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Optimal inference of the start of COVID-19
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According to the official report, the first case of COVID-19 and the first death in the United States occurred
on January 20 and February 29, 2020, respectively. On April 21, California reported that the first death in the
state occurred on February 6, implying that community spreading of COVID-19 might have started earlier than
previously thought. Exactly what is time zero, i.e., when did COVID-19 emerge and begin to spread in the U.S.
and other countries? We develop a comprehensive predictive modeling framework to address this question. Using
available data of confirmed infections to obtain the optimal values of the key parameters, we validate the model
and demonstrate its predictive power. We then carry out an inverse inference analysis to determine time zero for
10 representative states in the U.S., plus New York City, United Kingdom, Italy, and Spain. The main finding is
that, in both the U.S. and Europe, COVID-19 started around the new year day.
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I. INTRODUCTION

The first case of COVID-19 in the United States was re-
ported on January 20, 2020 and, according to the official
account, the first death on American soil occurred on February
29. Astonishingly, on April 21, California reported that the
first death in the state occurred on February 6, more than
three weeks earlier than previously reported. One implication
is that community spreading may have already occurred in
the U.S. three weeks earlier than believed. The importance of
knowing precisely the starting date of community spreading
cannot be overstated: this is the date based on which gov-
ernment mitigating actions and control measures would be
imposed. In the U.S., according to the government report, the
onset of an exponential increase in the infections occurred in
the middle of March, leading to the belief that COVID-19
began the phase of community spreading around the same
time. Based on this perception, the White House issued a
nationwide social-distancing order on March 16. Statewide
stay-at-home or shelter-in-place orders were given by the gov-
ernors of various states at different times. The effectiveness
of these government actions notwithstanding, as of August
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28, there have been close to six million cases in the US and
over 181 000 deaths. This devastating development means that
the perceptive date of community spreading of COVID-19
in the U.S. was wrong: it could have been weeks earlier than
the governments have chosen to believe.

To develop a reliable method to infer the starting date
of COVID-19, or any infectious disease, is of uttermost im-
portance. Precise knowledge of exactly when community
spreading started would prompt the government to take ac-
tions at the earliest possible moment, drastically reducing the
number of infections and saving many thousands of lives.
More specifically, knowing this time in combination with
knowledge about the symptomatic individuals in the early
stage of the disease spreading enables (1) an effective reduc-
tion in the range of contact tracing, which increases the chance
of accurately locating the source of infection with limited
resources, (2) an assessment of the ability to infect of the
virus and the way by which it spreads, providing guidance
for early control measures, (3) determination of the interstate
and international propagation paths of the virus, and (4) pro-
viding unequivocal early warnings for the governments. In
this regard, a recent work based on gene sequencing analysis
found clusters of related viruses in patients living in different
neighborhoods of New York City, suggesting that multiple,
independent but isolated introductions of the virus had mainly
come from Europe and other parts of the U.S. [1]. In another
study [2], the frequencies of the key words such as coughing
and fevers on Twitter were used for model analysis, with the
finding that the actual outbreak time can be 5–19 days earlier
than officially reported.

Our method is based on inverse inference and enables the
starting date of the epidemic to be deduced from limited
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available data. Another feature of our model is that it con-
tains sufficient details to capture the key dynamical behaviors
of COVID-19 spreading. In particular, our inverse method
of inference is based on a comprehensive, non-Markovian
spreading model tailored to COVID-19 in either an open or
a closed setting [3]. The dynamics is described by the time
evolution of the populations in five distinct states (SHIJR):
susceptible (S), hidden (H), infected (I), confirmed (J), and
removed (R). The S, I , and R states are conventional, but the H
and J states are COVID-19 proper. Of particular importance
is the H-state population: it is the population of individuals
who have already contracted the coronavirus but have shown
only mild symptoms or would never show any symptoms. To
evolve the dynamics, the initial hidden population, H (t0), is
an essential parameter, where t0 is the time (day) at which the
number of real confirmed cases begins to increase. Govern-
ment control measures are usually imposed some time after
this day. It is important to note that t0 is not the day when the
coronavirus first appears in the community (i.e., the starting
date of community spreading): the latter could be significantly
earlier, at a date termed as time zero, denoted as 0! For a time
period between t0 and t1, where t1 > t0, there is an appreciable
and continuous increase in the number of infections, prompt-
ing the government to impose vigorous control measures on
day t1. The time line is thus 0 < t0 < t1. The problem is to
determine time 0. Our inverse inference method is articulated
to solve this problem. By generating dynamical evolution of
the epidemic model, comparing the model prediction with the
limited data available after t0, and invoking an optimization
procedure, we determine the key model parameter values in-
cluding H (t0). Running the model between a hypothesized
time 0 and t0 to determine how long it takes for H (0) (a small
positive integer, e.g., one or two) to reach H (t0) allows us to
pin down time 0 precisely. The relevant dates and time line are
illustrated in Sec. II.

We apply the inverse method to 10 states in the U.S. plus
New York City and the country as a whole, and find that
time zero is as early as the beginning of January. In the U.S.,
the day t1 is March 16, while t0 varies among the individ-
ual states (e.g., February 26 for Washington and March 2
for New York). For a specific system (a state or a country),
letting �T ≡ t0 − 0 be the time span between the date on
which the virus started community spreading and the date
of the number of real confirmed cases beginning to increase,
we find an exponential scaling relation between H (t0), the
number of people who already carried the coronavirus on the
officially confirmed date in that system and �T . This means
that a longer delay in reporting the first case would lead to
an exponentially large virus-carrying population, rendering
significantly more challenging to fully control the disease
spreading. The need for early, preemptive testing thus cannot
be overemphasized.

Our model has the power to predict the occurrence of
community spreading of COVID-19 long before the time of
official report of the outbreak, making it possible for the
governments to impose control measures and to summon the
essential medical resources. Take the example of the U.S. In
February, there was already unmistakable evidence that the
coronavirus already existed in the U.S. In complete hind-
sight, consider the fictitious scenario that widespread tests

had been carried out in the U.S. in February so that adequate
data had been available. Inverse inference could have been
carried out then to determine time zero. This could have
sent the vital message to the governments that community
spreading of COVID-19 had already started weeks ago. If
strict government control actions had been taken at the end of
February, the epidemic picture of the U.S. today would have
been drastically different. Our framework of modeling and
inverse inference can arguably be a valuable asset for guiding
the governments to take appropriate actions for possible future
outbreaks of coronavirus or other infections diseases.

II. METHODS

In the U.S., the circumstances under which COVID-19
spreads vary dramatically among different states: not only
are the levels of travel restriction orders dissimilar, but other
factors affecting the disease spreading such as the population,
medical resources, and social and political cultures are also
distinct. A quantitative assessment of the effects of the control
measures taken by the government to contain COVID-19 thus
needs to be carried out on a state-by-state basis. A compli-
cation is that each individual state is not a closed system:
people move into and out of the state on a daily basis. This
presents a tremendous challenge to modeling [4,5], as most
current data analyses and models for COVID-19 were for the
setting of a closed system without considering the inbound
and outbound population movements [6–27]. Another feature
of the COVID-19 pandemic that most existing models did not
take into account is the non-Markovian nature of the spread-
ing dynamics, as characterized by the various time delays
associated with the dynamical states. To account for the non-
Markovian characteristics in the model, coupled differential
equations with distinct time delays are necessary [3].

To determine time 0 for a state in the U.S. treated as an
open system, we develop a coupled, dual-system spreading
model. In particular, we treat the target system (A) as one
under influences from another, much larger system (B) that
represents all the other states. Because the size of B is much
larger than that of A, in terms of the spreading dynamics, sys-
tem B can be regarded as a closed system. From the standpoint
of nonlinear physics, the influences of system B on system A
can be viewed as a perturbation or background noise, while
the effects of A on B can be neglected. The perturbation
can be estimated based on the population of the target state
and the empirical human movement data. The backbone of
this unidirectionally coupled modeling framework is a non-
Markovian spreading model incorporating various time delays
in a closed-system setting [3].

For the five-state (SHIJR) model in the closed-system
setting, there are three parameters whose values are to be
determined from data: (1) the infection rate β (the proba-
bility that an individual in the S state catches the virus and
switches into the H state), (2) H (t0) (the hidden population at
the initial time t0 when the available data, i.e., the number
of confirmed cases, began to increase with time to enable
reliable estimation of the model parameters), and (3) the frac-
tion of undocumented infections, denoted as η, whose value
is determined by the testing and surveillance capability of
the government. For COVID-19, the state transitions in the
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FIG. 1. Dates and timeline of inferring time 0 for a given state or country. The time tWHO is the date of first emergence of case(s) reported by
the World Health Organization (WHO). Time t0 is the date when the number of confirmed cases began to increase, which is used as the initial
time for optimal model parameter estimation. The time t0 so chosen is usually about the same or later than the date of the official report of the
first case(s), as there are situations where the number of cases remains unchanged for a number of days after the official date [see Table IV
in Appendix B for dates of the first confirmed case(s) reported by the World Health Organization for each state/city/country studied in this
paper]. Time t1 is the date on which the government imposed control measures. The time interval [t0, t2] is used to estimate the three key
parameters of the SHIJR spreading model: [β, H (t0), and η], where t2 = t1 + 12 days. The time interval [t0, t3] is used for estimating λ, the
parameter characterizing the effects of government control measures. The time interval [t3, t4] is used to validate the model and demonstrate
its predictive power, where t4 = t3 + 14 days.

SHIJR model are non-Markovian. In the open-system setting,
an additional feature exists: there is time dependence due to
human movements in and out of the system. For both closed-
and open-system models, the government control measures
result in an exponential decrease in the human social and
movement activities. The collective effects of these measures
can be described by one parameter: the exponential decay
rate of the activities, denoted by λ, where a larger rate cor-
responds to more stringent control measures. The value of
λ can be estimated based on the available epidemic data. A
detailed mathematical description of the model is presented in
Appendix A.

Figure 1 explains our principle to infer time 0 in terms
of a number of key dates underlying COVID-19 spreading.
Some days after time 0, the first or the first few cases emerged
and were officially reported. However, the number of cases is
typically small, e.g., one or two, and this number can remain
unchanged for a number of days. Time t0 is the date after
which the number of cases begins to increase. The government
imposes control measures on date t1 > t0. Since the govern-
ment control is an integral part of our model, it is necessary
to use data up to some date later for determining the model
parameters when the effects of the control measures have been
manifested in the data. We assume that this would require at
least 12 days and thus set t2 = t1 + 12 days.

To estimate the four model parameters in a computationally
feasible way while ensuring accuracy, we devise the following
two-step procedure. We separate the four parameters into two
groups: [β, H (t0), η] and λ, where the first three are associated
with the intrinsic spreading process while the last is tied to the
reduction in the human movements as a result of government
control measures. Because of the time delay for the effects of
the measures to be manifested, the value of λ does not affect

the fitting with the data in the early stage of the disease. As
a result, we first use the available data in the time interval
[t0, t2] to estimate [β, H (t0), η]. For each parameter, we assign
an initial range of its possible values. A large number of
combinations of the three parameter values are then used to
evolve the model from t0 to generate the number of confirmed
cases, J (t ), in the time interval [t0, t2]. Using the real data,
we carry out a weighted optimization procedure to determine
a set of combinations of the three parameters with minimum
errors. We then choose a range for λ and uniformly distribute a
number of values of λ in this range. Each λ value is combined
with the already determined combinations of [β, H (t0), η]
to yield an equal number of combinations [β, H (t0), η, λ].
With all the chosen λ values, this leads to a large number of
combinations of the four parameters. Finally, we carry out the
same optimization procedure in the time interval [t0, t3] with
t3 > t2 to determine the combination of the four parameters
with the minimum error. We choose t3 = t2 + 12 days.

With the values of the optimal parameters so estimated, the
model generates the time series J (t ) that can be compared
with the data. In the time interval [t0, t3], the agreement is
generally excellent. However, this is not indicative of the
predictive power of the model because the model parameters
are estimated using the data in the same time interval. To test
the model for prediction, we run the model in the time interval
[t3, t4], as indicated in Fig. 1. Comparison with the real data
in this time interval reveals generally quite good agreement,
validating the model.

The model is now ready to be used for inferring time 0.
Quite straightforwardly, for a given system (a state, a city,
or a country), we set H (0) = 1, choose a number of possible
candidates for time 0, and run the model from time 0 to t0 to
test which candidate date leads to the known number H (t0):
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FIG. 2. Demonstration of the predictive power of the SHIJR non-Markovian model for COVID-19. Shown are the results of J (t ), the
daily accumulative number of confirmed cases for four systems: (a) New York city treated as a closed system, (b) State of New York as an
open system, (c) State of California as an open system, and (d) United Kingdom as a closed system. The orange squares are the real time
series J (t ), the daily confirmed number of cases. The blue dots in the first phase are the model fitted J (t ), in which the four key model
parameters are estimated based on the real data in this subtime interval (Sec. II). The green pentagons in the last 14 days are the predicted
J (t ), whose agreement with the real data attests to the predictive power of the model. The estimated parameters are (a) [β, H (t0), η] =
(0.19, 6000, 0.55) and λ ∈ [0.098, 0.122]; (b) [β, H (t0), η] = (0.19, 12000, 0.6) and λ ∈ [0.111, 0.129] (c) [β, H (t0), η] = (0.22, 350, 0.65)
and λ ∈ [0.100, 0.120]; (d) [β, H (t0), η] = (0.2, 880, 0.6) and λ ∈ [0.088, 0.112]. The range of variations in the estimated value of λ is used
to generate the green error bars in the predicted J(t ).

the starting date that gives the correct H (t0) value is taken to
be time 0.

III. RESULTS

A. Finding time zero for the U.S. states, Italy, Spain,
and United Kingdom

We aim to find time zero for 10 representative states in the
U.S., plus New York City (NYC), the entire U.S.A., and three
European countries [Italy, Spain, and the United Kingdom
(UK)]. Each State in the U.S. is treated as an open system,
while NYC, U.S.A., and the three European countries are
treated as a closed system. We first demonstrate that each
corresponding model has the required predictive power. Fig-
ure 2 shows four representative examples in terms of the daily
accumulative number of confirmed cases J (t ) for NYC, the
state of New York, the state of California, and United King-
dom. For each example, the whole time interval is divided into
two subintervals: the first (blue) is used to estimate the four
key model parameters and the second subinterval (green) of
14 days is used for prediction. The model generated J (t ) in the

first phase is thus the result of a sophisticated, optimal fit. As
can be seen from Fig. 2, our model with the parameters so es-
timated is capable of predicting the real data, qualifying it for
inferring time zero for any given system, open or closed. Sim-
ilar results for the remaining eight states in the U.S. as well as
for U.S.A., Italy, and Spain are presented in Figs. 3, 4, 5.

Figure 6(a) shows the inferred time zero together with
its confidence interval for the 15 states/city/countries, in an
ascending order. It can be seen that SARS-CoV-2 appeared
in Italy about the New Year day. In the U.S., it first emerged
between January 7 and 11 in Washington or New York State.
When the whole country of U.S.A. is treated as a closed
system, the virus first appeared on about January 9, with
confidence interval overlapping with that of the Washington
and New York States, suggesting Washington or New York
as the first state in which the virus emerged. It can be seen
from Fig. 6(a) that the officially reported time of the emer-
gence of the first few cases does not represent the beginning
of the community spreading. In most cases, the time zeros
inferred by our method were earlier than the official time,
e.g., about one month earlier in Italy, two months earlier in
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FIG. 3. Further demonstration of the model predictive power. Shown are the results of J (t ), the daily accumulative number of confirmed
cases for four systems: (a) Washington State treated as an open system, (b) Michigan as an open system, (c) Massachusetts as an open system,
and (d) New Jersey as an open system. The orange squares are the real time series J (t ). The blue dots in the first phase are the model
fitted J (t ), in which the four key model parameters are estimated based on the real data in this subtime interval. The green pentagons in
the last 14 days of the whole time interval are the predicted J (t ), whose agreement with the real data attests to the predictive power of the
model. The estimated parameters are (a) [β, H (t0), η] = (0.16, 850, 0.6) and λ ∈ [0.123, 0.157]; (b) [β, H (t0), η] = (0.20, 7600, 0.8) and λ ∈
[0.168, 0.193]; (c) [β, H (t0), η] = (0.2, 1120, 0.75) and λ ∈ [0.103, 0.117]; (d) [β, H (t0), η] = (0.26, 1750, 0.55) and λ ∈ [0.128, 0.153].
The range of variations in the estimated value of λ is used to generate the green error bars in the predicted J (t ).

New York State and New York City, over half month earlier
for Washington State. These results indicate that, before the
official report of cases, COVID-19 had already spread in the
community for some time. The danger of the misconception
of the delayed starting date of community spread as reported
by the governments is real with devastating consequences:
when the governments decided to impose control measures, it
may have already been too late. For example, New York State
issued the lockdown order on March 22, which is more than
two months later than time 0 (January 9), indicating unusually
slow response of the state government to COVID-19. For
the U.S. as a country, the White House issued a nationwide
social-distancing order on March 16, but it was already two
months later than the starting time of COVID-19 in the coun-
try, attesting to the extremely and unreasonably slow response
of the federal government to the pandemic!

There are cases where the inferred dates of time zero agree
approximately with the official dates, e.g., the State of Ari-
zona. This is because the outbreak in other regions of the
country (e.g., the original epicenter New York City) increased
the awareness level, promoting the local governments and

population to take certain protective measures and thereby
delaying the community spread.

Figure 6(b) shows that the values of the interval between
time 0 and t0 for different systems are in the range [20,53],
where the maximum value of 53 days occurs for the State
of New York. The average time interval t0 − time 0 is about
33 days, indicating that SARS-CoV-2 began to spread about a
month earlier than reported officially. The overall time interval
of free growth from time 0 to t1 for the States of Washington
and New York as well as the whole U.S.A. is about 73 days.
This explains why the controlling effect in the U.S.A. was
largely unsuccessful, as the virus had spread freely for so
long, making it difficult for nonpharmacological interventions
such as tracing and isolation strategies to effectively inhibit
the spreading. Comparing the situations between U.S.A. and
Italy, the time interval t0 − time 0 of the former is smaller than
that of the latter, but U.S.A. has a greater value of the time
interval t1 − t0, meaning that earlier prevention and control
measures were more seriously taken in Italy. It is plausible
that this resulted in better control of the virus in Italy than in
the U.S.A.
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FIG. 4. Further demonstration of the model predictive power. Shown are the results of J (t ), the daily accumulative number of confirmed
cases for four systems: (a) Illinois treated as an open system, (b) Florida as an open system, (c) Louisiana as an open system, and
(d) Arizona as an open system. The estimated parameters are (a) [β, H (t0), η] = (0.23, 180, 0.60) and λ ∈ [0.092, 0.108]; (b) [β, H (t0), η] =
(0.23, 440, 0.55) and λ ∈ [0.150, 0.170]; (c) [β, H (t0), η] = (0.25, 1850, 0.75) and λ ∈ [0.239, 0.261]; (d) [β, H (t0), η] = (0.28, 120, 0.7)
and λ ∈ [0.174, 0.206]. Legends are the same as those of Fig. 3.

The results of time zero, together with model parameters
and the estimated time line for the appearance of 5 and 20
hidden individuals for the 15 systems are summarized in Ta-
ble I. Note that the values of η lie in the interval [0.5,0.8],
indicating insufficient testing for a relatively long period
of time after the exponential outbreak. Insufficient test, of
course, gave fewer confirmed cases than actual, opening the
door for the governments to undermine the severity of the
pandemic and even to have the deception that COVID-19
would be under control. A consequence is that COVID-19 has
continued to spread aggressively in the U.S. at the present,
with no indication of control in sight. In contrast, in countries
that have successfully controlled the disease, such as China
and South Korea, the value of λ is between 0.1 and 0.19, signi-
fying significantly stringent government control measures [3].

For a given system, after time zero has been determined,
it is straightforward to predict how the hidden, asymp-
tomatic population grows with time from a single case, before
any government control measure is imposed. Under such a
circumstance, there is free growth characterized by an expo-
nential law, as shown in Fig. 7 on a semilogarithmic scale for
the 15 systems, where the exponential growth rate is deter-
mined by the infection rate β.

What is the relation between the size of the virus-carrying
hidden population at the time of first confirmed case and

�T , the time elapsed since zero? Figure 8 answers this
question for the 15 systems. It can be seen that �T varies
drastically among the 15 systems. When the first confirmed
case was reported, there is already a sizable population of
the asymptomatic individuals (hundreds or even thousands),
whose actual size also varies dramatically among the systems.
A general trend is that the hidden population at t0 tends
to grow exponentially with �T , a consequence of the free
growth behavior exemplified in Fig. 7.

B. Finding time zero for the recent second COVID-19 outbreak
in Beijing, China

We apply our framework of inverse inference to predict
time zero for the recent second outbreak of COVID-19 in
Beijing, China. From June 11 to 14, 79 cases were reported
in Beijing. Since the city had had 0 new cases for several
months before, the new outbreak is independent of the previ-
ous one in the January-February time frame, and can thus be
regarded as a second outbreak. Analyzing the official report
indicates that symptomatic patients first emerged on June 6.
The extreme sparsity of the available data prevents an accu-
rate determination of the four key parameters in our inverse
model through optimization, but it is still possible to make
approximate estimates. In particular, in Beijing, the regions of
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FIG. 5. Further demonstration of the model predictive power. Shown are the results of J (t ), the daily accumulative number of confirmed
cases for four systems: (a) Italy treated as a closed system, (b) Spain as a closed system, and (c) U.S.A. as a closed system. The estimated
parameters are (a) [β, H (t0), η] = (0.20, 330, 0.70) and λ ∈ [0.127, 0.153]; (b) [β, H (t0), η] = (0.25, 1400, 0.55) and λ ∈ [0.138, 0.162];
(c) [β, H (t0), η] = (0.22, 90, 0.55) and λ ∈ [0.108, 0.132]. Legends are the same as those of Fig. 3.

the new outbreak were isolated, and aggressive and large-scale
testing was conducted immediately after the emergence of the
new cases, which includes those who are asymptomatic. That

is, the individuals in the H state are tested. It is thus reason-
able to hypothesize that, by June 15 (time t0), the reported
number of cases is approximately the value of H (t ) at this

TABLE I. Main results for 10 states in the U.S., New York City, Italy, Spain, and the United Kingdom. Time 0 is in boldface. The quantity
J (t0) is the number of confirmed cases at t0. The parameter η is the fraction of undocumented population in the hidden state and λ measures
the intensity of the government control measures. Abbreviations: It (Italy), WA (Washington State), NYC (New York City), NY (New York
State), UK (United Kingdom), MI (Michigan), SP (Spain), MA (Massachusetts), CA (California), NJ (New Jersey), IL (Illinois), FL (Florida),
LA (Louisiana), AZ (Arizona).

t0 J (t0) β H (t0) η λ Time 0 t (H = 5) t (H = 20)

It 1/31 2 0.2 330 0.7 0.14 12/28-1/4 1/7-1/12 1/11-1/15
WA 2/26 1 0.16 850 0.6 0.14 1/7-1/12 1/17-1/22 1/22-1/27
USA 1/30 5 0.22 90 0.55 0.12 1/7-1/11 1/15-1/18 1/18-1/21
NYC 3/2 1 0.19 6000 0.55 0.11 1/10-1/17 1/19-1/25 1/23-1/29
NY 3/2 1 0.19 12 000 0.6 0.12 1/6-1/12 1/15-1/20 1/18-1/24
UK 2/22 9 0.2 880 0.6 0.1 1/15-1/20 1/23-1/28 1/27-1/31
MI 3/11 2 0.2 7600 0.8 0.18 1/17-1/26 1/26-2/3 1/29-2/6
SP 2/22 2 0.25 1400 0.55 0.15 1/22-1/25 1/29-1/31 1/31-2/3
MA 3/2 1 0.2 1120 0.75 0.11 1/19-1/30 1/27-2/6 1/31-2/10
CA 2/26 10 0.22 350 0.65 0.11 1/27-2/1 2/3-2/8 2/7-2/11
NJ 3/5 2 0.26 1750 0.55 0.14 1/31-2/7 2/7-2/13 2/10-2/15
IL 2/26 2 0.23 180 0.6 0.1 2/2-2/8 2/8-2/14 2/11-2/16
FL 3/2 2 0.23 440 0.55 0.16 2/4-2/8 2/11-2/14 2/13-2/17
LA 3/9 1 0.25 1850 0.75 0.25 2/5-2/12 2/11-2/18 2/14-2/20
AZ 3/5 2 0.28 120 0.7 0.19 2/13-2/21 2/19-2/25 2/21-2/27
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FIG. 6. Time zero for 10 states in the U.S., NYC, U.S.A. as a
whole, Italy, Spain, and the United Kingdom. (a) Time 0, t0, and
t1 for different states/countries. The inferred dates of time 0 for
the 15 systems are represented by the blue dots, together with the
confidence intervals. The orange, red, and green horizontal segments
represent the officially reported time duration in which there is (are)
one (two and three) confirmed cases, respectively. Not every system
would have all three colored segments as, e.g., more than one case
could be reported by the government. Those rare cases typically
represent external input, not the beginning of community spreading.
The purple triangles represent the time of lockdown for the respective
systems. In the U.S., the virus first emerged around January 7–11.
(b) Time intervals between time 0, t0, and t1 in different countries.
The blue and pink bars represent the time intervals between time 0
and t0, and that between t0 and t1, respectively.

date: H (t0) = 79. Since no case was confirmed before June
15, we have η = 1. For the value of infection rate β, if we take
it from the data collected in Wuhan (the epicenter in China
during the first outbreak), i.e., β = 0.36, our model gives June
3 as time 0. However, if we use β = 0.2 as in the U.S. and
European countries, time 0 would be May 23. For β < 0.36,
time 0 would be earlier than June 3. The latest possible date of
time 0 is thus June 3. Since the first symptomatic individuals
appeared on June 6 and the average incubation time is about

FIG. 7. Exponential growth of the hidden asymptomatic pop-
ulation prior to implementation of government control for the 15
systems. For uncontrolled and free growth, the exponential rate is
essentially the infection rate β whose value has been estimated from
data.

five days, the estimated time 0 is quite close to the actual
time 0. This demonstrates that, in China where government
responses are quick and testing is widely available, our model
can predict time 0 even during the early stage of the outbreak
with sparse data. That is, from the first official report of
the outbreak, our model is already capable of providing a
rough estimate of time 0, facilitating greatly localization of
the spreading source(s).

IV. DISCUSSION

There were speculations that SARS-CoV-2 could have
been in the U.S. a few weeks earlier than January 20, the

FIG. 8. Approximately exponential relation between the size of
the hidden population at the time of first confirmed case reported
and the time elapsed since zero. For the 15 systems studied, both the
duration �T and the hidden population H (t0) vary widely. Among all
the systems, when the first confirmed case was reported, the hidden
population ranges from hundreds to thousands.
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officially reported date. Inverse inference based on our non-
Markovian SHIJR model for COVID-19 leads to a consistent
answer confirming the speculations: the virus first emerged
in the U.S. at the very beginning of the year. Our confidence
in this result comes from our model that has been compre-
hensively constructed and rigorously tested in terms of the
following three aspects. First, the designation of the model
states and their dynamical evolution are fully in accord with
the known characteristics of COVID-19, subject to govern-
ment control measures. Second, the key model parameters are
optimally estimated using empirical data from an adequately
long time period including the initial growth phase of the
epidemic. Third, the model has been validated with its predic-
tive power firmly established through a comparison between
the model generated and real data of the daily accumulative
number of confirmed cases in a 14-day period that is not
involved in parameter estimation. All these have been done for
10 U.S. states and New York City, the U.S. as a whole, plus
three European countries most severely hit by the COVID-19
pandemic. Particularly worth noting is that our inverse proce-
dure gives two results that are mutually consistent: the virus
was already in Europe as early as the end of December 2019
and the earliest possible date for New York City to have the
virus is around January 10. This consistence gives credence at
a quantitative level to the widely believed proposition that the
virus in New York City was from Europe through air travel
[1].

Our study has demonstrated that, for a given system (a
state, a city, or even a country), open or closed, our non-
Markovian SHIJR model is capable of yielding an estimate
of time zero and generating the possible epidemic trajectories
into the future based on limited data with the power to predict
the most likely epidemic scenario. With the inclusion of ap-
propriate optimization and inverse inference procedures, the
predictive modeling framework represents a contribution to
mathematical and computational epidemiology, going beyond
the existing models and offering a general and comprehensive
paradigm applicable not only to COVID-19 but also to future
pandemics. In addition, the framework developed in this paper
can be an accurate and reliable tool or source for governments
at all levels, enabling not only an accurate assessment of
the government testing and surveillance capabilities for the
infectious disease, but also a comprehensive evaluation of the
effects of government imposed measures to control the dis-
ease. This can provide guidance for optimizing these measures
to save human lives and for determining the optimal time for
reopening to minimize the economical and social impacts.
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APPENDIX A: CONSTRUCTION OF NON-MARKOVIAN
SHIJR EPIDEMIC MODEL

Figure 9 illustrates the generalized model. An individual
can be in one of the five states at each time step: susceptible
(S), hidden (H), infected (I), confirmed and isolated (J), and
removed (R). The states S, I , and R have the same meanings
as in the classical SIR model for infectious disease, but states
H and J are unique for COVID-19. In particular, an individual
in H has had the virus and is infectious but is asymptomatic
or only mildly symptomatic, in contrast to the I state in which
individuals show symptoms. The H individuals are capable
of infecting others. The J state contains individuals who are
confirmed with COVID-19. Individuals in the R state, by
definition, are not infectious.

We treat each state in the U.S. as an open system, regard-
ing the influences from all the other states as perturbations,
mathematically represented by the populations moving into
and out of the S and H states, denoted as Sin(t ), Sout (t ), Hin(t ),
and Hout (t ), respectively, as shown in Fig. 9. These functions
are determined by the travel intensity as a function of time.
Two types of travel need to be distinguished: interstate and
intrastate, with the corresponding intensity functions linter (t )
and lintra (t ). Due to government-imposed travel restrictions,
these functions decay exponentially from an initial value to
a final smaller constant value. For instance, a recent estimate
[17] has given that, for several major U.S. cities, the travel
restrictions would reduce the outbound human movements
by 50%. In general, we have linter (t ) = 1, e−λinter (t−tc ), and
e−λinter (ts−tc ) for t < tc, tc � t � ts, and t > ts, respectively, and
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lintra (t ) = 1, e−λintra (t−t i
c ), and e−λintra (t i

s−t i
c ) for t < t i

c, t i
c � t � t i

s ,
and t > t i

s , respectively. For simplicity, we set λinter = λintra.
The quantities tc and t i

c are, respectively, the starting dates of
interstate and intrastate travel restrictions and the exponential
decay in the movement activities occurs between tc and ts or

between t i
c and t i

s . The starting dates differ from state to state.
The values of ts and t i

s are set as tc + 7 and t i
c + 7, respectively.

Our generalized SHIJR model for COVID-19 epidemic for
any given target state in the U.S. can be described by the
following set of delayed integrodifferential equations:

d S(t )

dt
= −Hn(t ) − Sout (t ) + Sin(t ), (A1)

�(t ) = Hn(t ) − Hout (t ) + Hin(t ), (A2)

dH (t )

dt
= �(t ) − (1 − η)

∫ t

t0

f1(τ )�(t − τ )dτ − η

∫ t

t0

f3(τ )�(t − τ )dτ − (1 − η) f1(t )H (t0) − η f3(t )H (t0), (A3)

dI (t )

dt
= (1 − η)

∫ t

t0

f1(τ )�(t − τ )dτ − (1 − η)
∫ t

t0

f2(τ ′)dτ ′
∫ t−τ ′

t0

f1(τ )�(t − τ ′ − τ )dτ1

+(1 − η) f1(t )H (t0) − (1 − η)
∫ t

t0

f2(τ ) f1(t − τ )H (t0)dτ − f2(t )I (0), (A4)

dR(t )

dt
= η

∫ t

t0

f3(τ )�(t − τ )dτ + (1 − η)
∫ t

t0

f2(τ ′)dτ ′
∫ t−τ ′

t0

f1(τ )�(t − τ ′ − τ )dτ1

+η f3(t )H (t0) + (1 − η)
∫ t

t0

f2(τ ) f1(t − τ )H (t0)dτ + f2(t )I (0) − Rout (t ) + Rin(t ), (A5)

dJ (t )

dt
= (1 − η)

∫ t

t0

f4(τ ′)dτ ′
∫ t−τ ′

t0

f1(τ )�(t − τ ′ − τ )dτ + (1 − η)
∫ t

t0

f4(τ ) f1(t − τ )H (t0)dτ, (A6)

dN

dt
= (Fin − Fout )linter (t ), (A7)

where the quantity Hn(t ) in the first two equations is
the rate of increase in the H-state population: Hn(t ) =
βS(t )lintraH (t )/N (t ) with lintra (t )H (t ) representing the active
H-state population that has not been isolated, f1(τ ), f2(τ ),
f3(τ ), and f4(τ ) are the normal probability distribution func-
tions of the delay time τ1, τ2, τ3, and τ4, respectively, and
N (t ) is the population of the state as a function of time. The
quantity �(t ) is the increment of the H-state population. The
input and output functions are

Sin(t ) = Finlinter (t )
Stotal(t )

Stotal(t ) + Htotal(t ) + Rtotal(t )
,

TABLE II. The dates on which travel restriction orders were
issued in the 10 states studied. For each state, the date is effectively
one on which an exponential decay in intrastate traffic begins.

State Date

Arizona March 19, 2020
Washington March 23, 2020
New York March 22, 2020
New Jersey March 21, 2020
California March 19, 2020
Michigan March 23, 2020
Florida March 23, 2020
Illinois March 21, 2020
Massachusetts March 24, 2020
Louisiana March 23, 2020

Sout (t ) = Foutlinter (t )
S(t )

S(t ) + H (t ) + R(t )
,

Hin(t ) = Finlinter (t )
Htotal(t )

Stotal(t ) + Htotal(t ) + Rtotal(t )
,

Hout (t ) = Foutlinter (t )
H (t )

S(t ) + H (t ) + R(t )
,

Rin(t ) = Finlinter (t )
Rtotal(t )

Stotal(t ) + Htotal(t ) + Rtotal(t )
,

Rout (t ) = Foutlinter (t )
S(t )

S(t ) + H (t ) + R(t )
,

TABLE III. Average daily outbound and inbound populations
and the total population for the 10 states studied.

State Outbound Inbound Population

Arizona 13 679 6515 7 278 717
Washington 27 339 15 495 7 614 893
New York 55 012 133 095 19 453 561
New Jersey 133 507 71 056 8 882 190
California 21 171 19 979 39 512 223
Michigan 21 179 11 625 9 986 857
Florida 28 871 22 111 21 477 737
Illinois 48 160 45 451 12 671 821
Massachusetts 30 217 44 987 6 892 503
Louisiana 11 754 14 994 4 648 794
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TABLE IV. Additional information and results for 10 states in the U.S., New York City, Italy, Spain, and the United Kingdom. The
quantity tWHO is the range of dates of first emergence of case(s) reported by the World Health Organization (WHO). Columns 3–6 list the
confidence intervals of the four estimated parameters required of the non-Markovian SHIJR spreading model under government imposed
control measures: β, H (t0), η, and λ. Abbreviations: It (Italy), WA (Washington State), NYC (New York City), NY (New York State),
UK (United Kingdom), MI (Michigan), SP (Spain), MA (Massachusetts), CA (California), NJ (New Jersey), IL (Illinois), FL (Florida), LA
(Louisiana), AZ (Arizona).

System tWHO (βlow, βupp) [Hlow(t0), Hupp(t0)] (ηlow, ηupp) (λlow, λupp)

It 1/31-2/20 (0.191,0.208) (243,491) (0.625,0.781) (0.127,0.153)
USA 1/22-1/25 (0.213,0.227) (72,115) (0.497,0.607) 0.108,0.132)
WA 1/22-2/28 (0.156,0.164) (749,966) (0.560,0.639) (0.123,0.157)
NY 3/2-3/3 (0.184,0.196) (10220,14382) (0.552,0.653) (0.111,0.129)
NYC 3/2-3/4 (0.182,0.198) (5015,7405) (0.488,0.617) (0.098,0.122)
UK 1/31-2/7 (0.193,0.207) (727,1084) (0.544,0.655) (0.088,0.112)
MI 3/11-3/12 (0.194,0.206) (5734,11486) (0.742,0.865) (0.168,0.193)
SP 2/1-2/24 (0.243,0.257) (1192,1657) (0.514,0.587) (0.138,0.162)
MA 2/1-3/5 (0.190,0.207) (820,2026) (0.678,0.852) (0.103,0.117)
CA 1/26-2/2 (0.210,0.229) (265,500) (0.574,0.735) (0.100,0.120)
NJ 3/5-3/6 (0.248,0.272) (1327,2443) (0.472,0.643) (0.128,0.153)
IL 1/25-3/1 (0.220,0.240) (134,260) (0.518,0.694) (0.092,0.108)
FL 3/2-3/4 (0.224,0.237) (369,523) (0.503,0.597) (0.150,0.170)
LA 3/9-3/10 (0.241,0.258) (1381,3204) (0.680,0.844) (0.239,0.261)
AZ 2/1-3/6 (0.263,0.296) (76,241) (0.590,0.826) (0.174,0.206)

where the quantities Stotal(t ), Htotal(t ), and Rtotal(t ) are the
total S-, H-, and R-state populations of the U.S. excluding
the target state, Fin(t ) and Fout (t ) are the fluxes into and out
of the state, which can be extrapolated from empirical data.
To numerically solve the whole set of equations, the values of
the initial H-state population H (t0) and of the infection rate
β are needed, which can be estimated with a mathematical
optimization procedure. In particular, we look for that optimal
parameter combination �̂ = [β, H (t0), η, λ] that minimizes
the weighted difference squared between the data points J (ti )
and the predicted values of f (ti,�) (i = 0, 1, . . . , n − 1),
according to

�̂ = argmin
n∑

i=1

wti [ f (ti,�) − Jti ]
2. (A8)

Because of the necessity of assigning larger weights for more
recent data, we set the weights to be wtn−i = α(1 − α)i−1 with
α = 0.1. The optimization problem can be solved to yield
the optimal values β∗, H∗(t0), η∗, and λ∗ using, e.g., the
Levenberg-Marquardt (LM) method [28–31].

To determine the daily fluxes Fin(t ) and Fout (t ), we will use
the commuting data from the U.S. Census Bureau [32], which
were obtained from sampling the home and work addresses of
the working population in the five-year period (2011–2015).
Our estimation method is as follows. Assume that the com-
muting population is distributed uniformly among the states.
On average, each working individual commutes 0.11 times
per day. Multiplying this number by the population of the
state gives the daily average number of people who commute.
Denoting this number by Q and letting the commuting popula-
tions from the Census Bureau’s database be Pin/out, we obtain
the ratio Cin/out = Q/Pin/out. Let Din/out be populations in and
out of the state from the database. The daily fluxes can be
obtained as Fin/out = Cin/outDin/out.

For the 10 states studied, the dates t i
c are listed in Table II

and the flux values are listed in Table III.

APPENDIX B: ADDITIONAL RESULTS

Additional information and results for 10 states in the U.S.,
New York City, Italy, Spain, and the United Kingdom are
listed in Table IV.
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