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Temporal solitons are optical pulses that arise from the balance of negative group-velocity dispersion and
self-phase modulation. For decades, only quadratic dispersion was considered with higher order dispersion often
thought of as a nuisance. Following the recent observation of pure-quartic solitons, we here provide experimental
and numerical evidence for an infinite hierarchy of solitons that balance self-phase modulation and arbitrary
negative pure, even-order dispersion. Specifically, we experimentally demonstrate the existence of solitons with
pure-sextic (Bg), -octic (Bs), and -decic (B;o) dispersion, limited only by the performance of our components,
and we numerically show the existence of solitons involving pure 16th-order dispersion. These results broaden
the fundamental understanding of solitons and present avenues to engineer ultrafast pulses in nonlinear optics

and its applications.
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I. INTRODUCTION

Solitons are among the most striking phenomena in nonlin-
ear physics and have been observed in a wide range of systems
[1,2]. In optics, these transform-limited, shape-maintaining
pulses have been crucial in the development of numerous
applications ranging from telecommunications [3,4], to fre-
quency comb generation [5,6] and mode-locked lasers [7,8].
Traditionally, the formation and propagation of these wave
packets rely on the balance between self-phase modulation
(SPM) and negative quadratic dispersion (8, < 0), while
higher dispersion orders were seen as a nuisance, leading
to dispersive wave emission in fibers [9,10] and laser cavi-
ties [11,12], or acting to limit the achievable pulse duration
[13-16].

When a pulse propagates through a positive nonlinear
medium, SPM causes the generation of new low frequencies
on the leading edge of the pulse and new high frequencies
on its trailing edge. To understand solitons, recall that in the
presence of pure negative dispersion S of order k at frequency
wy, the inverse group velocity v, for frequencies close to wy
can be written as
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Here vy is the group velocity at wp, and k = 2 for quadratic
dispersion, etc. For negative quadratic and in fact for all
higher, even-order types of negative dispersion, Eq. (1)
shows that the group velocity monotonically increases with
frequency. Consequently, both the SPM-generated low fre-
quencies on the leading edge and the SPM-generated high
frequencies on the trailing edge move towards the pulse cen-
ter, leading to the formation of a soliton. This argument
suggests that temporal solitons should exist in the presence
of any negative even-order dispersion. Indeed, recent studies
showed that optical solitons could arise from the balance be-
tween SPM and negative quartic dispersion (84 < 0) [17-19].
However, the existence of solitons for higher, even dispersion
order (k > 4) and their properties are yet to be reported.

Here we report evidence for an infinite hierarchy of soli-
tons of which conventional solitons and pure-quartic solitons
are the two lowest-order members. Since they arise from the
balance between SPM and a single negative even order of dis-
persion, we refer to them as pure high, even-order dispersion
(PHEOD) solitons. This is to distinguish them from previous
theoretical studies which considered the combined effects of
high-order dispersion of order up to k = 8 and nonlinear
effects [20-28]. These studies all consider equations with a
large number of terms, many of which represent combined
nonlinear and dispersive effects. Our aim differs in that we
consider the Kerr nonlinear effect and pure, high, even-order
dispersion [see Eq. (2) below]. We found numerical solutions
by solving the nonlinear Schrodinger equation (NLSE), mod-
ified to higher orders of dispersion. In this way we provide
evidence of PHEOD solitons up to order 16, and we find that
each order has a unique set of properties.

We then experimentally demonstrate three members of
this hierarchy, namely, pure-sextic, -octic, and -decic solitons
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(arising, respectively, from the balance of SPM and nega-
tive dipsersion of order k = 6, 8, and 10), using a passively
mode-locked laser with tunable net-cavity dispersion [19].
The experimental results agree well with numerical predic-
tions. The solitons have spectral sidebands, associated with
resonant dispersive waves typical of fiber lasers, the spacing of
which is directly, and quantitatively, related to the dispersion.
By measuring the PHEOD solitons’ energy we find that they
are related to the pulse duration, 7, as E oc ~*~D_ Our results
establish a new degree of freedom for the generation and study
of ultrashort optical pulses with potential applications in lasers
[19] and frequency comb generation [29,30].

II. NUMERICAL RESULTS

A. Numerical solutions

We consider the propagation of optical pulses in a medium
with Kerr nonlinearity and kth-order dispersion, where k is an
even integer. This evolution can be described by the modified
NLSE

Y i 1Bl 3%y 2
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where ¥ (z, T) is the pulse envelope, z is the propagation
coordinate, T is the local time, B is the dispersion coeffi-
cient, which is taken to be negative, and y is the nonlinear
parameter. For k > 2, Eq. (2) has no known analytic pulselike
solutions. However, we can look for stationary solutions of
Eq. (2) of the form ¥ (z, T) = Ax(T'; e which satisfy
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so the shape is preserved during propagation, and A; can be
taken to be real. We solve Eq. (3) using the Newton-conjugate-
gradient method [18,31].

Solving Eq. (3) provides a single solution for each disper-
sion order, but using a scaling argument we can obtain an
entire family of solutions. Since Eq. (2) is invariant under the
transformation

2/k
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there exists a continuous family of PHEOD solitons for each
dispersion order k, each with the same pulse shape, but with
different amplitudes and widths, that can be parameterized by
the value of the nonlinear phase shift u [18].

The numerically calculated temporal and spectral intensity
profiles of the stationary solutions for k = 6, 8, 10, and 16,
with the same temporal pulse duration at full width half max-
imum (FWHM) t = 1 ps, are shown in Fig 1. We note that
similar to pure-quartic solitons (PQSs), the temporal shapes
of the PHEOD solitons exhibit oscillations in the tails [18,21],
which become more prominent with increasing dispersion
order, as seen in Fig. 1(b). This result can be understood using
an analysis of the tails of the solutions [18,21]. Since the
intensity is low there, we may neglect the nonlinear term in
Eq. (3), and A, can then be written as a linear combination of
k exponential terms exp(A;T ), where the A are the k roots of
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FIG. 1. Numerically calculated temporal stationary solution for
k = 6 (blue), 8 (red), 10 (green), and 16 (black) with a same pulse
width (FWHM) of 7 = 1 ps. Temporal profiles in linear (a) and
logarithmic (b) scales. Corresponding linear (c¢) and logarithmic
(d) spectra. The different solutions have been shifted vertically for
clarity.

In the leading edge of a PHEOD soliton (7T < 0) only the
roots with positive real parts have nonzero coefficients, while
conversely in the trailing edge only the roots with negative
real parts are nonzero. One would expect that the tail is dom-
inated by the exponential terms with the slowest decay rate.
Consequently, the tails take the approximate form

() s )]
©6)

where ¢ is determined by the nonlinear effects near the peak,
and where the =+ signs refer to the leading and trailing edges,
respectively. This result shows that, except for the conven-
tional case k = 2, PHEOD solitons have oscillatory tails with
an exponentially decreasing envelope [18,21]. As k increases,
the oscillations become denser; according to Eq. (6), the enve-
lope of the intensity changes by a factor =27 @7/k) between
consecutive nodes in the tails, consistent with Fig. 1(b).

As seen in Figs. 1(c) and 1(d), the central part of the
PHEOD soliton spectra become increasingly flat as the dis-
persion order k increases. To understand this, recall that the
second derivative of a function corresponds to the second
moment of its Fourier transform [32]. A set function with
increasing oscillations has an increasingly lower second mo-
ment, and the associated Fourier transform is thus increasingly
flat [18]. Physically, this can be understood from Eq. (1) for
the group velocity near frequency wg. For high dispersion
orders k the group velocity remains approximately constant
around wq before changing rapidly. There is thus a frequency

£y sin (X
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TABLE 1. Key PHEOD soliton parameters versus order k. Col-
umn 2: flatness parameter F'. Column 3: relation between peak power
and nonlinear phase shift u/y Py, where P, is the peak power. Col-
umn 4: energy constant M from Eq. (7). Column 5: N, from Eq. (8).
All constants are dimensionless.

Flatness Energy coefficient Peak power coefficient
k Foou/(yR)  Mi[Eq. (7)] Ny [Eq. (3)]
2 0.707 0.500 3.54 3.11
4 0854 0.620 2.87 271
6 0.876 0.658 0.94 0.90
8 0.899 0.674 0.162 0.156
10 0.905 0.682 1.78 x 1072 1.64 x 1072
12 0912 0.687 1.16 x 1073 7.02 x 107*
14 0.920 0.690 5.86 x 1073 5.78 x 1073
16  0.925 0.693 2.50 x 1076 2.17 x 107¢

interval around w for which the dispersion is essentially
irrelevant, and in this frequency interval the spectral intensity
does not need to vary significantly to balance the dispersion.
We quantify flatness of the spectrum in the next section.

B. General properties of PHEOD solitons

As discussed above, the spectral flatness of the PHEOD
solitons increases with the dispersion order k. The flatness or
peakedness of a function is often expressed in terms of the
kurtosis, but this measure has been discredited [33]. Instead
we introduce the flatness F', which we define to be the fraction
of the pulse energy that is within its spectral FWHM. Since it
is a fraction, F' is intrinsically normalized: it has maximum
F =1 for a rectangular function and 0 < F < 1 for all other
functions. The flatness F is an intrinsic property of a function
and does not depend on its parameters. For example, for all
Gaussian functions F = erf(+/In2) ~ 0.761, where erf(x) is
the error function, and F = 1/+/2 ~ 0.707 for all squared
hyperbolic secants. The values of F are listed in the second
column of Table I; they increase monotonically as shown in
Fig. 1(d), quantifying the increased flatness of the spectrum.

From the numerical solutions we can extract several other
PHEOD soliton properties. First, we evaluate the ratio be-
tween u and y Py for k = 2 to k = 16, where P, is the peak
power. Numerical results for k > 16 are not reliable due to
difficulties evaluating high-order derivatives. We know that
for k =2, u = yPy/2 whereas u = 0.62y Py for k = 4 [18].
As shown in Column 3 of Table I, as k increases, the ratio
u/(yPy) increases as well but seems to saturate at a value
close to 0.7. One implication of this is that near the PHEOD
soliton peak the three terms in Eq. (3) have the same order of
magnitude. In particular this implies that the second and third
terms in Eq. (3) have the same order of magnitude. We use
this result below.

Following the scaling argument of Eq. (4) and by dimen-
sional analysis, we find that the energy-width scaling relation
of PHEOD solitons for the kth order of dispersion takes the
form

M| Br|
Ee=—"1
YT

(N

where the energy coefficient M} is to be found numerically
(except for k = 2). The results are summarized in Column 4
of Table I. Similarly, we define the peak power coefficients N
as relating the peak power to the pulse length

_ NelBil
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with the results shown in the final column of Table I. Note that
Nj. can be thought of as relating the balance of the nonlinear
and dispersive effects.

Table I shows that the only coefficients that vary sub-
stantially with k are M} and N: both are of order unity for
small k but decrease rapidly with increasing k and are well
below 107 for k = 16. Their ratio is approximately constant,
which, consistent with Fig. 1(a), reflects that the temporal
pulse shape does not change substantially. This means that the
PHEOQOD soliton energy and peak lower are lower than might
be expected from the favorable energy scaling relation.

We now discuss the implications of the sharp decrease in
M. and N, with k. We noted earlier that the fact that u/(y Py)
remains of order unity implies that near the PHEOD soliton
peak the second and third terms in Eq. (3) have the same order
of magnitude. We may therefore write

Br 9* Ay

k|~ ly PoArl, 9)

where ~ indicates that the two sides have the same order of
magnitude. Using Eq. (8) we may then write

’ 1 BkAk NkAk‘
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The derivative on the left-hand side is taken with respect to T';
if we consider the derivative with respect to the dimensionless
quantity 7'/t then the equation reduces to

1 o%A,
k!' (T /T)k

Using Eqgs. (3) and (11) we may write Ax(7/t) in a Taylor
series

~ |NkAk|- an

(k!NP*
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p=0

where Ay , is a linear combination of p powers of kth roots
of £1. The expression for A; , is consistent with Eq. (5)
with ;o ~ y Py. Recall that the rate at which the coefficient of
Taylor series decrease is related to the expansion’s radius of
convergence [34]: an infinite radius of convergence requires
[ A, p+1/Ak,pl = 0 as p — oo. This is satisfied here since

A A kIN,)/k
kptl _ Dkpr (k!'Ny) ’ (13)
Ak,p Ak,p P + 1
with Ay py1/Ax,p finite as Ay ; is a finite sum of k terms and
|Ar.il = |Ag.itk|. This result implies that the rapid decrease

of M, and N; with k is related to the infinite radius of conver-
gence of its Taylor expansion. One implication of this result
is that for high order of dispersion k, the decrease of the
energy constant M; might hamper the advantageous energy-
width scaling. Therefore, there may exist an optimal order of
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FIG. 2. Schematic of the erbium-doped laser cavity with the
following components: Er, erbium; WDM, wavelength division mul-
tiplexer; LD, laser diode; OC, output coupler; PC, polarization
controller; FP, fiber polarizer.

dispersion for the generation of ultrashort high-energy soliton
pulses.

III. EXPERIMENTAL RESULTS

A. Experimental setup

The intrinsic dispersion of conventional optical wave
guides is dominated by quadratic contribution (8,) while the
effects of higher-order dispersion are usually weak. In fact,
a complex structure was required just to achieve dominant
negative quartic dispersion [17,35]. This strongly limits the
possibility of observing the propagation of PHEOD solitons
in waveguides. To overcome this limitation, and achieve the
dominant negative high-order dispersion required for the gen-
eration of these solitons, we used a passively mode-locked
fiber laser similar to the one reported in Ref. [19]. The laser
configuration used in our experiments is shown schemati-
cally in Fig. 2. It incorporates an intracavity programmable
spectral shaper (Finisar WaveShaper), which is used to adjust
the net-cavity dispersion [19,36,37]. The applied phase mask
compensates for the intrinsic second-, third-, and fourth-order
dispersion of the fiber components and applies a large nega-
tive, high even-order dispersion. The applied phase profile can
be written as

4

_ n _ k
¢(w)=L[Zﬂn<w @) | Bl — o) } .

] ]
o n! k!

where L = 18.17 m is the cavity length, and B, is the
nth dispersion order for n = 2, 3, and 4 to account for the
cavity dispersion. For the results presented in this work
B2 = +21.4 ps?/km, B3 = —0.12 ps®/km, and B4 = +2.2 x
1073 ps*/km. These values are chosen to compensate for the
dispersion of the SMF used in our setup and are based on
values reported in Refs. [38,39]. The second term on the
right-hand side of Eq. (14) corresponds to the negative high,
even-order dispersion required for the generation of sextic
(k = 6), octic (k = 8), or decic (k = 10) PHEOD solitons.
To obtain the complete spectral and temporal characterization
of the pulses, we used a frequency-resolved electrical gating
(FREG) setup which allows for the measurement of the pulse
spectrogram [40]. The temporal intensity and phase of the
pulses are then retrieved using a conventional blind decon-
volution numerical algorithm [41].

B. Spectral and temporal characterization

The results of the spectral, temporal, and phase-resolved
measurements of the output pulses for the laser operating with
net pure-sextic, -octic, and -decic dispersion are shown in
the first, second, and third rows of Fig. 3, respectively. Fig-
ures 3(a)-3(c) (left column) show the measured output spectra
(blue curves) and the corresponding numerically calculated
pulse shapes (red-dashed curves), for the three different dis-
persion orders. The measured spectral —3 dB bandwidths are
Al = 3.9, 3.8, and 3.8 nm, for the sextic, octic, and decic
PHEOD solitons, respectively. For all cases the experimental
and numerically calculated spectra agree well. The spectral
fluctuations away from the pulses arise from the limited
spectral resolution of the pulse shaper. For rapidly varying
functions, it undersamples the phase profile leading to aliasing
in the applied phase mask, particularly for the highest disper-
sion order for which the phase varies rapidly for frequencies
away from wy. Since the spectral fluctuations thus appear far
from the central frequency and at least 10 dB below the peak
[see Fig. 3(c)], we are confident that they do not affect the
pulse dynamics significantly.

This assertion is confirmed by the corresponding mea-
sured spectrograms in Figs. 3(d)-3(f), which show clear
pulses for all three cases. The vertical streaks at short
and long wavelengths correspond to the first sidebands
[42]. Finally, the temporal intensity and phase profiles of
the sextic, octic, and decic PHEOD solitons are shown in
Figs. 3(g)-3(i), respectively. The retrieved FWHM pulse du-
rations of the pure-sextic, -octic, and -decic solitons are
T = 1.68, 1.69, and 1.77 ps, respectively. For all cases, the
measured temporal intensities (blue curves) are in good agree-
ment with the corresponding numerical solutions (red-dashed
curves) for similar FWHM. The retrieved temporal phase
(orange curve) indicates that the emitted pulses are slightly
chirped. This is because our experimental setup is a lumped
system in which the required dispersion is applied at a single
point in the cavity, just before the output coupler [19]. Note
that the numerically predicted oscillations in the tails of the
temporal profiles [see Fig. 1(b)] are not observed since these
are expected to appear approximately 20 dB below the pulse’s
maximum, which is below the background in our experiments.

For all cases we estimated the experimental flatness param-
eter F', defined in the previous section. The red circles in Fig. 4
give the flatness F' of the numerically calculated spectra from
Fig. 1 for different even dispersion order k. The measured
values of F' (blue diamonds) from the spectra from Fig. 3 and
Ref. [19] agree well with the numerically calculated ones and
confirm that the flatness of the spectrum increases monoton-
ically with k. It has been shown that flatter spectra can lead
to enhanced pump-comb conversion and smaller line-to-line
power variations in frequency combs [30].

C. Sideband analysis

To confirm the nature of the cavity’s linear dispersion,
we analyzed the position of the spectral sidebands of the
emitted pulses. These dispersive waves arise from the con-
structive interference between the solitons and the linear
waves emitted by the soliton while it propagates inside
the cavity [19,42]. Constructive interference occurs when
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FIG. 3. Spectral and temporal measurements of pure high-order dispersion solitons: sextic (top row), octic (middle row), and decic (bottom

row) dispersion. The applied dispersion is ¢ =

—500 ps®/km, By =

—15 x 10° ps®/km, and B1p = —1 x 10° ps'®/km, respectively. (a)—

(c) Measured (blue) and calculated (red-dashed) spectra. (d)—(f) Measured spectrograms. (g)—(i) Retrieved temporal intensity (blue), phase
(orange), and corresponding calculated temporal shapes (red-dashed).

Bsol — Piin = 2mm /L where m is a positive integer. For kth-
order dispersion the linear waves satisfy B, = —|Bk|(®w —
wo)*/k!, while the PHEOD solitons have a constant disper-
sion across their entire bandwidth of By, = Ci|Bk|/T* [18,43],
where Cj are constants of order unity that depend on the
dispersion order. Thus, we find that the spectral position of
the mth spectral sideband w,, is given by
mmt

| 1/k
Om=E2 [k ( BrlL _C")} '

Following this argument, it is straightforward to show that
for a pure kth-order dispersion soliton, the kth power of two
consecutive sidebands is constant and given by 2w k!/(|B¢|L),
irrespective of the value of C;. To check this prediction, for
each dispersion order we measured the output spectrum for
three different values of the dispersion coefficient f;, and we

k
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FIG. 4. Numerical (red circles) and experimental (blue dia-
monds) values of the flatness F of the PHEOD soliton spectrum
versus dispersion order.

measured the spectral positions of the low-frequency side-
bands.

The results of these measurements are shown in Fig. 5.
In Figs. 5(a)-5(c), we show three measured spectra for each
dispersion order k. The sextic PHEOD soliton spectra for three
different values of B¢ are shown in Fig. 5(a). Corresponding
results for octic and decic PHEOD solitons are shown in
Figs. 5(b) and 5(c), respectively. The circles mark the spectral
positions of the low-frequency sidebands. The kth power of
these measured positions as a function of the sideband order
for the nine PHEOD soliton spectra are shown in Figs. 5(d)—
5(f). In all cases the spacings follow a linear relationship as
expected. The predicted and measured spectral spacing for
all the spectra shown in Figs. 5(a)-5(c) are summarized in
Table II. Note that the experimental values agree within 4%
to the corresponding expected values calculated from Eq. (15)
and based on the net-cavity dispersion that was applied by
the pulse shaper. Results for the high-frequency sidebands
(not shown here) are similarly close to the expected values.
Since taking a high power of a data set amplifies the noise,
the agreement between the measured and expected results is
remarkable, confirming the type and magnitude of the cavity
dispersion.

D. Energy-width scaling

Finally, we study the energy-width scaling relationship of
the PHEOD solitons. As discussed in Sec. II B and following
the scaling argument, the energy-width scaling relation of
PHEOD solitons is proportional to 7~%*~1. We experimen-
tally measured the output pulse energy as a function of the
pulse duration for three different values of dispersion B, for
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FIG. 5. Measured PHEOD soliton output spectra for differ-
ent dispersion orders. (a) Sextic PHEOD soliton spectra for g =
—50 (yellow), Bs = —100 (orange), and B = —500 ps®/km (blue).
(b) Octic PHEOD soliton spectra for fg = —100 (cyan), Bg = —200
(green), and Bg = —1000 ps® /km (purple). (c) Decic PHEOD soli-
ton spectra for 8,9 = —5000 (green), B;p = —10 x 103 (cyan), and
Bio = —50 x 10% ps'®/km (red). Colored circles show the kth power
of the measured sidebands positions versus sideband order for the
(d) sextic, (e) octic, and (f) decic PHEOD soliton spectra. The solid
lines correspond to linear fits.

each order of dispersion considered. Concretely, we adjusted
the pump power in the laser cavity and measured the output
pulse energy after deducting the portion of energy in the
spectral sidebands by integrating the optical spectrum. The
results of these measurements for k = 6, 8, and 10 are shown
in Fig. 6. The circles show the measured pulse energies versus
the pulse duration (7) for three different values of dispersion
B for each dispersion order k. All results are in good agree-
ment with Eq. (7) once we account for the output coupling and

TABLE II. Predicted [from Eq. (15)] and measured sideband
spacing values for different values of applied dispersion k.

Dispersion Applied By Predicted Measured
order k (ps* /km) spacing (ps~) spacing (ps )

-50 4.98 x 10° 4.96 x 10°

6 —100 2.49 x 103 2.48 x 10°

—500 4.98 x 10? 4.97 x 10?

—100 1.39 x 10° 1.38 x 10°

8 —200 6.97 x 10* 6.96 x 10*

—1000 1.39 x 10* 1.36 x 10*

—5000 2.51 x 10° 2.49 x 10°

10 —10 x 10° 1.25 x 10° 1.26 x 10°

—50 x 10° 2.51 x 10* 2.46 x 10*

1 1 1

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

Pulse duration (ps)

FIG. 6. Measurement of energy-width scaling properties of
the pure high-order dispersion Kerr solitons. The circles mark
the measured pulse energy E versus pulse duration. (a) Pure-
sextic soliton energy for B¢ = —500 (red), S = —1000 (blue),
and Bs = —2000 ps®/km (green). (b) Pure-octic soliton energy for
Bs = —15 x 103 (red), Bs = —30 x 10* (blue), and Bs = —60 x
10° ps®/km (green). (c) Pure-decic soliton energy for B;p = —2 x
10° (red), Bio = —5 x 10° (blue), and By = —1 x 10° ps'®/km
(green). The solid curves are fits for (a) pure-sextic, (b) -octic, and
(c) -decic solitons from Eq. (7).

the insertion loss of the pulse shaper. This confirms that these
pure high-order dispersion solitons follow a different energy-
width scaling relation that could be used for the generation of
ultrashort optical pulses with high energy.

IV. CONCLUSION AND DISCUSSION

We report the experimental discovery of an entire family
of optical solitons arising from the balance between SPM
and higher-order dispersion. One can consider conventional
optical solitons to be the lowest-order member of this fam-
ily of PHEOD solitons. All these pulses fundamentally arise
from similar physical effects: the nonlinearity generates fre-
quencies on the pulses’ leading and trailing edges, and these
shift towards the pulse center under the effect of dispersion.
Our investigation combines numerical results following from
solving Eq. (3) and experimental results obtained using a
fiber laser. The fiber laser incorporates a spectral pulse shaper,
which is used to apply a large negative pure high, even-order
dispersion [19]. We find that the numerical and experimental
results are in very good agreement.

While our experimental approach differs from the con-
servative system described by Eq. (2), it allows for an
unprecedented level of dispersion control, which is currently
impossible through conventional waveguide dispersion engi-
neering [17]. While we demonstrate PHEOD solitons only
up to the 10th order of dispersion, we emphasize that our
approach is limited only by the specifications of the pulse
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shaper. This limitation could be overcome by using a device
with higher spectral resolution and bandwidth so enabling the
generation of PHEOD solitons of order higher than 10th. We
have shown that our setup provides a powerful tool to open
up new routes for the generation and study of a wide range of
optical pulses [44].

One of the insights afforded by our analysis is a study of
the PHEOD solitons as their order k increases. A key advan-
tage of PQS over conventional solitons is the scaling relation
E, o< 773 [19]. Even though the scaling becomes increasingly
advantageous as k increases, as illustrated by Eq. (7), the fact
that the coefficient M; decreases so rapidly leads to pause for
thought. While it is always possible to increase the energy by
increasing the magnitude of the dispersion coefficient B, it
may imply the existence of an optimal, finite value of k for
maximizing pulse energy. We note that an additional advan-

tage of using high-order PHEOD solitons is that their spectra
become increasingly flat. This could be used to generate fre-
quency combs with small tooth power variations [30,45].

In addition to direct quantitative insights on soliton pulses
provided by our experiments, the approach itself is expected
to become an established tool for the generation and study
of ultrafast pulses [19,44]. We expect our results to stimulate
future investigations and discoveries in other areas of physics,
engineering, and applied mathematics.
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