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Ferromagnetic spin-1 Bose-Einstein condensates in the broken-axisymmetric phase support polar-core spin
vortices (PCVs), which are intimately linked to the nonequilibrium dynamics of the system. For a purely
transversely magnetized system, the Turner point-vortex model predicts that PCVs behave like massive charged
particles interacting via a two-dimensional Coulomb potential. We test the accuracy of the Turner model for
two oppositely charged PCVs, via comparisons with numerical simulations. While the bare Turner model shows
discrepancies with our numerical results, we find that a simple rescaling of the PCV mass gives much better
agreement. This can be explained via a phenomenological damping arising from coupling to modes extrinsic to
the point-vortex phase space. We also identify the excitations produced following PCV annihilation, which help
elucidate recent phase ordering results. We extend the Turner model to cases where the system is magnetized
both transversally and axially, identifying a crossover to scalar vortex dynamics for increasing external Zeeman
field.
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I. INTRODUCTION

Spinor Bose-Einstein condensates (BECs) can exhibit both
ferromagnetic and antiferromagnetic order, and possess a rich
array of phases with distinct symmetry properties. Associ-
ated with these phases are a variety of topological defects
and spin textures [1,2], which play an essential role in
nonequilibrium processes such as symmetry breaking and the
Kibble-Zurek mechanism [3,4], phase ordering dynamics [5],
and quantum turbulence [6,7]. Most work on defects and
spin textures in spinor condensates have focused on topolog-
ical and stability aspects [8–34], with less exploration into
defect-defect interactions and consequent dynamics. Studies
on the interactions and resulting dynamics of half-quantum
vortices in antiferromagnetic spin-1 condensates [35–38] and
the collisional dynamics of non-Abelian vortices in spin-2
condensates [39,40], as well as the dynamics of vortex dipoles
across distinct magnetic phases [41], are notable exceptions,
and reveal the rich dynamics possible due to the multicompo-
nent nature of defects in spinor condensates.

The ground-state manifold of a ferromagnetic spinor BEC
is SO(3), supporting both nonsingular and singular defects
[21]. Through the use of a quadratic Zeeman field, the spin
vector can be constrained to point in a plane transverse to
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the field direction, and hence has SO(2) symmetry. This
phase is termed the broken-axisymmetric (or easy-plane)
phase. In this work we explore the dynamics of polar-core
spin vortices (PCVs), which are point defects arising in the
broken-axisymmetric phase. These vortices consist of a phase
winding of transverse spin density around a polar (i.e., un-
magnetized) core, and have been generated, and observed in
situ, in experiments [42] (see also Ref. [31]). PCVs have
been shown to play a crucial role in the symmetry breaking
following a quench to the easy-plane phase [42,43], leading to
Kibble-Zurek scaling [44–46] and universal long-time phase
ordering dynamics [47–50].

In scalar condensates, the point-vortex model [51] has been
shown to describe accurately a plethora of nonequilibrium
dynamical effects [52–64]. An analogous point-vortex model
of PCV dynamics was introduced by Turner [65], where it
was argued that the constituent circulations that make up a
PCV interact like scalar vortices, but are confined due to
spin-exchange interactions. This confining energy manifests
itself as a mass, resulting in PCVs behaving like massive
charged particles interacting via a two-dimensional Coulomb
force. We term this model the “Turner model.” Although the
notion of vortex mass has been debated for some time in
scalar superfluids [66–74], evidence suggests its effect on the
vortex motion is negligible [67,72,75]. Hence PCV dynamics
are predicted to be vastly different from scalar vortices. With
scalar vortices, two like charged vortices circulate around
their centroid, while two oppositely charged vortices move
in parallel lines (in the absence of damping or sound waves)
[76–78]. In contrast, the Turner model predicts that two like
charged PCVs should repel, while two oppositely charged
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PCVs should attract. The qualitative features of the Turner
model have been confirmed for two oppositely charged PCVs
via simulations of the spin-1 Gross-Pitaevskii equations [79].
However. this work also identified quantitative discrepancies
between simulations and the Turner model, and hence left
questions open regarding the precise quantitative details of the
process.

In this work we carry out a detailed comparison between
the Turner model of PCV dynamics and numerical simula-
tions of two oppositely charged PCVs. While the bare Turner
model shows deviations from numerical simulations, we find
that the agreement can be vastly improved by introducing a
phenomenological damping of the modes that give rise to the
PCV mass, resulting in a simple rescaling of the bare PCV
mass. The damping arises due to a coupling of the PCV coor-
dinates to extrinsic modes, resulting in a loss of energy from
the point-vortex phase space. We also identify the excitations
produced following PCV annihilation, which likely play an
important role in the anomalous phase ordering identified in
Ref. [80]. A linear Zeeman field results in the ground-state
condensate magnetization rotating out of the transverse plane
to partially align with the Zeeman field [81]. We extend the
Turner model to PCVs in this phase, finding good agreement
with our model and numerical simulations.

The paper is organized as follows. In Sec. II we present
background material to understand PCVs and the Turner
model. In Sec. III we compare the Turner model with numeri-
cal simulations for two oppositely charged PCVs, and identify
a crucial damping processes missing from the original Turner
model. In Sec. IV we study the excitations produced following
PCV annihilation, and in Sec. V we extend the Turner model
to describe systems with both axial and transverse magneti-
zation. In Sec. VI we conclude, with various ideas for future
work.

II. BACKGROUND

A. Spin-1 BECs

The atoms in a spin-1 BEC have access to three spin levels
m = −1, 0, 1 and can be described by a spinor of three classi-
cal fields �(x) = (ψ1(x), ψ0(x), ψ−1(x))T . In a flat-bottomed
quasi-2D trap, the Gross-Pitaevskii equations (GPEs) are [1]

ih̄
∂ψm

∂t
= − h̄2∇2

2M
ψm + δHint[�,�∗]

δψ
†
m

, (1)

with [82–84]

Hint =
∫

d2x
[

gn

2
n(x)2 + gs

2
|F(x)|2

− p�†(x) fz�(x) + q�†(x) f 2
z �(x)

]
. (2)

The spin-1 atoms interact via spin-independent (strength
gn) and spin-dependent (strength gs) interactions,
with n(x) = �†(x)�(x) the areal density and F(x) =∑

μ=x,y,z �†(x) fμ�(x)ŝμ the areal spin density for spin-1
Pauli matrices fμ and spin directions ŝμ. We consider
ferromagnetic (gs < 0) spin interactions, arising, for example,
in 87Rb [85,86] and 7Li [87], which favors a nonzero
magnetization density. A magnetic field along ŝz, along

with microwave dressing techniques [88,89], results in a
Zeeman splitting of the spin levels, and has both a linear p′
and quadratic q contribution. The linear Zeeman shift can
be combined with the Lagrange multiplier λ that enforces
conservation of total axial (‖ ŝz) magnetization and hence
p = p′ + λ [90]. In experiments, the quadratic Zeeman shift
can be tuned to within a few percent of the spin interaction
energy n|gs| [42], while the initial Fz could be tuned using
electromagnetic pulses [91,92]. For 0 < q < q0 = 2|gs|n0 (n0

is the mean condensate density) and |p| < q the ground state is
in the broken-axisymmetry (BA) phase, whereby the quadratic
Zeeman energy favors a transverse (⊥ ŝz) magnetization that
breaks the axial symmetry of the Hamiltonian [81,90]. Here
q0 is a quantum critical point separating the p = 0 BA phase
from from the polar [� = (0, ψ0, 0)T ] phase.

B. Polar-core spin vortices

For p = 0 in the BA phase, the quadratic Zeeman field
confines the spin to point entirely in the (ŝx, ŝy) plane and the
ground state has only transverse magnetization. The ground
state can be parameterized as [81]

� = eiθ e−i fzϕ

√
n0

2

⎛
⎝ sin β√

2 cos β

sin β

⎞
⎠, (3)

with U(1) symmetries due to global phase rotations eiθ and
spin rotations e−i fzϕ around ŝz. Here cos(2β ) = q/q0. The
resulting spin density is

F = n0

√
1 −

(
q

q0

)2

(cos ϕ, sin ϕ, 0). (4)

A 2πκ (κ ∈ Z \ {0}) phase winding of the transverse
spin F⊥ = Fx + iFy results when ϕ = κφ(x), with φ(x) =
phase(x + iy) the phase of the complex number x + iy. When
there is no additional global phase rotation,1 the state is a PCV
[1],

�(x) ≈
√

n0

2

⎛
⎝sin βe−iκφ(x)√

2 cos β

sin βeiκφ(x)

⎞
⎠. (5)

This PCV state is approximate as in reality a core will form, to
avoid the divergences of ∇ψ±1. Hence the density and poten-
tially the phase profiles will be modified for distances |x| � ξs,
with ξs = h̄/

√
Mq0 the spin healing length. Within the core

there is a peak in the occupation of the ψ0 (polar) component,
hence the terminology “polar-core spin vortex.” As we will
see, the core structure plays an integral role in the PCV mo-
tion, drastically changing the dynamics compared to the scalar
case. Since the ψ±1 components of a single PCV circulate in
opposite directions, the velocity field generated by a collection
of PCVs consists of counterflowing ψ1 and ψ−1 currents.
Hence the flow field around a PCV transports no mass but
will transport axial magnetization Fz = |ψ1|2 − |ψ−1|2 [93].

1A combination of spin and global phase rotations in Eq. (3) pro-
duces a Mermin-Ho vortex [14], which also gives rise to a phase
winding of the transverse spin, but will otherwise have different
properties to the PCVs explored here.
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C. Scalar point-vortex model

In a scalar BEC, the point-vortex model is derived by as-
suming that the superfluid can be described by a collection of
vortex coordinates Xk that give the points of δ-function diver-
gence of the vorticity of the superfluid velocity field. One then
stipulates a vortex ansatz for the condensate field, ψ (x, t ) =√

n0
∏

k eiκkφ[x−Xk (t )] (κk ∈ Z \ {0} are the vortex charges),
which evolves according to the scalar Gross-Pitaevskii equa-
tion. Deriving equations of motion for the vortex positions
Xk (t ) using either variational Lagrangian [72] or hydrody-
namic [94] techniques gives the point-vortex equations of
motion,

ẑ × Ẋk = −
∑
j 
=k

h̄κ j

M

Xk − X j

|Xk − X j |2 . (6)

Equation (6) shows that a scalar vortex follows the velocity
field generated by the remaining vortices. This is necessary to
conserve the fluid momentum in the presence of no external
forces, in analogy to the Magnus effect in classical fluid dy-
namics [73,95–97]. Note the absence of an inertial term ∝Ẍk

in Eq. (6), which can be interpreted as scalar point vortices
being massless [72].

Two fundamental assumptions of the scalar point-vortex
model are that interactions with sound waves can be ignored
and that the precise core features of the vortices do not affect
the mesoscopic dynamics of the system, hence the use of
δ-function cores suffice. In contrast, we will show that the
core features of a PCV have a radical effect on the mesoscopic
dynamics of the system and that coupling to spin waves is non-
negligible. Despite this, a point-vortex model is still extremely
useful at describing the bulk dynamics of PCVs.

D. PCV point-vortex model

The variational Lagrangian method to derive the point-
vortex model for scalar vortices, Eq. (6), can be adapted to
PCVs [65,79]. We start with an ansatz consisting of a product
of PCVs [79],

�(x, t ) =
√

n0

2

⎛
⎝ sin β

∏
k g1k (x, t )e−iκkφ(x−X1k )√

2 cos β
∏

k g0k (x, t )
sin β

∏
k g−1k (x, t )eiκkφ(x−X−1k )

⎞
⎠, (7)

with Xmk (t ) the center of a vortex in spin component m, κk the
PCV charge and gmk (x, t ) the amplitude profiles giving rise to
the PCV core. The X1k and X−1k coordinates that constitute
a single PCV will tend to move in opposite directions, due
to the counterflowing ψ±1 fields generated by other PCVs
and Eq. (6). This “stretching” is restricted, ultimately by the
spin exchange term in gs|F|2, which favors the phase profiles
of ψ1 and ψ−1 to overlap. In addition, other energy terms
arising from overlapping vortex cores in the ψ±1 components
may restrict the stretching. Hence the additional energy term
Hint[�,�†] must be considered in the PCV dynamics.

The ansatz (7), as it currently stands, allows for coupling
between phase and amplitude excitations via coupling be-
tween X±1k and excitations of the amplitude profiles gmk . To
obtain a point-vortex description of PCV dynamics, we make
the approximation that the core profiles gmk are stationary,
depending only on t through the vortex coordinates Xmk ,

gmk (x, t ) → gm(x, X1k, X−1k ). As a corollary, Hint[�,�†] de-
pends only on the vortex coordinates Xmk . Assuming also
that the contribution of each PCV to Hint depends only on
the magnitude of the PCV stretch |X1k − X−1k| allows one to
further decompose Hint as

Hint[�,�†] ≈ π h̄2n0 sin2 β

4M

∑
k

κ2
k u(|X1k − X−1k|) (8)

for individual PCV stretch energies ∝u(|X1k − X−1k|) (the
prefactor has been chosen to simplify the equations of mo-
tion below). Adding this to the scalar vortex interaction from
Eq. (6), assuming that the PCV stretching remains small
compared to the distance between PCVs, and neglecting the
kinetic energy arising from the vortex cores, gives [65,79]

ẑ × Ẋmk =
∑
j 
=k

h̄mκ j

M

Xmk − Xm j

|Xmk − Xm j |2 − mh̄κk

2M
∇Xmk u, (9)

with ∇u = x̂∂/∂ux + ŷ∂/∂uy the gradient derivative with re-
spect to a vector u = (ux, uy). We see that the fluid momentum
in component m is now balanced by the force ∝ − ∇Xmk u [65].
We introduce position Rk and stretch rk coordinates for each
PCV,

Rk = (Xk,Yk ) = X1k + X−1k

2
,

rk = (xk, yk ) = X1k − X−1k . (10)

and hence rewrite Eq. (9) as

ẑ × Ṙk = −∇rk

h̄κk

2M
u(|rk|), (11a)

ẑ × ṙk =
∑
j 
=k

2h̄κ j

M

Rk − R j

|Rk − R j |2 . (11b)

Equation (11b) can be written in terms of the gradient of
a two-dimensional Coulomb potential ∝ − ln |(Rk − R j )/ξs|.
Hence Eqs. (11) both take the form of a Magnus force bal-
anced by the gradient of a potential.

The transverse spin will be zero at x = Rk to avoid a
singularity in the phase winding of ϕ. Equation (11b) predicts
that the ψ±1 flow fields will cause the PCV to stretch. This
results in a force on the ψ±1 components, arising from the
stretch energy (8), with the net effect that two PCVs of oppo-
site (same) charge attract (repel), Eq. (11a). The equations of
motion (11) are derived from a time translationally invariant
and hence energy conserving Hamiltonian, with a conserved
dimensionless PCV energy [79],

H = HR + Hr, (12)

with

HR = −2
∑
j,k> j

κkκ j ln

∣∣∣∣Rk − R j

ξs

∣∣∣∣
2

, (13a)

Hr =
∑

k

κ2
k u(|rk|). (13b)

[The condensate energy is related to Eq. (12) by scaling by
the prefactor in Eq. (8), which includes the factor of π often
included in the scalar point-vortex energy.]
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FIG. 1. (a) GPE simulations of the dynamics of two oppositely
charged PCVs, showing that they attract, as predicted by the Turner
model (11). [The full simulation grid is 100ξs × 100ξs, hence the
PCVs are far from the boundary to mitigate boundary effects.]
(b) This horizontal motion is caused by a vertical separation of
the ψ±1 vortices that constitute a single PCV, such that the stretch
energy balances the Magnus force from the horizontal motion. Cir-
cles (diamonds) mark the center of circulation of the vortex in the
ψ1(ψ−1) components. The core of the ψ1(ψ−1) vortices are filled by
the ψ−1(ψ1) component, giving rise to an Fz dipole within the core.
(c) The coordinates of the ψ±1 vortices that constitute the rightward
moving (negatively charged) PCV, clearly showing the component
separation as the PCV moves. Results are for q = 0.3q0.

The assumption that the profiles gmk depend only on
time through the coordinates Xmk removes the possibility
of coupling to dynamical degrees of freedom outside of the
{X1k, X−1k} phase space (or equivalently the {Rk, rk} phase
space). For scalar vortices, this decoupling is a reasonable
approximation in many cases [72]. As we will later show, it
is in fact unreasonable for PCVs. However, a simple linear
damping term in Eq. (11b) allows for the effects of additional
modes to be included, leading to an accurate point-vortex
model for the coordinates Rk .

III. TESTING THE TURNER MODEL OF PCV DYNAMICS

We analyze the dynamics of two oppositely charged PCVs
with centres of circulation at positions R1(0) ≈ (−10ξs, 0)
(charge κ1 = −1) and R2(0) ≈ (10ξs, 0) (charge κ2 = 1); see
Fig. 1(a). The initial two-PCV state is

�(x) =
√

n0

2

⎛
⎝sin βeiφ[x+(10ξs,0)]e−iφ[x−(10ξs,0)]√

2 cos β

sin βe−iφ[x+(10ξs,0)]eiφ[x−(10ξs,0)]

⎞
⎠, (14)

which we evolve using the spin-1 GPEs (1). For times
−10ts � t < 0 (ts = h̄/q0) we include in Eq. (1) an energy

damping term of strength γ .2 This allows a core structure to
develop, while having only a small affect on |R1 − R2| as long
as γ � 1. For times t � 0 we set γ = 0. An example case
of PCV dynamics obtained from our simulations is shown
in Fig. 1. As predicted by Eqs. (11), the oppositely charged
PCVs attract. Within each PCV, the ψ±1 vortex cores separate,
along a line orthogonal to R2 − R1; see Figs. 1(b) and 1(c).

[In all simulations we use n0 = 104ξs and gn = 10|gs|,
relevant to 87Rb. For 87Rb, gn/|gs| ≈ 216 [98]. Our smaller
ratio is sufficient to suppress density fluctuations. We solve
Eq. (1) on a N = 1024 × 1024 grid with physical size 100ξs ×
100ξs using a fourth-order Runge-Kutta method (time step =
0.002ts) with periodic boundary conditions and kinetic energy
operator evaluated to spectral accuracy. The PCVs remain far
from the boundary, which mitigates the effect of the initial
phase discontinuity along x = (x,±100ξs). To detect vortices,
we interpolate the wave function onto a 100 × denser grid
in a region around each vortex and find points of diverging
vorticity ∇ × ∇ phase(ψ±1).]

A. PCV position dynamics

Solving the Turner model (11) for the PCV coordinates Rk

and rk requires stipulating a form for the potential u(rk ). We
find that a harmonic potential

u(rk ) = 1

2

a

ξ 2
s

r2
k (15)

describes the dynamics very well, with a a fitted “spring
constant.” Taking a second time derivative of Eq. (11a) and
using Eqs. (11b) and (15) gives

mvR̈k = π h̄2n0 sin2 β

M

∑
j 
=k

κ jκk
Rk − R j

|Rk − R j |2 (16)

with

mv = πMn0ξ
2
s sin2 β

a
. (17)

The prefactors in Eq. (16) are such that the right-hand side
is the gradient (with respect to Rk) of the condensate ki-
netic energy. Equation (16) predicts that PCVs behave like
massive charged particles moving under the influence of the
two-dimensional Coulomb interaction.3

In Fig. 2(a) we show simulation results for the PCV sepa-
ration D(t ) = |R2(t ) − R1(t )| for different q values. We test
Eq. (11a), assuming a potential (15), by comparing D(t )
with the integral 2a

∫ t
0 dτ r(τ )/ts. Here r = |r1| = |r2| is the

stretching of either PCV, which we obtain from the GPE sim-
ulations. Equation (11a) is satisfied accurately for q � 0.1q0,
with a as a fitting parameter. For small q, the full SO(3)

2This is done by solving ih̄ψ̇m = (1 − iγ )[Lm[ψm] − (μm +
mp)ψm], where γ is the dimensionless damping rate, Lm is the
conservative time evolution from Eq. (1), and μm is the uniform
ground-state chemical potential [1]. We set γ = 1.

3PCVs of charge |κk | > 1 decay into PCVs of lower charge,
which repel due to the repulsion of like-charged PCVs predicted by
Eq. (16).
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FIG. 2. (a) The PCV separation D(t ) (colored solid curves) de-
creases proportional to

∫ t
0 r(τ ) dτ (matching black dashed curves),

as predicted by the Turner model with a harmonic stretch energy, for
q/q0 = (0.1, 0.2, 0.3, 0.5, 0.7, 0.9) (blue, yellow, green, red, orange,
purple). The enlarged region shows the initial PCV velocity. (b) The
solid curves from (a) collapse onto a single functional form when
time is rescaled by the PCV collision time tcoll. This curve is well
described by the analytic prediction (18) (black dashed curve) with
tcoll in replace of t ann

coll . (d) The PCV collision time (black dots) scales
as (tcoll )2 ∝ 1/a, as predicted by Eq. (19). However, the analytic
prediction Eq. (19) (black dashed line) underestimates tcoll and hence
a rescaling factor is needed, Eq. (21) (black dotted line).

spin manifold will become accessible, and hence we expect
deviation from the Turner model.4

Equation (16) can be solved analytically for the two-PCV
setup in Fig. 1 to give

D(t ) = D(0)
exp

( − {
erf−1

[ (1−b)t
t ann
coll

+ b
]}2)

exp[−(erf−1 b)2]
. (18)

Here

t ann
coll =

√
π

a

D(0)

2cs
(1 − b) exp[(erf−1 b)2]

∝ √
mv + O(b) (19)

is the analytic prediction for the PCV collision time tcoll, with
cs = ξs/ts the characteristic spin-wave speed, and

b = erf

[
− Ḋ(0)

2cs
√

a

]
(20)

allows for a nonzero initial PCV velocity Ḋ(0), which is
present in our simulation due to the initial damped evolution;

4The fit for 0 < q � 0.1q0 can be improved by adding a term ∝rk

in the potential (15).

see enlarged region in Fig. 2(a). We can easily extract the
PCV collision time tcoll from our GPE simulations. Rescal-
ing time by tcoll results in the curves for different q values
from Fig. 2(a) reducing to the same functional form; see
Fig. 2(b). Hence the entire q dependence of the dynamics of
D is contained in the parameter tcoll, as predicted by Eq. (18).
The agreement with Eq. (18) is excellent with t ann

coll replaced
by tcoll and b ≈ 0.2. We find that the predicted scaling of
(tcoll )2 ∝ 1/a from Eq. (19) [to zeroth order in Ḋ(0)] is also
very well satisfied; see Fig. 2(c). In addition, we find that
tcoll ∝ D(0) (not shown), as predicted by Eq. (19).

Despite these consistencies, Eq. (19) underestimates the
collision time; see Fig. 2(c). To get improved agreement, we
need to rescale Eq. (19) by a scaling factor A,

t ann
coll → τcoll = At ann

coll ≈ 2.8t ann
coll . (21)

This can be interpreted as an enhancement of the PCV mass
to the effective mass

meff
v = A2mv ≈ 8mv. (22)

The necessity of using an effective mass, rather than the bare
PCV mass, is the first evidence of a coupling to extrinsic
degrees of freedom, outside of the {Rk, rk} phase space. We
will provide more evidence of this shortly, where we will
see that the scaling factor A can be written in terms of a
damping rate of the coordinates rk . The notion of an effective
mass arising from a coupling to extrinsic modes is reminiscent
of the notion of electron effective mass in solids [99]. Note
that we see no q dependence on the enhancement factor in
Eq. (22), hence the q dependence is entirely contained within
the bare mass mv .

B. PCV stretch dynamics

We now turn to the PCV stretch coordinate r. In Fig. 3(a)
we show simulation results for r(t ) for different q val-
ues. We test Eq. (11b) by comparing r(t ) with the integral∫ t

0 dτ 2/D(τ ) for the two extreme cases q = 0.1q0 and q =
0.9q0 [the remaining

∫ t
0 dτ 2/D(τ ) results fall between these

two curves]. Evidently, the stretch coordinate r is much
smaller than the prediction of Eq. (11b). Note that the oscil-
lation of r observed in [79] is not present in Fig. 3(a). This is
due to the initial damped evolution, which removes the energy
liberated when the core forms and the resulting long-lived
oscillation.

The analytic prediction for r, obtained from solving
Eqs. (11) with the potential (15), is

r(t ) = 2ξs√
a

erf−1

[
(1 − b)t

t ann
coll

+ b

]
. (23)

Results for
√

ar(t ) versus t/tcoll are shown in Fig. 3(b), where
we see that the different

√
ar(t ) show poor collapse onto a sin-

gle functional form [in contrary to the prediction of Eq. (23)].
Furthermore the analytic prediction (23) (with t ann

coll → tcoll)
overestimates the stretching. This suggests that energy from
the Coulomb potential HR is not being entirely transferred
into the energy term Hr , in contrary to the conservation law
Eq. (12).

In Figs. 3(c) and 3(d) we plot the two energy terms from
Eq. (12) using the simulation results for Rk and rk , with the

013154-5



L. A. WILLIAMSON AND P. B. BLAKIE PHYSICAL REVIEW RESEARCH 3, 013154 (2021)

FIG. 3. (a) The stretching of the two PCVs increases with time
(colored solid curves) for q/q0 = (0.1, 0.2, 0.3, 0.5, 0.7, 0.9) (blue,
yellow, green, red, orange, purple). The corresponding Turner model
predictions, obtained from integrating Eq. (11b), are much larger,
ranging from the lower black dashed curve curve (q = 0.1q0) to the
upper black dashed curve (q = 0.9q0). (b) Rescaling r by

√
a and

t by tcoll does not result in the curves from (a) reducing to a single
curve. The analytic result Eq. (23) (black dashed line) gives a much
larger stretching than that observed for any q value. The agreement
with the small q curves is improved with a phenomenologically
damping of ṙ to account for energy lost to other modes (black dotted
line). (c), (d) As the PCVs come together, the energy HR decreases
much more than the stretch energy Hr increases, hence there is an
overall loss of H from the system. [Note the vertical axis scale in
(d) is 4 × smaller than in (c).]

potential (15) for Hr and a obtained from the fits in Fig. 2(a).
The PCV energy HR decreases as the PCVs collide, Fig. 3(c)
while the energy Hr increases, Fig. 3(d). However, the loss in
HR is approximately four times greater than the gain in Hr

and hence most of the liberated HR energy is lost to other
excitations in the system, rather than coupling to the PCV
dynamical variable r.

C. The damped Turner model

We now present a simple modification to Eq. (11b) that
gives rise to the effective mass, Eq. (22), and which also
improves the agreement in Fig. 3(b). Motivated by the loss
of energy identified in Figs. 3(c) and 3(d), we introduce a
phenomenologically damping term −�ẑ × ṙk on the right-
hand side of Eq. (11b). Solving Eq. (11a) and the modified
Eq. (11b) gives the same solution (18) but with the modified
PCV collision time Eq. (21). The scaling factor A is related to
the damping rate � via

A = √
1 + �. (24)

Meanwhile Eq. (23) is modified to

r(t ) = 2ξs

1 + �

√
1 + �

a
erf−1

[
(1 − b)t

τcoll
+ b

]
. (25)

Using the effective mass Eq. (22) gives � ≈ 7, which when
used in Eq. (25) gives good agreement with the r curve of the
smallest q value; see Fig. 3(b). Note that Fig. 3(b) suggests a
q dependence on the scaling (25) that is not accounted for by
our simple damping model. A more accurate determination of
this damping process is an interesting topic for future work.
The effective mass, however, appears insensitive to this q de-
pendence, and hence our phenomenological damping theory
describes very well the behavior in Fig. 2. Note also that
despite the addition of this damping and the new parameter
�, the effect on the dynamics of D is to simply modify the
PCV collision time.

It is worth comparing our damping theory with the damp-
ing theory used in scalar vortex dynamics to describe decay
to the acoustic field [62,100–102]. The scalar vortex damp-
ing theory relies on a distinction between the incompressible
(vortex) excitations and compressible (acoustic) excitations,
which are responsible for the damping. The PCV vortex dy-
namics, even without damping, incorporates the compressible
field via the stretch energy, Eq. (13b). This part of the com-
pressible field energy is coupled to the incompressible field
energy, Eq. (13a), and in addition is coupled to the com-
pressible field excitations responsible for the damping. Hence,
unlike for scalar vortices [6], separating the vortex energy
from the compressible field energy is not well defined. Fur-
thermore, the excitations responsible for the damping occur
within the stretched PCV core, and hence the microscopic
details of these will likely be quite complicated.

D. Probing the PCV stretch energy

In Ref. [65] it was proposed that the stretch en-
ergy (13b) arises from the spin exchange interaction
∝gs

∫
d2x Re(ψ2

0 ψ∗
1 ψ∗

−1), which favors phase coherence be-
tween ψ1 and ψ∗

−1. The spin exchange energy will increase as
a PCV stretches and the circulating ψ±1 phases separate. We
expect this energy to dominate for sufficiently large stretch-
ing where the cores of the ψ±1 vortices do not overlap and
the |ψm|2 profiles are independent of the stretching. How-
ever, for smaller stretching, energy terms involving |ψm|2
may also be important. In Fig. 4(a) we plot the density pro-
files δ|ψm|2 = |ψm|2 − |ψgs

m |2 of the three spin components
ψm through the center of the rightward moving (negatively
charged) PCV along y (the stretch axis). Here |ψgs

m |2 are
the PCV-free ground-state densities computed from Eq. (3).
Clearly the stretching is smaller than the PCV core size and
the |ψm|2 profiles change as the PCV stretches. Hence there
will be a coupling between the stretch coordinate and energy
terms involving |ψm|2. Note that as the cores in the ψ±1

components separate, each core is partially filled by the other
ψ∓1 component, resulting in the dipole of Fz magnetization in
Fig. 1(b). The density δn = n − n0 is also plotted in Fig. 4(a).

In Fig. 4(b) we plot different contributions to the conden-
sate energy, computed across a 12ξs × 12ξs area S centered
at either PCV, for q = 0.3q0. The spin interaction en-
ergy consists of terms EFz = (gs/2)

∫
S d2x Fz(x)2 and EF⊥ =
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FIG. 4. (a) The density profiles δ|ψm|2 = |ψm|2 − |ψgs
m |2 of the

rightward moving (negatively charged) PCV core along the stretch
axis. The profiles show that the stretching is smaller than the PCV
core (blue: m = 1; yellow: m = −1; green: m = 0). The total mass
density δn = n − n0 is also shown (red curve). (b) Within a 12ξs ×
12ξs area around either PCV, both the spin exchange energy Ese

(blue dots) and the quadratic Zeeman energy Eq (yellow triangles)
increase as the PCV stretches. The increase in Ese is compensated
by a decrease in the remaining terms in EF⊥ , such that EF⊥ (green
stars) is close to constant. The energy EFz (red squares) decreases as
the PCV stretches and the Fz dipole forms. The energy En (orange
asterisks) remains very close to constant and hence excitations of the
total mass density are decoupled from the PCV dynamics. The zero
point of each energy has been shifted so that the smallest r value
plotted is at zero energy. For (a) and (b) q = 0.3q0. (c) The spring
constant a from Fig. 2(a) increases as a ≈ q/q0.

(gs/2)
∫

S d2x |F⊥|2. The latter term contains the spin ex-
change energy Ese = 2gs

∫
S d2x Re(ψ2

0 ψ∗
1 ψ∗

−1). Changes in
|ψm|2 may also change the quadratic Zeeman energy Eq =
q

∫
d2x (|ψ1|2 + |ψ−1|2). Both the quadratic Zeeman energy

Eq = q
∫

d2x (|ψ1|2 + |ψ−1|2) and the spin exchange energy
Ese = 2gs

∫
S d2x Re(ψ2

0 ψ∗
1 ψ∗

−1) increase, roughly in propor-
tion, as the PCV stretches. Therefore it is not clear whether
the stretch energy arises from Eq or Ese. The energy EFz =
2gs

∫
S d2x Fz(x)2 becomes increasingly more negative as the

PCV stretches, as expected due to the formation of the Fz

dipole. The energy EF⊥ remains approximately constant, and
hence the increase in Ese must coincide with a decrease of the
remaining terms in EF⊥ . We also plot the density interaction
term En = (gn/2)

∫
S d2x n(x)2, which remains very close to

constant. Hence although the mass density variation across
the PCV core is not negligible [see Fig. 4(a)], the mass den-
sity modes do not couple strongly to the PCV dynamics, as
expected since gn � |gs|.

Although our analysis of Fig. 4(b) provides some clues
into the origin of the stretch energy, in general it is difficult
to identify what excitations are contributing to Hr and what
excitations are contributing to the the loss of the PCV energy
H [Figs. 3(b) and 3(c)]. Furthermore, unlike in Fig. 4(b), for
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FIG. 5. (a) Two colliding PCVs of opposite sign produce a
transverse spin excitation that propagates outward from the anni-
hilation point at the origin. The frames continue those displayed
in Fig. 1(a). (b) The corresponding Fz excitation. (c) The Fz(x)
magnetization along the line x = (0, y), extracted from (b). The
initial peak disperses as the excitation propagates [t = 52ts (blue
curve), t = 67ts (yellow curve), t = 90ts (green curve)]. For (a),
(b), and (c) q = 0.3q0. (d) The position yex of the minimum of
Fz(0, y) increases linearly with time for different q values (colored
dots) [q/q0 = (0.1, 0.2, 0.3, 0.5, 0.7, 0.9) (blue, yellow, green, red,
orange, purple)]. The excitation speed vex can be extracted from a
linear fit to the data points (colored solid lines). Inset: the speed vex

(black dots) follows the speed vBog of long-wavelength Bogoliubov
excitations of Fz and phase(F⊥) (red solid line).

q � 0.5q0 we find no clear trend in Eq and Ese with increasing
r. This may relate to the qualitative change in the instability of
a uniform polar state at q = 0.5q0 [44–46]. A more detailed
analysis of the PCV core excitation spectrum, as has been
done recently for nematic vortices in an antiferromagnetic
spin-1 condensate [33], may help elucidate more clearly what
modes contribute to Hr and what modes contribute to the loss
of H. The stretch energy spring constant a, obtained from the
fits to the results in Fig. 2(a), increases close to linearly with
increasing q, see Fig. 4(c), with a ≈ q/q0.5 It is difficult, how-
ever, to associate this behavior with Eq or Ese, as the density
and phase profiles within the PCV core are not uniform. A
detailed study of a stretched PCV excitation spectrum may
reveal modes that increase in energy as the PCV stretches and
that scale with q as in Fig. 4(c), which would provide more
insight into the basis of the PCV stretch energy.

5The effective mass, not the bare mass, was fitted to simulation
results in Ref. [79], giving a value of a smaller than that in Fig. 4(c).
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IV. PCV ANNIHILATION

Two oppositely charged PCVs attract until they collide
and annihilate. In this section we examine the dynamics of
the excitation produced following PCV annihilation. Figure 5
shows the evolving (a) transverse spin and (b) Fz spin den-
sity, following the PCV annihilation imminent in Fig. 1(a).
The ring-shaped excitation that propagates out from the PCV
annihilation point consists of variation in both the transverse
spin direction and the Fz spin density.

In Fig 5(c) we plot Fz(x) along the line x = (0, y), ex-
tracted from Fig. 5(b). The excitation is initially dominated
by a single peak, but this disperses as the excitation prop-
agates out. We estimate the speed of the propagating waves
from the propagation speed of the minimum of Fz(0, y). The
position yex of this minimum travels at a constant speed
vex [see Fig. 5(d)], which increases for increasing q. The
speed is closely matched by the speed of long-wavelength
Bogoliubov excitations of Fz, which dynamically couple to
quadratic excitations of phase(F⊥); see inset to Fig. 5(d).
For gn � |gs| these excitations both have the dispersion re-
lation h̄ωk = (q0ξsk/2)

√
ξ 2

s k2 + 2q/q0 [84], which travel at a
speed vBog = ωk/k. Fitting vBog to vex, we extract a small but
nonzero wave vector k ≈ 2π × 0.1ξ−1

s , which shifts the speed
slightly from the sound (k = 0) speed. In Ref. [80], which
studied the phase ordering dynamics following a quench to the
easy-plane phase, it was found that out-of-equilibrium Fz and
phase(F⊥) excitations remain after all PCVs have annihilated,
leading to anomalously slow thermalization. However, the ori-
gin of the excitations was not identified. Following the results
from Fig. 5, we expect that the excitations are produced from
the PCV annihilation events during the PCV-driven phase
ordering.

V. PCV DYNAMICS WITH NONZERO AXIAL
MAGNETIZATION

A. The damped Turner model with axial magnetization

For 0 < |p| < q in the BA phase, the ground state (3) is
modified to [81]

� = eiθ e−i fzϕ
√

n0

⎛
⎝cos α sin β

cos β

sin α sin β

⎞
⎠, (26)

with

cos β =
√

(q2 − p2)(p2 + q2 + qq0)

2q3q0
,

cos 2α = 2qp

q2 + p2
. (27)

In addition to the transverse magnetization F⊥, the state (26)
has a nonzero axial magnetization,

Fz = n0 p(p2 − q2 + qq0)

q2q0
. (28)

A phase winding of the transverse spin gives rise to a PCV,
with the state (7) modified to

�(x, t ) ≈ √
n0

⎛
⎝cos α sin β

∏
k g1k (x)e−iκkφ(x−X1k )

cos β
∏

k g0k (x)
sin α sin β

∏
k g−1k (x)eiκkφ(x−X−1k )

⎞
⎠. (29)

Carrying out an identical procedure that leads to the derivation
of Eq. (9) (see Ref. [79]), we obtain

ẑ × Ẋmk =
∑
j 
=k

mh̄κ j

M

Xmk − Xm j

|Xmk − Xm j |2

− mh̄κk

2M[1 + m cos 2α]
∇Xmk u(|rk|). (30)

According to Eq. (30), the Coulomb potential between two
oppositely charged PCVs initially separated along the x-axis
causes the ψ±1 components to stretch along the y-axis, like
in the Fz = 0 case. With nonzero Fz magnetization, however,
the prefactor of the balancing stretch force ∝∇Xmk u(|rk|) is
different for each of the ψ±1 components. As a result, the
centers of circulation of the ψ±1 components move along
the x-axis at different velocities. This results in an additional
stretching along the x-axis, which needs to be balanced by
a Magnus force along the y-axis. Hence in addition to the
motion along the x-axis, the PCVs also move along the y-axis.

Continuing as for Eqs. (11), we rewrite Eqs. (30) in terms
of the coordinates Rk and rk . Including a damping term dis-
cussed in Sec. III C gives

ẑ × Ṙk = −∇rk

h̄κk

2M sin2 2α
u(|rk|), (31a)

ẑ × [(1 + �)ṙk + 2 cos 2αṘk] = 2h̄κ j

M

Rk − R j

|Rk − R j |2 . (31b)

B. PCV dynamics with small and large axial magnetization

Figure 6 shows the PCV dynamics from GPE simulations
as in Sec. III, but with the initial state (14) modified according
to Eq. (29) such that 〈Fz〉 = 0.1n0. Here 〈Fz〉 = A−1

∫
d2x Fz

is the spatially averaged Fz density (A is the system area).
As predicted, the PCVs not only attract but also move trans-
verse to their separation; see Fig. 6(a). The dynamics of Rk

follows closely the integral [(h̄κk )/(2M sin2 2α)]
∫ t

0 dτ ẑ ×
∇rk u(|rk (τ )|) using the potential (15); see Fig. 6(b). The
spring constant a is fitted using GPE values for |Rk| and |rk|
(note ẑ × ∇rk r2

k = 2ẑ × rk). The dynamics of r2 is shown in
Fig. 6(c), compared with the prediction of Eq. (31b) using
simulation results for R2. Equation (31b) describes the dy-
namics of r2 reasonably well with damping rate � ≈ 3.

Figure 7 shows the PCV dynamics from GPE simula-
tions with 〈Fz〉 = 0.2n0. For this higher magnetization, we
find that the stretch coordinate rk rotates until it is parallel
Rk; see Fig. 7(a). Hence the attractive force between the
PCVs becomes negligible and instead the two PCVs move
parallel, analogous to scalar vortices. (This effect becomes
more pronounced as |〈Fz〉| is increased.) The dynamics of Rk

follows closely the integral [(h̄κk )/(2M sin2 2α)]
∫ t

0 dτ ẑ ×
∇rk u(|rk (τ )|) using the potential (15); see Fig. 7(b).
We find that a/ sin2(2α) has little dependence on 〈Fz〉
for |〈Fz〉|/n0 � 0.2, with a/ sin2(2α) = 0.46, 0.45, 0.48 for

013154-8



DAMPED POINT-VORTEX MODEL FOR POLAR-CORE SPIN … PHYSICAL REVIEW RESEARCH 3, 013154 (2021)

FIG. 6. (a) A small nonzero 〈Fz〉 results in the two oppositely
charged PCVs moving perpendicular to their separation, in addition
to attracting. Circles (diamonds) mark the center of circulation of
the vortices in the ψ1(ψ−1) components. (b) The dynamics of the
X2 and Y2 coordinates of R2 (colored solid curves) are proportional
to

∫ t
0 dτ ẑ × r2(τ ) (matching black dashed curves). (c) The stretch

coordinates r2 = (x2, y2) (colored solid curves) are well described
by Eq. (31b) with damping rate � ≈ 3 (matching black dashed lines).
Results are for 〈Fz〉 = 0.1n0, q = 0.3q0.

〈Fz〉/n0 = 0, 0.1, 0.2 respectively. As observed in Fig. 7(a),
r2 rotates until y2 ≈ 0; see Fig. 7(c). The small stretch x2 also
approximates a steady state. For this larger magnetization, the
prediction of Eq. (31b), using simulation results for R2, is

FIG. 7. (a) For larger 〈Fz〉 magnetization, rk rotates until it is par-
allel with Rk and the PCVs move perpendicular to their separation,
like scalar vortices. Circles (diamonds) mark the center of circulation
of the vortices in the ψ1(ψ−1) components. (b) The dynamics of the
X2 and Y2 coordinates of R2 (colored solid curves) are proportional
to

∫ t
0 dτ ẑ × r2(τ ) (matching black dashed curves), with Ẋ2 ≈ 0 and

constant Ẏ2. (c) The stretch r2 (colored solid curves) reaches an
approximate steady state with y2 ≈ 0, giving rise to the scalar vor-
tex behavior observed in (a) and (b). The results are qualitatively
described by Eq. (31b) (matching black dashed lines) with damping
rate � ≈ 3. Results are for 〈Fz〉 = 0.2n0, q = 0.3q0.

less accurate, but still provides a qualitative description of the
dynamics with damping rate � ≈ 3. The precise nature of the
oscillations in Fig. 7(c) are sensitive to the length of the initial
damped evolution, but the overall trend of the curves remains
unchanged.

The crossover to scalar vortex dynamics is interesting and
warrants further discussion. Setting ṙk = 0 in Eq. (31b) gives

ẑ × Ṙk =
∑
j 
=k

h̄κ j

M cos 2α

Rk − R j

|Rk − R j |2 , (32)

identical in form to the point-vortex equations for scalar vor-
tices, Eq. (6). For the two-PCV setup in Figs. 6 and 7, Eq. (32)
allows for constant Ṙk and hence a constant rk is compati-
ble with Eq. (31a). We expect that this crossover from PCV
dynamics to scalar vortex dynamics will have interesting con-
sequences in PCV-driven phase ordering, following quenches
to the BA phase. For zero 〈Fz〉, the phase ordering is governed
by a dynamic critical exponent z = 1 [47,48]. For sufficiently
large |〈Fz〉|, we expect the attractive force between PCVs to
become negligible compared to scalar-vortex damping [62],
and the PCVs will behave like scalar vortices. In this scalar-
vortex regime we expect critical behavior that follows that of
a scalar condensate, with z = 2 [102–104].

Considering an arbitrary |〈Fz〉| > 0, we envisage two pos-
sible phase-ordering scenarios, dependent on whether or not
the scalar-vortex regime is reached prior to PCV annihila-
tion. Scenario 1: The scalar vortex regime is always reached
prior to PCV annihilation, given a sufficiently large PCV
separation, and hence the long-time limit of phase ordering
with nonzero 〈Fz〉 would be that of a scalar system. This is
analogous to the small-q phase ordering around the isotropic
ferromagnetic phase [105]. Scenario 2: There exists some
critical value of |〈Fz〉| below which the scalar-vortex regime
is not reached prior to PCV annihilation, for any initial PCV
separation, and hence the BA phase would be divided into two
dynamic universality classes either side of this critical value of
|〈Fz〉|. A many-PCV simulation that allows for sound-induced
damping [62] would be needed to definitively determine
which scenario occurs; however, identifying regimes where
Eq. (32) is reached from Eq. (31) may give insight into this
question. For example, for the two-PCV setup in Figs. 6 and
7, one could compare tcoll with the time for rk to rotate parallel
to Rk , as a function of 〈Fz〉 and initial PCV separation.

VI. SUMMARY AND OUTLOOK

In this work we have systematically studied the accuracy
of the Turner point-vortex model at describing the dynam-
ics of two oppositely charged PCVs, via comparisons with
GPE simulations. While the bare Turner model, as intro-
duced in Ref. [65], shows discrepancies with GPE results,
the agreement can be vastly improved by introducing a phe-
nomenological damping of the PCV stretch coordinate. The
damping arises from coupling to other excitations not ac-
counted for in the point-vortex phase space and reduces the
PCV stretching. The net effect on the mesoscopic dynamics,
however, is to simply increase the PCVs bare mass to give
an effective mass that increases the PCV collision time. In
addition, we identified the excitations produced following
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PCV annihilation and extended the Turner model to describe
PCV dynamics with axial magnetization, both of which have
applications to the phase ordering of spin-1 BECs.

Some important questions raised by this work remain to
be answered. Firstly, can the modes that contribute to the
PCV stretch energy be identified; and secondly, can the modes
that are responsible for the damping of the stretch coordinate
be identified. A q-independent damping describes well the
effective mass of the PCV. In Ref. [79] it was also shown that
the effective mass appears insensitive to changes in gn/|gs| for
gn � |gs|. We find that the damping has a residual q depen-
dence when observed at the microscopic level of the stretch
coordinate, with the damping decreasing slightly for increas-
ing q. In addition, we find that � depends on 〈Fz〉. A possible
route to start exploring these questions is via the ground-state
excitation spectrum of a single PCV, analogous to the studies
done on vortices in an antiferromagnetic condensate [33].

A derivation of the Turner point-vortex model from the hy-
drodynamic formulation of a ferromagnetic spin-1 condensate
[93] may offer additional insights into the fluid dynamics of
the Turner model, analogous to the derivation of the scalar
point-vortex model from the Euler equation [106]. For ex-
ample, the scalar point-vortex model, which describes mass
currents, reflects conservation of momentum. As the circu-
lating transverse spin around a PCV corresponds to an Fz

magnetization current, Eqs. (11), and their modifications,
Eqs. (31), may arise from an analogous conservation law for
Fz “spin momentum.” It is also worth noting the comparison
between PCV dynamics and recent work on binary conden-

sates, where it was argued that vortices in one component
can acquire a a mass via the core being filled by the second
component [107,108].

A useful property of PCVs is that they can be observed in
situ in experiments [42] using nondestructive phase contrast
imaging [109]. To observe the attraction of two PCVs, the
axial magnetization should be kept small, |〈Fz〉| � 0.2n0. The
effective mass of two PCVs could be obtained from measuring
the PCV collision time. The spring constant a could be mea-
sured with highly resolved absorption imaging [110,111] of
the Fz dipole, which forms as the PCV stretches. Combined
with the effective mass, this would allow extraction of the
damping rate �.

A host of possible applications of PCVs could also be
explored, for example, few-body PCV dynamics, PCV driven
turbulence, emergent hydrodynamics [64,112,113], and ther-
modynamic properties of PCV systems. Also, the coupling to
other dynamical modes through the PCV stretching and the
associated modification of the PCV mass raises the question
of whether PCV dynamics could be manipulated via the use
of additional interactions or external fields. The success of
our damped Turner model provides a useful starting point for
these explorations.
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