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Topological critical states and anomalous electronic transmittance in one-dimensional quasicrystals
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Due to the absence of periodic length scale, electronic states and their topological properties in quasicrystals
have been barely understood. Here, we focus on one-dimensional quasicrystals and reveal that their electronic
critical states are topologically robust. Based on tiling space cohomology, we exemplify the case of one-
dimensional aperiodic tilings especially Fibonacci quasicrystals and prove the existence of topological critical
states at zero energy. Furthermore, we also show exotic electronic transmittance behavior near such topological
critical states. Within the perturbative regime, we discuss the lack of translational symmetries and that the
presence of topological critical states lead to an unconventional scaling behavior in transmittance. Considering
both analytic analysis and numerics, electronic transmittance is computed in cases where the system is placed in
air or is connected by semi-infinite periodic leads. Finally, we also discuss a generalization of our analysis
to other quasicrystals. Our findings open a new class of topological quantum states which solely exist in
quasicrystals due to exotic tiling patterns in the absence of periodic length scale, and their anomalous electronic
transport properties applicable to many experiments.
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I. INTRODUCTION

Systems without periodicity are studied in various contexts
such as condensed matter physics, optics, and mathemat-
ics [1–19]. In particular, quasicrystals which do not have
periodic unit length scales and translational symmetries but
show discrete diffraction measure, are mainly interested in
condensed matter physics. For several decades since the
discoveries of quasicrystals, many researchers are greatly
interested in such nonperiodic systems searching for new
phases of matters with unconventional electronic and mag-
netic properties [2,18,20–32]. It has been studied that certain
quasiperiodic systems show infinitely many gap structure in
thermodynamic limit [1,33,34]. In addition, for some cases
of quasicrystals, it has been investigated that there exist
novel electronic states so called critical states where elec-
tron wave functions are neither completely localized nor
extended [35–38]. Based on several methods such as renor-
malization, transfer matrix, etc., above issues have been
argued [39–44].

One of the most intriguing questions is whether such
strange behavior addressed above is topologically robust and
how it is directly related to anomalous physical phenomena
so one can speculate new experimental signatures uniquely
appear in quasicrystals. However, due to absence of transla-
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tional symmetries, various useful tools such as band theory
and Bloch theorem which are generally used in periodic lattice
systems, cannot be applicable to quasicrystals and it makes
hard for us to understand physical properties in quasicrystals
including energy spectrum, transport behavior, etc. Instead, to
answer the questions addressed above, one requires somewhat
abstract approach that solely depending on tiling space of
quasicrystal structures. Focusing on the pattern of the tiling
itself, one can construct the metric space called tiling space.
In tiling space, the abstract distance in between two distinct
tilings say T1, T2 (they may or may not be similar tiling before
deformation) where each tiling is composed of covering pat-
terns of real space by using some polytopes (vertices, edges,
faces etc), is given by the smallest translation that makes two
tilings identical through large region. In detail, if two given
tilings are congruent up to 1

ε
large region through translation

on one tiling as amount of less than ε, then we say that their
distance is ε in abstract tiling space [1,13]. Based on this kind
of metric space for tilings itself, one can consider the pattern
dependent topologies.

In the context of such pattern dependent topologies,
two cohomology theories are mainly considered;1 one is
Cech cohomology and another is K theory [1,13]. Roughly
speaking, Cech cohomology contains meaningful topological
distinction between tilings and gives information related to
diffraction measurement. K theory, on the other hand, which
is the combination of cohomology and self-adjoint operator,

1The reason why we use cohomology here instead of homology or
homotopy is because of the aperiodicity of quasicrystals, where the
tiling spaces of them usually have infinitely many path connected
components. Thus based on homology and homotopy, one cannot
extract physically useful information.
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gives the information of energy spectrum for pattern depen-
dent Hamiltonian. In terms of the K theory, the elegant gap
labeling theorem has been well studied. Based on natural
averaging trace map from K-theory abstract group to R space
whose image is a group structure, it gives the information
of integrated density of state (IDOS) of the spectral gaps.
This powerful theorem tells us by studying mathematical
abstract structure of tiling space, one can (at least) identify
exact positions of spectral gaps [1,6,13,40,45–47]. In terms
of the Cech cohomology, it is more natural to concern the
pattern equivariant cohomology (also known as PE cohomol-
ogy) even though mathematically Cech cohomology and PE
cohomology are equivalent. PE cohomology is nothing but the
cohomology between chain complex that each cochain (you
may think it as coloring of vertices, edges or faces with some
pattern dependent rule) is defined as containing (a part of)
tiling pattern information [13,46–50]. It is very robust under
any kinds of local (or even nonlocal) perturbation which pre-
serves tiling patterns. Thus, physical quantities which strongly
depend on such PE cohomology or cochains, are considered as
very robust concept [1,13,40,45,49,51]. Such kind of discus-
sion highly promoted understanding of quasicrystal or general
aperiodic Hamiltonian that lack of periodicity but depend on
the pattern of the system.

In this paper, we apply such pattern dependent topologies
to the electronic system of the Fibonacci quasicrystal and dis-
cuss the topological critical state at zero energy and relevant
electronic transports. Although the existence of critical states
in quasicrystals has been known for a while, their topological
aspects have not been understood [35,36]. Here, we show the
critical state is a topologically robust quantity and give rise
to anomalous transport properties. Topological perspectives
provide significant understanding of critical states in qua-
sicrystal which guarantees their robustness as long as their
patterns are preserved in the presence of any (non) local per-
turbations and even for strongly interacting electronic system.
In addition, based on both analytical and numerical studies,
electronic transmittance and conductance near zero energy are
also studied. Considering a simple tight-binding limit with
nearest-neighbor hoppings, we discuss two situations where
the system is placed in air or the system is connected with
semi-infinite periodic leads. It turns out that transmittance at
zero energy shows a self-similar pattern along the system with
nontrivial scaling behavior for weak quasiperiodic limit. In
addition, we also discover due to lack of periodic length scale,
tiny control of total system size of quasicrystal enables huge
change in transmittance near-zero energy and such properties
are also topologically protected, which can give many relevant
experimental applications. Our theoretical approach based on
PE cohomology and related transport properties can be gener-
ally applicable to other quasicrystal systems. Our work paves
a way to uncover a new class of topological states which
only exists in quasicrystals, distinct from periodic lattice sys-
tems. Furthermore, it opens a way to understand how such
topological electronic states are related to transport properties
suggesting various future experiments.

This paper is organized as following. First, we briefly re-
view the definition of a Fibonacci quasicrystal and introduce
some relevant previous works. Section II includes a generating
rule of the Fibonacci quasicrystal, tight-binding Hamiltonian,

and zero energy state. In Sec. III, based on the PE cohomology
group calculation, especially focusing on a Barge-Diamond
complex, we prove that the zero energy critical state is indeed
topologically robust. In Sec. IV, we analytically study elec-
tronic transmittance near topological critical state and provide
the explicit expression of transmittance within perturbative
regime. Supporting numerical results are also presented in this
section with discussions. Summary and some remarks about
our results are given in Sec. V.

II. REVIEW: GENERATION OF A FIBONACCI
QUASICRYSTAL AND ZERO ENERGY CRITICAL STATE

In this section, we introduce the definition of a Fibonacci
quasicrystal and briefly review the zero energy critical states.
The Fibonacci quasicrystal can be generated using substitu-
tion method. It is composed of two prototiles which are called
L(=Long) and S(=Short). Starting with prototile L, we suc-
cessively make a substitution in the following ways [52,53]:

σ =
{

L → LS

S → L
. (1)

By choosing the basis as a prototile itself, the substitution can
be also rewritten as(

LS

L

)
=
(

1 1

1 0

)(
L

S

)
. (2)

Here, the above 2 × 2 matrix is called substitution matrix.
The substitution matrix in Eq. (2) guarantees both aperiodicity
and self-similarity of resultant tiling, a Fibonacci quasicrys-
tal. Since the matrix characteristic equation is given as λ2 −
λ − 1 = 0 whose solution is τ and 1/τ where τ is a golden
ratio, it satisfies an irreducibe Pisot condition i.e., only one
of the eigenvalues, τ , is larger than 1. This is a sufficient
condition of discrete diffraction measure under Pisot substi-
tution conjecture [54]. Its PE cohomology (or equivalently
Cech cohomology) is known as Z2 and this classifies possible
deformation which preserves diffraction pattern [1]. On the
other hand, the gap labeling group is known as Z ⊕ τZ, which
can be obtained by a trace map and this is directly related to
the energy spectrum with infinitely many spectral gaps whose
IDOS belong to Z ⊕ τZ [1].

We consider the spinless tight-binding model with the
nearest-neighbor hopping,

H =
∑
〈i, j〉

(|i〉 ti, j 〈 j| + H.c.) +
∑

i

|i〉 εi 〈i| . (3)

Here, i and j are atomic site positions. ti, j and εi are hop-
ping constant between neighboring sites i and j and on site
energy at site i, respectively. There are two ways to impose
the quasiperiodicity; one is to put quasiperiodic structure in
the hopping term ti j and another is to put it in on site energy.
Physically, the former corresponds to control the distance
between each atomic site, the latter corresponds to control
atomic kinds. Note that we focus on the former case through-
out our discussion, which the middle state (IDOS = 1

2 ) is at
zero energy with εi = 0.

Due to the sublattice symmetry or particle-hole symmetry,
the energy spectrum of Eq. (3) contains both E and −E . Since

013168-2



TOPOLOGICAL CRITICAL STATES AND ANOMALOUS … PHYSICAL REVIEW RESEARCH 3, 013168 (2021)

the gap labeling group of the Fibonacci quasicrystal tiling
space is Z ⊕ τZ and does not contain 1/2, it tells us that
zero energy electron state exists which is doubly degenerate.
It is worth to note that silver mean, cantor set and binary
nonpisot tilings also belong to this kind of tilings, whereas the
gap labeling groups of Thue-Morse and paper folding tilings
contain 1/2. In other words, if we consider the tight-binding
Hamiltonian of the Thue-Morse tiling, for instance, there is
no zero energy state. Since gap labeling group itself is a
topological quantity, the existence of the gap in IDOS is also
topologically protected [1].

Now let’s consider zero energy states. Explicitly, the
Schrödinger equation is written as following:

tn+1ψ (n + 2) + tnψ (n) = 0, (4)

where ψ (n) is the electron wave function at nth site and tn
is hopping magnitude from nth site to (n + 1)th site. Par-
ticularly for the Fibonacci quasicrystal case (in principle, it
can be applicable for any arbitrary systems composed of two
prototiles), one can define the systematic parameter ρ ≡ tL/tS ,
where tL and tS are hopping magnitudes for long tiling and
short tiling respectively. Then, ψ (2(n + 1)) is represented as

ψ (2(n + 1)) = −ρa(2n→2(n+1))ψ (2n). (5)

Here, a(2n → 2(n + 1)) is a function of the hopping constant
arrangement between 2nth site and 2(n + 1)th site. Explicitly,
a(LL) = 0, a(LS) = 1, a(SL) = −1 and note that there is no
SS supertile [9]. By applying it inductively, one gets

ψ (2n) = (−1)nρh(n)ψ (0), (6)

where h(n) =∑0�i<n a(2i → 2(i + 1)). Thus it leads to

ψ (2n)

ψ (0)
= (−1)n exp(κh(n)), (7)

with κ = ln ρ. The square of Eq. (7) is nothing but one of
the two eigenvalues for the transfer matrix product MM†.
Note that its eigenvalues are inverse pairs. In above procedure,
selection of even sites in Eq. (5) gives one of the degenerate
states. Another degenerate state can be obtained by select-
ing only odd sites. The only difference in that case is to
replace h(n) into f (n) =∑0�i<n a(2i + 1 → 2i + 3). Their
critical characters and fractal dimensions are already well
studied [35,37,38].

III. TOPOLOGY OF SUPERTILING SPACE AND
PROTECTED CRITICAL STATE

In this section, we show that the functions h(n) and f (n)
introduced in Sec. II are essentially topological ones, thus
claim that they are robust under any kinds of pattern equiv-
ariant transformations. For instance, if we locally change a
few · · · SLLSLS · · · local patch to · · · SLSLLS · · · one in the
Fibonacci, it does not erase the global properties (e.g., rapidly
oscillation, speed of growth etc) Based on our argument, we
show that zero energy critical state is indeed a topologically
protected phase. In order to show such property, we adopt pat-
tern dependent topologies and derive PE cohomology group of
supertile in particular. Furthermore, as a consequence of topo-
logical property, we also address unique logarithmic scaling

FIG. 1. (a) Barge-Diamond complex of the Fibonacci quasicrys-
tal supertiling. Here, the edges eA,B,C are equivalence class of real
space position whose neighborhood is completely included in A,B,C
supertile respectively. The vertex flips vi j where i, j = A, B,C repre-
sent whose neighborhood experience edge flips from i to j. Examples
of equivalence class with some ε ball is shown in (b). See the main
text for more details.

behavior of h(n) and f (n) in the Fibonacci quasicrystal and
compare them with other aperiodic systems.

We first consider supertiles with length 2 in the Fi-
bonacci tiling. There exist three types of colored supertiles
LL, LS, SL and let’s call them A, B, C, respectively. (Note
that we don’t have a supertile of SS type.) As an example, this
allows us to rewrite the Fibonacci tiling of the first few words
as

LSLLSLSL → BACC. (8)

By explicitly applying substitution in Eq. (1), we have a new
substitution matrix for supertiling in the basis of A, B, C,

S =

⎛
⎜⎝

1 1 1

2 1 2

2 2 1

⎞
⎟⎠. (9)

Now let’s consider the PE cohomology of supertiling. In
order to compute cohomology group, we construct the Barge-
Diamond complex as shown in Fig. 1(a). The Barge-Diamond
complex is mainly composed of the two types of equivalence
classes, edges ei and vertex flips vi j (i, j = A, B,C). As an ex-
ample, Fig. 1(b) shows the Fibonacci quasicrystal supertiling
BACCBACCBBAC along the line which can be easily gotten
after a couple of substitution. Here, the edge ei is defined
for within a given ε ball regime when neighborhood of the
point is completely included in i supertile, while the vertex
flip vi j is defined for the case where neighborhood experience
the change of supertile from i to j. Each point on the line
belongs to an equivalence class, if their neighborhood pattern
is equivalent within small range given as ε ball. Since couple
of successive words are forbidden in the system, such as LLL
and SS, there are only five kinds of vertex flips between two
supertiles vBA, vAC, vBB, vCB, vCC . (A proof by contradiction:
assuming successive words LLL or SS are appeared, apply
inverse substitution so that it cannot be returned into a single
prototile, S.) In addition, rule of the Fibonacci tiling gives
unique orientations of vertex flip between A,C and A, B and
it determines the arrow directions of vBA and vAC shown in
Fig. 1(a). It indicates that a vertex flip from C supertile to
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A supertile is forbidden but a flip from A to C is allowed.
Similarly, a vertex flip from B to A is allowed but a flip from
A to B is forbidden. Others are given as compatibly. This
complex completely contains the pattern information of the
Fibonacci quasicrystal supertiling and we also note that the
collection of vi j has no additional loop.

Now, we discuss the Barge-Diamond complex in the ther-
modynamic limit. By keep applying the substitution matrix
Eq. (9), one can easily read off that only two types of vertex
flips vBB and vCB survive. For instance, if we apply a single
substitution on an equivalence class of point p on vAC , then it
is mapped into vBB since the tiling after a single substitution
becomes BACCB(p)BACB. Similarly, the vertex flips vBA and
vCC are mapped into vCB and vBB respectively, whereas vBB

and vCB are mapped into vCB and vBB respectively. Thus only
vBB and vCB survive and this leads the eventual range of a
Barge-Diamond subcomplex to be a single connected com-
ponent. Hence, the PE cohomology group of the Fibonacci
supertiling space T can be derived by (reduced) cohomology
exact sequence for the pair (	,	0) consisting of inverse limit
of a complex 	 and a subcomplex 	0 [1]. Equation (10) shows
a long exact sequence of cohomology group.

0 → Ȟ0(	,	0) → Ȟ0(	) → Ȟ0(	0)

→ Ȟ1(	,	0) → Ȟ1(	) → Ȟ1(	0) → 0. (10)

Here, arrow implies that (cohomology) group homomor-
phism. “Exact” means that image of each homomorphism is
equal to the kernel of the next and 0 stands for a trivial group.
Ȟ i(	) stands for the i-th PE reduced cohomology group and
Ȟ i(	,	0) is the ith relative reduced cohomology group. In
our case, since 	,	0 and quotient of 	 by vertex flips are
connected clearly, all zeroth reduced cohomologies are van-
ished resulting in Ȟ0(	,	0) = Ȟ0(	) = Ȟ0(	0) = 0. Here,
the quotient of the Barge-Diamond complex by vertex flip
subcomplex, is the wedge of three circles corresponding to
three supertiles. Thus, in our case of the Fibonacci quasicrys-
tal, Ȟ1(	,	0), which is defined as the direct limit of ST

[transpose of the substitution matrix given in Eq. (9)], i.e., a
quotient space with ST as a quotient map, is Z3. (Note that
the eigenvalues of ST are irrational and −1, hence there is no
effect due to the quotient on each Z.) Now it can be shown
from substitution rules that the eventual range of subcomplex
of the substitution map is a single connected component and
contractible (because there is no loop). Hence, we conclude
that H1(T ) = Z3 for the Fibonacci supertiling where Hi(T )
is the ith cohomology group (not reduced one) of Fibonacci
supertiling space. Physically, it means that when we consider
thermodynamic limit of the Fibonacci tiling, there are Z3

kinds of nontrivial topologically protected quantities. If one
can find the connection between one of them and it’s relevant
physical quantities, then it implies that such physical quantity
should be topologically protected. In the next section, we will
show that it is indeed the case of transmittance near the zero
energy in the Fibonacci quasicrystal. The zeroth cohomology
is trivial from the definition of the reduced cohomology. Thus,
combining both the zeroth and the first PE cohomology groups
of the Fibonacci supertiling space T , one obtains

H0(T ) = Z, H1(T ) = Z3. (11)

FIG. 2. Generators of the first cohomology group for the Fi-
bonacci supertilling space, H1(T ). Each generator comes from the
simple counting number of each supertiling, NA, NB, NC .

Explicitly, one way to construct the generators of H1(T )
is given in Fig. 2. In Fig. 2, NA,B,C stands for total number
of A, B,C supertile of the system respectively. Clearly from
the definition, h(n) introduced in Eq. (6) is nothing but (in-
tegrated) 1-cochain function of the Fibonacci supertiling with
the element NB − NC and it can be obtained from the third gen-
erator shown in Fig. 2. Having known that the element NB −
Nc is a topological quantity, let’s now prove by contradiction,
that it is a nontrivial element. Let’s assume that NB − NC is
trivial, i.e., one of the elements in the image of coboundary
map called δ. Then there exists a pattern equivariant 0-cochain
(vertex flips) map, say β, such that NB − NC = δβ. Here,
pattern equivariant means that at least if two vertices, say x, y
are in the same vertex flip, then β(x) = β(y). However, by
simple checking along Fibonacci tiling, one can easily show
that it is impossible to find such β. For instance, in the third
figure in Fig. 2, if we let x, y be the first and the second vertices
for vBA, then β(x) = β(y) + 1 �= β(y). Thus, by contradiction,
it implies that NB − NC is a nontrivial element in cohomology
group. Hence, we can conclude that h(n) is indeed a nontrivial
topologically invariant quantity.

Compared to h(n), f (n) is just translationally shifted one
from even sites to odd sites. Hence, based on the definitions
of f (n) and h(n), one can clearly read off

f (n) + h(n) = 0, 1. (12)

Here, the difference between 0 and 1 comes from end bound-
ary condition; If the end boundary of the supertiling is either
A or B, then it is zero. If the end boundary is C supertile, then
it becomes 1. In terms of the original Fibonacci tiling not on
the basis of supertiling, if the type of (2n + 1)-th tile is L, then
it is zero, but if it is S, there is an offset by 1. Thus one can
extract n, such that there is an offset between f (n) and h(n)
by using the position of the S prototile. This property becomes
significantly important for the transmittance of the Fibonacci
quasicrystal connected with periodic leads, which we will dis-
cuss in the next section. Equation (12) indicates that h(n) and
f (n) both have common scaling behavior up to overall sign.
In addition, f (n) itself is also a topologically robust quantity
same as h(n), thus, it does not change under any kinds of
pattern preserving perturbations or local operations. But, we
note that they are not cohomologous because f (n) − h(n) =
−2h(n) + (0,±1) is not coboundary. It implies that h(n) and
f (n) may explain independent physical phenomenon which
will be discussed in Sec. IV.

Topological robustness of h(n) (similarly for f (n)) is used
to classify the aperiodic systems. It is because the scaling
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characters of extended, critical and localized states entirely
depend on the scaling behavior of h(n). In particular, the
scaling behavior of the critical state is given as

h(L), f (L) ∼
√

ln

(
L

L0

)
, (13)

where L is the total system size in terms of the tiling unit and
L0 is the length of the short prototile, which is set to make
dimensionless quantity in the logarithm. Detailed derivation
of Eq. (13) is given in Appendix A. As a consequence of
topological robustness, existence of the critical state is also
topologically protected and scaling behavior of the critical
state cannot be changed from any local or pattern equivariant
perturbations (Here, it implies the same cohomology group
structure). Note that explicit values of h(n), f (n) are not pro-
tected similar to the local values a(2n → 2(n + 1)), but the
behaviors of summed global functions h(n), f (n) (e.g., speed
of growth, oscillation, etc.) are indeed topological and hence
protected.

In order to further understand topological robustness of
the critical state, we consider three more examples and com-
pare them with the Fibonacci quasicrystal case; silver mean,
Cantor set and binary non-Pisot system. All of them belong
to aperiodic tilings which are well studied in several litera-
tures [13,55–57]. Similar to the Fibonacci quasicrystal, they
are all composed by two prototiles, say A and B and each of
them are defined by the following substitution rules:

σSM =
{

A → BAA

B → A
,

σCS =
{

A → ABA

B → BBB
,

σB-NP =
{

A → AB

B → AAAAA
. (14)

Here, σSM,CS,B-NP represent substitution maps for silver mean,
Cantor set and binary non-Pisot systems, respectively. Based
on the substitution rules given in Eq.(14), one can note that
only the silver mean tiling is a Pisot substitution tiling. On the
other hand, other two tilings are not Pisot substitution tilings,
in particularly, the Cantor set substitution is not even primitive
[13,55,58]. The gap labeling groups of these three tilings
are already well known as Z + (

√
2 + 1)Z and k

3N , Z+ωZ
5N ,

respectively, where k, N are integers and ω =
√

26+1
2 [13].

Note that as we have already mentioned in Sec. II, such gap
labeling groups imply that there exist zero energy states for
those tilings.

Now we discuss the zero energy state for each tiling case.
Their features are totally distinguishable between the two
groups, Fibonacci and silver-mean tilings (Pisot quasicrystals)
versus Cantor set and binary non-Pisot systems. In Fig. 3, the
behavior of h(n) as a function of n is shown for each tiling. By
substituting the scaling behavior of h(L) into Eq. (7), one can
easily determine characteristics of zero energy state whether
extended, localized or critical. Figure 3 shows the growth
speed of h(n) as a function of n for each case. As seen in
Fig. 3, the growth speed of h(n) indicates that the zero energy
states of both Fibonacci and silver mean tilings are critical,

FIG. 3. h(n) as a function of n up to n = 106 (logarithmic scale)
for various tilings in 1D: (top left) Fibonacci, (top right) silver mean,
(bottom left) Canotr set, and (bottom right) binary nonpisot. Based
on Eq. (7), growth speed of h(n) as a function of n implies the char-
acteristic of zero energy eigenstate, either critical state (Fibonacci,
silver mean) or localized state (Cantor set, binary non-Pisot). See the
main text for more details.

whereas the system contains localized zero energy states for
the case of a Cantor set and a binary non-Pisot system. Impor-
tantly, one can observe that the behavior of h(n) for Fibonacci
and silver mean cases are almost identical despite their distinct
tilings. These behavior are guaranteed from the first cohomol-
ogy groups of supertilings. Both Fibonacci and silver mean
tilings have the same first cohomology group Z3 and h(n) in
both cases is described by topologically nontrivial element Z
for supertilings. (Detailed derivation of cohomology group for
silver mean tiling is given in Appendix B.) On the other hand,
both a Cantor set and a binary non-Pisot system have distinct
first cohomology groups; Z[1/3] ⊕ Z[1/2]2 for a Cantor set
and Z[1/5] ⊕ Z2 for a binary non-Pisot system. In particular,
h(n) for Cantor tiling is described by one element of Z[1/2],
whereas, h(n) for a binary non-Pisot system is described by
one element of Z[1/5]. (See Appendix B).

Note that Z[1/2] and Z[1/5] implies the cyclic inner struc-
ture of the whole group. As an example, Z[1/2] includes all
the elements { 1

2 , 1}, { 1
4 , 2

4 , 3
4 , 1}, · · · . That means our nontriv-

ial elements appear in infinitely many cyclic structures and
all of them are indistinguishable. For example, 1 = 1

2 + 1
2 =

1
4 + 1

4 + 1
4 + 1

4 = · · · . Thus, in such a case, an infinite number
of inner structures of cochains exist, which are composed of
fractional elements such as 1/2 or 1/4 as shown in above
example. It means that a cochain function itself (before in-
tegration) is repetitive with a finite nontrivial value, say γ

which originates from fractional elements. Then, an integrated
cochain function h(n) becomes repetitive sum of γ . Hence,
h(n) is growing fast with the system size. On the other hand,
in the Fibonacci or silver mean tilings, such nontrivial inner
structures of cochain are absent and the speed of growth of
h(n) is suppressed [59]. It yields localization behavior of Can-
tor and binary non-Pisot systems, distinct from Fibonacci and
silver mean tilings. It is worth to note that although Cantor and
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FIG. 4. Schematic picture for two distinct boundary conditions.
Top figure represents the situation where the Fibonacci quasicrystal
(colored in yellow squares) is placed in air. Bottom figure represents
the case connected with two periodic leads (colored in blue circles).

binary non-Pisot systems both exhibit localized zero energy
states, their localization behavior is quite different. In case of
a Cantor set, h(n) shows a stair shape which is rapidly and
monotonically increasing [13]. On the other hand, in a binary
non-Pisot system, it shows a steeply oscillating behavior. It
implies that even though both cases have localized zero energy
states, they have different localization behavior. For the case
of a Cantor set, it has a finite localization length which is
roughly given by a range of constant h(n). In contrast, for
a binary non-Pisot system, the zero energy state is strongly
localized.

In this section, we have computed explicit cohomology
group of the Fibonacci supertiling space using the Barge-
Diamond complex. By studying the first cohomology group
H1(T ) = Z3, we conclude that h(n) and f (n) are directly
described by the nontrivial elements of Z sector, thus the
zero energy critical state is indeed a topologically protected
nontrivial quantity. We have also shown it’s topological ro-
bustness comparing with other aperiodic tilings such as silver
mean, Cantor set, and binary non-Pisot systems. Despite dis-
tinct tiling patterns especially for Fibonacci and silver-mean
cases, the tilings for equivalent supertiling cohomology group
share the same nontrivial critical behavior. Even though we
exemplify the Fibonacci quasicrystal case, our approach based
on cohomology group of supertilings can be applicable to
any kinds of tilings and this method can be generally used to
classify characters of critical states in several aperiodic tilings.
Moreover, this robust topological quantity is closely related to
the important transport phenomena which we will discuss in
the following section.

IV. TRANSMITTANCE

Based on the topological critical state obtained in Sec. III,
we now discuss anomalous transport properties of the Fi-
bonacci quasicrystal. Since transport itself strongly depends
on energy eigenstates of the system, given that the correspond-
ing state is topological, the transport properties should be also
topologically protected. In other words, topological electronic
state automatically guarantees some robust quantity of elec-
tronic transport as well and such robustness is valid even with
adding a small amount of energy. We take into account elec-
tronic transmittance for two different boundary conditions;
(1) one-dimensional system of the Fibonacci quasicrystal is
placed in air and (2) the system is connected by semi-infinite
periodic leads. Figure 4 shows the schematic picture of these
two cases. Considering topological critical state at zero en-
ergy, we focus on the transmittance near-zero energy within
perturbative regime. Both analytical and numerical analysis

FIG. 5. Zero energy transmittance Tn=2k given in Eq. (15) of the
Fibonacci quasicrystal for ρ (= tL/tS ) = 0.8 (top) and ρ = 0.2 (bot-
tom). Presence of many sites n having perfect transmittance (Tn = 1)
indicates a special character of the critical state and such nontrivial
sites n do not depend on the strength of quasiperiodicity.

of electron transmittance and conductance are given for the
case of the Fibonacci quasicrystals. We also discuss our results
compared to other aperiodic tilings.

Before discussing the quasicrystal case, let’s briefly argue
electronic transmittance of the periodic cases. When the sys-
tem is perfectly periodic, the results are already well known.
For instance, when a single prototile periodic system is placed
in air, perfect transmittance is expected due to the Bloch
theorem for any allowed energy. For biprototile case, however,
there is no transmittance at and nearby zero energy which is
understood in various points of view especially in terms of the
band structure [60]. In the periodic case, therefore, the zero
temperature conductance is quantized by 2e2

h . However, such
argument is not valid anymore in quasicrystals and we show
how it behaves differently compared to the case of periodic
system.

We first consider transmittance of the zero energy state.
Both air boundary or semi-infinite periodic lead boundary
share the similar behavior in this case, so without loss of
generality we focus on the former case. [The only difference
between the former and the latter cases may be interchanging
between h(n) and f (n) which will be discussed in Sec. IV B in
detail.] In general, transmittance Tn=2k = sech2(xn) is defined
for exn ≡ |ψ (n)

ψ (0) | [61]. Thus the transmittance in terms of κ and
h(k) from Eq. (7) is represented as

Tn=2k = 1

cosh2 (κh(k))
. (15)

This formula comes from one of the eigenvalue of product of
transfer matrix MM†, e2xn , whose another eigenvalue is always
it’s inverse e−2xn . Depending on the strength of quasiperiodic-
ity ρ = tL/tS = 0.8 and 0.2, Figure 5 shows the zero energy
transmittance of the Fibonacci quasicrystal up to n = 2000
sites.

In the thermodynamic limit with infinite total length of
the Fibonacci tiling, the number of B-type supertile becomes
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equivalent to that of C-type supertile, NB = NC [35]. It implies
that there are many nontrivial n such that Tn=2k = 1 with
perfect transmittance as shown in Fig. 5. This is the special
character of the critical states, which does appear neither in
localized states nor in extended states. Furthermore, from
Eq. (15), it is clear that specific values of such n do not depend
on the strength of quasiperiodicity. As seen in Fig. 5, patterns
of the zero energy transmittance as a function of sites also
shows self similarity which originates from the self-similar
behavior of h(k).

Let’s discuss the arithmetic average of transmittance to
derive the scaling behavior as a function of system size,

T̄ = 1

n

∑
i�n

Ti. (16)

In general, there is transmittance decay in the critical states
unlike the extended states for the periodic case. Such decay
can be analytically computed from the behavior of h(k)2. (See
Appendix A). For weak quasiperiodicity limit, i.e., ρ = eκ ≈
1, the leading order of the Taylor series expansion in terms
of κh(k) in Eq. (16) results in T̄ ≈ 1 − κ2

n

∑
i h(i)2. In the

thermodynamic limit, we finally get the scaling behavior up
to the leading order as following:

1 − T̄ ≈ ln(λ(κ )/λ(0))

ln τ 3
ln

(
L

L0

)
, (17)

where L is the total system size in terms of the tiling unit and
L0 is the length of the short prototile which is again set to make
dimensionless quantity in the logarithm. Here, λ is defined as

λ(β ) =
(

(1 + eβ )2 +
√

(1 + eβ )4 + 4e2β

2eβ

)2

. (18)

See Appendix A for detailed information of λ(β ). This loga-
rithmic scaling behavior can be obtained for small |κ| which
is the limit of weak quasiperiodicity. Note that for perfect
periodic case, the right hand side of Eq. (17) is zero and
there is no deviation from the perfect transmittance (T̄ = 1).
In the limit of strong quasipeirodicity with |κ| � 1, however,
Eq. (17) does not hold anymore and there exist no closed form
in terms of the total system size L. In this case, the average
transmittance T̄ becomes zero much faster as a function of L,
compared to the case of weak quasiperiodic limit.

Important remark of Eq. (17) is the following. Since
Eq. (17) is originated from the topological quantity, h(k), this
scaling behavior of average transmittance T̄ is also topologi-
cally protected. One may argue the scaling behavior changes
for different tilings. However, as we have already mentioned
in Sec. III, the tilings which share the same cohomology group
(like Fibonacci and silver mean tilings) show very similar
behavior. Therefore the classification of aperiodic tilings can
be also performed by measuring how average transmittance T̄
in the limit of weak quasiperiodicity decays as the total system
size increases.

A. Transmittance with air boundary near zero energy

Now we take into account the case where the Fibonacci
quasicrystal is placed in air and calculate the transmittance

near zero energy. (Note that the following approach is gen-
erally applicable to any systems.) In this case, the boundary
condition is the Dirichlet condition, since there is no hopping
outside of the system ψ (−1)=0 and we consider generation
of plane wave at zeroth position (i = 0). Let’s consider the
transfer matrix with finite but small energy in the presence of
nearest-neighbor hopping given in Eq. (3). For each step, the
transfer matrix Mi is given as [36]

Mi =
(E

ti
− ti−1

ti

1 0

)
. (19)

Then, the wave functions ψ (n) and ψ (n − 1) is represented
using the transfer matrix Mi, ψ (0), and ψ (1),

(
ψ (n)

ψ (n − 1)

)
=

n−1∏
i=1

Mi

(
ψ (1)

ψ (0)

)
. (20)

Here, ψ (1)=E
t0
ψ (0) from Dirichlet condition mentioned

above. With defining M(n) = ( m11(n) m12(n)
m21(n) m22(n)) =∏n−1

i=1 Mi,

one gets the following expression:

ψ (n) =
(

m12(n) + m11(n)
E

t0

)
ψ (0). (21)

Within perturbative regime near zero energy, the transmit-
tance is obtained from Eq. (15) by collecting suitable orders of
the energy correction. Here, we have assumed that energy (at
least near zero energy) behaves like almost continuous vari-
able. This assumption is reasonable based on the gap labeling
theorem and the shape of IDOS where countably many distinct
tiny gaps are present around E = 0 (also known as singular
continuous spectrum) [13,27]. Thus, considering the region
around E = 0 where only tiny size gaps are allowed from its
singular continuous spectrum, one can assume the spectrum
as a continuous variable near E = 0 [13].

Having known the validity of perturbative approach near
E = 0, we now consider the generation of a plane wave
at the zeroth position i = 0 and compute the leading order
contributions of E in transfer matrix M(n) near zero energy.
This corresponds to take into account the system with n + 1
number of sites and n number of links. From simple algebra,
it is easy to check that orders of energy correction in (off-) di-
agonal elements of M(n) depend on evenness and oddness of
site n. For odd n, for instance, diagonal elements (off-diagonal
elements) are expressed in terms of only even (odd) orders of
energy E , whereas it is reversed for even n.

The first-order energy correction of transmittance is ob-
tained from the combination of the zeroth order of E in
diagonal element m11 and the first order of E in off-diagonal
element m12. As mentioned above, this corresponds to the case
of odd n = 2k + 1, thus the total number of sites is n + 1.
Then, following the mathematical induction, one gets specific
formula of matrix elements up to the zeroth and the first
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orders, respectively, which are given in Eq. (22):

m11(n = 2k + 1) ≈ (−1)kρ f (k),

m12(n = 2k + 1) ≈ (−1)k
k∑

i=1

ρh(i) E

t2i
ρ f (k)− f (i). (22)

To understand Eq. (22), let’s think about our perturbative
approach of transfer matrix M(n). First, the zeroth order
correction for m11(n) is exactly derived from the same pro-
cedure discussed for Eq. (6), simply replacing h(n) by f (n).
For m12(n), one requires to compute the first order energy
correction. From Eq. (19), it is trivial that this energy cor-
rection appear as a form of E

t . Thus, for M(n) =∏n−1
j=1 Mj ,

we choose a single site j which gives the first order energy
correction. Here, j must be chosen to be an even site because
our tight-binding Hamiltonian has the sublattice symmetry.
For l < j, all products of ρa(l→l+2) for even l contribute to
m12, thus it results in ρh(i). Whereas, for l > j, all products
of ρa(l→l+2) for odd l contribute to m12 and it gives rise
to ρ f (k)− f (i). Similar methodology to get the transfer matrix
elements can be used for higher order perturbation too. Again
you can obtain this result from simple mathematical induction
too as written in the Appendix C. For simplicity, we rewrite

m12(n) + E
t0

m11(n)= ρh(1)Eu(ρ, n, T ), where u(ρ, n.T ) is de-
fined as following:

u(ρ, n = 2k + 1, T ) =
k∑

i=0

ρh(i)−h(1) 1

t2i
ρ f (k)− f (i). (23)

Here, f (0)=h(0)=0 and u(ρ, nT ) is a function of ρ, n and
tiling T which determines both h(i) and f (i). Then, the trans-
mittance for odd n = 2k + 1 is represented as following:

Tn(odd)(E ) ≈ cosh−2 (κh(1) + ln |Eu(ρ, n, T )|). (24)

For odd n, it is clearly Tn(E ) → 0 for E → 0. In this case,
sublattice symmetry of the system guarantees absence of zero
energy state at odd sites when the zero energy state is gener-
ated at even site i = 0. Thus, it results in zero transmittance.

Exactly the same approach can be applicable for the sec-
ond order correction in terms of energy E . In this case, one
should consider the first (second) order correction of E in
m11(n)(m12(n)) and this corresponds to compute M(n) for
even n = 2k. Again based on the mathematical induction, it is
easy to get the matrix elements up to the corresponding order
of energy correction,

m11(n = 2k) ≈ (−1)(k−1)E
k∑

i=1

ρ f (i−1) 1

t2i−1
ρh(k)−h(i),

m12(n = 2k) ≈ (−1)kρh(k) + (−1)(k−1)E2
k−1∑
j=1

k−1∑
i= j

ρh(k−i) 1

tn−2i
ρ f (k− j)− f (k−i) 1

tn−(2 j−1)
ρh(k)−h(k−( j−1)). (25)

Then, the transmittance for even n = 2k is given as following:

Tn(even)(E ) ≈ cosh−2(κh(k) + ln |1 − E2w(ρ, n, T )|), (26)

where the pattern dependent function w(ρ, n = 2k, T ) is defined as

w(ρ, n = 2k, T ) =
k∑

p=1

ρ f (p−1)−h(p)

t0t2p−1
+

k−1∑
j=1

k−1∑
i= j

ρh(k−i)+ f (k− j)− f (k−i)+h(k)−h(k−( j−1))

tn−2itn−(2 j−1)
. (27)

Based on the analytic expression derived in Eq. (26) with
Eq. (27), Fig. 6 shows the transmittance for three different
system sizes with even n, Tn(even)(E ), as a function of energy
E for ρ = 0.9 and tS = 1 eV.

As shown in Fig. 6, transmittance as a function of en-
ergy near E = 0 strongly depends on the number of links
n (total number of sites n + 1), showing convex or concave
curvatures. For instance, the system with n = 50 000 shows
convex, the system with n = 53 400 shows concave and the
system with n = 49 990 shows neither convex nor concave
near E = 0. Concave (or convex) behavior of transmittance
at E = 0 can be fully understood by the second derivative of
Tn(even)(E ) in Eq. (26) with respect to the energy at E = 0,

(
d2Tn=2k (E )

dE2

)
E=0

= 4w(ρ, 2k, T ) tanh (κh(k))sech2(κh(k)).

(28)

Clearly, w(ρ, 2k, T ) is positive from Eq. (27) and hence, the
concavity at E = 0 is entirely determined by the sign of κh(k).

For perfect periodic system, Eq. (28) becomes zero since κ =
0. Hence, when the system is perfectly periodic, regardless
of the system size, Tn=2k (E ) is neither concave nor convex
function of E near zero energy. In contrast, when the system is
aperiodic, κh(k) is not a simple function as shown in Sec. III.
In particular, for the case of the Fibonacci tiling, we set κ < 0,
i.e., tL < tS , and hence T2k (E ) is a concave function at E =
0 if and only if h(l ) > 0. Moreover, since the sign of h(n)
rapidly oscillates in the Fibonacci case, as seen in Fig. 3, small
changes in the system size enable to change the concave or
convex behavior of the transmittance at E = 0.

The concavity or convexity characteristic of transmittance
also results in interesting conductance behavior. From the
Landauer’s formula in linear response theory [62], the con-
ductance G is represented as

G = 2e2

h

∫
dE Tn=2k (E )

(
−∂ fFD(E )

∂E

)
. (29)

Here, fFD(E ) is Fermi-Dirac distribution at energy E and
Tn=2k (E ) is transmittance for a given system n = 2k and
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FIG. 6. Tn(even)(E ) up to the second order perturbation form,
when the system is placed in air boundary. Concavity (or convex-
ity) behavior of transmittance at E = 0 is completely determined
at the second order of E in Taylor series of Tn(even)(E ). Depending
on system size, the system shows convex (n = 50 000, blue circle
line), concave (n = 53 400, yellow solid line) or neither (n = 49 990,
dashed pink line).

energy E . Here, − ∂ fFD(E )
∂E plays a role of energy window i.e.,

meaningful range of the integration for given temperature.
At zero temperature, G is nothing but 2e2

h Tn=2k (EF ), where
EF = 0 is the Fermi energy of our system. For small but finite
temperature, transmittance near E = 0 is represented using
the Taylor expansion with respect to the energy,

T2k (E ) = T2k (E = 0) + ξE2 + O(E4). (30)

Here, ξ is the Taylor expansion coefficient of the second order
which corresponds to concave or convex behavior of trans-
mittance at E = 0 as we have discussed. We can numerically
calculate the integration in Eq. (29) with Taylor expansion in
Eq. (30). If we take the width of energy window as ∼20kBT ,
then the conductance G becomes

G ≈ 2e2

h
T2k (E = 0) + 6.558e2

h
ξ (kBT )2 + O(T 4). (31)

Depending on the value of energy window, the specific value
in front of ξ above can be changed while being positive. Since
the second term in Eq. (31) determines the leading order of
temperature dependence of conductance in low temperature
regime, it can be reversed according to the sign of ξ , i.e.,
concave or convex behavior of transmittance at E = 0. For
instance, positive ξ (convex transmittance near E = 0) im-
plies that at low temperature regime conductance increases as
temperature increases.

Since the sign of ξ is fully determined by h(k) as shown in
Eq. (28), concave or convex characteristics of transmittance at
E = 0 and hence temperature dependence of conductance in

low temperature regime are topologically robust phenomena.
Moreover, with rapid sign changes of h(k) and f (k) in the
Fibonacci tiling as shown in Fig. 3, concavity of transmittance
at E = 0 and temperature dependence of conductance are very
sensitively changing with the system size. Thus, accessible
control of transmittance and conductance is possible via small
changes of the system size, which is a unique feature of
quasicrystals absent in any periodic lattice system.

B. Transmittance with semi-infinite conducting leads
near zero energy

Now, let’s consider electronic transmittance of the Fi-
bonacci quasicrystal when the quasiperiodic system is con-
nected by conductors, i.e., two semi-infinite periodic leads.
In this case, there are critical difference compared to the
system placed in air. Here, the energy is bounded due to the
existence of leads in both sides and the periodic leads have
finite hopping strength, thus it generates additional boundary
conditions. In particular, the boundary condition at the zeroth
position ψ (0) is given by

t0ψ (1) + tψ (−1) = Eψ (0). (32)

Here, t is the hopping strength of semi-infinite periodic leads.
Within the periodic leads, let the factor λ which satisfies
ψ (i + 1) = λψ (i) and then the Schrödinger equation on the
periodic leads satisfies

tλ2 + t = Eλ. (33)

Equation (33) gives two solutions, say λ± depending on the
sign of imaginary part. Clearly λ+, λ− are complex conjugate
pair. Now, let’s assume that a plane wave coming from −∞
and length of the quasiperiodic system is n + 1. (The total
number of sites indicated by yellow in Fig. 4 is n + 2 from
i = 0 site to i = n + 1 site.) Let ψ (0) be A + B where A, B are
amplitudes of the incoming and reflected waves, respectively,
i.e., for all i � 0, ψ (i) = Aλi

+ + Bλi
−. Then, using the bound-

ary condition Eq. (32) and B = ψ (0) − A, A is expressed in
terms of ψ (1), ψ (0),

A = t0ψ (1) − tλ−ψ (0)

(E2 − 4t2)1/2
. (34)

On the other hand, at site n + 1 (right end site of the Fibonacci
chain), the transmitted wave only exists. Thus it satisfies
ψ (n + 2) = λ+ψ (n + 1) and the boundary condition yields

ψ (n) = tλ−
tn

ψ (n + 1). (35)

So, we can get transmission coefficient τ = ψ (n+1)
A as follow-

ing:

τ = (E2 − 4t2)1/2 m11ψ (1) + m12ψ (0)

t0ψ (1) − tλ−ψ (0)
. (36)

Here, we used mi j abbreviating (n + 1) in mi j (n + 1) for sim-
plicity. Then, after some algebra, the transmittance at energy
E with the number of links n + 1 for the Fibonacci quasicrys-
tal is represented as

Tn+1(E ) = (4 − (E/t )2)[(
m12 − tn

t0
m21
)+ E

2t

(
t
t0

m11 − tn
t m22

)]2 + ( t
t0

m11 + tn
t m22

)2(
1 − E2

4t2

) . (37)
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Now, similar to the case of air boundary, let’s consider perturbation of transfer matrix in terms of energy E in mi j . For even
n = 2k, Eq. (37) is rewritten by using matrix elements mi j in terms of ρ, h(i) and f (i),

T2k+1(E ) = (4 − (E/t )2)[
a + E

2t b−
]2 + b2+

(
1 − E2

4t2

) , (38)

with defining a and b± as

a = 2E

[
1

t0
ρh(k) cosh

(
ln
( tn

t0

))
+

k−1∑
i=1

1

t2i
cosh (( f (k) − f (i) + h(i))κ )

]
+ O(E3),

b+ = (±)

[
2 cosh

(
f (k)κ − ln

( t0
t

))
− E2

(
k−1∑
j=0

k− j−1∑
i=0

tρ f (k)+h(k− j)+ f (k− j−i−1)

ρ f (k− j)+h(k− j−i)t0tn−2 jtn−2 j−2i−1

+ tn
t

k−2∑
j=0

k− j−2∑
i=0

ρh(k)+ f (k− j−1)+h(k− j−i−1)

ρh(k− j)+ f (k− j−i−1)tn−2 j−1tn−2 j−2i−2

)]
+ O(E4),

b− = 2 sinh
(

f (k)κ − ln
( t0

t

))
+ O(E2). (39)

Up to the second order of energy E in denominator of transmittance, one can easily read off the transmittance derived in Eq. (38)
can be rewritten as

T2k+1(E ) ≈ 4 − (E/t )2

4 cosh2
(

f (k)κ − ln
( t0

t

))+ αE2
, (40)

where α is given by

α =
(

2

[
ρh(k) cosh

(
ln
( tn

t0

))
t0

+
k−1∑
i=1

cosh (( f (k) − f (i) + h(i))κ )

t2i

]
+ sinh

(
f (k)κ − ln

( t0
t

))
t

)2

− cosh2
(

f (k)κ − ln
( t0

t

))
t2

− 4 cosh
(

f (k)κ − ln
( t0

t

))( k−2∑
j=0

k− j−2∑
i=0

tnρh(k)+ f (k− j−1)+h(k− j−i−1)

tρh(k− j)+ f (k− j−i−1)tn−2 j−1tn−2 j−2i−2
+

k−1∑
j=0

k− j−1∑
i=0

tρ f (k)+h(k− j)+ f (k− j−i−1)

ρ f (k− j)+h(k− j−i)t0tn−2 jtn−2 j−2i−1

)
.

(41)

For odd n = 2k + 1, similar calculation can be performed and
it gives no significant difference in transmittance, resulting in
a similar form as Eq. (40) which is derived for the case of
even n.

Here, one important concept is the half bandwidth of
transmittance, �1/2, the energy width of which transmittance
becomes half of its maximum value, i.e., Tn+1( �1/2

2 ) = Tn+1(0)
2 .

[Note that the critical point of Eq. (40) uniquely exists at
E = 0, so the local extremum of transmittance is given at
E = 0.] Thus, based on Eq. (40), one obtains

�1/2 = 4t cosh
(

f (k)κ − ln
( t0

t

))
√

2 cosh2
(

f (k)κ − ln
( t0

t

))+ αt2
. (42)

It is important to note that the energy should be bounded by
|E | < 2t due to the periodic leads and this further constrains
�1/2 < 4t to make Eq. (42) a physically meaningful quantity.
From Eq. (42), the constraint �1/2 < 4t can be rewritten as
following condition:

αt2 + cosh2
(

f (k)κ − ln
( t0

t

))
> 0, (43)

and this is indeed equivalent to the condition of concave
transmittance at E = 0, ( d2T2k+1(E )

dE2 )
E=0 < 0.

Figure 7 shows the transmittance near zero energy for
different system sizes when the strength of quasiperiodicity
is set to be ρ = 0.9, tS = 1 eV and the hopping strength on
conducting leads is t = 1 eV. For comparison, we also present
three periodic cases with n = 50 000; a single prototile with
hopping magnitudes 1 eV (P1), 0.9 eV (P 0.9) and biprototile
with alternating hopping magnitudes 1 eV and 0.9 eV (P bi).

We first discuss the transmittance for periodic cases which
was already well understood. For a single prototile case with
an equal magnitudes of hopping between system and leads
(see P1 in Fig. 7), the Bloch theorem guarantees perfect
transmittance and this yields constant transmittance with a
magnitude 1. In contrast, when the hopping magnitude in the
system is smaller than the ones in connected leads (see P 0.9
in Fig. 7), transmittance decays as energy E deviates from
zero. It is because the system is considered as the disorderd
region in the presence of leads. To show concave transmit-
tance regardless of the hopping strength say tP in the periodic
system, it is enough to show that Eq. (43) holds for any
tP. In the periodic limit, after some algebra, Eq. (41) yields
α = ( n

tP
)2(cosh2 (ln ( tP

t )) − 1) − 1
t2 . Thus the left-hand side of

Eq. (43) is simplified as(nt

tP

)2[
cosh2

(
ln
( tP

t

))
− 1
]
. (44)
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FIG. 7. Transmittance as a function of energy E , T2k+1(E ) when
the system is placed in between two periodic conducting leads. (We
set ρ = 0.9 and ts = 1 eV for quasicrystal and t = 1 for conduct-
ing leads.) Concavity of transmittance at E = 0 is a topologically
protected characteristic and sensitively depends on the system size;
concave behavior when n = 50 000 (blue square line), 50 010 (or-
ange circle line), and 49 996 (yellow pentagram line) and convex
behavior when n = 44 430 (dashed violet line) and 47 014 (green
solid line). For comparison, periodic cases are also shown; a single
prototile for hopping magnitudes t = 1 eV (P 1) (dashed dotted
red star line), t = 0.9 eV (P 0.9) (dotted black triangle line) and
biprototile with alternating hopping magnitudes 1 eV and 0.9 eV (P
bi) (dashed dotted blue diamond line). See the main text for details.

It is always positive regardless of n and tP �= t , hence the
condition Eq. (43) which is equivalent to concavity of trans-
mittance holds and this yields

�1/2 = 4t√
1 + ( nt

tP

)2(
cosh2

(
ln
( tP

t

))− 1
) . (45)

Therefore all periodic system with tP �= t shows a concave
transmittance curve near E = 0. In addition, it is clear that
smaller tP leads to smaller value of bandwidth �1/2. For
biprototile case (see P bi in Fig. 7), it shows zero transmittance
guaranteed by sublattice symmetry of the Hamiltonian and the
gap labeling group 1

2 which indicates the existence of energy
gap at E = 0.

On the other hand, for the Fibonacci quasicrystal system,
concave or convex behavior of transmittance at E = 0 de-
pends on the system and Eq. (43) may not work for certain
system size. This is in contrast to the periodic case where
Eq. (43) is always satisfies regardless of the system size. As
shown in Fig. 7, for instance, Eq. (43) is failed for n = 44 430
(dashed violet line) and n = 47 014 (green solid line) and con-
vex transmittance behavior is shown near E = 0. Whereas, for
n = 50000 (sky blue square line), n = 50010 (orange circle
line), and n = 49 996 (yellow pentagram line), Eq. (43) is
satisfied hence concave transmittance is shown near E = 0.
In Fig. 7, we have set the maximum transmittance of the
Fibonacci case as 1, which in general it can be larger than
1 due to an artifact of the perturbation up to the second

FIG. 8. Logarithmic scale plot of half bandwidth �1/2 as a
function of the number of sites in both Fibonacci quasicrystal and
periodic cases; Fibonacci quasicrystal with ρ = 0.8 (red circle), ρ =
0.4 (blue triangle), and periodic system tP

t = 0.8 (black solid line),
tP
t = 0.4 (green dashed line), respectively. (a) and (b) show �1/2

for different sections in the total system especially in between n =
50 000–51 000 and n = 53 000–54 000, respectively. Self-similar be-
havior of �1/2 for Fibonacci cases can be captured by comparing
(a) and (b) and the pattern itself does not depend on ρ and tP

t . See the
main text for details.

order. However, such modification does not change a unique
concavity feature in transmittance.

To capture the existence and dependence of the half band-
width �1/2 defined in Eq. (42), Fig. 8 shows numerical results
of �1/2 (if exists) in the Fibonacci quasicrystal for different
strength of quasiperiodicity ρ = 0.4 (Fibonacci 0.4, blue tri-
angle) and ρ = 0.8 (Fibonacci 0.8, red circle). In particular,
Figs. 8(a) and 8(b) show �1/2 for different number of sites
ranging from 50 000 to 51 000 and from 53 000 to 54 000,
respectively. For comparison, �1/2 of the periodic limit is
also presented for tP

t = 0.4 (periodic 0.4, green dashed line)
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and tP
t = 0.8 (periodic 0.8, black solid line). In Fig. 8, both

cases Fibonacci 0.8 and Fibonacci 0.4 show many number of
sites where �1/2 does not exist, thus no red or blue marks are
present. As explained earlier, this indicates convex character
of transmittance near-zero energy at these given sites. In addi-
tion, the strength of quasiperiodicity also affects the value of
bandwidth. The bandwidth �1/2 becomes smaller for smaller
ρ. Hence regardless of tiling pattern, stronger quasiperiodicity
makes sharper transmittance curve as long as Eq. (43) holds.

In Fig. 8, we note some important remarks. First of all, the
pattern of �1/2 is independent of the strength of quasiperiod-
icity, ρ. By comparing Fibonacci 0.8 and Fibonacci 0.4, one
can see that the pattern of red and blue marks for �1/2 are
independent of ρ, although magnitude of �1/2 can be changed
with respect to ρ. Second, the pattern of �1/2 shows self-
similar behavior which is captured by comparing Figs. 8(a)
and 8(b). Such self-similarity originates from the fact that
h(k) and f (k) in Eq. (42) is self-similar functions as argued
in Sec. III. Third, unlike the periodic case, small changes
of the system size in Fibonacci tiling can sensitively control
�1/2 and the concavity of transmittance can be also sensitively
changed by small changes in number of sites.

Now let’s discuss more details for concavity condition in
transmittance that is identified by Eq. (43). Failure of Eq. (43)
originates from negative value of α and in thermodynamic
limit, this value α is dominated by the last double sum term in
Eq. (41). Since ρ < 1 and the last double sum term is scaled
by ρ f (k), the negative value of f (k) leads to a large negative
value α, resulting in failure of Eq. (43). In contrast, positive
f (k) implies that small magnitude of the last double sum term
in Eq. (41), so that Eq. (43) is valid. Unfortunately, when
exponent of scaling factor f (k) is zero, we cannot build up
such rough estimation, instead we should concern additional
information about tiling pattern such as f (k − 1), etc. Hence,
based on above argument, we cannot make any conclusion
about concavity of transmittance for f (k) = 0, i.e., undeter-
mined. Above argument can be summarized as following:

sgn

((
d2T2k+1(E )

dE2

)
E=0

)
=

⎧⎪⎨
⎪⎩

+1, f (k) < 0

−1, f (k) > 0

undetermined, f (k) = 0

.

(46)

Here, sgn(x) is the sign of x. Because f (k) is a unique topo-
logical quantity in the Fibonacci quasicrystal, Eq. (46) implies
that even when the system is connected with semi-infinite
periodic leads, concave or convex behavior of transmittance
is topologically protected phenomena for nonzero f (k). Fur-
thermore, especially due to the rapidly oscillating behavior
of f (k) in Fibonacci tiling, Eq. (46) implies that small
change in number of sites enables to alter the concavity
character of transmittance curve at E = 0. One can also
numerically check if our argument holds and Eq. (46) is
valid. In Fig. 9, the sites with f (k) �= 0 show the plot of
sgn( f (k) × ( d2T2k+1(E )

dE2 )E=0) and the sites with f (k) = 0 show

the plot of sgn(( d2T2k+1(E )
dE2 )E=0)/2. As indicated from Eq. (46),

the sites for f (k) �= 0 show a constant −1, whereas, for
f (k) = 0 show ±0.5 depending on sites, thus undetermined.

FIG. 9. Check validity of Eq. (46) for the Fibonacci system
with ρ = 0.99, which relates between concave or convex char-
acters of transmittance at zero energy and f (k). The sites with
f (k) �= 0 show the plot of sgn( f (k) × (d2T2k+1(E )/dE 2)E=0 ). It
shows a constant −1. The sites with f (k) = 0 show the plot of
sgn((d2T2k+1(E )/dE 2)E=0 )/2. It shows both ±0.5. In this case, con-
cavity depends on number of sites, thus undetermined.

This implies that our conclusion Eq. (43) holds for both zero
and nonzero f (k) cases.

V. CONCLUSION

Before we conclude, let’s discuss an interesting scaling
behavior of half-bandwidth of transmittance as a function of
quasiperiodic strength. When the Fibonacci quasicrystal is
sandwiched by two semi-infinite conducting leads, Fig. 10
represents the log-log plot of half-bandwidth �1/2 as a func-
tion of systematic constant ρ. For comparison, we also plot
�1/2 as a function of tP/t for the periodic case. For the
systems that exhibit concave character of transmittance, we
consider three different system sizes; n = 50 000, 50 008, and
60 020 (red, green and blue (lower star) dots for Fibonacci and
brown, black and pink (upper circle) for periodic). For both
Fibonacci and periodic systems, �1/2 shows almost linear
behavior with respect to the systematic constants ρ and tP

t ,
regardless of the system size. This indicates scaling behavior,
for instance �1/2 ∝ ργ in strong quasiperiodic regime of the
Fibonacci quasicrystal (ρ � 1), with some exponent γ that
strongly depends on tiling pattern itself rather than the system
size. On the other hand, the scaling behavior for the peri-
odic case shows �1/2 ∝ (tP/t )β for (tP/t ) � 1 with distinct
exponent β �= γ . Moreover, such exponent is larger for the Fi-
bonacci system than the periodic system, i.e., γ > β, thus one
can conclude that transmittance is much sensitively changed
by the systematic parameter in the Fibonacci quasicrystal
compared to the periodic case. Considering the expression of
�1/2 and it’s relation to PE cohomology, we expect that such
exponent γ might be not only strongly pattern dependent but
also PE topologically robust quantity. As a future work, it is
worth to show γ as a topological quantity too and classify the
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FIG. 10. Log-log plot of half-bandwidth of transmittance �1/2

as functions of systematic constants ρ (for Fibonacci), tP/t (for
periodic). Red, green and blue dashed dotted lower star lines show
�1/2 for the Fibonacci quasicrystal, whereas, brown, black, and pink
dashed dotted upper circle lines show �1/2 for periodic case, for the
system size n = 50 000, 60 020, and 50 008, respectively. For small ρ
and tP/t , �1/2 does not depend on the system size but solely depends
on systematic constants with distinct exponents between Fibonacci
and periodic cases i.e., �1/2 ∝ ργ and �1/2 ∝ (tP/t )β where γ �= β.
See the main text for details.

aperiodic tilings based on γ which implies the sensitivity of
transmittance with respect to the quasiperiodicity.

In this paper, we have discussed pattern equivariant (PE)
topological quantities in quasiperiodic systems, especially fo-
cusing on the first PE cochain and it’s integration. Based on
both gap labeling theorem and PE cohomology, we showed
classification of general aperiodic tilings in terms of local-
ization characteristics of states, at which integrated density
of states corresponds to 1

2 . Furthermore, we investigated that
such classification for aperiodic tiling system is related to the
topologically robust quantity. Exemplifying one-dimensional
Fibonacci quasicrystal with nearest-neighbor tight-binding
model, we performed PE cohomology group calculation espe-
cially focusing on a Barge-Diamond complex of supertilings.
It turns out that the zero energy critical state is indeed topo-
logically protected and it can give rise to unique scaling
behavior. Furthermore, their topological properties can also
induce nontrivial transmittance near zero energy. Based on the
perturbative approach, we also explored electronic transmit-
tance for two different cases (1) the system is placed in air
(2) the system is connected by semi-infinite periodic leads.
Unlike periodic case, transmittance of quasicrystal system
turns out to be very sensitive to small changes in system size
and strength of quasiperiodicity. In addition, we identified the
concavity or convexity characters of transmittance near zero
energy are completely determined by PE topological quanti-
ties.

Here, we emphasize our new theoretical approach based
on PE cohomology generally works for any aperiodic systems
and it will give useful classification of localization charac-
ters of states. As discussed in Sec. III exemplifying other
aperiodic cases such as silver mean, Cantor set and binary

non-Pisot, the systems that the gap labeling theorem guarantee
zero energy states, i.e., gap labeling group does not include
1/2, can be classified in terms of extended, critical and lo-
calized zero energy states. Thus, although there exist many
distinct tilings, they may belong to the same PE cohomology
group showing equivalent scaling behavior of critical states.
In addition, transmittance derived from a transfer matrix is a
generic form which is applicable to both quasiperiodic and
aperiodic systems. Thus the same argument for concavity
or convexity characters of transmittance and their topologi-
cal properties holds for different systems. This can further
allows us to speculate robust transport behavior (e.g., low
temperature conductance as functions of system size and
strength of quasiperiodicity), which is originated from clas-
sification of general aperiodic systems. Our PE cohomology
analysis for quasicrystals is not limited to the specific types
of physical interactions. Thus, it is applicable not only to
the electronic systems but also to the cases such as thermal
systems with phonon interaction, magnetic systems with spin-
spin exchange interactions, etc., which we leave as a future
work [59].
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APPENDIX A: REVIEW: SCALING BEHAVIOR OF h(n)

Let’s briefly review that the scaling behavior of h(n) es-
epcially in the Fibonacci quasicrystal. This work is already
well performed in previous studies [35,36]. In the Fibonacci
quasicrystal, there are three types of length 2 supertiles,
LL, LS, SL, say A, B, and C respectively. We need the Fi-
bonacci quasicrystal with total length to be even for well
defined h(n). Let’s count the number of supertiles A, B,

and C for given h(n) = h. Since a single application of the
substitution matrix leads the value of h to be reversed and
shifted by ±1 or 0, we can consider the distribution of h for a
specific super tile.

Nt+1
μ (−h) =

1∑
h′=−1

M(h′)μνNt
ν (h + h′). (A1)

Here, Nt
μ(h) is the number of supertile μ whose h(n) = h

after t times of substitutions. μ, ν ∈ A, B,C and the matrix
element M(h′)μν indicates the number of μ supertile which
have h(n) = h′ from the substitution matrix S for ν supertile.
Explicitly we have

M(−1) =

⎛
⎜⎝

0 0 0

1 0 0

0 0 0

⎞
⎟⎠, M(0) =

⎛
⎜⎝

0 0 0

1 1 2

1 1 0

⎞
⎟⎠,

M(1) =

⎛
⎜⎝

1 1 1

0 0 0

1 1 1

⎞
⎟⎠. (A2)
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Note that Eq. (A1) is a Fokker-Plank like equation, as con-
sidering t as time, h as spatial variable and M(δh) as transition
matrix [35]. Thus one can easily expect that its probability
distribution is given by the normal distribution for large t . To
know the explicit form of the distribution of h(n), we may
define the partition function for h(n) as following:

Zt
μ(β ) =

∑
h∈Z

Nt
μ(h) exp(βh). (A3)

Using Eq. (A1), we can obtain

Zt+2(β ) = K (−β )K (β )Zt (β ), (A4)

where Zt (β ) = (Zt
A(β ), Zt

B(β ), Zt
C (β ))T and K (β ) is the

weighted matrix of M(h) defined as

K (β ) =
∑

h′=−1,0,1

M(h′) exp(−βh′). (A5)

Here, β plays a role of the weight factor that is given by a
function of quasiperiodicity strength, for instance ρ = tL/tS in
the tight-binding model. In t → ∞ limit (i.e., thermodynamic
limit), it is already well known that Z2t

μ (β ) ∼ λt (β ) fμ(β ).
Here, λ(β ) is the largest eigenvalue of K (−β )K (β ) and f (β )
is the corresponding eigenvector. In our case, one can obtain
λ(β ) from a direct computation and the result is the following:

λ(β ) =
(

(1 + eβ )2 +
√

(1 + eβ )4 + 4e2β

2eβ

)2

. (A6)

Thus an asymptotic distribution of h(n) in thermodynamic
limit is given by a normal distribution as Eq. (A7) below:

Pμ(h) ∼ fμ√
4πDt

exp

(
− h2

4Dt

)
. (A7)

Here, D is a diffusion coefficient of Fokker-Plank like equa-
tion [63], and hence D = 1

4 ( ∂2 ln(λ(β ))
∂β2 )

β=0
in thermodynamic

limit.
The scaling behavior of h(n) is given by the standard de-

viation of Eq. (A7), i.e., h2 ∼ 2Dt . As discussed in the main
text, one of the eigenvalues (also known as PV eigenvalue)
of the substitution matrix is the golden ratio, τ , and hence,
the system size is being Lt ∼ τ 3t L0 in thermodynamic limit
where L0 is the length of the S prototile. In small β limit,
i.e., for weak quasiperiodicity ρ ≈ 1, we may approximate
ln(λ(β )) = ln(λ(0)) + 2Dβ2 + O(β4). Based on above, we
get the scaling behavior of h(L) as a function of the system
size L as following:

h(L)2 ∼ 1

3β2 ln τ
ln

(
λ(β )

λ(0)

)
ln
( L

L0

)
. (A8)

Here, the scaling behavior of h(L) ∼
√

ln ( L
L0

) is significant,

which is one of the unique features of the critical state [35].
In Fig. 11, h(n) is shown up to the system size n = 106 and it
indeed exhibits the logarithmic scaling behavior of Eq. (A8).

APPENDIX B: SUPERTILING COHOMOLOGY GROUPS
OF 1D TILINGS OTHER THAN FIBONACCI

In this section, we derive the first cohomology group of
silver mean, Cantor set and binary non-Pisot systems. Let’s

FIG. 11. h(n) of Fibonacci quasicrystal up to n = 106 (logarith-
mic scale). The oscillating amplitude of h(n) is growing as function
of n extremely slowly [as Eq. (A8)] compare to Cantor set or binary
non-Pisot cases.

remind that their substitution rules of A, B prototiles.

σSM =
{

A → BAA

B → A
,

σCS =
{

A → ABA

B → BBB
,

σB-NP =
{

A → AB

B → AAAAA
. (B1)

Here, σSM, σCS, σB-NP are substitution rules of silver mean,
Cantor set, and binary non-Pisot systems, respectively.

Let’s first consider the case of silver mean tiling.
By successively applying σSM to prototile A, we can
get substitution generations as A, BAA, ABAABAA,
BAAABAAABAAABAABAA etc. So, it is easy to note that
if one reads them from left to right, they can be grouped as
even and odd generations depending on starting prototile. In
contrast, if one reads it from right to left, all generations are
unified. It implies that silver mean tiling is nonpalindromic
like Fibonacci. Note that breaking directions are oppositie
between Fibonacci and silver mean tilings. On the other hand,
from above substitution generations, it is clear that there

are only three kinds of 2-supertiles, say AA
def= X , BA

def= Y

and AB
def= Z . There is no BB supertile again. If we consider

the transmittance of the system from left to the right like
Fibonacci, we collect substitution generations of either even
or odd ones only. Hence, we consider twice substitution
on supertiling. It can be easily shown that the result of the
cohomology is not changed when we consider the reverse the
direction, i.e., from right to left. By directly applying σSM, we
can obtain that

X → ZXY XY ZX, Y → Y XY ZX, Z → ZXY ZX.

(B2)
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Therefore the corresponding substituion matrix is given by
(where ordered basis is chosen as {X,Y, Z}) following:

S =
⎛
⎝3 2 2

2 2 1
2 1 2

⎞
⎠. (B3)

The eigenvalues of this matrix are 1, 3 ± 2
√

2. Each of them
implies that identity, irrational inflation, irrational contrac-
tion, respectively. Now again from simple consideration of
substitution rule, it is clear that there are only five kinds
of vertex flips, vXY , vXZ , vY X , vY Z , vZX . Furthermore, their
eventual range of substitution map is {vXY , vXZ}.

Hence, it is exactly the same as the Fibonacci quasicrystal
case. If one define inverse limit of Barge-Diamond com-
plex (also known as BD complex) as 	, and of vertex
flips as 	0, then BD complex and its quotient by vertex
flips are both connected so that the reduced cohomologies
Ȟ0(	) = Ȟ0(	,	0) = 0. On the other hand, Ȟ1(	,	0) =
Z3 which is the direct limit of ST . In addition, eventual
range of vertex flips is connected (Ȟ0(	0) = 0) and no loop
(Ȟ1(	0) = 0). Finally from the long exact sequence for re-
duced cohomologies, we get Ȟ1(	) = Z3. This is exactly the
same cohomology group with the Fibonacci quasicrystal, thus
we can conclude that the Fibonacci and silver mean tilings
have common topological behavior of h(n) and share the same
behavior of critical zero energy states.

In contrast, the Cantor set [55] is very different from both
Fibonacci and silver mean tilings even though there are still

three kinds of supertiles, say BB
def= X ′, AB

def= Y ′, and BA
def=

Z ′. First of all, it is easy to check that this Cantor tiling is
palindromic that is whenever we read it from left or right, all
substitution generations are unified. Hence we don’t need to
apply substitution rule in multiple times when we consider
that the direct limit. In the orderd basis as {X ′,Y ′, Z ′}, we get
the substitution matrix S′ for 2-supertiles in Cantor tiling:

S′ =
⎛
⎝3 1 1

0 2 0
0 0 2

⎞
⎠. (B4)

Its eigenvalues are 3,2,2 and eventual range of substitution
map on vertex flips is {vX ′X ′ , vX ′Y ′vZ ′X ′ } which is single con-
nected component without loop.

The difference in a Cantor set case compared to the case of
Fibonacci and silver mean, is the direct limit of the wedge
of three circles via substitution procedure, i.e., Ȟ1(	′, 	′

0)
where 	′, 	′

0 are inverse limits of BD complex and sub-

complex (vertex flips) of the Cantor set respectively. In this
case, our eigenvalues are all non unity integers, and hence
Ȟ1(	′) = Ȟ1(	′, 	′

0) = Z[1/3] ⊕ Z[1/2]2. Here Z[1/n] is
the set of elements k

nm , where k, m are integers. The binary
non-Pisot case is similar to the case of a Cantor set. Note that
it is nonpalindromic and using exactly the same method as
before, one can easily show that its first cohomology group
is Z[1/5] ⊕ Z2. Furthermore, by studying the eigenvectors of
the substitution matrix, one can easily conclude that h(n) be-
longs to Z[1/2] sector for a Cantor set and Z[1/5] sector for a
binary non-Pisot which are different with Z sector in the case
of Fibonacci and silver mean. Hence, we can conclude that a
Cantor set and a binary non-Pisot show different topologically
protected behavior compare to Fibonacci and silver mean,
exhibiting robust localized zero energy eigenstate instead of
critical state.

APPENDIX C: DERIVATION OF TRANSFER MATRIX
ELEMENTS IN PERTURBATIVE FORM

Let’s derive the transfer matrix elements of M(n) =∏n−1
i=1 Mi = ( m11(n) m12(n)

m21(n) m22(n)) in a perturbative form Eq. (22)

up to the first order of energy, using mathematical induction.
One can obtain Eq. (25) based on the same method, so it is
sufficient to derive Eq. (22) only. First of all, successive matrix
multiplication of transfer matrices yields,

Mn−1Mn−2 =
( E

tn−1
− tn−2

tn−1

1 0

)( E
tn−2

− tn−3

tn−2

1 0

)

≈
(− tn−2

tn−1
− tn−3

tn−2

E
tn−1

E
tn−2

− tn−3

tn−2

)
. (C1)

Here, the second order of energy term in the (1,1) matrix
element has been neglected in the final result of Eq. (C1),
because we are considering first-order perturbation now. The
(1,1) matrix element is zeroth order of energy (i.e., constant),
the (1,2) matrix element is linear function of energy. In order
to apply mathematical induction, we also need to consider
the form of (2,1) and (2,2) matrix elements too. Suppose we
multiply even number of transfer matrices, then (2,1) matrix
element contains odd order of E only, (i.e., in a perturbative
form it is a linear function of energy) and (2,2) element is
given by (−1)kρh(k) in perturbative form. Now we apply math-
ematical induction for entire four transfer matrix elements.
First, one can easily check that it clearly holds for the case
of k = 1, i.e., n = 3 using Eq. (C1). Next let’s assume that
our proposition above holds for the case of n = 2k + 1. As a
result, the direct computation yields for n + 2 = 2k + 3,

M(n + 2) ≈
(− tn

tn+1
− tn−1

tn
E

tn+1

E
tn

− tn−1

tn

)(
(−1)kρ f (k) (−1)k

∑k
i=1

ρh(i)+ f (k)− f (i)E
t2i

cE + O(E3) (−1)kρh(k)

)

≈
(

(−1)k+1ρ f (k+1) (−1)k+1∑k+1
i=1

ρh(i)+ f (k+1)− f (i)E
t2i

c′E + O(E3) (−1)k+1ρh(k+1)

)
, (C2)

where c, c′ are some coefficients. Equation (C2) shows that even for n + 2 = 2k + 3 our proposition for four transfer matrix
elements still holds and hence our proof is done by mathematical induction.
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