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Anomalous role of information diffusion in epidemic spreading
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A widely held belief in network epidemiology is that information diffusion makes individuals aware of
the epidemic and thus drives them to seek protections from nonpharmaceutical or pharmaceutical resources,
which can help suppress its spread. However, as the COVID-19 pandemic has revealed, excessive information
diffusion can trigger irrational acquisition and hoarding behaviors, which can lead to shortages of resources even
for those in urgent need, consequently, worsening disease spreading. To develop a quantitative understanding
of the effect of information diffusion on epidemic spreading, subject to allocations of limited resources, has
become an urgently important problem with broad implications. We construct a multiplex network framework
to characterize the complex interplay among resource allocation, information diffusion, and epidemic spreading,
and develop a microscopic Markov chain theory to analyze their coevolution dynamics. There are two main
findings. Firstly, if infected individuals have a large recovery probability, information diffusion plays the
expected “normal” role of suppressing the epidemic. However, if the recovery probability is low, information
diffusion can anomalously worsen the spread, regardless of the available resources insofar as they are limited.
Secondly, different types of resources can lead to distinct phase transitions underlying the epidemic outbreak
when the recovery probability is low: with limited cure-focused resources, the phase transition is of the second
order, but if resources are of the protection type, the transition becomes first order, and a hysteresis loop emerges.
The generality of the findings is established through simulations of synthetic and empirical three-layer networks
with results in agreement with the theoretical predictions.

DOI: 10.1103/PhysRevResearch.3.013157

I. INTRODUCTION

In an epidemic or global pandemic, such as SARS [1],
H1N1 influenza [2], and the ongoing novel coronavirus
(COVID-19) pandemic [3,4], the availability and distribution
of different types of resources can play an important role
in suppressing the spread. There are two main categories of
resources: public and individual. Public resources are accessi-
ble to all individuals in society, and they include hospitals,
government testing and monitoring facilities, and different
levels of disease control agencies. Individual-based resources,
by definition, depend on the individual and are typically not
equally distributed in society. The possession of resources
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is largely determined by information spreading. In a sudden
outbreak, individuals who are fully aware of the epidemic at
the earliest stage tend to pursue and secure more resources
required for preventing infection than those who are unaware
of the disease. In the real world, available medical resources,
whether protection or cure focused, are limited. The diffusion
of disease-related information may cause a public panic and
induce depletion of the limited resources in an undesired and
even harmful manner. For example, in the COVID-19 pan-
demic, information has spread extremely rapidly around the
globe, sending susceptible individuals to obtain personal pro-
tective equipment in an irrational manner. In the early stage,
there was a significant shortage of face masks in many coun-
tries for most individuals except for a few with a high level
of awareness who secured a sufficient supply. The fear cre-
ated by the pandemic stimulated irrational behaviors such as
“panic buying” and hoarding [5]. As a result, in many places,
resources were depleted, causing severe shortages even for
frontline health workers and patients who needed resources
most [6]. Situations can thus arise where information diffu-
sion would likely worsen the epidemic by depriving certain
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individuals of resources and making them more vulnerable to
infection. Because of the supply shortage, public distribution
of resources to society in an equal and fair way becomes
unlikely or even impossible. Instead, individuals rely on in-
formation sharing and social connections to obtain a share of
the resources. To understand the effects of resource and infor-
mation sharing on epidemic spreading at the individual level
is of paramount importance. Because of the lack of empirical
data associated with such effects, a viable way at present is
to resort to mathematical modeling, which has been well jus-
tified as an effective epidemic forecasting tool [7,8]. In spite
of the large body of literature on network epidemic modeling,
to our knowledge, a framework incorporating both resource
distribution and information diffusion is not available. More
specifically, how information diffusion interacts with resource
distribution to affect epidemic spreading in terms of the in-
cidence, outbreak, and phase transition and whether or not
an optimal strategy can be devised for resource usage have
become outstanding questions. A good understanding of how
the responses or behaviors of individuals affect the spreading
dynamics can facilitate effective government policymaking
in terms of resource allocation [9], controlled management
of public behaviors, and information dispensing [10–12] to
contain epidemic spreading.

To place our contribution in the proper context, we present
a brief survey of what is known about the effects of in-
formation and resource sharing on epidemic spreading. In
the modern era, when an outbreak occurs, information about
the epidemic diffuses rapidly through online social media
and digital communication channels, which can profoundly
change individual behaviors and steer the dynamical pro-
cess of spreading, for better or worse. For example, infected
individuals would inform their friends about the disease,
spreading disease-related information to various social net-
works [13]. Once an individual is aware of the disease, to
prevent from being infected, he or she may take some pro-
tective measures by exploiting medical resources or changing
social behaviors such as practicing social distancing or under-
going home quarantine, which can alter the dynamical process
of epidemic spreading [14–17]. There have been previous
studies on the interacting contagion dynamics between the
epidemic and awareness. For example, if the population is
well mixed, a result [18] is that the disease-related information
diffusion can reduce the epidemic size but leaves the epidemic
threshold unchanged. As the social exchange of information
occured in cyberspace and the actual disease spreading took
place in the physical space, multiplex networks were intro-
duced [13,19,20] to study the coupled dynamical processes
of epidemic spreading and information diffusion, with the
general finding that information exchange can have dramatic
effects on the epidemic outbreak. The influence of diffusion
characteristics was also studied [21,22]. More recently, the ef-
fect of the emotional tendency [10,23] on spreading dynamics
has been investigated.

Resources play the uttermost important role in suppressing
epidemic spreading; the containment of an epidemic cannot
be achieved without the necessary health resources [24]. Gen-
erally, infected individuals use various medical resources, but
the healthy population is responsible for the reproduction of
resources. From a modeling perspective, the consumption and

regeneration of resources can be incorporated into the clas-
sical susceptible-infected-susceptible (SIS) framework. One
result was that an epidemic may go out of control and be
explosive when the cost of recovery of sick individuals is
above a critical value [25]. The role of investment of funds in
making the public aware [26] and the usage strategy of medi-
cal resources in epidemic spreading were also studied [27,28].
Public resources notwithstanding, a common scenario is that
individuals gain support and resources through their social
networks from family members and friends [29,30]. In this
regard, a previous paper [31] explored how resource alloca-
tion among neighbors in a social network and the adaptive
evolution of the network topology [32] affect the epidemic
outbreak.

In this paper, we articulate a multiplex network model to
investigate the coevolution dynamics of information diffusion,
resource allocation, and epidemic spreading. To characterize
the resource efficacy, we designate a parameter in the unit in-
terval, whose ranges of variation naturally divide the resources
into two kinds: protection and cure focused. Employing the
microscopic Markov chain (MMC) theory, we predict the
existence of an optimal type of resources to contain epidemic
spreading, depending on the circumstances. In particular, we
identify two distinct cases: infected individuals have a rela-
tively large or small recovery probability. In the former case,
protection-focused resources are more effective at suppress-
ing the epidemic, but for the latter, cure-focused resources
are more helpful. Depending on the recovery probability, in-
formation diffusion can play opposite roles: it can suppress
spreading if this probability is large, but it can anomalously
worsen the epidemic in the case of a small recovery proba-
bility. For the latter case, the nature of the phase transition
underlying the epidemic outbreak can be characteristically
distinct: a continuous, second-order type when allocated re-
sources are cure focused and a discontinuous, first-order type
with the emergence of a hysteresis loop when resources
are protection focused. These results provide insights into the
anomalous effect of information diffusion in the early phase
of COVID-19. Our findings suggest, as a quantitative level,
the uttermost importance of enhancing the recovery rate in
suppressing the epidemic.

II. INFORMATION-RESOURCE-EPIDEMIC
COEVOLUTION MODEL

Figure 1(a) illustrates, qualitatively, the interplay among
information diffusion, resource allocation, and epidemic
spreading. The emergence of an epidemic in a physical con-
tact network triggers the diffusion of pertinent information
in the corresponding online-offline social network, and the
dissemination of information drives aware individuals to seek
resource support.

During the outbreak of an epidemic, resources are always
limited and generated by the healthy population as infected
individuals have lost their productivity. Healthy individuals,
thus, have more advantages by securing resource support and
bear the cost to benefit others [5]. In this case, individu-
als are more likely to and it is also convenient for them to
gain support through their social networks from family mem-
bers and friends [29]. (Our paper focuses on this situation
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FIG. 1. Illustration of the information-resource-epidemic coevo-
lution spreading model. (a) Mutual interactions among epidemic
spreading, information diffusion, and resource allocation. (b) Pro-
posed three-layer multiplex network, where the nodes are divided
into unaware (U) and aware (A) states in the information layer
(A) and into susceptible (S) and infected (I) states in the epidemic
layer (C). The orange arrows represent that susceptible individuals
distribute resources to their aware neighbors in the resource layer
(B). The edges between nodes represent the online (or offline) social
relationship in the information (or resource and epidemic) layer(s).
The vertical dashed lines indicate the one-to-one correspondence
among the nodes in the three layers. (c)–(e) The transition prob-
ability trees for the states AI, AS, and US, respectively, at time
step t .

of resource allocation.) The resource amount possessed by
individuals in turn affects the epidemic spreading process,
where protection-focused resources contribute to reducing the
infection probability of aware individuals, while cure-focused
resources serve to enhance the recovery probability of infected
individuals.

To model the complex interplay among information dif-
fusion, resource distribution, and epidemic spreading, a
multiplex network of three layers is appropriate, as shown in
Fig. 1(b). Suppose there are N individuals in the system, each
belonging simultaneously to all three layers. Each network
layer thus has N nodes, and there is a one-to-one correspon-
dence among the nodes in the three layers. For simplicity,
we focus on the case where the networks in all three layers
are unweighted and undirected. The processes of information
diffusion, resource allocation, and epidemic spreading occur
in the A, B, and C layers, respectively. In the information
layer, the various edges represent the online or offline so-
cial relationships (e.g., friend relationships on Facebook). In
the epidemic layer, the edges characterize the offline social
relationships, e.g., with colleagues, family members, or neigh-
bors. Resources are physically distributed via offline social
relationships, rendering the identical topology of the resource
and epidemic layers, as indicated in Fig. 1(b). Let A = [ai j]
be the adjacency matrix for the information layer: if there is a
communication relation between individuals i and j, we have
ai j = 1 in the information layer; otherwise, ai j = 0. Similarly,
let B = [bi j] denote the matrix for the resource and epidemic

layers: if individuals i and j have an offline relationship
through which physical contacts occur, we have bi j = 1 in the
resource and epidemic layers; otherwise, bi j = 0. The mean
degree of the epidemic layer and the information layer are
denoted by 〈k〉 and 〈k1〉, respectively.

To quantitatively describe the dynamics in the information
and epidemic layers, we adopt the standard unaware-aware-
unaware (UAU) [13] and susceptible-infected-susceptible
(SIS) processes, respectively, where A (U) describes the situ-
ation where an individual is aware (unaware) of the epidemic,
and I (S) specifies that an individual is infected (susceptible).
After an epidemic starts, an individual can be informed of the
virus spreading by an aware neighbor in the information layer.
If an individual has already been infected, he or she becomes
aware.

Mathematically, there are four state combinations: aware
and infected (AI), aware and susceptible (AS), unaware and
susceptible (US), and unaware and infected (UI). Since this
paper focuses on how the interplay between information dif-
fusion and resource distribution affects epidemic spreading,
we follow the standard modeling approach by ignoring the
latent time from the UI to the AI state and assuming that,
once an individual is infected, he or she becomes aware of the
disease immediately [13,23]. As a result, at any time during
the process, an individual can be in one of the three different
states: AI, AS, or US.

The coevolution of the dynamical processes in the three
layers is described as follows. At the beginning of each time
step t , infected individuals are unable to generate resources;
only susceptible individuals, i.e., those in the AS or US state,
are able to generate r units of resources. For simplicity, we set
r = 1. Next, resource allocation occurs, followed by epidemic
spreading and information diffusion.

In the resource layer, aware individuals seek resource
support from their susceptible neighbors. As a result, any
susceptible individual whose neighborhood contains at least
one aware individual distributes one unit of resource equally
to his or her aware neighbors and himself or herself. After
resource allocation at time t , the resource amount possessed
by individual i is Ri(t ), which will affect the infection and the
recovery probabilities.

In the epidemic layer, individual i is infected by an infected
neighbor j with the probability β if i is in the US state at time
t , but the probability becomes βεRi (t ) if individual i is in the
AS state, where 0 � ε � 1 is a parameter characterizing the
efficacy of the resources. That is, if the individual is aware of
the disease and has consequently secured a certain amount of
resources to protect himself or herself, the infection probabil-
ity will be reduced by the factor εRi (t ). Once an individual in
the US or AS state has been infected, the state of the individual
will become AI at time t + 1.

In the infected state, an individual j will recover with the
probability 1 − μ(1 − ε)Rj (t ), where μ ∈ [0, 1] is a param-
eter characterizing the dependence of recovery on medical
resources. It is worth noting that this definition is different
from the conventional one in which μ is directly the recovery
probability. In our definition, the larger the value of μ, the
smaller the recovery probability. The strongest and weakest
recovery probabilities occur for μ = 0 and 1 for fixed values
of ε and Rj (t ), respectively.
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If j does not recover at t , he or she will remain in the AI
state at t + 1.

The physical meaning of the parameter ε can be described
as follows. If its value is close to zero, the main effect of
the resources will be on the infection probability; it will
be drastically reduced insofar as there is a certain amount
of resources. However, a near zero ε value means that the
resources will have little effect on the recovery probability
because it is approximately (1 − μ) and independent of the
resource amount. Resources of this type thus serve mainly the
purpose of protection. On the contrary, if the value of ε is
close to one, the probability of recovery will increase with the
resource amount, but the infection probability will hardly be
affected. Resources of this type are cure focused.

In a word, aware individuals need to consume the received
resources to protect themselves from being infected or to
recover. For the individuals in the US state, most of their
resources are allocated to their aware neighbors with the on-
going epidemic spreading. It is thus reasonable to assume that
individuals consume all their resources at the current time
step.

In the information layer, the spreading dynamics are of
the standard SIS type; aware individuals inform their unaware
neighbors with probability λ. An aware individual may forget
or simply ignore the epidemic to switch into the U state and
seek no resources, and this occurs with probability δ. After
information diffusion is completed at time t to generate a new
set of aware and unaware individuals, aware individuals will
seek resource support from neighbors at the next time step.

III. THEORETICAL ANALYSIS BASED ON MMC

Our theoretical method consists of using the MMC theory
[13] to analyze the coupled spreading dynamics in the three-
layered network.

At each time step t , individual i can be in one of three pos-
sible states: AI, AS, and US with probability ρAI

i (t ), ρAS
i (t ),

and ρUS
i (t ), respectively, where ρAI

i (t ) + ρAS
i (t ) + ρUS

i (t ) =
1. After resources have been allocated in the resource layer,
the resource amount possessed by individual i when he or she
is in the AI (AS or US) state is RAI

i (t ) [RAS
i (t ) or RUS

i (t )] at
time t , which can be computed as

RAI
i (t ) =

∑
j

bi jρ
S
j (t )

1∑
l �=i b jlρ

A
l (t ) + 2

, (1)

RAS
i (t ) =

∑
j

bi jρ
S
j (t )

1∑
l �=i b jlρ

A
l (t ) + 2

+ 1∑
j bi jρ

A
j (t ) + 1

, (2)

RUS
i (t ) = 1∑

j bi jρ
A
j (t ) + 1

, (3)

where ρS
j (t ) = ρAS

j (t ) + ρUS
j (t ), and ρA

l (t ) = ρAI
l (t ) +

ρAS
l (t ).

For individual i in the AI state, he or she can get re-
sources from susceptible neighbors in the manner described
by Eq. (1), where the denominator on the right side represents
that the susceptible individual j distributes resources to indi-
vidual i, to himself or herself, and to other aware neighbors.

For individual i in the AS state, the resource amount contains
two parts: the amount received from susceptible neighbors and
the remaining amount after distributing one unit of resources
to every other aware individual. For individual i in the US
state, the resource amount is the amount left after distributing
one unit of resources to every other aware neighbor. The mean
resource amount of individuals in each state can be written as

〈Rcom〉(t ) =
∑

i ρ
com
i (t )Rcom

i (t )∑
i ρ

com
i (t )

, (4)

where the superscript com represents the state combinations
AI, AS, or US.

After the resource layer completes the allocation, both the
amount of resources possessed by individual i and the state he
or she is in will affect the infection probability. The probabil-
ity of individual i not being informed by any aware neighbors
in the information layer ri(t ) and the probabilities of i not
being infected by any infected neighbors in the epidemic
layer when he or she is aware and unaware qA

i (t ) and qU
i (t ),

respectively, are

ri(t ) =
∏

j

[
1 − ai jρ

A
j (t )λ

]
, (5)

qA
i (t ) =

∏
j

[
1 − bi jρ

AI
j (t )βεRAS

i (t )
]
, (6)

qU
i (t ) =

∏
j

[
1 − bi jρ

AI
j (t )β

]
, (7)

which constitute the base for constructing the transition
probability trees shown in Figs. 1(c)–1(e), which illustrate
the transition probabilities among the possible states after
resource allocation, epidemic spreading, and information dif-
fusion of each time step for individual i. This leads to the
set of coupled MMC equations for the information-resource-
epidemic dynamics as

ρAI
i (t + 1) = ρAI

i (t )
[
μ(1 − ε)RAI

i (t )
]

+ρAS
i (t )

[
1 − qA

i (t )
] + ρUS

i (t )
[
1 − qU

i (t )
]
,

(8)

ρAS
i (t + 1) = ρAI

i (t )
[
1 − μ(1 − ε)RAI

i (t )
]
(1 − δ)

+ ρAS
i (t )qA

i (t )(1 − δ)

+ ρUS
i (t )qU

i (t )[1 − ri(t )], (9)

ρUS
i (t + 1) = ρAI

i (t )
[
1 − μ(1 − ε)RAI

i (t )
]
δ

+ρAS
i (t )qA

i (t )δ + ρUS
i (t )qU

i (t )ri(t ).

(10)

The fractions of aware and infected individuals at time t , ρA(t )
and ρI(t ), can be computed from

ρA(t ) =
∑

i

[
ρAS

i (t ) + ρAI
i (t )

]
N

and

ρI(t ) =
∑

i ρ
AI
i (t )

N
, (11)

where N is the total number of individuals.
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When the system reaches a steady state, we have ρAI
i (t +

1) = ρAI
i (t ) = ρAI

i , with a similar condition holding for
ρAS

i (t + 1), ρUS
i (t + 1), RAI

i (t + 1), RAS
i (t + 1), and RUS

i (t +
1). Near the critical transmission probability βc, the final
probability that individual i is in the infected state satisfies
the relation ρAI

i = θi � 1. Neglecting high-order terms of θ j ,
we get

qA
i ≈ 1 − βεRAS

i

∑
j

bi jθ j,

qU
i ≈ 1 − β

∑
j

bi jθ j . (12)

Inserting these expressions into Eq. (8), we get

θi = θi
[
μ(1 − ε)RAI

i
] + ρAS

i βεRAS
i

∑
j

bi jθ j + ρUS
i β

∑
j

bi jθ j .

(13)

With ρAS
i = ρA

i − ρAI
i and ρUS

i = 1 − ρA
i , we rewrite

Eq. (13), by neglecting the second-order term
−θiε

RAS
i

∑
j bi jθ j , as follows

∑
j

{[
1 − (

1 − εRAS
i

)
ρA

i

]
bi j − 1 − μ(1 − ε)RAI

i

β
δi j

}
θ j ≈ 0,

(14)
where δi j is the element of the identity matrix.

In a multiplex network where the information and epidemic
layers are different and possess a homogeneous structure (e.g.,
random or random-regular networks), the probability that in-
dividual i is in the aware (or infected) state when the system
has reached the steady state satisfies ρA

i ≈ ρA (or ρI
i ≈ ρI).

The resource amount RAS
i (or RAI

i ) possessed by individual
i when he or she is in the AS (or AI) state can be expres-
sed as

RAS
i ≈ RAS = 〈k〉ρS 1

(〈k〉 − 1)ρA + 2
+ 1

〈k〉ρA + 1
, (15)

RAI
i ≈ RAI = 〈k〉ρS 1

(〈k〉 − 1)ρA + 2
, (16)

where ρS = 1 − ρI, and 〈k〉 is the mean degree of the epi-
demic layer. Equation (14) can then be written as

∑
j

{[
1 − (

1 − εRAS)
ρA]bi j − 1 − μ(1 − ε)RAI

β
δi j

}
θ j ≈ 0.

(17)

Equation (17) thus becomes an eigenvalue problem for the
matrix H given by

H = [
1 − (

1 − εRAS)
ρA

]
B, (18)

whose elements are

hi j = [
1 − (

1 − εRAS)
ρA]

bi j . (19)

The critical transmission probability βc is the minimum value
β for the onset of the epidemic and can be obtained as

βc ≈ 1 − μ(1 − ε)RAI

�max(H)

= 1 − μ(1 − ε)RAI

[
1 − (

1 − εRAS
)
ρA

]
�max(B)

≈ 1 − μ(1 − ε)RAI

[
1 − (

1 − εRAS
)
ρA

]〈k〉 , (20)

where �max(H) and �max(B) are the largest eigenvalues of the
adjacency matrices H and B, respectively. When the epidemic
layer is a homogeneous network, the largest eigenvalue of its
adjacency matrix is close to the mean degree of the network
[33]: �max(B) ≈ 〈k〉. It is worth noting that the approximation
of βc in Eq. (20) is based on the assumption that the infor-
mation and epidemic layers are different, but they possess a
homogeneous structure.

In Eq. (20), the dynamical process of information diffusion
(i.e., ρA) and resource allocation (i.e., ε, RAS, and RAI) will
have an effect on the critical transmission probability.

We analyze the optimal type of resources to maximize the
critical transmission probability. For μ = 0, βc decreases as ε

increases, so the optimal value of ε is εopt = 0. For μ > 0, we
have

∂βc

∂ε
= μRAI(1 − ε)RAI−1

(
1 − ρA + ρAεRAS) − [

1 − μ(1 − ε)RAI]
ρARASεRAS−1

[
1 − (

1 − εRAS
)
ρA

]2〈k〉
. (21)

For a sufficiently large value of 〈k〉, both values of RAI and RAS

are >1 (verified in Appendix A). Equation (21) stipulates that
the value of ∂βc/∂ε must be positive for ε = 0 and negative
for ε = 1. An optimal value εopt thus exists to maximize
the critical transmission probability, which can be calculated
from

∂βc

∂ε

∣∣∣∣
ε=εopt

= 0. (22)

IV. RESULTS

We simulated the information-resource-epidemic coevolu-
tion spreading model to unravel how information diffusion

affects the epidemic dynamics under different resource sup-
port in real and synthetic multiplex networks. Our real
multiplex network was taken from the combinatorial analy-
sis of multiple networks [34], where the actual data consist
of five kinds of online and offline social relationships:
Facebook, leisure activities, work, coauthorship, and lunch
meetings, among the computer science department employees
at Aarhus. There are 61 nodes in total. We constructed the
identical resource and epidemic layers by combining four
out of the five types of social relationships: leisure activities,
work, coauthorship, and lunch meetings, where the number
of edges is 309 in each layer. The information layer is con-
structed based on all the online and offline social relations,
where the number of edges is 353. The parameters of the
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FIG. 2. Evolution of the resource amount of individuals in different states for the real three-layer multiplex network. (a) Evolution of the
spreading sizes of the epidemic and information awareness, which increase rapidly initially and approach a steady value. (b) Time evolution
of the average resource amount of individuals in different states. Each data point is the average result of 5000 realizations of a Monte Carlo
simulation, and the solid traces are the predictions of the microscopic Markov chain (MMC) theory. The error bars indicate the standard
deviations. (c) Visualization of the evolution of the dynamical state and the resource amount of each node at three time instants. In the
information layer, the pink and blue colors represent the aware and unaware nodes, respectively. In the epidemic layer, the red and light blue
colors denote the infected and susceptible individuals, respectively. The size of each node in the two layers represents the resource amount
possessed by the node after resource allocation. The initial fraction ρ0 of infected nodes is 0.1. Other parameters are N = 61, 〈k1〉 = 11.57,
〈k〉 = 10.13, β = 0.4, μ = 0.8, ε = 0.5, λ = 0.2, and δ = 1.0.

multiplex network and the degree distribution of each layer
are illustrated in Appendix B.

It is useful to examine the time evolution of the resource
amount in different states. Figure 2(a) shows a typical evolu-
tion pattern of the densities of infected and aware populations
for a typical parameter setting, where both densities ρI and
ρA increase with time rapidly and approach a respective con-
stant value after a few time steps. The asymptotic constant
density value of ρI is slightly smaller than that of ρA, indi-
cating a significant overlap between the aware and infected
individuals. As the epidemic and aware sizes increase, the

average resource amounts possessed by individuals in the
three combined states (AI, AS, and US) decrease, as shown in
Fig. 2(b). On average, individuals in the AS state possess the
most resources, and those in the US state have the least. This
behavior is consistent with the real situation where the aware
and healthy individuals have more advantages by securing
resource support than the individuals who are unaware or
infected. The theoretical predictions agree with the simulation
results.

At the initial stage (t = 0), there is only a small fraction
of individuals in the AI state, and the others are in the US

013157-6



ANOMALOUS ROLE OF INFORMATION DIFFUSION IN … PHYSICAL REVIEW RESEARCH 3, 013157 (2021)

state. There are no individuals in the AS state when resource
allocation starts at t = 0, as it occurs at the beginning of
each time step. As a result, the average resource amount of
individuals in the AS state is calculated from t = 1, as some
susceptible individuals have been informed by this time.

To visualize the evolution of the resource distribution, we
display the resource amount possessed by each node for three
time instants from one realization of a Monte Carlo simula-
tion, as shown in Fig. 2(c), which is represented by a circle
at each node with its size indicating the resource amount.
Initially (t = 0), there are a few aware and infected indi-
viduals who possess significantly more resources than other
individuals in the information and epidemic layers. As the
dynamics evolve, more individuals acquire resource support,
and the average resource amount decreases.

We investigated the role of resource efficacy as character-
ized by the parameter ε in epidemic spreading. Figures 3(a)
and 3(b) show, for β = 0.15 and 0.5, respectively, ρI vs ε.
In the regime of small values of ε where resources are of the
protection type, the asymptotic value of ρI depends strongly
on the value of the recovery parameter μ, where a small value
of μ can lead to a small epidemic size. This is intuitively
expected because of the relatively larger recovery probability
in this case. Specifically, for a large value of μ (e.g., μ = 0.8),
the epidemic size is large for a small value of ε, which
indicates that, when the recovery probability is small, the
protective type of resources is ineffective at suppressing the
epidemic. As the value of ε increases, the recovery probability
is enhanced, and this effectively brings down the epidemic
size, regardless of the value of the infection rate, as shown
in Figs. 3(a) and 3(b). Comparing all six curves in Figs. 3(a)
and 3(b), we see that, if the value of μ is small so that the
recovery probability is high, the epidemic size maintains at a
small value in the full range of the ε value, but if the value of
μ is relatively large, insofar as the value of ε is large enough
to enhance the recovery probability, the epidemic size is also
small. Note that, in Figs. 3(a) and 3(b), the data points are
the result of direct network Monte Carlo simulations, but the
various solid curves are not ones that connect the data points;
they are actually the predictions of our MMC theory. The
excellent agreement between numerics and theory exhibited
in Figs. 3(a) and 3(b) attests to the validity and the predictive
power of the MMC theory as applied to multiplex networks.

The curve of ρI vs ε for the relatively small value of μ in
Fig. 3(a) reveals a phenomenon: if the infection probability is
low (e.g., β = 0.15) and the recovery is mostly spontaneous
without much medical help (e.g., μ = 0.2), there exists an
optimal value of ε for which the epidemic size is close to zero.
To investigate this phenomenon in a more systematic way,
we focus on a fundamental quantity underlying any epidemic
spreading process: the critical value of the infection rate, de-
noted as βc, above which there is an outbreak but below which
the epidemic size approaches zero asymptotically. A larger
value of βc signifies that the system requires a higher threshold
infection probability to kick off an epidemic, deeming the
system more resistant or resilient to any outbreak, which is
desired. A viable way to assess the value of βc subject to
resources is to calculate the epidemic size in the parameter
plane (ε, β ) for any specific value of μ. For computational
feasibility, we take advantage of our MMC theory to make the
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FIG. 3. Effects of resource efficacy on epidemic spreading.
(a) and (b) The final epidemic size ρI vs ε for three different values
of μ for β = 0.15 and 0.5, respectively. Each data point is the result
of averaging 5000 Monte Carlo realizations, and the curves are the
theoretical predictions. The error bars represent standard deviations.
(c)–(e) Color-coded values of ρI in the parameter plane (ε, β ) for
μ = 0, 0.4, and 0.8, respectively, which are calculated from the
microscopic Markov chain (MMC) theory. The black curves are
contours of ρI. The red curve gives the dependence of the critical
infection rate βc on ε. (f) The curve of βc vs ε for six different
values of μ. The position of the maximum value of βc on each
curve is obtained from Eq. (22) in our MMC theory, and they are
connected by the red dashed line. The initial infection density is
ρ0 = 0.01. The networks of information and epidemic layers have
different random-regular (RR) topology, each of size N = 1000 and
average degree 〈k〉 = 〈k1〉 = 10. Other parameter values are λ = 0.2
and δ = 1.0.

calculation. Figures 3(c)–3(e) show the color-coded values of
the epidemic size in the (ε, β ) plane for three representative
values of μ, respectively, where the red curve in each case
represents the dependence of βc on ε. For μ �= 0, an optimal
type of resources emerges that maximizes the value of βc, as
exemplified in Figs. 3(d) and 3(e) and further demonstrated in
Fig. 3(f), the plots of βc vs ε for six values of μ. Note that the
optimal value of ε increases as the value of μ is increased,
reinforcing the observation that the recovery probability is
key to suppressing the epidemic. Especially, for small values
of μ that make the recovery rate high already, the optimal
resource tends to be of the protection type. However, for large
values of μ associated with which the spontaneous recovery
rate without any resource is low, the optimal resource is of the
cure type, which serves to enhance the overall recovery rate.
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FIG. 4. Resource-induced anomalous epidemic behavior, phase
transitions, and emergence of a hysteresis loop. (a) and (b) For
μ = 0.6 and 1.0, respectively, information and epidemic spreading
sizes (ρA and ρI, respectively) vs λ for β = 0.15 and ρ0 = 0.01. As
explained in the text, the behavior in (a) is expected, but that in (b) is
anomalous. (c) and (d) The epidemic size vs β for μ = 0.95 and 1.0,
respectively. A second-order phase transition arises for ε = 0.8, but
the transition is of the first-order type for ε = 0.3, associated with
which is a hysteresis loop. (e) and (f) Color-coded value of ρI in
the parameter plane (ε, β ) for μ = 0.95 and 1.0, respectively. Each
data point is the result of averaging 5000 Monte Carlo realizations,
and the solid and dashed curves are the theoretical predictions. The
error bars indicate standard deviations. For (c)–(f), the value of λ is
fixed at 0.2. The networks are of the random-regular (RR) type with
N = 1000, 〈k〉 = 〈k1〉 = 10, and δ = 1.0.

While the results in Figs. 3(c)–3(f) are obtained from a
specific value of the initial infection density ρ0, we have
verified that the existence of an optimal type of resources to
maximize the system resilience to epidemic spreading is not
affected, even for larger values of ρ0 (Appendix C).

How do the variations in the spreading probability λ in
the information layer affect the epidemic size and the phase
transitions? It is common sense that the spread of the re-
lated information can raise the awareness of individuals and
promote them to take protective measures, which helps to
contain the epidemic. Simulation results testing this behavior
are shown in Fig. 4(a) for μ = 0.6 and three values of ε.
It can be seen that, as the value of λ is increased, the final
epidemic size ρI in the epidemic layer decreases continuously,
as represented by the three dashed theoretical curves and the
corresponding data points. Associated with the decrease in ρI,

the final size ρA of aware individuals in the information layer
increases continuously, as indicated by the three solid curves
predicted by our theory and the corresponding simulation data
points. However, as shown in Fig. 4(b), for a larger value of
μ, e.g., μ = 1.

As described in Appendix C, for ε = 0.5, the corre-
sponding resources are unable to contain the spreading.
Consequently, a full outbreak will occur. In fact, the outbreak
will persist for ε < 0.5 because, as shown in Fig. 3(e), re-
source distribution characterized by a smaller ε value will
lead to a larger infection size for relatively large values of
μ. For ε > 0.5 (e.g., ε = 0.7, 0.8, or 0.9), the resources are
of the cure type. In this case, an anomalous behavior arises:
as the spread in the information layer is intensified, more
individuals in the epidemic layer are infected. The reason
that an anomalous phenomenon occurs lies in the shortage
of resources: as more individuals are aware of the epidemic,
panic sets in, and they resort to an irrational acquisition be-
havior, thereby depleting the medical resources. The resource
shortage even for frontline health workers leaves susceptible
individuals more vulnerable to the disease, thereby increasing
the epidemic size.

Our theory predicts another striking phenomenon, as ver-
ified by simulations, that an enhancement of the resource
efficacy can lead to a characteristic change in the nature of
the phase transition underlying the epidemic outbreak. In epi-
demiology, an outbreak as represented by a nonzero size of
the final epidemic size ρI will not arise until the infection
probability β exceeds a critical value, i.e., βc, giving rise to a
phase transition. If ρI increases discontinuously and abruptly
from zero to a positive value at βc, the phase transition is of
the first-order type. On the contrary, a continuous increase
in the ρI value from zero as β passes through βc leads to a
second-order phase transition. Figures 4(c) and 4(d) show, for
μ = 0.95 and 1.0, respectively, ρI vs β, each for two values
of ε.

It can be seen that, in both panels, for ε = 0.8, which
corresponds to the situation where cure-focused resources are
distributed, the phase transition is of the second-order type.
However, for ε = 0.3, where the resources allocated are of
the protection type, the transition occurs at a smaller critical
point, and it is of the first-order type.

In this case, the networked system becomes characteristi-
cally more prone to the epidemic, as even a weaker infection
probability can cause the sudden emergence of a larger epi-
demic size. Associated with the first-order phase transition is
a hysteresis loop, as indicated by the dashed curve of ρI vs β

in its descending direction.
The error bars of the simulation results in Figs. 4(c) and

4(d) are displayed in Appendix D. A more comprehensive
picture of the epidemic outbreak can be obtained by exam-
ining systematically the theoretically predicted ρI value in the
parameter plane (ε, β ), as shown by the color-coded value of
ρI in Figs. 4(e) and 4(f) for μ = 0.95 and 1.0, respectively. In
both cases, for large values of ε, in the vertical direction (i.e.,
as the value of β is changed for a fixed value of ε), there is a
gradual change in the color from dark blue to green or yellow
and vice versa, signifying a second-order phase transition.
However, for small values of ε, in the vertical direction, there
is a sudden change in the color from dark blue to bright yellow
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FIG. 5. Generality of anomalous epidemic behavior, phase tran-
sitions, and hysteresis loop in a broader class of synthetic and real
multiplex networks. (a) Epidemic size ρI vs λ for β = 0.15 and
ρ0 = 0.01 for three types of combinations of information-epidemic
layers: RR-RR, SF-RR, and SF-SF, where RR and SF stand for
random-regular and scale-free, respectively. The value of ε is 0.2
for μ = 0.6 and 0.8 for μ = 1.0. (b) Epidemic size ρI vs β for
λ = 0.2 and μ = 1 for SF-SF. (c) and (d) Epidemic size ρI vs λ

and β for the real-world multiplex network in Fig. 2, respectively.
In (c), the initial fraction of infection is ρ0 = 0.1. In (d), λ = 0.2 and
μ = 1. In all panels, the symbols are the results of averaging 5000
Monte Carlo realizations, and the curves (solid or dashed) are the
predictions of the microscopic Markov chain (MMC) theory. Other
network parameters are N = 1000, the algebraic exponent of degree
distribution of SF networks 3, 〈k〉 = 〈k1〉 = 10, and δ = 1.0.

and vice versa, the signatures of a first-order phase transition.
The solid and dashed red curves are βc vs ε in the ascending
and descending directions of varying β, as predicted by our
MMC theory. For a fixed value of ε, the vertical gap between
the red solid and dashed curves, if there is one, attests to the
existence and quantifies the extent of a hysteresis loop. We
also obtained consistent results about the anomalous epidemic
behavior and phase transition for different values of δ, which
are presented in Appendix C.

Finally, we demonstrate the generality of the phenomena
depicted in Fig. 4 for broader multiplex networks: three types
of synthetic networks and the real-world network in Fig. 2.

We studied the standard scale-free (SF) networks with al-
gebraic degree exponent three. In particular, the network starts
with a small number of mutually connected nodes, and at
each time step, a new node is added which connects with five
existing nodes according to the preferential attachment rule.

As shown in Fig. 5(a), the epidemic size ρI vs λ, the
phenomenon that information can either suppress (e.g., for
μ = 0.6) or promote (e.g., for μ = 1) epidemic spreading oc-
curs, regardless of the specific type of the multiplex network.

TABLE I. Details of the real three-layer multiplex network in our
study.

Network Resource or Information
layer epidemic layer layer

Nodes 61 61
Edges 309 353

Leisure activities, Facebook,
Relationship Work, Leisure activities,

Coauthorship, Work,
Lunch gathering Coauthorship,

Lunch gathering

However, a structural change in the epidemic layer affects the
spreading more than a similar change in the information layer.
When the epidemic layer is scale free, the infected hub nodes
are more likely to recover for relatively small values of μ (e.g.,
μ = 0.6) and can get more resources to protect themselves,
thereby reducing the risk of infection for low degree nodes to
which the hub nodes are connected. As a result, the epidemic
size in the SF-SF network is smaller than that in RR-RR or
SF-RR networks. However, for μ = 1, it becomes harder for
the infected hub nodes to recover, as resources have been
allocated to others. Figure 5(b) shows ρI vs β for λ = 0.2 and
μ = 1 for the SF-SF multiplex network, revealing a first-order
phase transition and a hysteresis loop. Qualitatively similar
phenomena occur for the real-world network, as shown in
Figs. 5(c) and 5(d).

V. DISCUSSION

Epidemic spreading in the real world is not an isolated
process in the physical contact space, but it is always ac-
companied by the diffusion of the pertinent information in
cyberspace. The dissemination of information motivates indi-
viduals to seek protection or cure resources, thereby triggering
resource allocation among individuals. The resource amount
possessed by an individual will affect his or her infection and
recovering probabilities, modulating the epidemic spreading
dynamics. The interplay and coevolution among information
diffusion, resource allocation, and epidemic spreading are ex-
traordinarily complex, an understanding of which is critical

FIG. 6. Degree distribution of (a) the information layer and
(b) the epidemic layer.
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FIG. 7. Effect of resource efficacy parameter ε on epidemic
spreading. The color-coded values ρI predicted by the microscopic
Markov chain (MMC) theory in the parameter plane (ε, β ) for
(a) μ = 0 and ρ0 = 0.05, (b) μ = 0.8 and ρ0 = 0.05, (c) μ = 0
and ρ0 = 0.1, and (d) μ = 0.8 and ρ0 = 0.1. The black curves are
the contours of ρI. The red curves indicate the change of βc. The
information and epidemic layers are different random-regular (RR)
networks. Other parameter values are N = 1000, 〈k〉 = 〈k1〉 = 10,
λ = 0.2, and δ = 1.0.

to predicting the spreading trend of the epidemic and making
effective strategies for containing the epidemic.

We have constructed a three-layer network model to de-
scribe the information-resource-epidemic coevolution spread-

FIG. 8. Dependence of the critical phase transition point on re-
source type and recovery parameter. Shown is the dependence of βc

on ε and μ for (a) λ = 0.2, (b) λ = 0.4, (c) λ = 0.6, and (d) λ = 0.8.
The information and epidemic layers are different random-regular
(RR) networks. Other parameter values are N = 1000, 〈k〉 = 〈k1〉 =
10, and δ = 1.0.

FIG. 9. Dependence of the critical phase transition point on re-
source type and information spreading rate. Shown is the dependence
of βc on ε and λ for (a) μ = 0.2, (b) μ = 0.4, (c) μ = 0.6, and
(d) μ = 0.8. The information and epidemic layers are different
random-regular (RR) networks. Other parameter values are N =
1000, 〈k〉 = 〈k1〉 = 10, and δ = 1.0.

ing process. The basic model assumptions are two. First,
information diffusion triggers individuals to seek resource
support from their neighbors. Second, the amount and nature
of resources possessed by an individual will affect his or
her infection and recovering probabilities. We have carried
out simulations using synthetic and real multiplex networks
and developed a theoretical analysis. As a result of re-
source allocation triggered by information diffusion, aware
and susceptible individuals tend to secure more resources
than individuals in other epidemic states. Depending on the
recovery probability, the optimal type of resources to suppress
epidemic spreading can be different. If this probability is
relatively large, the protection-focused type of resources is ef-
fective at reducing the epidemic size, and the phase transition
underlying the outbreak is of the second-order type. However,
if the recovery probability is small, cure-focused resources
are more effective. In this case, the anomalous phenomenon
that information diffusion worsens epidemic spreading can
arise, due to the shortage of resources needed for infected
individuals to recover. In addition, the phase transition be-
comes first order with a hysteresis loop when the allocated
resources are protection focused. Signatures of the anomalous
effect of information diffusion might have been present in the
beginning phase of the ongoing COVID-19 pandemic, and our
modeling framework and theory have provided a preliminary
understanding in an idealized but quantitative setting.
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vs λ for μ = 1, β = 0.15, ρ0 = 0.01, and δ = 1.0. The networks are
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APPENDIX A: THEORETICAL ANALYSIS OF THE FINAL
RESOURCE AMOUNT

This Appendix presents the theoretical analysis of the final
resource amount.

Near the critical transmission probability of the epidemic,
we have ρS = 1 − ρI ≈ 1, and the dynamics in the informa-
tion layer are decoupled from those in the other layers. For
information diffusion in a homogeneous network, the change
in the fraction of aware individuals can be represented as

ρA(t + 1) = ρA(t )(1 − δ) + [1 − ρA(t )][1 − r1(t )], (A1)

where r1(t ) is the probability that each node is not being
informed by any aware neighbors at time step t , which is

r1(t ) ≈ [1 − ρA(t )λ]〈k1〉, (A2)

where 〈k1〉 is the mean degree of the information layer. For
simplicity, we set δ = 1 [35]. When the diffusion process is
stabilized, we have ρA(t + 1) = ρA(t ) and get

ρA = 1 − 1

2 − r1
� 0.5. (A3)

When the network topology of the epidemic layer is homoge-
neous with a mean degree >3, the resource amount possessed

FIG. 11. Effects of the probability δ that an aware individual
forgets or ignores the information on the coevolution spreading dy-
namics. (a) Information and epidemic spreading sizes (ρA and ρI,
respectively) vs λ for three different values of δ. Other parameter
values are μ = 0.6, ε = 0.4, β = 0.15, and ρ0 = 0.01. (b) Same as
(a) but for μ = 1.0 and ε = 0.7. (c) and (d) For δ = 0.2 and 0.6,
respectively, the epidemic size vs β for μ = 1 and λ = 0.2. Each
data point is the result of averaging 5000 Monte Carlo realizations,
and the solid and dashed curves are the theoretical predictions. (e)
and (f) The corresponding results with error bars for ε = 0.8. For
δ = 0.2 and 0.6, the error bars for ε = 0.3, ρ0 = 0.01, and ρ0 = 0.9
are negligible. The networks are of the random-regular (RR) type
with N = 1000 nodes and average degree 〈k〉 = 〈k1〉 = 10.

by each node in the AI state is

RAI ≈ 〈k〉
(〈k〉 − 1)ρA + 2

� 〈k〉
(〈k〉 − 1) × 0.5 + 2

> 1. (A4)

In this case, RAS is also >1.

APPENDIX B: REAL MULTIPLEX NETWORK
DESCRIPTION

This Appendix presents a detailed description of the real
multiplex network used in our study.

The real data are about the relationship among the em-
ployees at the Department of Computer Science at Aarhus
University. The data were collected from 61 employees, which
included professors, postdoctoral researchers, Ph.D. students,
and administration staff. Five different types of relations were
studied [34], which are the current working relationship, re-
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FIG. 12. The results in Figs. 4(c) and 4(d) but with error bars.
(a) and (b) The epidemic size vs β for μ = 0.95 and two different
values of ρ0, respectively. (c) and (d) The same as in (a) and (b) but
for μ = 1, where the error bars are negligible for ε = 0.3. In all
panels, a data point is the result of averaging 5000 Monte Carlo
realizations, and the solid and dashed curves are the theoretical
predictions. The networks are of the random-regular (RR) type with
N = 1000 nodes and average degree 〈k〉 = 〈k1〉 = 10.

peated leisure activities, regular lunch meetings, coauthorship
of publications, and their friendship relation on Facebook.
Using these data, we constructed a three-layer network to
study the information-resource-epidemic coevolution spread-
ing dynamics. The 61 employees appear simultaneously in
each layer. The edges among these individuals in the infor-
mation layer are the combination of the five different types of
relations, and the maximum (minimum) degree is 29 (2). The
resource and epidemic layers have the same network topology,
where the edges represent the social relationships of the cur-
rent working relationship, repeated leisure activities, regular
lunch meetings, and coauthorship of publications. The max-
imum (minimum) degree is 27 (2) in each layer. The details
of the real multiplex network are in Table I. The distribution
of degree of the information and epidemic layers is shown in
Fig. 6.

APPENDIX C: SPREADING PARAMETERS AND
RESOURCE TYPE

In the main text, the effect of the resource efficacy param-
eter ε on final epidemic size has been analyzed. Here, we
provide additional results from different initial values of the
seed infection size ρ0. For ρ0 = 0.05, the final epidemic size
increases with ε for μ = 0, as shown in Fig. 7(a). However,
for μ = 0.8, a smaller value of ε will make the epidemic size
larger, as shown in Fig. 7(b). These results are consistent with
those in the main text. Similar results have been obtained for
ρ0 = 0.1, as shown in Figs. 7(c) and 7(d).

To unveil how resources affect the critical transmission
probability βc in a more systematic manner, we calculate the
values of βc in the parameter plane (ε, μ) for a different value

FIG. 13. The results in Figs. 5(a) and 5(b) but with error bars.
(a) Epidemic size ρI vs λ for ε = 0.2, β = 0.15, and ρ0 = 0.01 in
three types of combinations of information-epidemic layers: RR-RR,
SF-RR, and SF-SF, where RR and SF stand for random-regular and
scale-free, respectively. (b) Same as (a) but for ε = 0.8. In (a) and (b),
the curves (solid or dashed) are the predictions of the microscopic
Markov chain (MMC) theory. The error bars indicate the standard
deviations. (c) and (d) Epidemic size ρI vs β for ε = 0.5, λ = 0.2,
and μ = 1 in the SF-SF type of multiplex network for ρ0 = 0.01
and 0.9, respectively, where the red curves (solid or dashed) are the
predictions of the MMC theory, and the black curves represent the
errors. In all panels, a data point is the result of averaging 5000 Monte
Carlo realizations. Other parameters are network size N = 1000,
the algebraic exponent of degree distribution 3, average degrees
〈k〉 = 〈k1〉 = 10, and δ = 1.0.

of the information spreading rate, based on the theoretical
analysis in the main text. We find that the optimal value εopt

that maximizes βc increases with μ for different values of λ, as
shown in Fig. 8. The results indicate that protection-focused
resources are effective for containing epidemic spreading for
relatively small values of μ, but cure-focused resources are
more effective for large values of μ.

In addition, we studied the dependence of βc on ε and λ for
different values of μ, as shown in Fig. 9, with the result that
the optimal resource type depends on the value of μ, which
is consistent with the result in the main text. Moreover, as the
value of λ is increased, the threshold for epidemic spreading
is high for relatively small values of μ, e.g., μ = 0.2 or 0.4, as
shown in Figs. 9(a) and 9(b), respectively. However, increas-
ing the value of λ has no significant effect on the value of βc

for relatively large values of μ, e.g., μ = 0.6 or 0.8, as shown
in Figs. 9(c) and 9(d), respectively.

Based on Fig. 4(b), we obtained results for the case of
ε = 0.5 in Fig. 10 with the finding that this type of resource
distribution is unable to contain epidemic spreading. In fact, a
full outbreak will occur.
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FIG. 14. Results of Figs. 5(c) and 5(d) but with error bars. (a) and
(b) Epidemic size ρI vs λ in the real-world multiplex network in
Fig. 2 for β = 0.15 and ρ0 = 0.1. (c)–(f) Epidemic size ρI vs β for
the network in Fig. 2 for λ = 0.2 and μ = 1, where the red curves
are the predictions of the microscopic Markov chain (MMC) theory,
and the black curves represent the errors. In all panels, a data point is
the result of averaging 5000 Monte Carlo realizations, and δ = 1.0.

In the main text, how information diffusion affects the
epidemic size for different values of μ was studied for fixed
δ = 1.0, with the result that information diffusion can either
contain or promote epidemic spreading. Here, we study if
choosing different values of δ would affect this result. Fig-
ure 11(a) shows, for different values of δ, the final epidemic
size ρ vs λ, where the values of parameters μ and ε are
set to be the same as those in Fig. 4. We see that infor-
mation diffusion can suppress epidemic spreading. As the
value of δ decreases, aware individuals can stay in this state
longer, raising the awareness of seeking protection and re-
ducing the final epidemic spreading size. Figure 11(b) shows,
for μ = 1 and ε = 0.7 [the same parameter values as those
in Fig. 4(b)], information diffusion can aggravate epidemic
spreading. This is because the irrational acquisition behavior
of aware individuals in this case can deplete the medical
resources. The epidemic size is larger for smaller values of
δ. The phase transition behavior is also robust, as shown in
Fig. 11(c) for δ = 0.2 and in Fig. 11(d) for δ = 0.6. For
cure-focused (ε = 0.8) and protection-focused (ε = 0.3) re-
sources, the phase transitions are of the second-order and
first-order nature, respectively. The curves associated with the
second-order transition with error bars included are shown in
Figs. 11(e) and 11(f) for two different values of ρ0. The results
in Figs. 11(a)–11(f) indicate that the findings presented in the
main text are robust against the choice of the value of δ.

APPENDIX D: ERROR BARS

The results of Figs. 4(c) and 4(d) with error bars are dis-
played in Fig. 12. The results of Figs. 5(a) and 5(b), and
5(c) and 5(d), with errors are displayed in Figs. 13 and 14,
respectively. The error bars are obtained from 5000 Monte
Carlo realizations. For ε = 0.3, the error bars for the SF-SF
type of multiplex network are negligible.
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