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Anomalous softening of phonon dispersion in cuprate superconductors
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A softening of phonon dispersion has been observed experimentally in underdoped cuprate superconduc-
tors at the charge-density-wave (CDW) ordering wave vector. Interestingly, the softening occurs below the
superconducting (SC) transition temperature Tc, in contrast to the metallic systems, where the softening occurs
usually below the CDW onset temperature TCDW. An understanding of the “anomalous” nature of the phonon
softening and its connection to the pseudogap phase in underdoped cuprates remain open questions. Employing
a perturbative approach, we find that a complex interplay among the ubiquitous CDW order, SC order, and an
unusually connected thermal fluctuations of these orders can explain the anomalous phonon softening below
Tc. Furthermore, our formalism captures different characteristics of the low-temperature phonon softening,
depending on material specificity.
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The “pseudogap” phase [1–10] of the underdoped high-
temperature copper-oxide-based superconductors (cuprates)
remains incomprehensible even after decades of research, by
and large due to a complex interplay of several symmetry-
broken orders [11,12]. A universally present translational
symmetry-broken order in the cuprates is a charge-density-
wave (CDW) order [13–26]. Since its discovery, the CDW
order has become fundamentally important due to growing ev-
idences of its close relation to the pseudogap phase, although
a full knowledge about the CDW order and its relation to the
pseudogap phase remains incomplete. One leading approach
to unravel the relation is to study the phonon spectrum which
couples to electronic degrees of freedom, thus leaving finger-
prints associated to the electronic structure.

The phonon spectrum has been largely studied in metal-
lic systems, where the charge correlations soften the phonon
spectrum, giving rise to the “Kohn anomaly” [27]. In one-
dimensional metals [28–30] and in some transitional-metal
dichalcogenides [31], this softening grows towards zero
[Fig. 1] and a full phonon softening occurs at the CDW wave
vector (Q) below CDW ordering temperature TCDW, reflecting
the origin of CDW order in them. With a similar outlook, the
phonon spectrum has been measured even in cuprates using
different experimental techniques, like inelastic x-ray scatter-
ing [19,32–39] and inelastic neutron scattering [40,41]. All of
these experiments have observed a partial phonon softening
[Fig. 1] associated to Q in several cuprates, only below the
superconducting transition temperature Tc, in stark contrast to
the metallic systems [30,31,42,43]. This unique occurrence of
phonon softening below Tc is hence referred to as “anoma-
lous” phonon softening.
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In this paper we provide a theoretical explanation to the
anomalous phonon softening, revealing an unusual connection
between the fluctuations of CDW and superconductivity in
underdoped cuprates. Though a relation between these two
orders was highlighted in earlier theoretical [44–49] and ex-
perimental [13,15,50,51] studies, a direct connection between
their fluctuations was missing. Notably, a recent proposal [52],
based on the fractionalization of a pair-density wave (PDW)
order [53,54], advocates that for temperatures above Tc, a
growing amount of fluctuations in CDW and superconduc-
tivity arising from a connection between them can provide a
potential explanation to the pseudogap phase. Thus our work
gives evidence for the fractionalization of a PDW order to be a
plausible scenario for the explanation of the pseudogap phase.

In our model, we mimic the thermal fluctuations of CDW
and superconductivity by introducing an inverse lifetime of
quasiparticles [55,56]. We find that a strong phonon soft-
ening occurs only below Tc, due to quench of fluctuations
in both CDW and superconductivity arising from a connec-
tion between them, as can be found in a fractionalization
of a PDW order [52]. Additionally, we also show that at
low temperatures, different temperature dependence of the
superconducting (SC) gap and an inverse lifetime of the quasi-
particle give contrasting effects on the strength of the phonon
softening.

We start with a total Hamiltonian Htot [57], given by Htot =
He + Hph + He−ph, with

He =
∑
k,σ

ξkc†
k,σ

ck,σ +
∑
k,σ

(χkc†
k+Q,σ

ck,σ + H.c.)

+
∑

k

(�kc†
k,↑c†

−k,↓ + H.c.),

Hph =
∑

q

ωq(b†
qbq + b†

−qb−q),

He−ph = (g/
√

N )
∑

q

∑
k,σ

[c†
k+q,σ

ck,σ (b†
q + b−q) + H.c.], (1)
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FIG. 1. Schematic representation of a full softening in metals and
a partial softening in underdoped cuprates below Tc.

where He is an effective mean-field Hamiltonian with SC and
CDW orders. c†

k,σ
(ck,σ ) is the creation (annihilation) opera-

tor for an electron with spin σ and momentum k, ξk is the
electronic dispersion, �k is the SC order parameter, and χk

is the CDW order parameter with modulation wave vector
Q. Hph is the Hamiltonian for free phonons with phonon
creation operator b†

q for wave-vector q and frequency ωq.
He−ph is the Hamiltonian describing electron-phonon interac-
tion with strength g and N is the number of lattice sites in the
system. The Green’s function corresponding to He is given
by Ĝ−1(iωn, k) = (iωn − Ĥe) and has a matrix form in the
extended Nambu basis �

†
k = (c†

k,↑, c−k,↓, c†
k+Q,↑, c−k−Q,↓),

which is given by

G−1 =

⎛
⎜⎜⎝

iωn − ξk −�k −χk 0
−�∗

k iωn + ξk 0 χk

−χ∗
k 0 iωn − ξk+Q −�k+Q

0 χ∗
k −�∗

k+Q iωn + ξk+Q

⎞
⎟⎟⎠,

(2)

where ωn is the Matsubara frequency. We use a band structure
for a prototype cuprate system [58] [see Appendix A]. Follow-
ing several theoretical [47,52,59] and experimental [22,60]
studies, we consider a CDW order parameter with Q given by
the axial wave vector connecting two neighboring “hot spots,”
the points on the Fermi surface which intersect the magnetic
Brillouin zone boundary [45]. Within a mean-field treatment,
the order parameter fields �k and χk in Eq. (1) have been
self-consistently obtained in Refs. [52,55] by minimizing the
free energy. In this work we do not self-consistently calculate
�k and χk; instead, motivated by the results of Refs. [52,55],
χk is chosen such that it is maximum (χmax) is near the
hot spots, falling off exponentially away from the hot spots,
and �k gaps out the rest of the Fermi surface, except for
the nodal points on the Fermi surface. Away from the hot
spots, we consider a d-wave symmetric SC gap [61] given by
�k = (�max/2)[cos(kx ) − cos(ky)], where �max denotes the
maximum gap.

FIG. 2. (a), (b), (c), and (d) represent the Feynman diagrams for
the terms in the Dyson equations [Eq. (3)] involving the self-energies
�1, �3, �2, and �4, respectively, in the presence of CDW and SC
orders.

The modified electronic spectrum in the presence of SC
and CDW orders will renormalize the free phonon propa-
gator, D0(z, q) = 2ωq/(z2 − ω2

q ). To analyze this we begin
by writing the imaginary time (τ ) phonon propagators in
matrix form in the ordered phase. The corresponding matrix
elements are given by Dm,n(q, τ ) = −〈T φq+mQ(τ )φ†

q+nQ(0)〉,
where T is the time-ordering operator [57], φq is the phonon
field operator given by b†

q + b−q and m, n = ±. Noting
that D++ ≡ D−− := D1(z, q) and D+− ≡ D−+ := D2(z, q),
within a perturbative treatment of electron-phonon interac-
tion, we evaluate the renormalized phonon propagators D1 and
D2 by using the Dyson equations

D1(z, q) = D0(z, q + Q)[1 + �1(z, q)D1(z, q)

+ �2(z, q)D1(z, q) + �3(z, q)D2(z, q)

+ �4(z, q)D2(z, q)],

D2(z, q) = D0(z, q − Q)[�1(z, q)D2(z, q)

+ �2(z, q)D2(z, q)

+ �3(z, q)D1(z, q) + �4(z, q)D1(z, q)], (3)

where �1,2,3,4(z, q) represent the phonon self-energies. The
leading contributions to the Dyson equations [Eqs. (3)] are
shown in Fig. 2. Explicit expressions for �1,2,3,4(z, q) are
presented in Appendix B.

We obtain the new modes for the phonon in the ordered
phase by decoupling Eq. (3) with the definition D±(z, q) =
D1(z, q) ± D2(z, q) and then solving D±(z, q) with the as-
sumption that ωQ±q ≈ ωQ for small q. Finally, plugging in
D0(z, q), we obtain the solutions as

D±(z, q) = 2ωQ

z2 − ω2
Q − 2ωQ�±(z, q)

, (4)

where �+ = �1 + �2 + �3 + �4 and �− = �1 + �2 −
�3 − �4. The dispersion of the new phonon modes corre-
spond to the values of z, for which denominator of Eq. (4)
vanishes. Subsequently, taking only q dependence in �, the
frequency for each mode is given by

�2
±(q) = ω2

Q + 2ωQ�±(q). (5)

These two new phonon modes in Eq. (5) with frequency �±
signify branching of the free phonon near Q due to presence
of CDW and SC orders. The two modes with frequency �±
correspond to amplitude and phase fluctuations of the CDW
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FIG. 3. Plots of the self-energy �± as a function of q̃ = q − Q
corresponding to the two renormalized phonon modes �± in the
presence of χmax = 0.05 and �max = 0.05. Both �± exhibit a de-
pletion around q̃ = 0, implying a softening in the phonon-dispersion
of the two new modes �± around Q.

order, respectively [57]. We find that the split between �±
is proportional to the magnitude of the CDW order. Also,
we only plot �± as a function of q̃ = q − Q, as the modes
�±(q) can be easily identified from the corresponding �± in
Eq. (5). For depicting the strength of the phonon softening,
we look at �±(q̃) after subtracting �±(q̃ = −1). In Fig. 3 we
observe that �±(q̃) decreases strongly within a finite range at
around q̃ = 0, with a minimum at q̃ = 0, readily suggesting
a softening of phonon frequency around Q. We also observe
that away from q̃ = 0, �±(q̃) goes towards zero, implying a
suppression of phonon softening away from Q. This suggests
that the effect of CDW and SC orders on the phonon are
maximum at Q and diminish away from it. Additionally, we
notice that the suppression of �− is more than the suppression
of �+ and the q̃ dependence of �± are extremely similar to
each other. Hence, for a simpler presentation, in the rest of the
paper we only plot �− with q̃ [relabeled as �(q̃)].

So far, we obtain a phonon softening in the presence of SC
and CDW orders. However, to address the anomalous phonon
softening in cuprates, we need to include fluctuation-related
effects, which are major constituents governing the phase
diagram of these systems. For example, such fluctuations can
lead to quasiparticle scattering, which is known to have a
vital role in the Fermi-arc-related physics of the pseudogap
phase [62–64]. The strength of the scattering depends on
temperature; while it can be large at high temperatures, a
sudden reduction occurs below Tc, which can be attributed
to a fractionalization of a PDW [52]. To give an idea, the
proposal of fractionalization of a PDW order suggests that
the fluctuation of a U(1) gauge field gives a constraint con-
necting SC and CDW fields. As a result, fractionalization of
PDW occurs at an energy scale associated to the pseudogap
temperature T*; consequently, fluctuations largely increase in
the system. However, below Tc the fluctuations quench, thus
yielding a global phase coherence in both CDW and SC orders
and increasing the lifetime of quasiparticles.

FIG. 4. (a) The variation of �(q̃) with q̃ for four different values
of � with χmax = 0.2 and �max = 0. The plots portray a suppression
in phonon softening with increase in �. (b) Plots of �(q̃ = 0) with
variation in � for five different values of �max with χmax = 0.2. The
plots manifest a suppression in phonon softening with an increase
in �max. The effect of �max is strongest for low � and weakest for
high �.

In order to study the evolution of the phonon softening
with temperature, we incorporate a finite inverse lifetime of
quasiparticles, given by �, pertinent to the fluctuation-related
effects in the system. The self-energy in Matsubara frequency
due to � can be written as 
 = i� sgn(ωn), and the Green’s
function in Eq. (2) will transform as

G−1
i, j (iωn, k) → G−1

i, j (iωn + 
, k). (6)

In the presence of �, the phonon dispersion will be modified
by the real part of �(q̃), again relabeled as �(q̃). Detailed
calculations are presented in the Appendix C.

To understand the collective effect of the SC gap and � on
the phonon softening, it is important to disentangle the role
played by � and the SC gap. Therefore we start by study-
ing the effect of �, taking �max = 0. Figure 4(a) shows the
variation of �(q̃) as a function of q̃ for four different � with
χmax = 0.2. We notice that for very small values of � = 0.02,
there is a significantly strong phonon softening around q̃ = 0.
With increasing �, the phonon softening starts to reduce, and
for a very large � = 1.0, the phonon softening is almost fully
suppressed. We also observe that the phonon softening at
q̃ = 0 is most strongly affected by �. Therefore, for rest of
the analysis, we will concentrate on � at q̃ = 0 to quantify
the phonon softening.

Now we inspect the role of the SC order and the interplay
between superconductivity and �. In Fig. 4(b) we plot the
variation of �(q̃ = 0) with �, for five different �max taking
χmax = 0.2. We notice that �max has a prominent effect when
� is very small, as can be seen from the change in �(q̃ = 0) at
around � ∼ 0.05. In this regime, �max weakens the softening
of phonon. A similar effect on phonons in the SC phase
has been indicated in conventional s-wave superconductors
[65,66]. With increasing �, for example, at around � ∼ 0.3,
the effect of �max becomes less significant. Finally, for very
large � � 1.0, changing �max has almost no effect. These
results highlight two crucial points. First, both superconduc-
tivity and � suppress the phonon softening. Second, the role
of �max is prominent at low � while negligible for large �.

We have seen that the introduction of superconductivity
suppresses the phonon softening, while experiments observe a
seemingly opposite characteristic of enhancement of phonon

013162-3



SARKAR, GRANDADAM, AND PÉPIN PHYSICAL REVIEW RESEARCH 3, 013162 (2021)

FIG. 5. (a) Different sets of T dependence for inverse lifetime of
quasiparticles denoted by �1, �2, �3, and �4. The T dependence of
the SC gap is denoted by �max(T ). In all cases, χmax = �max. (b) The
T dependence of �(q̃ = 0) for different parameter sets in (a). A large
negative value of �(q̃ = 0) in the regime T � Tc implies a strong
enhancement of phonon softening, while �(q̃ = 0) → 0 implies a
strong suppression in phonon softening in the regime T > Tc. (c) The
variation of �(q̃) with q̃ at four different temperatures for parameter
set �4 and �max(T ) shown in (a). (d) Schematic representation of the
experimental results of phonon softening at CDW wave vector for
YBCO and BSCCO, adopted from Refs. [32,34].

softening below Tc. At this point, we should also notice that
� suppresses the phonon softening, as shown in Fig. 4(a).
Moreover, � is expected to increase with temperature due to
increase in fluctuations, whereas �max is expected to decrease
with temperature, for example, in a simple BCS-type scenario.
Thus they behave in opposite manner with temperature.

We consider temperature (T ) dependence phenomenolog-
ically in �max and �, similar to the T dependence used in
explaining spectral function in angle-resolved photoelectron
spectroscopy (ARPES) experiments [56]. The T dependence
of �max and � are shown in Fig. 5(a). Below Tc, �max de-
creases with T , remaining approximately constant above Tc.
Here we also consider χmax to be equal to �max. This is
motivated by Raman spectroscopy measurements, which ob-
serve the maximum of the gaps in particle-particle (�max)and
particle-hole (χmax) channels to be equal in a varied range
of doping [50] and also in different cuprate families [67]. To
illustrate how different T dependence of � and �max can give
different features in phonon softening, we use four different
types of T dependence for �, denoted by �1, �2, �3, and �4

in Fig. 5(a). Note that they differ in magnitudes compared to
�max. In all these cases, � reduces significantly below Tc, with
the strongest fall in �4 and the weakest fall in �1, but still
remains finite even in the limit T → 0 [68]. The strong reduc-
tion of � below Tc is a manifestation of the fact that not only
fluctuation in superconductivity but also the CDW fluctuation
simultaneously quench below this temperature. Moreover, we

considered in all the cases, a linear T dependence for � for
T > Tc, as suggested in some earlier works [69,70].

In Fig. 5(b) we plot �(q̃ = 0) for the parameters in
Fig. 5(a). We start by closely inspecting the �4 case in
Fig. 5(b). We observe that the values of �(q̃ = 0) are close
to zero for high temperatures (T 
 Tc), implying that the
phonon softening is strongly suppressed. Remarkably, we ob-
serve that for temperatures T � Tc, the values of �(q̃ = 0)
reduce sharply towards more negative values, which suggests
that the phonon softening enhances strongly. But surprisingly,
towards further lower temperatures below Tc, �(q̃ = 0) en-
hances, which implies a suppression in phonon softening.
However, the phonon softening below Tc always remains
stronger as compared to T > Tc. Very similar features have
been observed in YBa2Cu3O6+y (YBCO) [32], as shown
schematically in Fig. 5(d). In Fig. 5(c) we present the full q̃
dependence of � at four different temperatures for the case
�4. We observe that away from q̃ = 0, phonon softening is
less sensitive to the variation of temperature. A similar feature
has been found in experiments [32,34].

Next we closely investigate the �1 case in Fig. 5(b) for
T � Tc. Very interestingly, the features for T � Tc possess
marked differences from the �4 case. We notice a smoother
enhancement in phonon softening just below Tc (T ∼ Tc),
while the enhancement is more rapid and sharper for the
�4 case. In particular, towards lower temperatures (T → 0),
a further enhancement in phonon softening can be noticed
in contrast to the suppression observed for �4. Analogous
features in phonon softening have been also observed in
Bi2Sr2CaCu2O8+y (BSCCO) [34], schematically presented in
Fig. 5(d). To demonstrate the different features in phonon
softening resulting from an intricate interplay between SC gap
and � below Tc, we plot results for two more cases �2 and �3,
shown in Fig. 5(b). Below Tc, for �2, phonon softening sharply
enhances as compared to the case for �3 as T → 0.

We would like to point out that in lanthanum (La)-
based cuprates like La1.875Ba0.125CuO4 (LBCO) [33] and
La2−xSrxCuO4+δ (LSCO) [71], a phonon softening of simi-
lar order of magnitude to that of YBCO has been observed
near Tc. However, the temperature dependence of the phonon
softening in these two families of cuprates exhibits different
behaviors above Tc. In the case of YBCO, the softening dimin-
ishes above Tc, while for LSCO the strength of the softening
at a temperature much higher than Tc remains almost similar
to the strength observed at Tc. This difference might be due
to varied CDW phenomenology [72] in these two families
of cuprates. While CDW possesses a checkerboard pattern in
the case of YBCO, the CDW has a stripy nature in La-based
cuprates. Moreover, presence of an incommensurate magnetic
order associated with the stripe formation brings in further
complexity in La-based cuprates. Therefore additional ingre-
dients, which are not incorporated in this work, are required
to fully understand the nature of phonon softening in La-based
cuprates.

In summary, within a mean-field description of super-
conductivity and charge-density wave (CDW), describing
underdoped cuprates, we obtained a softening of the phonon
dispersion associated to the CDW wave vector (Q). The cru-
cial finding of our work is that only reduced amount of
fluctuations in both CDW and superconducting (SC) orders
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FIG. 6. Fermi surface for a prototype cuprate band structure. The
solid black curves represent the Fermis surface associated to the
dispersion ξk . The dashed black lines represent the magnetic Bril-
louin zone boundary of the system. The intersection of the magnetic
Brillouin zone boundary and the Fermi surface are marked by red
dots, representing the hot spots on the Fermi surface. The CDW
modulation wave vector Q, indicated by the arrows, is considered
to be parallel to the crystallographic axes as shown in the figure.

below Tc, can describe the “anomalous” phonon softening. A
reduction in the fluctuations of SC and CDW orders below
Tc can occur due to the fractionalization of a PDW order
[52]. Thus the anomalous softening gives a unique signature
towards the fractionalization phenomenon. Moreover, we also
found that the features of phonon softening at low temper-
atures depend on an intricate interplay between SC order
and fluctuations. In this work we considered the strength
of electron-phonon coupling to be momentum (k) indepen-
dent. However, the formalism in this work can easily be
extended to include k-dependent electron-phonon coupling.
We expect, in such a scenario, that phonon softening will
still occur at Q only below Tc, but the softening will have a

different wave-vector dependence around Q. We believe our
results can find applications in many two-dimensional materi-
als where an interplay between CDW and SC orders plays an
important role, thus opening much broader prospects of our
work.

We acknowledge A. Banerjee and Y. Sidis for valu-
able discussions. This work has received financial support
from the ERC under Grant Agreement No. AdG-694651-
CHAMPAGNE.

APPENDIX A: THE MODEL AND PARAMETERS

In this Appendix, we discuss the model describing the
cuprate in the presence of charge-density-wave (CDW) and
superconducting (SC) orders. To analyze the phonon dis-
persion in the presence of CDW and SC orders, we start
with a total Hamiltonian Htot , which incorporates an effective
mean-field electronic Hamiltonian (He) describing CDW and
SC orders, the Hamiltonian for free phonons (Hph), and the
electron-phonon interaction Hamiltonian (He−ph) as given in
Eq. (1). The inverse Green’s function matrix Ĝ−1(iωn, k) =
(iωn − Ĥe) corresponding to the Hamiltonian He in the ex-
tended Nambu basis �

†
k = (c†

k,↑, c−k,↓, c†
k+Q,↑, c−k−Q,↓) is

given by

G−1(iωn, k)=

⎛
⎜⎜⎝

iωn−ξk −�k −χk 0
−�∗

k iωn+ξk 0 χk

−χ∗
k 0 iωn − ξk+Q −�k+Q

0 χ∗
k −�∗

k+Q iωn + ξk+Q

⎞
⎟⎟⎠,

(A1)
where ξk is the electronic dispersion, given by ξk =
2t1[cos kx+ cos ky]+ 4t2 cos(kx ) cos(ky) + 2t3[cos(2kx ) + cos
(2ky)] − μ, with t1 = −70.25 meV, t2 = 34.75 meV,
t3 = −11 meV, and μ = −89 meV. In this paper all energy
scales are expressed in units of t1. �k is the SC order
parameter, and χk is the CDW order parameter with the
finite wave vector Q. ωn is the Matsubara frequency. �

is the Nambu spinor, c†
k,↑ is the creation operator for an

electronic state with wave vector k and up spin, and c−k,↓ is
the annihilation operator for an electronic state with wave
vector −k and down spin. The Fermi surface for the electronic
dispersion ξk , hot spots, and the CDW wave vectors (Q)
parallel to the crystallographic axes are shown in Fig. 6.

APPENDIX B: DYSON EQUATIONS AND CALCULATION OF THE SELF-ENERGY �

In this Appendix, we present the derivation of the phonon propagators, renormalized due to CDW and SC orders. The free
phonon is given by the propagator D0(z, q) = 2ωq/(z2 − ω2

q ), where ωq is the frequency of the phonon mode for wave vector q
and z is a complex frequency (Im z > 0). The CDW and SC orders will couple to the free phonon, modifying the propagator,
which will consequently give rise to phonon modes with renormalized dispersion. To evaluate the renormalized dispersions,
we start with Matsubara phonon propagator in matrix form whose elements are given by Dm,n(q, τ ) = −〈T φq+mQ(τ )φ†

q+nQ(0)〉,
where T is the time-ordering operator, and m, n = ±. By noting that D++ ≡ D−− := D1(z, q) and D+− ≡ D−+ := D2(z, q),
within a perturbative approach for the electron-phonon interaction in Hamiltonian of Eq. (1), the Dyson’s equations involving
self-energies in the presence of SC and CDW orders will give the modified phonon propagators D1, D2 and can be written as

D1(z, q) = D0(z, q + Q)[1 + �1(z, q)D1(z, q) + �1(z, q)D1(z, q) + �3(z, q)D2(z, q) + �4(z, q)D2(z, q)],

D2(z, q) = D0(z, q − Q)[�5(z, q)D2(z, q) + �6(z, q)D2(z, q) + �7(z, q)D1(z, q) + �8(z, q)D1(z, q)]. (B1)
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The self-energies �1,�2,�3, �4, �5,�6,�7, and �8 in Eq. (B1) are given by

�1(ω, q) = g2

N

∑
k,iωn

[G11(k, iωn)G33(k + q, iωn + iεn) + (k → k − q)]

�2(ω, q) = g2

N

∑
k,iωn

[G12(k, iωn)G34(k + q, iωn + iεn) + (k → k − q)]

�3(ω, q) = g2

N

∑
k,iωn

[G13(k, iωn)G31(k + q, iωn + iεn) + (k → k − q)]

�4(ω, q) = g2

N

∑
k,iωn

[G14(k, iωn)G32(k + q, iωn + iεn) + (k → k − q)]

�5(ω, q) = g2

N

∑
k,iωn

[G33(k, iωn)G11(k + q, iωn + iεn) + (k → k − q)]

�6(ω, q) = g2

N

∑
k,iωn

[G34(k, iωn)G12(k + q, iωn + iεn) + (k → k − q)]

�7(ω, q) = g2

N

∑
k,iωn

[G31(k, iωn)G13(k + q, iωn + iεn) + (k → k − q)]

�8(ω, q) = g2

N

∑
k,iωn

[G32(k, iωn)G14(k + q, iωn + iεn) + (k → k − q)]. (B2)

With a further assumption of small q, we note that �1 ≈ �5, �2 ≈ �6, �3 ≈ �7, and �4 ≈ �8, which gives the final form of
the Dyson’s equations as

D1(z, q) = D0(z, q + Q)[1 + �1(z, q)D1(z, q) + �2(z, q)D1(z, q) + �3(z, q)D2(z, q) + �4(z, q)D2(z, q)],

D2(z, q) = D0(z, q − Q)[�1(z, q)D2(z, q) + �2(z, q)D2(z, q) + �3(z, q)D1(z, q) + �4(z, q)D1(z, q)]. (B3)

The corresponding Feynman diagrams for the above self-energies in Eq. (B3) are shown in Fig. 2. In Eq. (B3) we consider
the strength of electron-phonon interaction, g to be k independent, and the number of lattice sites in the system to be N . The
Dyson’s equations from D1 and D2 can be decoupled to obtain the new renormalized phonon modes by introducing D±(z, q) =
D1(z, q) ± D2(z, q) and then solving for D±. The solution for the frequencies of the new phonon modes are

�2
±(q) = ω2

Q + 2ωQ�±(q), (B4)

where �±(q) represents the renormalized frequencies [also given in Eq. (5)], and �+ = �1 + �2 + �3 + �4 and �− = �1 +
�2 − �3 − �4. The Green’s function matrix elements [G(i, j)] that are appearing in the self-energy expressions in Eq. (B3) are
given by

G11(k, iωn) = A1

(iωn + E−
k )

+ A2

(E−
k − iωn)

+ A3

(E+
k + iωn)

+ A4

(E+
k − iωn)

,

G33(k, iωn) = A5

(iωn + E−
k )

+ A6

(E−
k − iωn)

+ A7

(E+
k + iωn)

+ A8

(E+
k − iωn)

,

G12(k, iωn) = A9

(iωn + E−
k )

+ A10

(E−
k − iωn)

+ A11

(E+
k + iωn)

+ A12

(E+
k − iωn)

,

G34(k, iωn) = A13

(iωn + E−
k )

+ A14

(E−
k − iωn)

+ A15

(E+
k + iωn)

+ A16

(E+
k − iωn)

,

G13(k, iωn) = A17

(iωn + E−
k )

+ A18

(E−
k − iωn)

+ A19

(E+
k + iωn)

+ A20

(E+
k − iωn)

,

G31(k, iωn) = A21

(iωn + E−
k )

+ A22

(E−
k − iωn)

+ A23

(E+
k + iωn)

+ A24

(E+
k − iωn)

,

G14(k, iωn) = A25

(iωn + E−
k )

+ A26

(E−
k − iωn)

+ A27

(E+
k + iωn)

+ A28

(E+
k − iωn)

,

013162-6
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G32(k, iωn) = A29

(iωn + E−
k )

+ A30

(E−
k − iωn)

+ A31

(E+
k + iωn)

+ A32

(E+
k − iωn)

, (B5)

where E±
k is the renormalized electronic dispersion and is given by

E±
k = ± 1√

2

√
β2

k − ηk , (B6)

with

β2
k = E2

1k + E2
2k + �2

1k + �2
2k + 2χ2

k ,

η2
k = [(E1k + E2k )(E1k − E2k ) + (�1k + �2k )(�1k − �2k )]2 + 4χ2

k [(E1k + E2k )2 + (�1k − �2k )2], (B7)

where we use the following simplified notations: ξk = E1k , ξk+Q = E2k , �k = �1k , and �k+Q = �2k . In the right-hand side of
the Eq. (B5), the numerators are given by

A1 = (E1k − E−
k )

(
E2

2k − (E−
k )2 + �2

2k

) − (E2k + E−
k )χ2

k

2E−
k (E−

k − E+
k )(E−

k + E+
k )

,

A2 = (E1k + E−
k )

(
E2

2k − (E−
k )2 + �2

2k

) + (−E2k + E−
k )χ2

k

2E−
k (E−

k − E+
k )(E−

k + E+
k )

,

A3 = −(E1k − E+
k )

(
E2

2k − (E+
k )2 + �2

2k

) + (E2k + E+
k )χ2

k

2E+
k (E−

k − E+
k )(E−

k + E+
k )

,

A4 = −(E1k + E+
k )

(
E2

2k − (E+
k )2 + �2

2k

) + (E2k − E+
k )χ2

k

2E+
k (E−

k − E+
k )(E−

k + E+
k )

,

A5 = (E2k − E−
k )

(
E2

1k − (E−
k )2 + �2

1k

) − (E1k + E−
k )χ2

k

2E−
k (E−

k − E+
k )(E−

k + E+
k )

,

A6 = (E2k + E−
k )

(
E2

1k − (E−
k )2 + �2

1k

) + (−E1k + E−
k )χ2

k

2E−
k (E−

k − E+
k )(E−

k + E+
k )

,

A7 = −(E2k − E+
k )

(
E2

1k − (E+
k )2 + �2

1k

) + (E1k + E+
k )χ2

k

2E+
k (E−

k − E+
k )(E−

k + E+
k )

A8 = −(E2k + E+
k )

(
E2

1k − (E+
k )2 + �2

1k

) + (E1k − E+
k )χ2

k

2E+
k (E−

k − E+
k )(E−

k + E+
k )

,

A9 = �1k
(
E2

2k − (E−
k )2 + �2

2k

) + �2kχ
2
k

2E−
k (E−

k − E+
k )(E−

k + E+
k )

,

A10 = �1k
(
E2

2k − (E−
k )2 + �2

2k

) + �2kχ
2
k

2E−
k (E−

k − E+
k )(E−

k + E+
k )

,

A11 = (−1)
�1k

(
E2

2k − (E+
k )2 + �2

2k

) + (�2k )χ2
k

2E+
k (E−

k − E+
k )(E−

k + E+
k )

,

A12 = (−1)
�1k

(
E2

2k − (E+
k )2 + �2

2k

) + (�2k )χ2
k

2E+
k (E−

k − E+
k )(E−

k + E+
k )

,

A13 = �2k
(
E2

1k − (E−
k )2 + �2

1k

) + �1kχ
2
k

2E−
k (E−

k − E+
k )(E−

k + E+
k )

,

A14 = �2k
(
E2

1k − (E−
k )2 + �2

1k

) + �1kχ
2
k

2E−
k (E−

k − E+
k )(E−

k + E+
k )

,

A15 = (−1)
�2k

(
E2

1k − (E+
k )2 + �2

1k

) + (�1k )χ2
k

2E+
k (E−

k − E+
k )(E−

k + E+
k )

,

A16 = (−1)
�2k

(
E2

1k − (E+
k )2 + �2

1k

) + (�1k )χ2
k

2E+
k (E−

k − E+
k )(E−

k + E+
k )

,

013162-7
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A17 = χk
[
(E1k − E−

k )(−E2k + E−
k ) + �1k�2k + χ2

k

]
2E−

k (E−
k − E+

k )(E−
k + E+

k )
,

A18 = χk
[ − (E1k + E−

k )(E2k + E−
k ) + �1k�2k + χ2

k

]
2E−

k (E−
k − E+

k )(E−
k + E+

k )
,

A19 = (−1)
χk

[
(E1k − E+

k )(−E2k + E+
k ) + �1k�2k + χ2

k

]
2E+

k (E−
k − E+

k )(E−
k + E+

k )
,

A20 = χk
[
(E1k + E+

k )(E2k + E+
k ) − �1k�2k − χ2

k

]
2E+

k (E−
k − E+

k )(E−
k + E+

k )
,

A21 = A17, A22 = A18, A23 = A19, A24 = A20,

A25 = (−1)
χk[(E2k + E−

k )(�1k ) + E1k�2k − E−
k �2k]

2E−
k (E−

k − E+
k )(E−

k + E+
k )

,

A26 = (−1)
χk[(E2k − E−

k )(�1k ) + E1k�2k + E−
k �2k]

2E−
k (E−

k − E+
k )(E−

k + E+
k )

,

A27 = χk[(E2k + E+
k )(�1k ) + E1k�2k − E+

k �2k]

2E+
k (E−

k − E+
k )(E−

k + E+
k )

,

A28 = χk[(E2k − E+
k )(�1k ) + E1k�2k + E+

k �2k]

2E+
k (E−

k − E+
k )(E−

k + E+
k )

,

A29 = (−1)
χk[(E2k + E−

k )(�1k ) + E1k�2k − E−
k �2k]

2E−
k (E−

k − E+
k )(E−

k + E+
k )

,

A30 = (−1)
χk[(E2k − E−

k )(�1k ) + E1k�2k + E−
k �2k]

2E−
k (E−

k − E+
k )(E−

k + E+
k )

,

A31 = χk[(E2k + E+
k )(�1k ) + E1k�2k − E+

k �2k]

2E+
k (E−

k − E+
k )(E−

k + E+
k )

,

A32 = χk[(E2k − E+
k )(�1k ) + E1k�2k + E+

k �2k]

2E+
k (E−

k − E+
k )(E−

k + E+
k )

.

To evaluate the self-energies (�) in Eq. (B2), we first perform the summation over the Matsubara frequency using analytic tool
of contour integration. Next we do the summation over k using numerical tools taking �k = �k+Q, g = 1, and N = 40 000. The
plot of the self-energy in this case is presented in Fig. 3.

APPENDIX C: CALCULATION OF SELF-ENERGY � IN
THE PRESENCE OF INVERSE LIFETIME �

In this Appendix we present the self-energy calculation in
the presence of finite inverse lifetime (�) of the quasiparti-
cles, associated to thermal fluctuations. Here Green’s function
elements become

Gi, j (iωn, k) → Gi, j[iωn + i� sgn(ωn), k]. (C1)

The self-energies � in Eq. (B2) now have the following gen-
eral structure:∑

k,iωn

Ga
k[iωn + i� sgn(ωn)]Gb

k+q[iωn + i� sgn(ωn) + iεn],

(C2)

where either a or b symbolically represent the (i, j)th element
of the Green’s function matrix. To evaluate the Matsubara
summation in this case, we need to use a contour avoiding
the branch cuts defined by Im(z) = 0 and Im(z + iεn) = 0,
as shown in the Fig. 7. Using this contour, we arrive at the

following integrations:

Iγ1 =
∑

k

[∫ ∞

−∞

dω

2π i
nF (ω)Ga

k (ω + i�)Gb
k+q(ω + ε + i�)

]
,

Iγ3 = −
∑

k

[∫ ∞

−∞

dω

2π i
nF (ω)Ga

k (ω − ε − i�)Gb
k+q(ω − i�)

]
,

Iγ2 =
∑

k

[∫ ∞

−∞

dω

2π i
nF (ω)

(
Ga

k (ω − ε − i�)Gb
k+q(ω + i�)

− Ga
k (ω − i�)Gb

k+q(ω + ε + i�)
)]

, (C3)

where nF (ω) = 1/(exp βω + 1) is the Fermi distribution
function. Moreover, β = 1/kBT , where kB is the Boltzmann
constant. Next, in the limit T → 0, the integrals Iγ1 and Iγ3 in
Eq. (C3) become

Iγ1 =
∑

k

[∫ 0

−∞

dω

2π i
Ga

k (ω + i�)Gb
k+q(ω + ε + i�)

]

013162-8
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FIG. 7. Contour for complex Matsubara frequency summation:
Im(z) = 0 and Im(z + iεn) = 0 denote the two branch cuts in the
complex plane. γ1, γ2, and γ3 are the three contours of integration.

Iγ3 = −
∑

k

[∫ 0

−∞

dω

2π i
Ga

k (ω − ε − i�)Gb
k+q(ω − i�)

]
.

(C4)

We replace ω → ω + ε in the first term of Iγ2 and successively
use

lim
ε→0

nF (ω + ε) − nF (ω)

ε
= −δ(ω), (C5)

where δ(ω) is a Dirac δ function with the property∫ ∞
−∞ dω f (ω)δ(ω) = f (0). Thus Iγ2 in Eq. (C3) becomes

Iγ2 =
∑

k

−ε

2π i

[
Ga

k (i�)Gb
k+q(ε + i�)

]
. (C6)

Finally, we evaluate the real frequency (ω) integration in
Eq. (C4) for each of the four self-energies �1, �2, �3, and
�4 in Eq. (B2) by using

∫ 0

−∞
dω

[
1

(ω − x) ∗ (ω − y)

]
= log[x] − log[y]

x − y
, (C7)

where x, y ∈ C. The summation over k is again evaluated
using numerical tools. The re-normalization of the phonon
spectrum in this case is given by the real part of the
self-energy. The real part of the self-energy is plotted for
different sets of SC order, �, and CDW order in Figs. 4
and 5.
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