EOpt
M ) defines the CQ3 oper-

ation point in the parameter space. By symmetry the third
derivative ∂3E01/∂δ3 also vanishes, yielding a third-order
sweet spot in δ at this point. This third order sweet spot along
the δ axis helps to protect the qubit against noise originating
from long-distant noise sources, which mainly cause noise
in the δ parameter. Noise sources in a short distance to the
quantum dot would mostly affect EM. The exact influence
on δ and EM also depends on the angle of the noise source

with respect to the quantum dots, being electric fluctuations
parallel to the QD array the dominant contributions to noise.
From Ref. [17] long-distant noise sources are predicted to
be dominant. In this case, sacrificing having a sweet spot
in EM for a higher order sweet spot in δ is favourable. The
possibility to distinguish long- and short-distant noise sources
makes this qubit interesting and allows for deeper analysis of
noise than qubits with only a single detuning parameter. The
energy levels of the qubit are plotted in Fig. 1(b) as a function
of δ at EM = EOpt

M . The energy difference between the |0〉
and |1〉 states as well as the |1〉 and |2〉 states are plotted in
Fig. 1(c). The weights of the wave functions as a function of δ

are shown in Fig. 6, see Appendix B. We see a flat dispersion
for E01 around δ = 0, consistent with the third-order sweet
spot.
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FIG. 2. (a) TQD energy level schematic. Qubit energy E01/h for
|t |/h = 2.5 GHz as a function of δ/h and EM/h. The thin solid
black lines indicate qubit energy contours. The black dashed line
show the charge transition lines, separating the single electron charge
states of the qubit. Red roman numbers show the quantum dot en-
ergy level configurations at the indicated points in the configuration
space. (b) Two tone spectroscopy measurement. Measured |S11| as a
function of δ and EM for t/h = 2.5 GHz. A drive-tone is applied to
the right plunger gate at νd = 4.2 GHz to map where E01/h = νd.
The resonator is probed at νp = 3.791 GHz. (c) Calculated qubit
energy as a function of δ and EM. The black line is the qubit energy
contour for E01/h = 4.2 GHz. The three red lines and icons and
symbols are referred to in Fig. 3. (d) Resonant interaction of the qubit
and the resonator for νr = 4.2 GHz and EM ≈ EOpt

M ≈ −0.493|t |. (e)
Simulation of |S11| for the measurement in (d) using Input-Output
theory. Both measurements (d) and (e) share the same colorbar.
The simulation parameters are νr = 4.19 GHz, κint/2π = 14 MHz,
κext/2π = 1.3 MHz, |tL|/h = 2.47 GHz, and |tR|/h = 2.48 GHz. For
the decoherence γ2 we use the noise model we developed to fit
the data in Fig. 4(b). The black dashed line is a guide to the eye
at 4.2 GHz.

We next consider the qubit coupling to a resonator con-
nected to the leftmost quantum dot, as indicated in Fig. 1(a).
We describe this coupling in the basis {|L〉 , |M〉 , |R〉} with
the coupling Hamiltonian Hint = G(a† + a), where a† and a
are the creation and annihilation operators for a photon in the
cavity, and G is the coupling matrix

G = h̄ωr

√
πZ

h/e2

⎛
⎝αLM 0 0

0 0 0
0 0 αRM

⎞
⎠.

Here, h̄ωr is the energy of a photon in the resonator, Z is
the resonator impedance, and αLM = αL

L − αL
M and αRM =

αL
R − αL

M are the differences of the lever arms αL
j of the left

plunger gate on dot j ( j = L, M, R). The lever arm is defined
as αi

j = (e
V i )/
Ej. Where 
V i is the change in gate voltage
applied to plunger gate i and 
Ej is the change in electro-
chemical potential of dot j. The qubit resonator coupling is
then found by transforming G into its representation G̃ in the
qubit basis |0〉, |1〉, |2〉. Given the matrix S of eigenvectors
of the Hamiltonian (1), which we compute numerically, the
transformation is achieved by

G̃ = SGS†,

and the qubit–cavity coupling strength is

g = 〈0| G̃ |1〉 .

The resulting detuning-dependent coupling strength g(δ) is
shown in Fig. 1(d) for EM = EOpt

M . For the plot, we use
GLM/h � 203.4 MHz and GRM/h � 62.1 MHz as extracted
from the experiment (see below). Taking into account that the
resonator couples more strongly to transitions between the left
and the middle dot, we find that g(δ) exhibits a pronounced
maximum at negative values of δ. It arises at the point where
the electrochemical potentials of the left and middle dot are
aligned, giving rise to a large dipole moment.

III. EXPERIMENTAL SETUP

Figure 1(a) shows the schematic of the sample. An scan-
ning electron micrograph can be found in Appendix A. The
TQD is defined on a GaAs/AlGaAs heterostructure hosting
a two-dimensional electron gas 90 nm below the surface by
applying voltages between nano-fabricated aluminum gates
on the surface and the electron gas. We electrostatically
control the tunnel couplings, as well as the electrochemi-
cal potentials of the dots, applying negative voltages to the
corresponding gate electrodes. We measure the charge state
of the TQD with a nearby quantum point contact (QPC)
[19,20]. We can apply a drive tone at frequency νd to the
right plunger gate. The left dot plunger gate is coupled to a
λ/4 SQUID-array resonator [5,6,12,13,18,21–29]. Changing
the flux � threading the SQUID loops of the resonator, we
can tune the resonator’s bare resonance frequency by several
GHz. The resonator impedance is Z � 1.1 k�. This enhances
the resonator–qubit coupling strength by a factor of approx-
imately 5 compared to standard 50 � resonators. For all
the experiments presented in this work the average photon
number in the resonator is less than one, see Appendix G
for details.
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IV. RESULTS

In the following, we experimentally investigate the qubit
proposed above. We make use of the charge sensing
QPC to tune the TQD into the single electron regime.
The relevant charge states in the {|L〉 , |M〉 , |R〉} basis are
|1, 0, 0〉 , |0, 1, 0〉, and |0, 0, 1〉. We plot the qubit excita-
tion energy as a function of the dipolar δ and quadrupolar
EM detuning in Fig. 2(a) for |tL|/h = |tR|/h = 2.5 GHz. The
thin solid lines indicate contours of constant qubit excitation
energy. The dashed black lines indicate the charge transi-
tion lines. We schematically depict the quantum dot energy
levels at three points along the charge transition lines as
indicated with roman numbers. We do not consider higher
charge occupations. Charging energies of quantum dots are
in the 1 meV ≈ 240 GHz range and therefore energetically
irrelevant for our experiment as the thermal energy at our
electronic temperature of 30 mK is 625 MHz [13]. The tunnel
couplings tL (tR) are determined by two tone spectroscopy of
the DQD charge qubit formed between the left-middle (right-
middle) dots at |δ| � t and negative EM, indicated by panels I
and II in Fig. 2(a) [30]. These measurements also allow us to
relate the qubit detuning parameters δ and EM to combinations
of plunger gate voltages by determining the gate lever arms,
see Appendix C. For the measurements presented in the fol-
lowing, we set |tL|/h = |tR|/h = 2.5 GHz. The corresponding
qubit energy E01 at δ = 0 and EM = EOpt

M is 4.2 GHz.
Next, we map out contour lines of the qubit energy us-

ing two tone spectroscopy [30]. We apply a drive tone νd

at 4.2 GHz to the right plunger gate while measuring the
reflection |S11| of the probe tone applied at the bare res-
onator frequency νp = νr = 3.791 GHz. The resonator and
qubit interact off resonance, which leads to a dispersive shift
of magnitude ≈ ±g2/(hνr − hνq ) [30]. The measured reflec-
tion as a function of the qubit detuning parameters δ and
EM is shown in Fig. 2(b). On resonance the qubit excited
state population increases, which leads to a decrease in the
magnitude of the dispersive shift [30], and consequently to a
measurable change in |S11|. As expected for the higher-order
sweet spot discussed above, we find a flat dispersion along
δ, which is indicated by an arrow. Additionally we observe
that the reflected resonator signal is stronger for δ < 0 as for
δ > 0 (Diagonal yellow line extending from the left side).
This can be explained by the resonator qubit coupling strength
being larger for δ < 0, see Fig. 2(d), which leads to a stronger
dispersive shift of the resonator.

We compare the result to theory by plotting the calculated
qubit energy E01/h for |tL|/h = |tR|/h = 2.5 GHz as a func-
tion of the qubit detuning parameters δ and EM in Fig. 2(c).
The solid black line corresponds to the energy contour of
4.2 GHz. It shows excellent agreement with the measurement
in Fig. 2(b).

Next we operate the qubit at the optimal working point
EM = EOpt

M ≈ −0.493|t | [see Eq. (3)] and probe the qubit
on resonance νr = E01/h = 4.2 GHz with the resonator. At
constant resonator frequency νr we change the qubit frequency
by sweeping δ and measure the amplitude of the reflected
resonator signal νp, as shown in Fig. 2(d). As a consequence
of the coherent qubit-photon hybridization we observe two
resonance peaks in |S11| over a broad range of δ. On reso-
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FIG. 3. [(a)–(c)] Two tone spectroscopy of the qubit dispersion
as a function of detuning δ. We plot the complex amplitude |A − A0|
of the reflected signal as a function of the drive frequency νd and
the detuning δ. The red dashed lines show the expected qubit dis-
persion. We take the dispersive shift and the detuning dependent
coupling g(δ) into account. The icons in the upper right corner
correspond to the values for EM at which the linecuts were made
in Fig. 2(b). (d) Plot of the qubit energy for three settings EM =
{EOpt

M /h + 0.5 GHz, EOpt
M /h, EOpt

M /h − 0.5 GHz} of the middle dot
potential. The different line styles in (d) correspond to the lines
showed in (a)–(c). However the coupling to the resonator is not
considered in (d).

nance these two hybridized states with equal photon-matter
character have an energy splitting of 2g. The magnitude of this
energy splitting changes as a function of δ in agreement with
our theoretical model shown in Fig. 1(d). The energy of the
two states is approximately equally separated from the bare
resonance frequency, indicating that the qubit energy is almost
equal to that of the resonator (and therefore constant) for the
whole range. This is an indication that the qubit dispersion is
flat for a certain range in δ as one can see in Fig. 1(c).

We simulate the reflectance spectrum |S11| of the qubit
using an Input-Output model taking into account all relevant
energy levels of the system [31–34] in Fig. 2(e). We account
for the detuning dependent coupling strength g(δ) as well
as the detuning dependent decoherence rate discussed below
see Fig. 4(c), details are found in Appendices I and E. It
is important to note that a simple Jaynes Cummings model
considering only the |0〉 and the |1〉 states would not reproduce
the observed energy splitting of the two resonances with the
same parameters.

We now perform two tone spectroscopy in the disper-
sive limit. For this purpose, we tune the resonator frequency
to νr = 5.1 GHz and keep the tunnel couplings at |t |/h =
2.5 GHz. Sweeping the drive tone frequency νd applied to the
right plunger gate, and stepping δ, we measure the complex
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FIG. 4. (a) Measurement of the half width half maximum
squared vs applied probe power. The blue line is a fit to the measure-
ment. We extract a qubit decoherence rate γ2/2π = 53 ± 2 MHz.
(b) Measurement of the half width half maximum of the qubit res-
onance as a function of detuning δ. The blue line shows the fit using
a noise model taking charge noise and magnetic noise into account.
(c) Simulated qubit linewidth from 1/ f charge noise of amplitude
1 μeV on either δ or EM. (d) Plot of E01/h as a function of EM for
δ = 0 and |δ|/h ≈ 6 GHz. The red dashed line indicates the qubit
operation point.

amplitude A of the reflected probe tone at frequency νp. We
show the qubit dispersion as a function of detuning δ for three
values of EM in Figs. 3(a)–3(c). The measured dispersions
correspond to three horizontal linecuts indicated by red lines
in Fig. 2(c) at EM = {EOpt

M /h + 0.5 GHz, EOpt
M /h, EOpt

M /h −
0.5 GHz}. The red dashed lines show the expected qubit
dispersion according to calculation of E01 also including the
detuning dependent dispersive shift in the calculations. We see
a good agreement with theory. A plot of the expected qubit
dispersion not taking the dispersive shift into account is shown
in Fig. 3(d).

For EM > EOpt
M [Fig. 3(a)], the dispersion has a single

minimum, originating from a DQD charge qubit formed be-
tween the left and right quantum dot. The middle quantum
dot acting as a tunnel barrier. This is schematically depicted
in Fig. 2(a), energy diagram III. The measured dispersion
at EOpt

M [Fig. 3(b)] is not completely flat in detuning, but
slightly tilted due to the changing coupling strength as a
function of detuning. We observe a vanishing visibility of
the spectroscopic signal strength around the points where
E01 = E12. Furthermore, the linewidth of the signal strongly
increases around δ = 0. This is in contrast to the intuition of a
higher-order sweet-spot protected from decoherence and thus
a narrower qubit linewidth [10]. For EM < EOpt

M [Fig. 3(c)],
the dispersion has two distinct local minima that arise from the

DQD forming between the left-middle (right-middle) DQD
for negative (positive) δ respectively. Furthermore, we observe
small jumps in the qubit frequency which we refer to as
flickering in the following. This flickering is most pronounced
when approaching the sweet spot. We observed this behav-
ior in resonant interaction [see Fig. 2(d)] as well as in two
tone spectroscopy measurements [see Figs. 3(a)–3(c)]. The
same behavior was also found when investigating the qubit at
other tunnel coupling configurations. A possible explanation
could be a fluctuating charge defect in the GaAs/AlGaAs
heterostructure capacitively coupled to the TQD.

To further investigate the broadening of the qubit linewidth
around δ = 0 we measure the qubit linewidth at the opti-
mal working point as a function of applied drive power, see
Fig. 4(a). The qubit frequency is νq = 4.2 GHz and the res-
onator frequency is νr = 5.1 GHz. We measure the reflected
signal νp while stepping the drive tone νd through resonance
with the qubit at different drive tone powers Pd. The half width
at half maximum ∂νq of the resonance depends on the applied

drive tone power Pd according to ∂νq =
√

(γ2/2π )2 + βPd

[30,35], where β is a constant describing the total attenua-
tion along the drive line. The term βPd describes the power
broadening of the qubit linewidth. We plot the extracted ∂ν2

q
as a function of drive power and observe the typical linear
evolution of the linewidth as a function of applied power
[5,12,13,30]. We attribute the deviations from the linear evolu-
tion of the linewidth to the flickering observed in the previous
measurements [Figs. 2(d) and 3(a)–3(c)]. From the linear ex-
trapolation of the data points to zero drive power we extract
the decoherence rate γ2/2π = 53 ± 2 MHz for the qubit.

We further analyze the noise suffered by the qubit by
measuring ∂νq for a fixed finite drive power as a function of
detuning δ, see Fig. 4(b) [9]. The drive tone is applied via the
right plunger gate, the power broadening for positive detuning
δ is therefore higher than for negative detuning. This causes a
monotonic increase of the finite drive power broadening in the
measured linewidth from negative to positive detuning caused
by the detuning dependence of the wave functions entering the
dipole moment. As already seen in Figs. 3(a)–3(c), we observe
that at δ = 0 the qubit linewidth ∂νq has a local maximum.
We observe the minimal linewidth at |δ|/h ≈ 6 GHz. Addi-
tionally, we find that the minimum for negative detuning δ is
lower than for positive δ.

The blue line in Fig. 4(b) shows the results from a fit using
a noise model taking 1/f charge-noise and magnetic noise
into account [36,37]. In order to understand the evolution of
the qubit linewidth as a function of δ shown in Fig. 4(b), we
investigate the different contributions building up the noise
spectrum of the qubit. The main noise source is charge noise
acting either on δ or EM. Figure 4(c) shows the qubit linewidth
simulated with a 1/f charge noise model, considering first δ

noise with spectral density Sδ (ω) = A2
δ/ω and amplitude Aδ =

1 μeV (blue trace), or considering EM noise with SEM (ω) =
A2

EM
/ω and amplitude AEM = 1 μeV (orange trace). In case the

system is affected by pure dipolar detuning noise the simula-
tion shows a flat decoherence rate as a function of detuning,
being in agreement with the higher-order sweet spot in δ. The
finite linewidth at δ = 0 can mostly be attributed to leakage to
the second excited state. If, however, the system is affected
only by noise in EM there is a local maximum at δ = 0,
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because the proposed qubit operation point has no sweet spot
in EM. The two minima of the linewidth in Figs. 4(b) and
4(c) close to |δ|/h ≈ 6 GHz are due to sweet spots along
the EM axis.

A plot of the qubit energy E01 as a function of EM is
shown in Fig. 4(d). The linecut at δ = 0 has a nonvanishing
slope, whereas the line cut at |δ|/h ≈ 6 GHz shows a local
minimum at EOpt

M indicating the DQD qubit sweet spot. For
further details, we refer to Appendix I. We conclude that
the maximum around δ = 0 originates from a non-negligible
noise contribution along the EM axis. From this result, we can
see that also short distant noise sources have a crucial effect
on the noise environment acting on the qubit. As mentioned
above the main contribution to the asymmetry of the measured
linewidth presented in Fig. 4(b) is due to different power
broadening for negative/positive detuning δ.

For completeness, we also consider the effect of magnetic
noise due to different Overhauser fields in the dots [37]. A
plot for Gaussian-distributed magnetic noise either on the
left-middle or the right-middle DQD is shown in Fig. 13
in Appendix I. The amplitude of the magnetic noise due to
Overhauser fields is between one and two orders of magnitude
smaller than the experimentally measured noise and therefore
only plays a minor role. A model considering a combination of
charge and magnetic noise, together with a constant detuning
shift δ′ (which can arise due to a change of the electrostatic
environment of the qubit) shows good agreement with the
measurement. From a fit, we find Aδ = 1.949 ± 0.098 μeV,
AEM = 0.935 ± 0.026 μeV, corr = −0.084 ± 0.177, and δ′ =
0.69 ± 0.171 μeV. The magnitude of δ′ is plausible and
within the range of electrostatic jumps observed during the
measurements. The magnitude of the values found for Aδ ,
AEM and corr are in agreement with our previous work [18].
Although we find that AEM < Aδ in this experiment, we have
shown that the former is still strong enough to dominate other
decoherence mechanisms in the device. This is reasonable be-
cause the CQ3 qubit was specifically designed to be protected
from noise in the δ parameter only. These results support a
growing body of evidence suggesting that a significant frac-
tion of charge noise in semiconductor qubits originates from
sources in the immediate vicinity of the quantum dot [18,38].

V. CONCLUSION

In conclusion, we have proposed and measured a single-
electron qubit hosted in a triple quantum dot with a third-order
sweet spot in the detuning parameter δ. Using two-tone spec-
troscopy we mapped the qubit energy contour as a function
of the two qubit parameters δ and EM. We observed a well
resolvable vacuum Rabi splitting when bringing the cavity
and the qubit into resonance. The reflected cavity signal was
calculated using Input-Output theory taking all three qubit
levels into account. With two tone spectroscopy we mapped
out the qubit dispersion for different values of the middle dot
potential EM and found good agreement with calculations of
the energy spectra. The qubit is expected to have reduced sen-
sitivity to charge noise in the dot detuning. At the same time,
the energy dispersion as a function of middle dot energy is
not flat, making the system susceptible to quadrupolar charge
noise. Experimentally we observe that the qubit linewidth

around δ = 0 is maximal, proving that quadrupolar noise can-
not be neglected in this system. We extract a decoherence rate
γ2/2π = 53 ± 2 MHz in the limit of zero applied drive power.
In comparison to the charge quadrupole qubit [18] where
γ2/2π = 32 MHz was reported, we see that protecting only
against long distant noise sources is not beneficial. Other triple
quantum dot qubit implementations such as the exchange-
only qubit [39] and the resonant exchange qubit [13,24] have
shown better coherence. By coupling the charge and spin
degrees of freedom, decoherence rates of γ2/2π ≈ 10 MHz
have been reported. These qubits are limited by the hyperfine
noise from the GaAs host material. For these qubits further
improvements can be made by switching to silicon [40]. We
are also aware of a GaAs triple quantum dot hybrid qubit
[41] which reports decoherence rates of 250 MHz. We further
investigate the qubit linewidth as a function of δ. We observe
a maximum in linewidth at δ = 0 and two local minima at
|δ|/h ≈ 6 GHz. We find good agreement to a 1/f charge noise
model also considering magnetic noise due to hyperfine inter-
action. These results indicate that the noise affecting the qubit
has a non-negligible contribution coming from short-range
noise sources, in contrast to the original hypothesis that noise
mostly originates from long-ranged sources.

The data used in this work are made available online [42].
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APPENDIX A: SAMPLE

We present a scanning electron image of the sample in
Fig. 5. The three quantum dots reside under the plunger gates
and are indicated by the red dashed circles. The plunger gate
of the left quantum dot is coupled to the λ/4 resonator. Since
the resonator DC potential is defined by the ground, the DC
potential of the left quantum dot is tuned by the gate potential
VL as indicated in Fig. 5. Therefore its potential can not be
tuned by applying a gate voltage. To tune the potential of the
left dot we use the additional gate coming from the top. To
check the occupation of the dots, we use the nearby quantum
point contact [16,43]. Gates which are not used are grayed out.
They were grounded during the experiment. In principle, this
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FIG. 5. Scanning electron micrograph picture of the sample. The
three dots are indicated by the red dashed circles. We control the
electrochemical potentials of the dots by tuning the voltages VL, VM,
VR applied to the corresponding plunger gates. The inter dot tunnel
couplings as well as the coupling to the reservoirs is controlled by
the rest of the gates. The left plunger gate that directly overlaps the
dot is connected to the λ/4 resonator keeping its potential grounded.
To change the left dot potential we tune the potential VL. Changing
VQPC we tune the electrostatic potential of the charge sensing QPC.

sample allows to form a fourth quantum dot residing right to
the quantum dots used. Also we have the option of using three
different gates to form a QPC. For this work only the most
right gate is used.

APPENDIX B: QUBIT WAVE FUNCTION

In Fig. 6, we show the calculated wave-function weights
of the three states of the Hamiltonian (1) as a function of the
dipolar detuning δ at EM = EOpt

M . At δ = 0, all three eigen-
states have the same center of mass.
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FIG. 6. Plot of the wave-function components of the three eigen-
states of the Hamiltonian (1) as a function of δ. The dotted line
represent the |L〉 components, the dashed lines the |M〉 components
and the solid lines the |R〉 components.

APPENDIX C: CALIBRATING THE QUBIT

In the following, we present how we tune the TQD into
the correct regime and calibrate the relevant qubit control
parameters. We start by tuning the TQD into the correct
charge state. In the next step we introduce the voltages Vδ and
VEM , which tune the potentials of the dots in a symmetric or
antisymmetric fashion, respectively. In the last step we present
how we calibrate the tunnel couplings tL(R), respectively, and
how we convert the measurement axis into frequency space.

Using the QPC, we tune the TQD into the single electron
regime. In the basis {|L〉 , |M〉 , |R〉} of the left, middle, and
right dots, the relevant charge states in the occupation number
representation are |1, 0, 0〉, |0, 1, 0〉, and |0, 0, 1〉, in other
words, having one electron in one of the three dots. In the first
step, we tune the qubit by directly tuning the plunger gate volt-
ages Vx, with x ∈ {L, M, R}. In the next step, we parametrize
the plunger gate voltages by Vδ and VEM , corresponding to
symmetric and antisymmetric voltage changes in the TQD.
The change in VM is determined by measuring two charge
stability diagrams as function of VL and VR where we decrease
VM by 1 mV. We find that the quadruple point of the charge
states |0, 1, 0〉, |1, 0, 0〉, |0, 0, 1〉, |1, 0, 1〉 shifts by 1.5 and
0.4 mV in VL and VR, respectively. The lever arms for Vδ

are determined by measuring a charge stability diagram as
function of VL and VR and calculating the tilt of the |0, 1, 0〉
and |1, 0, 1〉 transition when measured in the Vδ and VEM basis.
From these measurements, we find

VL =VL,0 + 1.5VEM − Vδ, (C1)

VM =VM,0 − VEM , (C2)

VR =VR,0 + 0.4VEM + 0.6Vδ, (C3)

where Vx,0, with x ∈ {L,M,R} are constants and chosen such
that higher electron occupation numbers of the TQD are not
relevant when operating the qubit. This parametrization is
device-dependent and is determined by the inter dot and gate
capacitances [1]. It is interesting to note however, that the
lever arms for VL are lower than for VR being in agreement
with the fact that the plunger gate is further away from the
dot, see Fig. 5.

In a next step, we want to calibrate the tunnel couplings
tL and tR of the qubit and relate voltage changes in VEM and
Vδ to the physical qubit detuning parameters δ and EM. By
tuning VEM more positive we can operate the device like a con-
ventional DQD charge qubit formed between the left-middle
(middle-right) DQD for large negative (positive) detuning
voltage Vδ , see Fig. 2(a) energy diagrams I and II. We map
the DQD dispersion along Vδ and VEM for both the left-middle
and right-middle DQDs. We show the measurement of the
left-middle DQD as a function of VEM in Fig. 7. The red line
shows a fit to the data using the DQD dispersion [1]

EDQD =
√

(αxy(V − V0))2 + (2|t |)2, (C4)

where |t | is the tunnel coupling of the respective DQD, V0

is the voltage at which the dispersion has its minimum, V is
the corresponding detuning voltage and αxy is the lever arm
that converts the voltage into a frequency. The energy at the
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FIG. 7. Two tone spectroscopy measurement of the middle-right
DDQ charge qubit. We keep Vδ constant while measuring the qubit
dispersion along VEM . The red line shows a fit to the measurement.
From this we extract the tunnel coupling tR and the lever arm αM

MR.

minimum of the dispersion is given as 2t . Using the gate
electrodes we tune 2|t |/h = 5 GHz. From the fit of the fre-
quency response measurement discussed in the main text, we
find |tL|/h = 2.47 GHz and |tR|/h = 2.48 GHz. This change
of approximately 2% is attributed to the change of tunnel
couplings when changing the detuning parameters.

In the last step, we want to calibrate the voltage changes
Vδ and VEM to detuning changes in δ and EM. From the above
mentioned two tone spectroscopy measurements, we extract
lever arms αxy. More specifically from two tone spectroscopy
on the left-middle DQD, we extract αδ

ML from spectroscopy
along Vδ and αM

ML from spectroscopy along VEM . For further
calculations, we define the following detuning parameters
which we later will relate to the measured lever arms.

δLR =εL − εR = δ, (C5)

δMR =εM − εR, (C6)

δML =εM − εL, (C7)

EM
ML =εM − εL, (C8)

EM
MR =εM − εR. (C9)

Voltage changes 
Vδ and 
VEM relate to the measured
lever arms according to


δXY =αδ
XY
Vδ, (C10)


EM
XY =αM

XY
VEM . (C11)

We obtain the relevant lever arms for the TQD by forming
the linear combinations

αδ
LR =αδ

MR − αδ
ML, (C12)

αM
LR =αM

MR − αM
ML, (C13)

αδ
EM

=1

2

(
αδ

MR + αδ
ML

)
, (C14)

αM
EM

=1

2

(
αM

MR + αM
ML

)
. (C15)
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FIG. 8. Charge stability diagram showing the measured QPC
current as a function of the two qubit detuning parameters δ and EM.

Introducing normalization parameters A, we obtain the fol-
lowing group of linear equations:

⎛
⎜⎝

1 GHz
0
0

1 GHz

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

αδ
LR αM

LR 0 0

αδ
EM

αM
EM

0 0

0 0 αδ
LR αM

LR

0 0 αδ
EM

αM
EM

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

AXδ
Vδ

AXM
VEM

AYδ
Vδ

AYM
VEM

⎞
⎟⎠

(C16)
Rewriting this equation in more compact form we find(

1 GHz 0

0 1 GHz

)

=
(

αδ
LR αM

LR

αδ
EM

αM
EM

)(
AXδ
Vδ AYδ
Vδ

AXM
VEM AYM
VEM

)
. (C17)

By solving this equation we end up with the desired nor-
malization parameters.

APPENDIX D: CHARGE STABILITY DIAGRAM

We show a charge stability diagram measured at the qubit
operating point in Fig. 8 [19,20]. It shows the measured QPC
current of the measurement discussed in Fig. 2(b). We observe
the three charge states (1, 0, 0), (0, 1, 0), (0, 0, 1), where the
electron is confined in either of the dots. For this measure-
ment, the QPC voltage is set such that we have maximal
sensitivity.

APPENDIX E: INPUT-OUTPUT THEORY

In this section, we discuss the details of the Input-
Output model used to simulate the reflected resonator signal.
We closely follow the approach presented in Ref. [34]. A
schematic of the TQD coupled to a cavity including the rel-
evant loss channels is provided in Fig. 9. We consider the
input field ain of the transmission line at frequency νp cou-
pling at rate κext to the λ/4 resonator. We collect all internal
losses of the resonator in κint. The resonator and the TQD
couple with strength G, see Sec. II for derivation. For our
qubit, this strength depends on the detuning parameter δ.
We summarize the losses of the TQD qubit in γ , neglecting
quantum noise. We start with the system Hamiltonian Hsys =
HC + HTQD + Hint consisting of the cavity Hamiltonian HC,
the TQD Hamiltonian HTQD and the interaction Hamiltonian
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ain
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γ
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κext

g

S D

FIG. 9. Schematic model of the TQD coupled to a resonator
being fed by a input line. The input field ain of the feed line at
frequency νp couples at rate κext to the λ/4 resonator. The internal
losses of the resonator are described by κint . The resonator couples to
the TQD with strength g. We summarize the losses of the TQD qubit
with the rate γ

Hint . In a second step we solve the equations of motion for the
cavity and qubit operators and derive the Input-Output model.

The triple quantum dot Hamiltonian is given by

HTQD =
⎛
⎝δ/2 tL 0

t�
L EM tR
0 t�

R −δ/2

⎞
⎠, (E1)

The inter dot tunnel couplings of the left-middle and right-
middle quantum dots are given by tL and tR respectively. The
qubit detuning parameters δ and EM are defined as in the main
text and indicated in Fig. 1(a). The resonator at resonance
frequency ωC is described by the Hamiltonian

HC = ωCa†a, (E2)

where a is the photon annihilation operator. The coupling be-
tween the two quantum systems is described by the interaction
Hamiltonian Hint

Hint = G
(
a + a†

)
, (E3)

where the coupling matrix G is defined as in the main text. For
further calculations, it is convenient to work in the eigenbasis
of HTQD. Like in the main text, let S be the unitary operator
that diagonalizes HTQD. With this, the qubit Hamiltonian reads

H̃TQD = SHTQDS† =
n=2∑
n=0

Enσnn, (E4)

where Ei are the ordered eigenvalues of HTQD. The operator
σnn is defined by σnn = |n〉 〈n|, where |n〉 is the eigenstate at
energy En. Under the transformation S the coupling matrix
transforms to

G̃ = SGS† =
∑

m,n=0

dm,nσmn, (E5)

where dnm = d∗
mn are the transition matrix elements between

the different eigenstates. In a next step we transform into the
rotating frame of the probe frequency ωp = 2πνp. The unitary
transformation is given by

UR(t ) = exp

[
−it

(
ωpa†a +

2∑
n=0

nωpσnn

)]
. (E6)

The total system Hamiltonian H̃sys transforms as

H̄sys = URH̃sysU
†
R + iU̇RU †

R. (E7)

Applying this transformation, we find

H̄TQD =
2∑

n=0

(En − nωp)σnn, (E8)

H̄C =
0a†a, (E9)

H̄int �
(

a
2∑

n=0

dn+1,nσn+1,n + H.c.

)
, (E10)

where 
0 = ωc − ωp is the detuning of the cavity frequency
from the probe frequency ωp. We collect the dissipative losses
of the system in the term Hdiss. It takes the internal losses of
the cavity κint and the qubit γ to the environment into account.
In the following, we neglect quantum noise within the TQD.
Given the Hamiltonian of the TQD system coupled to a res-
onator we calculate the cavity response using Input-Output
theory. The equations of motion for a and σn,n+1 read as

ȧ =i[H̄sys + H̄diss, a], (E11)

σ̇n,n+1 =i[H̄sys + H̄diss, σn,n+1]. (E12)

Calculating the commutators from above, we find

ȧ = − i
rqa − i
2∑

n=0

dn,n+1σn,n+1 (E13)

+ √
κextain − κint + κext

2
a, (E14)

σ̇n,n+1 = − i(En+1 − En − ωp)σn,n+1 (E15)

− idn+1,n(pn − pn+1)a − γ

2
σn,n+1, (E16)

where pn is the occupation probability of state n, coming from
evaluating terms of the form [σn+1,n, σn,n+1]. In thermal equi-
librium, the occupation probability is described by Boltzmann
statistics

pn = exp (−En/kBT )∑
n exp (−En/kBT )

. (E17)

Solving Eq. (E14) in the stationary limit, we find an expres-
sion for a/σn,n+1 = χn,n+1,

σn,n+1 = −dn,n+1(pn − pn+1)

En+1 − En − ωp − iγ /2
= χn,n+1a. (E18)

Solving Eq. (E16) and using the above expression, we find an
equation for a/ain [32]

a

ain
= i

√
κext

ωc − ωp − i
(

κint+κext
2

) + ∑2
n=0 dn,n+1χn,n+1

(E19)

Taking into account that we use a λ/4 cavity, we find the
relation

aout = √
κexta − ain (E20)

013171-9



B. KRATOCHWIL et al. PHYSICAL REVIEW RESEARCH 3, 013171 (2021)

4.00 4.25 4.50
νp [GHz]

0.96

0.98

1.00

|S
11
|

FIG. 10. Vacuum Rabi cut at δ = 0 from the measurement pre-
sented in Fig. 2(d). We measured the line cut 40 times consecutively,
blue points correspond to the averaged data points, the red area
shows the standard deviation of the averages. The solid line is the
corresponding linecut taken from Fig. 2(e).

between the output field and the input field operators. Using
this expression, we get the coefficient

A = aout

ain
= ωp − ωc + i κint−κext

2 + ∑2
n=0 dn,n+1χn,n+1

ωc − ωp − i κint+κext
2 + ∑2

n=0 dn,n+1χn,n+1

.

(E21)

This coefficient is related to the measured reflectivity
by |S11| = |A|2.

APPENDIX F: VACUUM RABI SPLITTING

Additionally to the measurement presented in Fig. 2(d), we
present the vacuum Rabi cut at δ = 0 in Fig. 10. For this line-
cut we perform 40 repetitions. The dots represent the average
of the 40 line cuts. The red region represents the standard
deviation of the average. The solid blue line is taken from
the Input-Output model calculations presented in Fig. 2(e)
directly, not doing any separate fitting. One can clearly resolve
the two peaks in the vacuum Rabi splitting and therefore the
strong coupling.

APPENDIX G: PHOTON NUMBER CALIBRATION

In the following section, we discuss how we calibrate the
photon number in the resonator. The strong coupling of a qubit
to a cavity radiation file leads to a dressed qubit state whose
energy depends on the occupation number n of the resonator
[30]. The dressed qubit frequency ν̃q is given as

ν̃q = νq + 2
n(g/2π )2


qr
+ (g/2π )2


qr
, (G1)

where 
qr = νq − νr is the qubit cavity detuning. In this ex-
periment we use the DQD charge qubit formed between the
left-middle DQDs to calibrate the photon number n. Changing
the flux � we tune the resonance frequency of the resonator to
νr = 4.2 GHz. The qubit frequency is given by 2t ≈ 5 GHz.
Using two tone spectroscopy we measure the qubit frequency
ν̃q while increasing the applied probe tone power to the
resonator, see Fig. 11. We find a linear change of ν̃q. We

100 200
Pr [a.U.]
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ν d
 [G

H
z]

0.98
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n [#]

FIG. 11. AC-Stark shift measurement performed on the left-
middle DQD charge qubit. We measure the dressed qubit frequency
ν̃q as a function of applied resonator probe tone power. We ob-
serve a linear shift of ν̃q. From this shift, we calculate the average
photon number occupation in the resonator n as indicated in the
second x axis.

determine the slope a by linear fit. From this we find

n/P = a
qr

2(g/2π )2 . (G2)

In the experiment, we apply a resonator power corresponding
to n ≈ 0.05.

APPENDIX H: SWEET SPOT CHARACTERIZATION

In previous studies with charge-quadrupole qubits, the
information is encoded in the ground and second excited
states, allowing to work in a sweet spot for both dipolar and
quadrupolar detunings [17,18]. In the CQ3 qubit, however, the
qubit is encoded in the two lowest states, such that the sensi-
tivity to quadrupolar charge noise is sacrificed in favor of an
increased insensitivity to dipolar charge noise. This alternative
encoding, gives rise to a different sweet spot landscape which
is characterized in this section.

In Fig. 12, the qubit energy is plotted as a function of the δ

and EM for |tL| = |tR| = 2.5 GHz. The black and red contours
show the curves in which there is a dipolar and quadrupo-
lar sweet spot, respectively. It can be seen that, for this
encoding, simultaneous sweet spots of dipolar and quadrupo-
lar detunings cannot exist. The optimal working point as
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FIG. 12. Plot of the qubit energy E01/h as a function of δ and
EM for |t |/h = |tL|/h = |tR|/h = 2.5 GHz. Red lines indicate the
position of sweet spots in EM and the black solid line indicates sweet
spots in δ. The black dashed line shows the EOpt

M ≈ −0.493|t |.
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referred to in the main text, occurs when the two black curves
cross, at δ = 0 and EM ≈ −0.493t . We note that, the condi-
tion |t | = |tL| = |tR| is necessary for the second-order sweet
spot to occur.

APPENDIX I: NOISE MODEL

The qubit decoherence rate γ2 is obtained by its relation
with the HWHM ∂νq obtained for a given power P:

∂νq =
√

(γ2/2π )2 + βP, (I1)

where β is a constant that is calibrated as previously ex-
plained, see discussion of Fig. 4 in the main text. We model
the qubit decoherence rate by simulating Ramsey free induc-
tion decay in the CQ3 qubit. We expect the qubit decoherence
rate to be dominated by charge fluctuations in the different
detuning parameters, and Overhauser magnetic fluctuations.

1. Magnetic noise

While magnetic noise is not the dominant decoherence
mechanism, its impact on the qubit is non-negligible. The
magnetic noise fluctuations in GaAs are slow compared to
the qubit dynamics, hence, allowing to assume a quasistatic
Gaussian noise distribution. Following Ref. [37], we name
the difference in Overhauser fields between left-middle dots
and middle-right dots as BL and BR, respectively. We note
that, since this is a charge-type of qubit, a global shift in the
magnetic field has a negligible influence on the qubit coher-
ence, allowing to characterize the magnetic noise fluctuations
in three dots with two parameters.

The Hamiltonian due to Overhauser fields is

H = gμB

6

⎛
⎝2BL + BR 0 0

0 BL − BR 0
0 0 −BL − 2BR

⎞
⎠. (I2)

Assuming a Gaussian distribution of local magnetic fields
with standard deviations σL and σR, the decoherence
rate is [24]

γ2

2π
= gμB

√
h2

Lσ 2
L + h2

Rσ 2
R

2
, (I3)

where hL,R = dω01/dBL,R, being ω01 the qubit frequency. The
result of using the previous formula for σL = 4 mT, σR = 0,
and vice versa, is shown in Fig. 13. In GaAs the fluctuations
of the nuclear magnetic field are expected to be around 2 to
5 mT. The asymmetry of the results in Fig. 4(b) is not caused
by these fluctuations. Moreover, due to the small value of the
decoherence rate due to this mechanism compared to the ob-
served values, we assume a typical value of σL = σR = 4 mT
in the following. Realistic deviations from this value would be
negligible compared to the numbers in Fig. 4(b).
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FIG. 13. Simulated influence of magnetic noise arising from
different Overhauser fields in different dots. We assume Gaussian
distributed magnetic noise with a standard deviation of σ = 4 mT on
either the left-middle or middle-right DQD. Note the different axis
scales compared to Fig. 4(c).

2. Charge noise

We assume the overall charge fluctuations follow a
1/ f spectral distribution Si(ω) = 2πAi/ω, where i indicates
parameter i = δ, EM, and Ai is its corresponding noise am-
plitude. These fluctuations induce variations in the chemical
potentials of the different dots, such that δ → δ + 
δ(t ),
and EM → EM + 
EM(t ). For fitting the observed decoher-
ence rate, we consider three parameters: the dipolar detuning
noise amplitude Aδ , the quadrupolar detuning noise amplitude
AEM and the correlation between each dipolar and quadrupo-
lar fluctuations ρ. This coefficient allows the dipolar and
quadrupolar fluctuations to be correlated. To account for the
asymmetry observed in Fig. 4(b), we assume that the strength
of the qubit drive tone experienced by the qubit decays with
coupling to the drive gate.

For given values of the three noise parameters in a certain
qubit configuration (δ, EM) the procedure to obtain the value
of γ2 goes as follows. (1) The qubit is initialized in a coherent
superposition |ψ〉 = 1/

√
2(|0〉 + |1〉). (2) Noise fluctuations


δ(t ) and 
EM(t ) are generated following the method de-
scribed in Refs. [18,36]. (3) The qubit is left to evolve under
the noise fluctuations for a time τ = 100 ns. (4) The evolution
of the qubit coherence ρ01(t ) is saved. (5) The previous steps
are repeated 5000 times. (6) The multiple resulting evolutions
of the qubit coherence are averaged. (7) The value of |ρ01(t )|
follows a decay law |ρ01(t )| = exp(−γ2t/2π )β/2. Fitting to
such function provides the decay rate γ2 and the exponent β.

The result of applying this procedure to the simple
cases Aδ = 1 μeV, AEM = 0, and vice versa, are shown in
Fig. 4(c). To fit the result in Fig. 4(b), this procedure is
repeated over a grid in 
δ, Aδ , AEM , and ρ for 
EM =
EOpt

M . This grid is then interpolated into a function to which
we add the decoherence rate from magnetic fluctuations.
The interpolated function is then used to fit Fig. 4(b).
The result of the fit gives Aδ = 1.949 ± 0.098 μeV, AEM =
0.935 ± 0.026 μeV, corr = −0.084 ± 0.177, with a shift in
detuning δ′ = 0.69 ± 0.171 μeV. This implies that the dipolar
detuning noise is dominating over the quadrupolar noise, in a
similar ratio to the one observed in a previous work [18].
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