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Tiling with triangles: parquet and GWγ methods unified
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The parquet formalism and Hedin’s GW γ approach are unified into a single theory of vertex corrections,
corresponding to an exact reformulation of the parquet equations in terms of boson exchange. The method has
no drawbacks compared to previous parquet solvers but has the significant advantage that the vertex functions
decay quickly with frequencies and with respect to distances in real space. These properties coincide with the
respective separation of the length and energy scales of the two-particle correlations into long/short-ranged and
high/low-energetic.
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I. INTRODUCTION

The systematic calculation of vertex corrections in elec-
tronic systems historically builds upon two distinct for-
malisms, the parquet formalism of De Dominicis and Martin
[1] (introduced also earlier by Diatlov et al. for meson scat-
tering [2]) and the GW γ method introduced by Hedin [3].
Although both approaches are in widespread use since the
1960s, they have largely remained separate entities.

The parquet approach [4–10] classifies vertex corrections
into three scattering channels, allowing an unbiased com-
petition between the bosonic fluctuations in these channels
[11–15]. The Hedin equations, on the other hand, aim at
the particle-hole channel, with vertex corrections γ in this
channel being calculated self-consistently from the deriva-
tive of the self-energy with respect to the Green’s function
δ�/δG [16,17]. Both formalisms constitute an exact quan-
tum field theoretical framework, but in practice one relies
on approximations: In the case of the parquet formalism, the
fully irreducible vertex � is approximated, e.g., by � = U
(the bare interaction) in the parquet approximation [4] or by
� = local in the dynamical vertex approximation [18–20]. In
the case of the Hedin approach, γ is approximated, e.g., by
γ = 1 in the GW approximation or by simple approximations
in so-called GW γ approaches, even allowing for realistic ma-
terials calculations [16,17,21–26].

One difference is that the parquet formalism is formulated
in terms of four-point electron-electron vertices (Feynman
diagrammatic “squares”, capitalized symbols in our nota-
tion), whereas Hedin [3] formulated his equations in terms
of three-point electron-boson vertices (“triangles”, lowercase
symbols). The latter can be reformulated easily in terms of
four-point squares, see, e.g., [17], but to the best of our
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knowledge the parquet approach evaded hitherto a three-point
(triangle) reformulation.

A second major difference between the two approaches is
that the parquet equations naturally obey the crossing sym-
metry but typical approximations violate conservation laws
[4,20,27–32], whereas GW γ approximations conversely often
obey conservation laws [33] but violate the crossing symme-
try, and thereby the Pauli principle. Indeed, only the exact
solution satisfies the crossing symmetry and the Ward identity
at the same time, see Ref. [31] for a formal proof.

Aspects of both concepts come into play in the theory
of collective bosonic fluctuations in fermionic systems, see,
for example, Ref. [34], in particular of those in supercon-
ductors [35], where the three-legged fermion-boson coupling
and the screened interaction are used to construct four-point
vertex corrections. However, these considerations are almost
always of a phenomenological kind and only a few Feynman
diagrams of interest are calculated, such as the Aslamazov-
Larkin vertex correction [36,37] [see diagram (b) in Fig. 3
below]. But in terms of an overarching theory the relation
between the parquet and Hedin formalisms remains, even after
more than 50 years, only a tentative one.

In this paper, both approaches and viewpoints are merged
into a single theory. It is shown that the parquet decomposition
of the vertex function, which relies on the reducibility with
respect to Green’s functions [6], can be combined with the
recently introduced single-boson exchange (SBE) decomposi-
tion [38] that is based on the idea of reducibility with respect
to the interaction, which generalizes the Hedin equations. In
particular, the diagrams that are reducible with respect to
the interaction can be removed exactly from the parquet ex-
pressions and suitable ladder equations can be defined which
replace the Bethe-Salpeter equations. Through this exact re-
formulation of the parquet method, we tile our diagrammatic
“floor” not with conventional four-leg parquet “squares” but
with three-leg “triangles”, with the exception being an irre-
ducible “square” �̃ = � − U , which vanishes in the parquet
approximation.

The present paper is in close conjunction with Ref. [39]
where the parquet equations for dual fermions [40] have been
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reformulated. Instead, here we show how the standard parquet
approach [4–10] can be rewritten and connected with the
Hedin equations. As a result, the self-energy of the parquet
approach assumes the “GW γ ” form, which is not the case
for the parquet dual fermions [41]. An efficient real fermion
parquet solver for a quantum impurity model is presented and
made available [42]. Similar as for dual fermions [39], this
reformulation leads to a substantially improved feasibility of
the parquet solution because it removes simultaneously the
high-frequency asymptotics [43] and the long-ranged fluctua-
tions [20] from the parquet equations.

The paper is organized as follows. The Hedin and parquet
formalisms are recollected in Secs. II and III, respectively. The
two concepts are connected and merged in Sec. IV. A unified
calculation scheme using the SBE decomposition is presented
in Sec. V; and Sec VI presents the implementation for a quan-
tum impurity model (Sec. VI A) and examples for the lattice
Hubbard model from the parquet approximation (Sec. VI B)
using the victory code [9]. Further, in Sec. VI C, we reduce
the results of the parquet approximaton step-by-step to the
GW approximation. We conclude in Sec. VII, where we also
discuss similarities and differences of the method compared
to the one presented in Ref. [39].

II. HEDIN’S FORMALISM

In Hedin’s theory the self-energy of the electronic system
is expressed in terms of the Green’s function G, the screened
interaction W , and the vertex γ . For a single-band Hubbard-
type system with the interaction Un↑n↓ the self-energy can be
expressed in the paramagnetic case as follows [44]:

�k = U 〈n〉
2

− 1

2

∑
q

Gk+q
[
W ch

q γ ch
kq + W sp

q γ
sp
kq

]
. (1)

Here, ch and sp denote the charge and spin (or density
and magnetic) combinations of the spin indices, respec-
tively, see, e.g., Ref. [20]; 〈n〉 is the density; k = (k, ν) and
q = (q, ω) denote fermionic and bosonic momentum-energy
four-vectors, respectively, ν, ω are Matsubara frequencies.
Summations over k, q imply a factor T, 1

N where T is the
temperature and N the number of lattice sites. The Hedin
vertex γ ch(sp) takes, in the exact theory, all vertex corrections
in the particle-hole channel into account.

The screened interaction W corresponds to the bare Hub-
bard interaction U ch = U,U sp = −U,U s = 2U,U t = 0 in
the charge (ch) and spin (sp), singlet (s), triplet (t) channel,
respectively, dressed by the polarization �, i.e.,

W ch/sp
q = U ch/sp

1 − U ch/sp�
ch/sp
q

, W s
q = U s

1 − 1
2U s�s

q

. (2)

For later use, we here introduced a W s also for the singlet
particle-particle channel, while W t = 0. Both are not used
in Hedin’s original GW γ approach, but are needed for the
later connection to the parquet approach, which includes the
particle-particle channel. The third, transversal particle-hole,
channel is related to the particle-hole channel by crossing
symmetry. Hence we do not need to introduce two further
W ’s and γ ’s; W ch(sp) and γ ch(sp) in the particle-hole channel
are sufficient.

The polarization in Eq. (2) is in turn given by the Hedin
vertex:

�ch/sp
q =

∑
k

GkGk+qγ
ch/sp
kq ,�s

q =
∑

k

GkGq−kγ
s
kq. (3)

Equations (1)–(3) are formally exact, but in general the vertex
corrections contained in γ are unknown. Hedin [3] suggested
to calculate these through the Ward identity (see also Sec. V)
but this is hardly feasible in practice. Instead, the vertex
corrections γ are often neglected which gives rise to the
eponymous GW approximation. If (some approximate) vertex
corrections are kept one speaks of a GW γ approach [45].

The diagrammatic background to introduce W and � in the
Hedin equations is the concept of interaction-(ir)reducibility:
a Feynman diagram is interaction reducible if and only if it
separates into two pieces if one interaction line is cut out.
Eventually, we need to consider all vertex corrections, i.e., the
full vertex function Fα

kk′q. The interaction-reducible diagrams
of F take the form [38],


α
kk′q = γ α

kqW α
q γ α

k′q. (4)

Quite obviously, we can cut an interaction line U within W
and hence 
, and vice versa any interaction-reducible diagram
in channel α has to be of the form Eq. (4). The vertex 
 has
been coined the SBE vertex [38] as it involves the exchange
of a single boson with four-vector q within W .

These interaction-reducible contributions must not be con-
tained in γ , and hence must be subtracted from F to avoid a
double counting [46]. This yields [38]

γ
ch/sp
kq = 1 +

∑
k′

(
F ch/sp

kk′q − 

ch/sp
kk′q

)
Gk′Gk′+q, (5a)

γ s
kq = −1 + 1

2

∑
k′

(
F s

kk′q − 
s
kk′q

)
Gk′Gq−k′ . (5b)

Here, the Green’s functions serve the conversion of the four
point vertex F − 
 to the three point vertex γ , and the “1”
generates in the Hedin formulations the contributions without
vertex corrections. There is no triplet Hedin vertex because
the bare interaction vanishes in this channel, U t = 0.

III. PARQUET FORMALISM

The parquet formalism [1,2,4,20,47] is based on the insight
that the full vertex F can be decomposed into the fully ir-
reducible vertex � and reducible vertices �r in the particle
hole (r = ph), transversal-particle hole (r = ph) and particle-
particle channel (r = pp). Now (two-particle) irreducibility is
to be understood with respect to cutting two Green’s function
lines. Each Feynman diagram for F belongs to exactly one
of these four classes, i.e., F = � + �ph + �ph + �pp [4,20].
In terms of the spin combinations α = ch, sp, we get with
the momentum-convention for the particle-hole channel (cf.
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(b)

F s/t

k

q − k

k′

q − k′

(a)

F ch/sp

k

k + q

k′

k′ + q

FIG. 1. Label convention for (a) the particle-hole and (b) the
particle-particle notation.

Fig. 1, left),

Fα
kk′q = �α

kk′q + �
ph,α

kk′q

− 1

2
�

ph,ch
k,k+q,k′−k − 3 − 4δα,sp

2
�

ph,sp
k,k+q,k′−k

+ 1 − 2δα,sp

2
�

pp,s
kk′,k+k′+q + 3 − 2δα,sp

2
�

pp,t
kk′,k+k′+q.

(6)

Here, we have expressed �ph in terms of �ph in the second
line using the crossing relation [6], and properly translated
the s and t components and momenta of the pp channel in the
third line. The fully irreducible vertex � or an approximation
thereof, such as the parquet approximation �α = U α , serves
as an input.

Since α = ch, sp and α = s, t already uniquely determine
the channel r = ph and r = pp, respectively, we drop the
channel index r in the following.

There is only one F with two independent spin combina-
tions, but one can use the singlet and triplet combinations and
pp momentum convention (cf. Fig. 1), which is related to the
above by

F s
kk′q = 1

2

(
F ch

kk′,q−k−k′ − 3F sp
kk′,q−k−k′

)
, (7a)

F t
kk′q = 1

2

(
F ch

kk′,q−k−k′ + F sp
kk′,q−k−k′

)
. (7b)

One can further introduce an irreducible vertex in the respec-
tive channel

�α
kk′q = Fα

kk′q − �α
kk′q. (8)

For calculating the reducible vertices, we employ the
Bethe-Salpeter equations, which in terms of � read

�
ch/sp
kk′q =

∑
k′′

�
ch/sp
kk′′q Gk′′Gk′′+qF ch/sp

k′′k′q , (9a)

�
s/t
kk′q = ∓1

2

∑
k′′

�
s/t
kk′′qGk′′Gq−k′′F s/t

k′′k′q. (9b)

Here, we can replace � by Eq. (8), which allows for a self-
consistent calculation of � and F in the four channels if � is
known as an input. Further, G and � can be calculated self-
consistently as well, using additionally the Dyson equation
and Schwinger-Dyson equation [that is equivalent to Eq. (1)].

IV. A UNIFIED APPROACH TO VERTEX CORRECTIONS

We now relate the Hedin and parquet formalisms described
in Secs. II and III. The starting point is an analog to the parquet

Γ F = γ γ
W − + M

FIG. 2. Relation Eq. (14) between the particle-hole reducible
vertices � in Eq. (9a) and M defined in Eq. (17a), which represents
multiboson exchange (cf. Fig. 3). Arrows and a dashed line denote
Green’s function G and the bare interaction U , respectively.

Eq. (6) but formulated in terms of interaction-(ir)reducible
vertices instead of the two-particle (ir)reducibility of Eq. (6).
This SBE decomposition [38] into interaction-reducible chan-
nels reads for α = ch, sp:

Fα
kk′q = �Uirr,α

kk′q + 
α
kk′q

− 1

2

ch

k,k+q,k′−k − 3 − 4δα,sp

2



sp
k,k+q,k′−k

+ 1 − 2δα,sp

2

s

kk′,k+k′+q − 2U α. (10)

The essential difference to the parquet Eq. (6) is that the
vertices 
α defined in Eq. (4) are reducible with respect to
the bare interaction U α [48]. The bare interaction is itself
interaction-reducible and hence included in the 
α’s; thus we
need to subtract 2U α in Eq. (10) to prevent an over counting.
As already discussed in Sec. II, U t = W t = 
t = 0.

This also implies �Uirr is fully irreducible with respect to
the interaction, and must not be confused with the vertex � of
the parquet decomposition Eq. (6), which is fully irreducible
with respect to pairs of Green’s functions. This implies, on
the one hand, that U is contained in � but not in �Uirr. But
otherwise � contains fewer diagrams than �Uirr as each dia-
gram that is interaction reducible is also two-particle reducible
since we can cut the two Green’s functions on one side of
the two-particle interaction instead of the interaction itself
[49].

In the following we will relate the parquet equation (6)
and the SBE generalization Eq. (10) of the Hedin formalism,
and formulate a unified theory. To this end, we will pinpoint
the difference between �Uirr and �, which is denoted as [39]
multiboson exchange (MBE) diagrams Mα (the SBE diagrams

α are not part of �Uirr; Fig. 3 below clarifies the multiboson
character of M). We will derive the equations to calculate Mα

and 
α self-consistently in a unified Hedin and parquet for-
malism. This approach, while fully equivalent to the parquet
approach, is formulated with the Hedin vertices and screened
interactions and bears the advantage that the calculated vertex
functions �Uirr, M decay with the frequencies and depend
only weakly on the momenta, compared to F,� of the original
parquet approach.

First, we start with some definitions. Analogously to �α

in Eq. (8), we introduce vertices T α that are irreducible
with respect to the bare interaction U α only in a particle-
hole channel (α = ch, sp) or in a particle-particle channel
(α = s, t) by removing the reducible diagrams 
α in that
channel:

T α
kk′q =Fα

kk′q − 
α
kk′q. (11)

By comparison with Eqs. (5a) and (5b) we see that the vertices
T describe the vertex corrections for the Hedin vertex γ . The
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(a) (b)

(c)

FIG. 3. Tiling with triangles: exemplary vertex corrections cor-
responding to multiple boson exchange, see also Ref. [39]. Diagrams
(a) and (b) represent boson exchange in the particle-hole (a) and
particle-particle (b) channels. Diagram (c) corresponds to a mixing
of horizontal and vertical particle-hole channels.

latter is therefore also irreducible with respect to the bare
interaction in the corresponding channel [38,50].

As is the custom in Hedin’s formalism we remove the bare
interaction U α from the irreducible vertex �α:

Sα = �α − U α. (12)

Now we collect all diagrams that are interaction-irreducible
(but two-particle reducible) as the difference

Mα
kk′q = T α

kk′q − Sα
kk′q. (13)

Conversely, this means that �α consists of Mα plus the
interaction-reducible vertices 
α in the respective channel,

�α
kk′q = Fα

kk′q − �α
kk′q = 
α

kk′q − U α + Mα
kk′q. (14)

Here again U α needs to be subtracted as it is included in 
α

but not in �α . A diagrammatic representation of Eq. (14) is
shown in Fig. 2 for the particle-hole channel. Note that �t =
M t since U t = 
t = 0.

With these definitions, we can now relate �Uirr,α of the
SBE decomposition Eq. (10) to �α of the parquet Eq. (6), or
more specifically to

�̃α = �α − U α. (15)

To this end, we equate Eq. (10) to Eq. (6), which both yield
Fα , and express �α by Mα using Eq. (14). We are left with

�Uirr,α
kk′q = �̃α

kk′q + Mα
kk′q

− 1

2
Mch

k,k+q,k′−k − 3 − 4δα,sp

2
Msp

k,k+q,k′−k

+ 1 − 2δα,sp

2
Ms

kk′,k+k′+q + 3 − 2δα,sp

2
M t

kk′,k+k′+q.

(16)

All 
α’s cancel, as it must be.
We still need to calculate the Mα’s. This can be done

through Bethe-Salpeter-like equations similar as the �α’s
in Eq. (9) of the original parquet formalism. Starting with
Eq. (9), substituting Fα , �α and �α by Eqs. (11), (12), and
(14), respectively, and removing all interaction-reducible con-
tributions from the left- and right-hand side, this yields

Mch/sp
kk′q =

∑
k′′

Sch/sp
kk′′q Gk′′Gk′′+qT ch/sp

k′′k′q , (17a)

Ms/t
kk′q = ∓1

2

∑
k′′

Ss/t
kk′′qGk′′Gq−k′′T s/t

k′′k′q. (17b)

Here, T = S + M [Eq. (13)] can be substituted.
Besides this Bethe-Salpeter equation, we need the epony-

mous parquet equation, i.e., Eq. (6) in the original parquet
formalism. Moving �α for the considered four channels (α)
to the left hand side in Eq. (6) and reexpressing everything in
terms of the new variables (�Uirr, M,
), we obtain, analogous
to Ref. [39], the parquet equation formulated in terms of

Sch
kk′q = �Uirr,ch

kk′q − Mch
kk′q − 1

2
ch
k,k+q,k′−k − 3

2

sp
k,k+q,k′−k + 1

2
s
kk′,k+k′+q − 2U ch, (18a)

Ssp
kk′q = �

Uirr,sp
kk′q − Msp

kk′q − 1
2
ch

k,k+q,k′−k + 1
2


sp
k,k+q,k′−k − 1

2
s
kk′,k+k′+q − 2U sp, (18b)

Ss
kk′q = �Uirr,s

kk′q − Ms
kk′q + 1

2
ch
kk′,q−k′−k − 3

2

sp
kk′,q−k′−k + 1

2
ch
k,q−k′,k′−k − 3

2

sp
k,q−k′,k′−k − U ch + 3U sp, (18c)

St
kk′q = �Uirr,t

kk′q − M t
kk′q + 1

2
ch
kk′,q−k′−k + 1

2

sp
kk′,q−k′−k − 1

2
ch
k,q−k′,k′−k − 1

2

sp
k,q−k′,k′−k, (18d)

which we need as input for the Bethe-Salpeter-like Eqs. (17a)
and (17b).

The expressions for the ladder kernels S defined in
Eqs. (18a)–(18d) elucidate the physical picture implied in
the reformulated parquet equations: The parquet diagrams
are reexpressed in terms of single- and multiboson exchange,
where the latter is represented by M which arises from the
ladder Eq. (13) via repeated exchange of bosons, starting from
the second order. The feedback of M on the ladder kernel S
leads to the channel mixing that is characteristic of the parquet

approach. Feynman diagrams corresponding to multiboson
exchange are shown in Fig. 3.

Let us emphasize that our unification of the parquet and
GW γ methods is a middle-ground reformulation of both (ex-
act) approaches. It is not a merger that combines elements
of two approaches in a distinctively different method such
as, e.g., GW +dynamical mean-field theory (DMFT) [23,51].
More closely related than GW +DMFT is the multiloop flow
equation [31] which extends the functional renormalization
group (Ref. [12]) to the parquet approach.
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V. CALCULATION SCHEME

Now we are in a position to formulate the BEPS calculation
scheme, which was introduced for dual fermions in Ref. [39].
The algorithm is as follows (for clarity, we repeat the most
relevant equations):

Step 0 (starting point): Choose an approximation for �̃

(parquet approximation: �̃ ≡ 0; D�A: �̃ = local). Make an
initial guess for the self-energy �, polarization �, Hedin
vertices γ , and the MBE vertices M.

Step 1: Update the propagators (Green’s function and
screened interaction)

Gk = G0
k

1 − G0
k�k

, (19)

W ch/sp
q = U ch/sp

1 − U ch/sp�
ch/sp
q

, (20a)

W s
q = U s

1 − 1
2U s�s

q

, (20b)

where G0 is the noninteracting Green’s function.
Step 2: Obtain the interaction-reducible vertex


α
kk′q = γ α

kqW α
q γ α

k′q. (21)

Step 3: Calculate the irreducible kernel S from Eqs. (18a)–
(18d), where �Uirr is obtained from M and the fixed �̃ through
Eq. (16).

Step 4: With this S solve the ladder equations

Mch/sp
kk′q =

∑
k′′

Sch/sp
kk′′q Gk′′Gk′′+qT ch/sp

k′′k′q , (22a)

Ms/t
kk′q = ∓1

2

∑
k′′

Ss/t
kk′′qGk′′Gq−k′′T s/t

k′′k′q, (22b)

using T α
kk′q = Sα

kk′q + Mα
kk′q.

Step 5: Update the Hedin vertices

γ
ch/sp
kq = 1 +

∑
k′

(
F ch/sp

kk′q − 

ch/sp
kk′q

)
Gk′Gk′+q, (23a)

γ s
kq = −1 + 1

2

∑
k′

(
F s

kk′q − 
s
kk′q

)
Gk′Gq−k′ . (23b)

Here, F is expressed through the SBE decomposition Eq. (10)
and the parquet expression Eq. (16).

Step 6: Update the self-energy and polarization

�k = U 〈n〉
2

− 1

2

∑
q

Gk+q
[
W ch

q γ ch
kq + W sp

q γ
sp
kq

]
, (24)

�ch/sp
q =

∑
k

GkGk+qγ
ch/sp
kq , (25a)

�s
q =

∑
k

GkGq−kγ
s
kq. (25b)

Iterate steps 1 to 6 until convergence.
In Step 3 the ladder kernel S is calculated on-the-fly for

only one bosonic momentum-energy q at a time. In Step 4
the vertices T need not be evaluated, only M are stored.
As a result, the Hedin vertices in Eqs. (23a) and (23b) can

be expressed in terms of �̃,
, and M. Only the quantities
mentioned in Step 0 need to be stored and updated over the
iterations.

Relation to Hedin’s equations. The calculation scheme
above differs from Hedin’s original work through the prescrip-
tion for the ladder kernel S in Step 3. In Hedin’s equations
[16,17] the ladder kernel is given by the functional derivative
S = δ(� − �H )/δG where �H = U 〈n〉/2. With this S and
using F − 
 = T in Eq. (23a) the algorithm is equivalent
to Hedin’s equations. This functional derivative is however
difficult to calculate in practice. Here, instead, S is obtained
from the parquet diagrams in Step 3, as proved in Sec. IV.

VI. NUMERICAL EXAMPLES

In this section we evaluate the key quantities that play a
role in the efficient calculation scheme defined in Sec. V (e.g.,
W, γ , M) and demonstrate the low-energetic and short-ranged
properties of the corresponding vertices M. As concrete exam-
ples we consider the exact solution of the atomic limit and the
parquet approximation for the lattice Hubbard model at weak
coupling.

Here, the results for the atomic limit have been obtained
using the corresponding implementation made available with
this paper [42]; the relevant quantities for the Hubbard model
have been evaluated using the victory implementation of the
traditional parquet equations [9].

A. Atomic Limit

We apply the BEPS method to a toy model, the atomic
limit of, e.g., the Hubbard model at half-filling. This model
is exactly solvable and it has a nontrivial solution for the
vertex functions. Analytical expressions for all components of
the parquet decomposition Eq. (6) are available [52]. Starting
from the exact fully irreducible vertex �νν ′ω the calculation
cycle in Sec. V recovers the correlation functions of the atomic
limit.

A Python implementation [42] is provided which con-
verges on a single core within a few minutes [53].

We focus here on one advantage of the BEPS calculation
scheme, evident already in the atomic limit, which is the
decay of the vertex functions at high frequencies. The top
panels of Fig. 4 show the reducible vertices �νν ′ω of the
parquet decomposition in Eq. (6). The vertices belonging to
the channels α = ch, sp, s have features that do not decay
at high frequencies, whereas the triplet vertex α = t decays.
This is the case because the bare interaction vanishes in the
triplet channel, U t = 0. The bottom panels of Fig. 4 show
the corresponding vertices Mνν ′ω of the parquet expression
(16). Evidently, all features of these vertices decay at high
frequency (in the case of the triplet channel trivially because
M t = �t).

B. Parquet approximation

Next, we analyze the vertices in the parquet approximation
for the weakly interacting Hubbard model on the square lattice
at half-filling, U/t = 2, where t = 1 is the nearest neighbor
hopping amplitude. The temperature is set to T/t = 0.2. The
lattice size is fixed to 8 × 8 sites.
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n

n′

FIG. 4. Reducible vertex functions of the atomic limit at U/T = 2. Axes show the fermionic Matsubara indices (ω = 0). Top: �

corresponding to the original parquet decomposition Eq. (6). Bottom: Vertices M of the parquet expression Eq. (16).

The victory implementation of the parquet method which
we use here was presented in Ref. [9]. It does not make use
of the efficient calculation scheme presented in Sec. V, but it
serves us to evaluate the vertices F and � within the parquet
approximation.

As mentioned above, in the efficient calculation scheme
the parquet approximation corresponds to setting the fully
irreducible vertex in Eq. (16) to zero, �̃α = 0, whereas the
victory implementation actually evaluates Eq. (6) using �α =
�̃α + U α = U α . We show in the Appendix how the vertices
M can be calculated from the converged solution for F and �.
Their full momentum and frequency dependence is available
to us as

Mch/sp(k, k′, q, ν, ν ′, ω). (26)

First, we consider the asymptotic behavior of the ver-
tices as a function of the frequencies. Figure 5 shows the
particle-hole vertices �ch/sp and Mch/sp, where we focus on
the antinode, k = k′ = kAN = (π, 0), the bosonic momentum
and frequency are set to q = (π, π ) and ω = 0. This combi-
nation represents the scattering of particle and hole from the
antinode to another antinode.

Similar to the atomic limit, the M’s decay as a function of
ν, ν ′ in all directions, but their structure is more complicated
due to the additional energy scale t .

We note that in the current implementation it is not feasible
to fully converge the Matsubara summations required for the
calculation of the vertices M (cf. the Appendix). The corre-
spondence to the calculated � is therefore not perfect and Msp

retains a small residual asymptote.
Next, we consider the spatial dependence of the vertices.

To this end, we transform �sp and Msp to real space with
respect to the bosonic momentum, q → r,

Mch/sp(k, k′, r, ν, ν ′, ω). (27)

We fix the frequencies to ν = ν ′ = πT , ω = 0. For the
fermionic momenta we consider the antinode k = k′ = kAN

and the node k = k′ = kN = ( π
2 , π

2 ).
The top panel of Fig. 6 shows �sp and Msp as a func-

tion of r = (x, y = 0) along the x axis. Clearly visible is the
alternating sign of �sp characteristic of antiferromagnetic cor-
relations. On the other hand, Msp is two orders of magnitude
smaller than �sp. Similarly, in the charge channel Mch is much
smaller than �ch (not shown). Importantly, this fact alone
implies that the spatial dependence of � = M + 
 − U is
largely determined by 
, the single-boson exchange [39]. It

n

n′

FIG. 5. Reducible vertex functions in the parquet approximation,
U/t = 2, T/t = 0.2. Fermionic momenta correspond to the antinode
(AN), the bosonic momentum is set to q = (π, π ), other labels as in
Fig. 4.
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FIG. 6. Top: Spatial dependence of �sp and Msp. The fermionic
momenta correspond to the node or antinode. The alternating sign
of �sp indicates antiferromagnetic correlations. Bottom: Effect of
truncation in the form-factor basis on the vertex �sp. Since Msp is
much smaller than �sp the form-factor truncation of Msp (red) is
quantitatively superior to the direct truncation of �sp (blue) [see text].
Results are for frequencies ν = ν ′ = πT ; N� = 64 corresponds to a
calculation without truncation.

explains the fast convergence of the truncated unity approxi-
mation [54] used in Refs. [39,41], where only the M’s were
truncated in real space while the full spatial dependence of 


was retained.
To underline this, we transform the vertex �sp into the

truncated unity (form-factor) basis [54] and back into q space,
while discarding all but a number N� of basis functions (form
factors) f (�, q),

�sp(q, N�) ≡
N�∑

�=1

f ∗(�, q)
∑

q′
f (�, q′)�sp(q′), (28)

where we keep ν = ν ′ = πT, ω = 0, k = k′ = ( π
2 , π

2 ) fixed.

Obviously, �sp(q, N� = 64) = �sp(q) recovers the com-
plete momentum dependence, since there are as many form
factors as there are lattice sites (8 × 8). Blue data points show
the result for q = (π, π ) in the bottom panel of Fig. 6, indicat-
ing a remarkably slow convergence of the expansion with the
cutoff N� [55]. Apparently, the antiferromagnetic correlations
represented by �sp should not be truncated in real space even
at this high temperature.

To assess the advantage of the short-range nature of the
vertex M in the parquet equation with SBE decomposition
[Eqs. (18a)–(18d)], we next apply the same procedure to the
vertex Msp. The red data points in the bottom panel of Fig. 6
show the resulting approximation for the thus determined
�sp(q) ≈ Msp(q, N�) + 
sp(q) − U sp, which is reasonable
even for N� = 1.

To interpret this result, it is important to remark that the
relative error |Msp(q) − Msp(q, N�)|/|Msp(q)|, for a given q,
can be similar to |�sp(q) − �sp(q, N�)|/|�sp(q)|. However,
as is clear from the top panel of Fig. 6, the aim is to capture
the coefficients Msp(�) = ∑

q f (�, q)Msp(q) which are signif-
icant relative to �sp. Therefore, it is sufficient to keep only a
very small number of coefficients Msp(�), for example, the
first form factor, f (� = 1, q) = 1, already captures the local
component

∑
q Msp(q) drawn in the top panel of Fig. 6 at

r = (0, 0).
We should also note that the Msp presented here was ob-

tained in postprocessing and is not perfectly converged [56].
Therefore, we cannot determine the precise correlation con-
tent of this vertex, for example, whether it is completely free
of antiferromagnetic correlations or instead captures some of
them. In the future, the implementation of the efficient calcu-
lation scheme presented in Sec. V may ultimately clarify this,
because it allows for determining M with the same accuracy
as �.

Finally, let us estimate the numerical scaling of the newly
proposed scheme as compared to the traditional parquet im-
plementation. For a frequency box of linear size Nω and Nq

momentum points in the Brillouin zone, the standard parquet
calculation requires virtual memory that scales with O(N3

q N3
ω )

and the computational effort scales with O(N4
q N4

ω ) for the
Bethe-Salpeter equation (13) and with O(N3

q N3
ω ) for the par-

quet equation (6). In practice, however, large vertices � need
to be stored in distributed memory and internodal commu-
nication and memory access operations needed in evaluating
Eq. (6) are the actual bottleneck.

In the scheme proposed here the M vertices need only a
much smaller frequency box Ñω. The actual memory require-
ment O(N3

q Ñ3
ω ) is thus reduced. Additionally, we need to store

three-leg vertices γ , which scale like O(N2
q Ñ2

ω ). Using the
form-factor basis to represent the momentum dependence of
M, this scaling is further reduced to O(N3

� Ñ3
ω ) for the M’s.

With just a few (or even only one as Fig. 6 demonstrates)
form factors and small Ñω, the dominant part is the quadratic
scaling in NqÑω for γ ’s. The computational effort of the new
Bethe-Salpeter equation [Step 4, Eqs. (22a) and (22b)] scales
then with O(N4

� Ñ4
ω ) and the parquet equations in form-factor

basis [Step 3, Eqs. (18a)–(18d)] with O(N6
� Ñ3

ω). Due to signif-
icantly smaller vertices M and γ , the memory access bottle-
neck can be removed (the 
’s do not need to be stored) [57].
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Π = γ

Σ = −1
2 γch −1

2
γsp

FIG. 7. Hedin’s equations for the polarization (top) and the
self-energy (bottom). Neglecting vertex corrections corresponds to
setting γ = 1.

C. Comparison to GW approximation

We now draw a connection between the parquet and GW
approximations, paying special attention to the role of vertex
corrections. To this end, we recall Eq. (24) for the parquet self-
energy, which is drawn as a diagram at the bottom of Fig. 7.

Let us examine the effect of dropping the vertex corrections
in different places. The most straightforward way to do this is
to set γ = 1 only in the defining equation for �, which is then
given as

�GW
k − �H = −1

2

∑
q

Gk+q
[
W ch

q + W sp
q

]
, (29)

where G and W are the Green’s function and the screened
interaction corresponding to the parquet approximation. The
thus defined �GW is shown in Fig. 8 (cyan) next to the com-
plete parquet self-energy (red), where U/t = 2, T/t = 0.2, as
before. Apparently, for these parameters the direct contribu-
tion of vertex corrections to the self-energy is not very large
and thus �GW is still a reasonable approximation. The inset of
Fig. 8 shows that γ ch and γ sp deviate from their noninteracting

FIG. 8. Imaginary part of the self-energy comparing the parquet
approximation (red) with various GW -like approximations (see text;
purple: actual GW approximation) for the half-filled square lattice
Hubbard model at U/t = 2, T/t = 0.2 as a function of the Mat-
subara index. Two momenta are shown, corresponding to the node
(empty circles) and antinode (crosses). Inset: Hedin vertex γ ch (blue)
and γ sp (red) as a function of the fermionic frequency. Fermionic mo-
menta correspond to the node (empty circles) or antinode (crosses)
and the bosonic momentum and frequency are set to q = (π, π ) and
ω = 0.

FIG. 9. Top: Screened interaction in the parquet approximation
(full lines) and neglecting vertex corrections [cf. Eq. (30)] (dashed
lines) as a function of q. Bottom: Hedin vertex γ ch (blue) and
γ sp (red). The fermionic momentum k corresponds to the node
(empty circles) or antinode (crosses); ν = πT, ω = 0. Parameters as
in Fig. 8.

value 1 by roughly up to 30% and 15%, respectively. The
bottom panel of Fig. 9 shows that γ ch/sp are suppressed mainly
around the bosonic momentum q = (π, π ).

One needs to keep in mind, however, that the vertex correc-
tions appear in all diagrammatic objects drawn in Fig. 7 (i.e.,
G,W, γ ). Therefore, to approach a GW -like approximation
of any practical value, we need to drop further vertex correc-
tions. For example, let us recall that the screened interaction
defined in Eq. (20a) incorporates vertex corrections via the
polarization, which is drawn as a diagram on the top of Fig. 7.
Consequently, for an actual GW calculation one should use
here only a bubble of parquet Green’s functions for �,

�GW
q =

∑
k

GkGk+q. (30)

The resulting screened interactions (dashed lines) are drawn
in the top panel of Fig. 9 in comparison to the parquet ap-
proximation (full lines). While W ch is similar to the parquet
result (but anyways almost momentum independent), the large
difference for W sp reveals the significant screening facilitated
by γ sp.

If we use the bubble back in Eq. (29), the (absolutely) much
larger W sp in the bubble approximation for the screening
leads to a huge feedback on the self-energy: Fig. 8 (green)
shows even an insulatinglike behavior at the antinodal point,
far above the temperature where this is expected to happen
[41,58].

The 15% suppression of γ sp shown in the inset of Fig. 8
therefore crucially determines the Stoner enhancement (1 −
U sp�sp)−1 in the proximity of the spin-density wave. This
suppression is the result of the particle-particle vertex cor-
rection [59] considered by Kanamori [60]. To arrive at a
reasonable approximation for W sp this effect needs to be
taken into account in some way, for example, by replacing
U sp with an effective interaction, which is the essence of the
two-particle self-consistent approach [61] and of the Moriya-λ
correction [19,62].
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Finally, we note that in this work we employed the Fierz
ratio 1

2 for the self-energy in Eq. (24), which corresponds to
a symmetric splitting between the charge and spin channels.
This is a natural choice because it leads to a cancellation of
slowly decaying Matsubara summations, Ref. [63] in Eq. (24).

Usually, however, in GW the self-energy is expressed only
through W ch (and γ ch) [3], which, at first glance, seems useful
to avoid problems due to the instability in the spin channel.
However, Fig. 8 shows that the corresponding result for the
self-energy using only W ch from the parquet calculation (dark
blue) is significantly worse than the symmetric approximation
(cyan) in Eq. (29), confirming that for an optimal result the
channels should be mixed [64,65]. Also, using the noninter-
acting Green’s function G0 to calculate �GW and �GW is even
worse, as W sp is then already outside of its convergence radius
for these parameters (not shown). We should note that the de-
coupling ambiguity is a peculiarity of the Hubbard interaction
Un↑n↓. It does not affect nonlocal interactions between charge
or spin densities.

VII. DISCUSSION AND CONCLUSIONS

The parquet equations for real fermions were reformulated
into a computationally more feasible form by combining them
with Hedin’s GW γ formalism. From the viewpoint of the
latter our approach yields the parquet diagrams for γ in terms
of single- and multiboson exchange. This offers a different
perspective on vertex corrections in electronic systems. For
example, the association of certain vertex diagrams with ef-
fective particles becomes very explicit [66], or the notion of
a bosonic glue that may play a role for phenomena such as
high temperature superconductivity [67] can be taken more
literally.

The resulting calculation scheme, which was coined a
boson exchange parquet solver (BEPS) in Ref. [39], has
no disadvantages in comparison to previous implementations
of the parquet equations but offers two strong advantages.
Namely, the vertex asymptotics and, in the case of a lattice
system [39], also the long-ranged fluctuations are removed
from the parquet equations through their exact reformulation.

This goes beyond the asymptotic treatment of the vertices
pioneered in Refs. [8,43,68], which improves the feasibility
of parquet solvers [8,69,70], but the low-energy aspect of
the single-boson exchange remains intermixed with all other
fluctuations. Instead, the BEPS method corresponds to a kind
of separation of the fluctuations that is exact also at low fre-
quencies [71,72]. In Ref. [39] and here this idea was adopted
to the parquet formalism for dual fermions and real fermions,
respectively. Let us stress that BEPS for real fermions is an
exact unification of Hedin’s equations and the parquet equa-
tions. An approximation only enters when the fully irreducible
vertex � is replaced by an approximated one such as the
bare interaction U in the parquet approximation or all local
diagrams in the D�A, [7–9,18,73,74]. In this respect our ap-
proach does not differ from the traditional parquet method,
that is, it does not introduce any additional approximations.

As numerical results we first discussed the simple case
of a quantum impurity model, where the spatial degrees of
freedom do not play a role. The computational efficiency of
the calculation scheme is then improved through the decay

properties of the vertices. Remarkably, this is sufficient to
solve the parquet equations for the atomic limit on a laptop
using the provided Python script [42].

We also analyzed the parquet approximation for the lattice
Hubbard model using the victory code presented in Ref. [9].
We evaluated the vertices that correspond to the BEPS method
and verified that they indeed exhibit the useful decay proper-
ties. This underlines the accuracy of the asymptotic treatment
of the vertices in this implementation [8]. We discussed
GW -like approximations for the self-energy, highlighting the
crucial importance of vertex corrections represented by the
Hedin vertex γ , which even increases at low temperature
[41]. However, we find it plausible that neglecting vertex
corrections has a less severe effect away from particle-hole
symmetry and in dimensions >2. With respect to recent works
investigating the feedback of spin fluctuations on the optical
conductivity [66,75,76], it is intriguing to consider the role of
the fermion-boson coupling also in this context.

In the future we will implement the efficient calculation
scheme into the victory code [9]. This seems promising be-
cause in Refs. [39,41], which discussed the lattice case for
dual fermions, it is shown that the BEPS method unfolds
its full power in combination with the truncated unity (TU)
approximation [54,77–80], which corresponds to a real space
truncation of the vertices. We expect (cf. Fig. 6) also for
real fermions a similar improved convergence with the form
factors compared to the TU parquet solver (TUPS, Ref. [54]).
While the form factors correspond to a suitable basis for the
spatial degrees of freedom, the computational efficiency may
be further improved by introducing an optimal basis for the
frequencies [81–83]. Such a treatment should pave the way
for parquet calculations including at least a few orbitals such
as the two eg or three t2g orbitals of a transition metal oxide,
or the J = 5/2 multiplet of an f -electron system.

Lastly, some words are necessary regarding the closely
related method for dual fermions presented in Ref. [39]: Di-
agrammatically, both approaches are the same, but the basic
building blocks are different. In Ref. [39] the (real fermion)
Green’s function lines are replaced by dual fermion lines
and the equations defining the self-energy, polarization, and
Hedin vertex assume a different form. In the present paper,
the starting point is an approximation for the two-particle fully
irreducible vertex �. In contrast, in the dual fermion formu-
lation [39] local reducible interactions are included, hence
using, e.g., a local full vertex Floc for dual fermions instead
of a local �loc in D�A. This leads to an interesting distinction
between the bosonization of the parquet equations for real and
dual fermions, respectively, which corresponds to removing
the interaction-reducible diagrams from either Floc or �loc:
In the case of real fermions �loc includes only one such
diagram, the bare interaction itself, whereas for dual fermions
Floc contains many interaction-reducible diagrams which need
to be separated off using the (local) SBE decomposition [38].

The approaches for real and dual fermions both have their
pros and cons. The parquet solver discussed in the present
paper is simpler, an integral part of many different approaches,
the interpretation in terms of real fermions is easier, and the
approximation made for � is very explicit. On the other hand,
the connecting dual fermion lines decay much faster, which, in
combination with the decay of the vertex functions facilitated
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by the BEPS method, leads to a very high computational
efficiency of the dual parquet solver [39]. Further, the dual
fermions are not affected by divergences of the vertex �loc

[84]. It is noteworthy that, due to the dependence of the bare
dual fermion interaction (Floc) on three frequencies, the (par-
quet) dual self-energy cannot be expressed in terms of G,W ,
and γ alone [41]. This is possible for the real fermion repre-
sentation, which allowed us here to to establish a connection
between the parquet and GW γ methods.
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APPENDIX: EVALUATION OF VERTICES M

Here, we show how the vertices Mα in the parquet ex-
pression (16) can be calculated from a converged result of
the victory code [9], that is, the Green’s function G and the
vertices � and F in the parquet decomposition (6) are known.
We focus on the particle-hole channels α = ch, sp. First, we
determine the susceptibility and the screened interaction,

X α
q = 2

∑
k

GkGk+q + 2
∑
kk′q

GkGk+qFα
kk′qGk′Gk′+q,

W α
q = U α

(
1 + 1

2
X α

q U α

)
. (A1)

Next, we evaluate the Hedin vertex γ . We insert Eq. (4)
into Eq. (5a),

γ α
kq = 1 +

∑
k′

(Fα
kk′q − γ α

kqW α
q γ α

k′q)Gk′Gk′+q

= 1 +
∑

k′
Fα

kk′qGk′Gk′+q − γ α
kqW α

q �α
q

= 1 +
∑

k′
Fα

kk′qGk′Gk′+q − γ α
kq

1

2
U αX α

q . (A2)

From the first to the second line we identified the polar-
ization � using Eq. (3). From the second to the third line we
used Eq. (2) and X α

q = 2�α
q /(1 − U α�α

q ). We solve Eq. (A2)
for γ ,

γ α
kq = 1 + ∑

k′ Fα
kk′qGk′Gk′+q

W α
q /U α

, (A3)

where we used again Eq. (A1). With γ and W we finally
obtain M from Eq. (14) (see also Fig. 2),

Mα
kk′q = �α

kk′q − γ α
kqW α

q γ α
k′q + U α. (A4)

We do not evaluate Ms/t in the particle-particle channel. How-
ever, for the singlet channel α = s the steps are analogous,
starting from Eq. (5b) and taking into account the factor
1
2 . For the triplet channel nothing needs to be done since
M t = �t.
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