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Topological properties of the long-range Kitaev chain with Aubry-André-Harper modulation
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We present a detailed study of the topological properties of the Kitaev chain with long-range pairing terms
and in the presence of an Aubry-André-Harper on-site potential. Specifically, we consider algebraically decaying
superconducting pairing amplitudes; the exponent of this decay is found to determine a critical pairing strength,
below which the chain remains topologically trivial. Above the critical pairing, topological edge modes are
observed in the central gap. For sufficiently fast decay of the pairing, these modes are identified as Majorana
zero modes. However, if the pairing term decays slowly, the modes become massive Dirac modes. Interestingly,
these massive modes still exhibit a true level crossing at zero energy, which points towards an intimate relation
to Majorana physics. We also observe a clear lack of bulk-boundary correspondence in the long-range system,
where bulk topological invariants remain constant, while dramatic changes appear in the behavior at the edge of
the system. In addition to the central gap around zero energy, the Aubry-André-Harper potential also leads to
other energy gaps at nonzero energy. As for the analogous short-range model, the edge modes in these gaps can
be characterized through a 2D Chern invariant. However, in contrast to the short-range model, this topological
invariant does not correspond to the number of edge mode crossings anymore. This provides another example
of the weakening of the bulk-boundary correspondence occurring in this model. Finally, we discuss possible

realizations of the model with ultracold atoms and condensed matter systems.
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I. INTRODUCTION

Topological phases of matter have now been established
as an intriguing research area in condensed matter physics
[1-5]. Noninteracting symmetry protected topological (SPT)
phases are either band insulators or superconductors: they
have a gap in their energy spectrum of the bulk and are
characterized by a global order parameter, called topological
invariant. These topological invariants are integers. As a con-
sequence, they cannot be smoothly deformed, within the same
symmetry class of the Hamiltonian, to another phase labeled
by a different value of the invariant. Therefore topological
phase transitions are always accompanied by the closing and
subsequent reopening of the bulk gap. A classification of SPT
phases in terms of their symmetries (time-reversal, particle-
hole, and chiral) and their dimensionality has been performed
in the celebrated “periodic table of topological insulators and
superconductors” [6—10]. Each class is characterized by a
different topological invariant which can take integer Z, even-
integer 27, or binary Z, values. Finally, SPT phases possess
gapless boundary states protected against local perturbations
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and the number of these protected surface states is propor-
tional to the topological invariant.

The superconducting Kitaev chain [11] is a prime exam-
ple of a 1D noninteracting topological system. The main
constituents of the p-wave Kitaev chain [11] are spinless
fermions that undergo short-range hoppings, primarily be-
tween nearest neighbors, in a 1D lattice. They can also get
paired together into superconducting Cooper pairs with oppo-
site momenta. The Kitaev chain exhibits time-reversal, chiral
and particle-hole symmetry; thus it belongs to the BDI class
of the topological classification [6]. This model can host
nonlocal Majorana modes (MMs), i.e., zero-energy modes
localized at the two boundaries of the chain. Such system is
also characterized by a topological invariant, called winding
number, and the number of MMs at each end of the chain
is equal to this winding number. Therefore these MMs are
topologically protected against local perturbations and, hence,
cannot be removed without a topological phase transition, i.e.,
a transition from a topological superconducting phase to the
trivial superconducting phase when all MMs become paired.

The robustness of the MMs makes them promising candi-
dates to build topological quantum computers. They could be
used as qubits that can store and manipulate quantum informa-
tion in a decoherence free manner [11]. Recently, there have
been many proposals for the realisation of MMs in different
systems like heterostructures of topological insulators and
s-wave superconductors [12] or cold fermion systems near
p-wave Feshbach resonance [13], or with attractive s-wave
interaction in the presence of Rashba spin-orbit coupling and
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Zeeman field [14,15]. Other proposals include heterostruc-
tures of spin-orbit-coupled semiconductor thin films [16,17],
or nanowires [17—19] coupled via proximity effect with s-
wave superconductors and a Zeeman field. Majorana fermions
may also emerge from magnetic nanoparticles on a supercon-
ductor without spin-orbit coupling [20,21].

The short-range Kitaev chain is a version of the integrable
p-wave superconducting chain of fermions. The primary focus
of the present work is a long-range Kitaev chain, in which the
superconducting pairing term decays with distance as a power
law [22-26]. While the topological phases of the short-range
Kitaev chain are characterized by Z topological invariants,
the present model posseses a new unconventional topological
phase characterized by half-integer Z/2 winding numbers,
even though the system belongs to the same BDI class and re-
spects the same discrete symmetries of the short-range model.
For slow power-law decay, i.e., for decay exponent « given by
o K 1, the MMs of the short-range model (o >> 1) coalesce
to form massive nonlocal edge states called massive Dirac
modes (MDM). These new edge states lie within the bulk gap
and are topologically robust against local perturbations that do
not violate fermionic parity and particle-hole symmetry. Thus,
like the MMs, MDMs may also find novel applications in the
area of topological quantum computations.

One must note that the quantum critical behavior of
systems with long-range interactions/pairings can be very
different from that of the short-range ones, due to the non-
local nature of the interactions. Therefore, over the recent
years, much effort has been devoted to understanding the
static [27,28] and dynamic properties [29] of long-range sys-
tems through quantum quenches [30-32], periodic drives [26],
through establishment of the Lieb-Robinson bounds [33], and
through studies of the growth of entanglement entropy [34],
Bell inequalities [35], and thermalization [36,37] (for a de-
tailed review, see Ref. [38]).

Interestingly, although there have been numerous re-
cent claims regarding the detection of Majorana fermions
in superconducting /semiconducting heterostructures [39—46],
the quest for Majorana fermions has been quite challenging
and even controversial. A major issue that needs to be ad-
dressed in any system hosting MMs or MDMs is the presence
of correlated or uncorrelated local inhomogeneities in the
onsite potential, which may alter the physics of such systems.

In recent years, new experimental techniques in the field
of ultracold atoms have emerged, where a superposition of
two periodic lattices with commensurate or incommensurate
periods can be created [47-52]. In particular, this allows
for the experimental implementation of theoretical models
such as the Aubry-André-Harper (AAH) model [53,54] and
opens the road for the study of the role of spatial inhomo-
geneities in close connection to the experiments discussed
above. The AAH model raised great interest as, for incom-
mensurate lattices, the system is quasiperiodic and exhibits a
localization-delocalization transition due to its self-dual na-
ture [53,55-57]. More recently, the AAH model and similar
quasiperiodic models have also been extensively studied for
their topological properties [58—62]. In fact, the AAH Hamil-
tonians can be seen as the dimensional reduction of a 2D
Hofstadter model [63], which describes electrons in a 2D
lattice subjected to a perpendicular magnetic field akin to that

of a quantum Hall system. Both models, the AAH chain and
the 2D Hofstadter lattice, are described by a set of Harper
equations [54], and the two momentum variables of the 2D
model map onto one momentum variable and a 2 -peridodic
Hamiltonian parameter in the 1D model. Accordingly, the
AAH model also exhibits a fractal Hofstadter butterfly en-
ergy spectrum, and can host topologically protected boundary
modes reminiscent of the 2D system; it is in turn characterized
by a 2D topological invariant called Chern number.

The interplay between nearest neighbor p-wave supercon-
ducting pairing and the AAH potential has been studied in
Refs. [64-66], for both the commensurate and the incommen-
surate cases. One of the key observations in such systems
has been that a finite amount of superconductivity is required
for unpaired Majorana modes to be present in the system
[67]. Although comprehensive studies [66,68,69] have been
performed on unifying the topological phase diagram for a
range of periodic, incommensurate and disordered potentials
in the short-range Kitaev chain, the combined effect of long-
range pairings and AAH onsite potential on the topological
phase diagram of the Kitaev chain has never been explored.
Here, we present a comprehensive study of the 1D long-range
Kitaev Hamiltonian with AAH type spatially inhomogeneous
potential. Through extensive numerical calculations of the
topological invariants and edge spectra, we reveal how the
critical behavior changes throughout the topological phase
diagram. Specifically, we show that, for sufficiently slowly de-
caying pairing, the central bands are characterized by the same
half-integer topological invariant as in the long-range Kitaev
chain with homogeneous chemical potential. The edge modes
appear at finite energy, which suggests to interpret them as
massive Dirac modes (MDMs). However, the presence of the
AAH potential induces a nonmonotonous dispersion of these
modes when tuning the chemical potential or the supercon-
ducting pairing strength. This leads to a crossing of these
levels in isolated points at zero energy, suggesting an intrinsic
relation to Majorana physics. At the same time, none of this
interesting behavior at the system edge is reflected by the
topological invariant, suggesting that the system exhibits a
weakened bulk-boundary correspondence. This conclusion is
corroborated by studying the behavior in higher band gaps
induced by the AAH potential. Specifically, we find that long-
range pairing removes edge state crossings by turning them
into avoided crossings, whereas the topological invariants of
the corresponding bands remain unchanged.

Section II introduces the model and discusses its gen-
eral properties. Section III is devoted to the discussion of
the winding number and challenges related to the numeri-
cal computation of such winding number in the presence of
long-range pairing. In Sec. IV, we analyze the effects of the
AAH modulation on the central gap behavior of the long-
range Kitaev chain. This includes characterizing the MMs
and MDMs and their corresponding winding numbers, study-
ing the existence of a critical superconducting pairing, and a
detailed analysis of the level crossings at zero energy. Sec-
tion V is devoted to the effect of the long-range pairings on
higher energy gaps, which contain edge states arising from
the AAH potential. Finally, in Sec. VI, we discuss possible
experimental realizations of the model in condensed matter
and in systems of ultracold atoms or molecules.
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II. MODEL HAMILTONIAN

We consider a chain of spinless fermions with an onsite
AAH modulation of the chemical potential and a long-
range p-wave superconducting pairing. Its Hamiltonian can be
written as

N—1

> [ —t(c], e+ clei) — nf@)@clei — 1)

i=l

H
0
N-T o o
+ l_a(ci+lci + CiCi+Z)j|v (D
I=1
where ¢ is the hopping amplitude, u is the chemical potential,
A is the superconducting pairing amplitude and ci(ciT) are the
annihilation (creation) operators at the ith site of the chain.
The superconducting pairing is taken to decay as a power
law [~%, where [ denotes the distance between the sites and
the scaling exponent o € R [70]. For a constant chemical
potential f(i) = 1, we recover the long-range Kitaev chain
with homogeneous onsite potential. As mentioned above, this
model is known to be topologically equivalent to the short-
range Kitaev chain with nearest-neighbor pairing terms for
a > 1. In contrast, for @ < 1, the model can host a long-
range topological phase with MDMs, characterized by a half
integer topological invariant.

We also consider an AAH onsite chemical potential

f(i) = cosRr Bi + ¢), 2)

where the modulation frequency B gives the periodicity of
the potential and the parameter ¢ shifts the origin of the
modulation. In particular, for irrational g, the system becomes
incommensurate with respect to the lattice periodicity. The
latter can lead to interesting effects such as gap openings
or localization-delocalization transitions [53,56,57]. In this
paper, we consider a system with commensurate values of
B = p/q, and characterize its topology. Both the AAH model
and the Kitaev model are interesting due to their topological
properties separately from each other. Here, we study the
interplay between the two.

The AAH potential has periodicity of ¢ sites and we there-
fore consider a system of N sites with L supercells, where
N = gL. First, we write the Hamiltonian in the Bogoliubov-
de-Gennes (BdG) basis to properly treat the pairing term. The
Hamiltonian of Eq. (1) then reads

L—1
H= Z|:X,:FHloca1Xu + (X;FHhopXu-&-l + H.c.)

u=0

L

-1
+ D Ot Hixust + Ha)}, 3)
=1

where x, = (.cq,f, c;u, oo Cqut(g—1)» c;u+(q_]))T is the basis in
real space within a supercell denoted by u. Hjoca Stands for
the elements of the Hamiltonian involving operators within
the supercell. Hy,, contains the hopping terms between su-
percells. Finally, H; includes the long-range pairing terms.
The explicit form of each contribution can be found in
Appendix A. Moreover, we can either impose open boundary
conditions (OBC) to study the edge states, or antiperiodic

boundary conditions (APBC) assuming y,+; = —x, to study
the bulk properties of the system (see Appendix B for details).

To focus on the bulk properties of the system, let us impose
APBC and compute the Hamiltonian in the Fourier space,
which reads

H = Z|:X;Hlocal)(k + (eikX]thopXk + H.c.)
k

L-1
+ ) (@ X Hixe + Ha)} : )
=1
where y; denotes the Fourier transform of the supercell vector,
with the Fourier sum being performed over the quasimomenta
k=2m+ ) /L,0 < m < L — 1. Finally, for the thermody-
namic limit (L — oo), the Hamiltonian reads as

H = Z[X;-Hlocal)(k + (" % Hhopx + H.c.)
k

+ (X Hintxe + Hee))l. Q)

In order to better understand the contribution of the long-
range pairing, it is worth looking into the definition of Hjyy,
which takes the form (see Appendix A for more details on the
derivation)

Co0 Co,1 Cog-1
Cio Ci Cig-1
Hiys = , (6)
Co-10 Cy-11 Cy—1,9-1

where C,, = ig,y0,. The function g,, is defined as follows:

- Lt

=1

lkl eik
()C — y)] = q_aHLPO( (kv q,Xx — y)s (7)

where HLP stands for the Hurwitz-Lerch-Phi function, also
called the Lerch transcendent function [22,71]:

® ikl

HLP, (k. q.x—y) = : °

I s T ®)
+O—y) 1%
=0 l+q q y]

The HLP function has a singularity at k =0 for o <
1. This singularity encodes the long-range character of the
Hamiltonian and contributes both to the edge dynamics and to
the bulk topology of the system, creating a long-range uncon-
ventional topological phase. Our goal will be to characterize
it.

III. WINDING NUMBER

As mentioned in Sec. I, the model under study lies
in the BDI symmetry class of topological insulators and
superconductors, that is, it is particle-hole, time-reversal,
and chiral symmetric. Therefore, in order to characterize
the bulk topology of the model, we compute the winding
number considering three methods. The first one is the Fukui-
Hatsugai-Suzuki algorithm [72], which, as we will see, fails to
characterize the unconventional long-range topological phase.
Secondly, we consider the real-space winding number for
finite systems, which converges to the expected value of the
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winding number for large systems. Finally, we implement
an algorithm which relies on the chiral symmetry of the
Hamiltonian. For this approach, we make use of the analytical
expression for the infinite system from Eq. (5).

Before getting into the details of each method, we would
like to stop and briefly analyze the long-range case o < 1
[22-26]. On the one hand, the long-range character of the
Hamiltonian affects the edge states of the system: the MMs
hybridize and become massive and form MDMs. On the other
hand, the bulk topology of the model hosts two different
unconventional topological phases, characterized by a half-
integer Z/2 winding numbers. It is important to note that the
winding number for short-range systems can only take integer
Z values [6-10]. Nevertheless, the long-range character of
the Hamiltonian allows for a new type of characterization
of the bulk topology. We will see that the bulk topology of
our system is well-defined, but not directly connected to the
edge dynamics. In fact, the bulk-edge correspondence gets
weakened for long-range systems [25].

A. Fukui-Hatsugai-Suzuki algorithm

A common approach to compute the winding number is
the algorithm introduced by Fukui, Hatsugai and Suzuki [72].
The main idea is to discretize the Brillouin zone of the sys-
tem {ki, ...k}, and then to construct the tensor U, =
(U (kip1) ¥ (k;)) for every k;. Here, Yy is the m(n)-th
eigenvector of the Hamiltonian. The winding number v is then
defined as

1 : U@
v = —Im| log ————— H 9
T |: (11:[ |[UD||UD|*

where |-| denotes the determinant of the tensor U. To
compute this quantity, we work with periodic boundary condi-
tions. This means that we need to close the loop by computing
the scalar product between |, (k;)) and |, (k1 )).

Recall that the long-range character of the Hamiltonian is
encoded in the HLP function in Eq. (7), and this function is
singular at k = O for @ < 1. Thatis why, for the case of o < 1,
one needs to consider a discretization of the Brillouin zone
without an explicit inclusion of k£ = 0 in order to avoid the
singularity. Nevertheless, even if one considers an appropriate
discretization of the Brillouin zone, this algorithm always
fails to characterize the long-range topological phases through
half-integer Z/2 winding numbers. In fact, it can be proven
that this algorithm always leads to an integer Z winding num-
ber. In order to understand why, let us consider the case of
f (i) = cst. This case is straightforward as the model has only
two bands. However, this argument can be generalized to the
multiband (non-Abelian) case, as required, for investigating
the properties that we are interested in [see Eq. (9)]. The Zak
phase of a single band #n is given by the sum of the relative
phases over the Brillouin zone

1 S
== Fi(k), 10
c 27”.11211(1) (10)

where

(Y (ke DY (k1))

Filk) =1 .
k= ) )]

)

Note that the function Fj(k;) is periodic along the first Bril-
louin zone, meaning that Fj(k; + s8;) = Fi(k;), where §; is
the spacing of the discretization and s are the number of points
considered. Moreover, F; takes values within the principal
branch of the logarithm, such that —w < Fj(k;)/i < m. This
means that Fj(k;) can be written in terms of forward differ-
ences and an integer-valued field n,

Fi(k) = f(ki + 8,) — f(ki) + 2ming (kp). 12)

If one closes the loop around the Brillouin zone, the finite
differences cancel out, and the Chern number is always integer
valued

o = Y mi). (13)
=1

The only way to obtain noninteger winding numbers would
be either to neglect the contribution of Fj(k,), therefore not
closing the loop, or to include the point k& = 0. Neither op-
tion is reliable, since the first one results in gauge dependent
quantities and the second one relies on a singularity point.

B. Real-space winding number

A second approach to compute the winding number is
based on the real-space Hamiltonian of a finite system with
N = gL sites [73]. In this case, the winding number is defined
as follows

v = Tr(QpalX, Oagl), (14)

where Tr is the trace per unit cell and Q4 = I'4OI's. The
quantity Q is defined as Q = P, — P_, where P, and P_ are
the projectors on the positive or negative eigenstates respec-
tively Py = Y " [¥4)(¥+]. T4 and T'p are the projector oper-
ators onto the A and B sublattices of the system [74], namely
'y = diag(1,0,1,0---) and 'y = diag(0,1,0,1---) and X
is the position operator.

We emphasize that computing [X, Q4p] is not straightfor-
ward for a system with periodic or antiperiodic boundary
conditions as the position operator is not periodic. We here use
the approach introduced in Ref. [75], for which we consider
a system with a domain —N/2 < x; < N/2, where x;’s are the
eigenvalues of the position operator X. Then, the commutator
can be written as

[X, Qus] = ) e or ™, (15)
e

. N+1 .
where A are the solutions to z2V ! = l and ¢; = % For this

approximation to be effective, the system has to be sufficiently
large.

C. Infinite system winding number

Finally, a third approach to compute the winding number
relies on the definition of the winding number for the infi-
nite system. Since the system is chiral, one can always find
a basis in which the Hamiltonian is block-off-diagonal (see

Appendix C)
0 h
Hips = <h* O)' (16)
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For such Hamiltonian, the chiral operator is diagonal

T 0
r— (O _1>, (a7

and the winding number can be computed with the help of the
expression [74]

2 1
v = / —Tr[h o], (18)
o 2mi

where h is the upper-right block of the Hamiltonian in
Eq. (16). In our case, we are interested in using the discrete
version of Eq. (18), which takes the form

V= Z %Tr[h_lakh]. (19)
k

Finally, note that # contains the HLP function defined in
Eq. (7), which is singular at k = 0. In Eq. (19), the winding
number can still be computed as long as one considers a dis-
cretization of the Brillouin zone without an explicit inclusion
of k = 0. It is important to note that the discontinuity does not
affect the calculations in the continuous limit and therefore the
integral in Eq. (18) is well defined. Note that the same happens
to the long-range Kitaev chain with no AAH modulation [26].
In order to compute the winding number, we also need the
analytical derivative of this function

_ik
OHLP, (k, g, x — y) = ie<"" [qHLP,_1(k, g, x — y)
+ (x — y)HLPy (k, g, x — y)].  (20)

We will use the winding number computation explained
in this section to study the central gap of the model in the
following section.

IV. CENTRAL GAP OF THE KITAEV CHAIN WITH AAH
POTENTIAL: A QUANTITATIVE STUDY

The AAH potential splits the energy spectrum of the Kitaev
chain into several bands. In this Section, we focus on the
behavior of such system around its central gap, that is, around
E = 0. Specifically, we compare the behavior of short-ranged
and long-ranged Kitaev chains in the presence or absence of
the AAH modulation.

In this context, we first study the energy spectra as a func-
tion of the chemical potential w, which reveal the existence
of MMs and MDMs for different values of the decay expo-
nent «. Then, we characterize these different phases using
the real-space (Sec. IIIB) and the infinite winding numbers
(Sec. III C). Here, we also compare the accuracy of the two
methods. We then investigate how energy spectra and winding
numbers depend on the superconducting pairing term A, and
find that the presence of an AAH modulation leads to a critical
superconducting pairing Ac: below this critical value, we
observe neither MMs nor MDMs in the system. The value of
Ac depends on the decay exponent « as well as the amplitude
of the chemical potential . Finally, we discuss a peculiar
behavior found in the presence of both long-range pairing
and AAH potential: while the long-range nature of the pairing
leads to a degeneracy splitting of the MMs and turns them
into MDMs, the AAH is responsible for a true level crossing
of these modes which allows them to recombine at isolated

0 0
1/t pn/t

FIG. 1. Energy spectrum for the system with OBC (green) and
APBC (blue) for ¢ = 233, L = 1, A = 0.5t, and ¢ = 0. We consider
f(@) =11n (a) and (c) and AAH chemical potential in (b) and (d).
(a) and (b) depict the energy spectrum for the short-range system
(o = 5.0) and thus, exhibit MMs. (c) and (d) depict the energy spec-
trum for the long-range system (¢ = 0.5), which harbours MDMs in
the central gap.

points, and which yields an adiabatic connection between MM
phase and MDM phases.

A. Effect of the AAH potential on the energy spectrum

We first study the energy spectrum as a function of the
chemical potential u, comparing the case of homogeneous
chemical potential, f(i) = cst = 1, with the case of a mod-
ulated AAH potential. We consider a system of 233 sites, and
for the AAH potential, we take the modulation frequency S
to be p/q = 144/233. We expect, however, that the results
qualitatively hold also for other values of g, if ¢ is sufficiently
large.

Figures 1(a) and 1(c) depict the energy spectrum of the
system for a homogeneous chemical potential with APBC
(blue) and OBC (green). For the short-range system (a), we
see the appearance of zero-energy MMs in the central energy
gap for |u/t| < 1. For |u/t| > 1, the system is topologically
trivial, and no edge states exist within the band gap. For the
long-range system, shown in Fig. 1(c), we only see one gap
closing at ;/t = 1. For u/t < 1, the system exhibits MDMs,
which are clearly separated from the bulk and only exist for
OBC. For u/t > 1, in contrast, the system is topologically
trivial and does not exhibit any edge states. Figures 1(b)
and 1(d) depict the energy spectrum for a system with an
AAH potential. The AAH potential leads to a splitting of
the spectrum into many bands. Band gaps at nonzero energy
and the massive edge states hosted by these gaps will be
analyzed in Sec. V. In the present section, we focus on the
central gap around E = 0. For the short-range system, shown
in Fig. 1(b), we observe the existence of the zero-energy MMs
in the central region around u ~ 0. As compared to the case
of homogeneous potential, the AAH modulation significantly
increases the parameter range supporting MMs, which now
extends to |u/t| < 2. For the long-range system, shown in
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(a) (b)
1
Y RSL=1 — | ® RSL=1
RSL=3 RSL=3
—— RSL=5 —— RSL=5
-1 —— inf system —— inf system
1/t n/t
() (d)
1
~ 0 RSL=1 ~ S RSL=1
RSL=3 “Z\ RSL=3
—— RSL=5 —— RSL=5
11— inf system —— inf system
-2 0 2 -2 0 2
1/t n/t

FIG. 2. Real-space winding number for L = {1, 3, 5} and infinite
system winding number. In both cases, we considered g = 233,
A =0.5¢, and ¢ =0. We consider « = 5.0 and f(i) =1 in (a),
o = 5.0 and AAH chemical potential in (b), « = 0.5 and f(i) =1
in (c) and o = 0.5 and AAH chemical potential in (d). We see that,
when increasing L, the real-space winding number converges to the
one for the infinite system. The convergence is slower for long-range
systems (c) and (d). Note that the computation of winding number is
not valid for the values of u for which there is no gap at zero energy
(shaded regions).

Fig. 1(d), the MMs hybridize to form MDMs. In this case, the
central region for which MDMs exist is |u/f| < 1. Interest-
ingly, the MDMs exhibit a crossing at zero energy which will
be further discussed in Sec. IV E. Moreover, at |u/t| = 1.5,
we see another opening of weakly gapped regions which do
not host MDMs or MMs.

We conclude that the Kitaev chain with AAH potential
exhibits a variety of different phases which are distinguished
through the presence or absence of MMs and MDMs. In the
following, it will be our goal to further characterize these
different phases through the winding numbers introduced in
Sec. III.

B. Comparison between real-space and infinite
system winding numbers

Before performing an in-depth analysis of the winding
numbers and the edge states of the Kitaev chain in the pres-
ence of an AAH potential, we compare the two algorithms
to compute the winding number introduced in the previous
section. Figure 2 shows the comparison between the real-
space winding number for different values of L and the infinite
system winding number. For the short-range system [(a) and
(b)], where we consider « = 5, the winding number takes the
discrete values 0 and 1. Note that for the short-range case, the
FHS algorithm from Sec. III A would lead to valid results. The
nontrivial central region for which v # 0, which is | /f| < 1
for f(i) =cst (a) and |u/t| <2 for AAH onsite potential
(b) coincides with the existence of MMs in Figs. 1(a) and
1(b). The real-space winding number here is computed for a
system with L = {1, 3, 5}, while the infinite system winding
number takes L — oo. For the short-range system, both algo-
rithms show good qualitative agreement even for L = 1. Thus

here N = g = 233 is large enough for the approximation in
Eq. (15) to converge.

Figures 2(c) and 2(d) depict the winding number for the
long-range system with o = 0.5. Here again, the real-space
winding number is computed for a system with ¢ = 233 and
L = {1, 3, 5}. The winding number takes half-integer values,
+1/2. In the case f(i) = cst, shown in panel (c), the positive
winding number corresponds to the region for which u/t < 1,
which is also the region that corresponds to the presence of
MDMs [see Fig. 1(c)]. For p/t > 1, the system does not
exhibit any edge states but it is neither trivial, since the wind-
ing number takes a nonzero value: this system exhibits weak
bulk-edge correspondence [25]. For the AAH onsite potential,
shown in Fig. 2(d), the positive winding number corresponds
to the region where |/t| < 1. Again this is the region for
which the system presents MDMs in the energy spectrum,
cf. Fig. 1(d). The two neighboring regions, 1.5 < |u/t| < 2,
show a negative value of the winding number and do not
exhibit MDMs. Note that the gap closes for |p/t] > 2, and
correspondingly, the winding number is no longer well de-
fined, as expected.

For the long-range case, the real-space winding number
does not agree exactly with the infinite winding number for
the values of L that we have considered. The reason for this
is that for long-range systems, the approximation in Eq. (15)
converges more slowly, which leads to small finite-size effects
atL = 1.

C. Critical superconducting pairing in short-ranged
and long-ranged systems

We now investigate how the presence of MMs and MDMs
depends on the value of the superconducting pairing A. To this
end, we compute the energy spectra of the finite Hamiltonian
with OBC as a function of A, as well as the real-space winding
number for the same system size with APBC. The results
are depicted in Fig. 3, showing energies in blue and winding
number in red.

Figures 3(a) and 3(b) show the results for a system with
rapidly decaying pairing (o« = 5). Panel (a) considers a sys-
tem with homogeneous chemical potential (u/t = 0.5) and
panel (b) considers a system with AAH chemical potential
(n/t = 1.2). For the homogeneous potential, the system ex-
hibits topological edge modes even in the limit A — 0. In
contrast, the presence of the AAH potential leads to a critical
pairing A¢ > 0, which is required for the opening of the gap
and the appearance of MMs. The real-space winding number
also becomes nonzero only for A > Ac. This consistency
between number of edge modes and topological invariant is
an example of the celebrated bulk-edge correspondence.

Figures 3(c) and 3(d) depict energy spectrum and wind-
ing number for a slow power-law decay (¢ = 0.5), again
distinguishing between homogeneous potential (c) and AAH
potential (d). The critical pairing also remains A¢ = 0 for
homogeneous chemical potentials. However, the combination
of an AAH potential and long-range pairing is found to yield
a very rich scenario: the system is gapless for pairing terms
up to A = 0.25¢. At this value, a gap opens and closes at
Ac = 0.55t. There are no edge states within this gap. For
A > 0.55¢, another gap opens, but now containing MDMs.
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FIG. 3. Energy spectrum (blue) and winding number (red) for
f) =1, =5.0,and u/t = 0.5 (a), AAH chemical potential, « =
5.0and pu/t =12 (b), f(i)=1, « =0.5, and n/t = 0.5 (c) and
AAH chemical potential, « = 0.5 and p/t = 1.2 (d). In (a) and (c),
the system exhibits edge modes for any Ac > 0. For short-range
pairing, the edge states are zero-energy modes and the winding num-
ber is equal to one, see (a). For long-range pairing, the edge states
become massive, and the winding number becomes a half-integer,
see (c). In contrast, in presence of an AAH potential, there is a region
A < Ac¢ for which the central gap is closed, for both short-range
pairing (b) and long-range pairing (d). In the latter case, the com-
bined effect of AAH onsite potential and long-range pairing leads to
a succession of topologically differentiated regions separated by gap
closings, see (d). As for the case of constant potential, the winding
numbers in presence of AAH potential are integer in the short-ranged
system, and half-integer in the long-ranged system. All quantities
are computed using the real-space Hamiltonian for a system with
g=233and L = 1.

As already seen in the energy spectrum as a function of w,
the MDMs cross at zero energy at A = 0.85¢. A discussion
of this interesting behavior will be given in Sec. IV E. The
gapped regimes are characterized by nonzero winding num-
bers: The winding number takes the value v = —0.5 in the
first gap (the one without edge states), and v = 0.5 in the
second gap (the one with MDMs). Thus, the appearance of
MDMs is accompanied by a jump of the winding number by
1, but we emphasize that in general, for « < 1, the system
has a weak bulk-boundary correspondence [25]. This means
that a nonzero value of the winding number does not always
correspond to MDMs. In Appendix D, we show that the bulk-
boundary correspondence is weak by looking at the system
when varying the superconducting pairing A from negative to
positive values. In this case, the winding number also jumps
from —0.5 to 0.5, but the edge physics remains the same.
Nevertheless, the value of the winding number has physical
consequences in the distribution of the Schmidt eigenvalues
and the violation of the area law for the von-Neumann entropy
[25] or the quantization or half quantization of the multipartite
entanglement [76].

(b)

(a)
3

0.5 1.0 0.5 1.0
AJt AJt

FIG. 4. Real-space winding number for the system with f(i) = 1
and u/t € {0.5,1, 1.5, 2} [(a)—(d)]. We observe two regions, corre-
sponding to « < 1 (long-range) and o > 1 (short-range). At p/t =
1, (b) there is a closing of the gap, for which the winding number is
not well-defined. When we go from p/t < 1 (a)to n/t > 1 [(c) and
(d)] we see a topological phase transition, in which the winding
number for short-range goes from 1 to 0 and for long-range from 0.5
to —0.5. Here, Ac = 0. The real-space winding number is computed
for ¢ =233 and L = 1. We consider that the central gap is closed
when AE < 0.035¢ (black regions).

D. Phase diagram

‘We now study the phase diagram of the model by fixing the
chemical potential to a discrete value u/t € {0.5, 1, 1.5, 2},
while continuously varying o and A. The phase diagrams are
expressed in terms of the winding number, shown in Fig. 4
for homogeneous chemical potentials, and in Fig. 5 for AAH
potentials.

For the homogeneous chemical potential, Fig. 4, we ob-
serve that the critical superconducting pairing is always
at Ac = 0. We see two regions, one corresponding to the
short-range Kitaev chain (¢ > 1), and one corresponding
to long-range system (o < 1). In the short-range case, the
winding number is 1 for pu/t < 1, and O for w/t > 1. The
long-range scenario has a winding number of 0.5 for u/t < 1,
and —0.5 for u/t > 1. At u/t =1, the system is gapless
and the winding number is ill-defined. We also observe in
Fig. 4(a) that, for small values of A and for 0.5 < o < 1, the
long-range system exhibits MMs, which later hybridizes to
form MDMs [24] when A is increased.

For the AAH chemical potential, Fig. 5, we make the
following observations. For p/t < 1 (a), the system behaves
as in the homogeneous case, exhibiting two different regions,
corresponding to long-range and short-range behavior. From
this we can assume that, for very small chemical potential, the
AAH modulation does not affect the topology of the system.
However, for w/t > 1, the situation changes, see Figs. 5(b)
and 5(d): the critical A¢ is now shifted to a nonzero value. The
latter seems to increase continuously for decreasing values of
a. For A < A¢, the central gap of the system is closed and
the winding number is not defined. If we now focus on the
region o < 1, we clearly see a region in which the sign of the
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FIG. 5. Real-space winding number for the system with AAH
onsite potential and u/t € {0.5, 1, 1.5, 2} [(a)~(d)]. When pn/t < 1
(a), we only observe two regions, corresponding to o < 1 (long-
range) and o > 1 (short-range). Here, the system behaves like in
the homogeneous case in Fig. 4, and thus Ac = 0. When u/t > 1,
the critical superconducting pairing A¢ # 0 both for the short-range
and the long-range cases. For the short-range case, there is simply a
region where the gap is closed for A < A¢ and aregion with winding
number 1 for A > Ac. For the long range case, we see three different
regions: first the gap is closed, then it opens with winding number
—0.5, then it closes again and it re-opens with winding number 0.5.
The real-space winding number is obtained for a system with size
g = 233 and L = 1. We consider that the central gap is closed when
AE < 0.025¢ (black regions).

winding number changes. This phase does not host MDMs
and it is separated from the other phases through a gap closing.
Finally, the value of A¢ depends drastically on the value of the
chemical potential amplitude .

E. Edge modes in the slow power law decay regime

As observed in the previous subsections, the central gap of
the (sufficiently) long-range Kitaev chain with AAH potential
hosts an edge mode at positive energy and an edge mode at
negative energy, but very interestingly, these modes exhibit
crossings at zero energy [see Figs. 1(d) and 3(d)]. In the
present section, we focus on this crossing.

First, we note that the chiral symmetry of the system dic-
tates that a crossing of the two modes can only happen at
zero energy. However, we are not aware of a symmetry which
would prevent the two modes from mixing, and thus, they
could also perform an avoided crossing. To distinguish a true
crossing from an avoided one, we study the quantum fidelity
between eigenstates as we adiabatically change the chemical
potential. The fidelity is defined as

F(u) = |<1/fu|1ﬁu+e>|v 2D

where v, is the single-particle wave function describing the
edge mode with positive energy.

In Ref. [77], they analyze the ground state fermion parity of
the short-range Kitaev chain, showing that for finite systems
this observable switches for certain values of the chemical po-
tential. This finite size effect is a result of the energy splitting

0.0
n/t

FIG. 6. Energy spectrum (a), quantum fidelity ¥ (b) and ground
state fermion parity P (c) for a system with size ¢ =233 and L = 1.
Here we considered A = 0.5¢, « = 0.5, and ¢ = 7. The quantum
fidelity F', which is computed following the MDM indicated in green,
takes the value 1 everywhere except for the closings of the gap
at |u/t| = 1.2 and the crossing at p/t = —0.85. The ground state
fermion parity switches at the gap closing at /¢t = —1.2 and at the
crossing at i/t = —0.85.

between the MM, which are not exactly at zero energy and
undergo crossings for certain values of u. In the long-range
scenario the energy splitting between the MDM remains finite
even when the system size goes to infinity, but if we have a
true crossing, we might expect a switch of the fermion parity
at the crossing point.

Following Ref. [11], the ground state fermion parity P is
defined as

P = sgn(Pf(Hy)), (22)

where Pf stands for Pfaffian and H;; is the Hamiltonian in the
Majorana basis with OBC.

In Fig. 6, we show the energy spectrum together with the
quantum fidelity and the ground state fermion parity for a fi-
nite size system with OBC and & = 0.5. The crossing happens
at u/t = —0.85. At this crossing point, the quantum fidelity
drops to zero and the fermion parity switches its sign. This
demonstrates that, at the crossing point, the two orthogonal
modes are exchanged, and thus, that the crossing is indeed a
true crossing and not an avoided one.

Moreover, we also compute the winding number to see if
the crossing corresponds to a change in the bulk topology.
If one interprets the vicinity of the zero-energy crossing as
a reappearance of Majorana modes, one would expect that the
winding number becomes 1. However, the crossing is found
to have no effect on the winding number, which remains to be
0.5 throughout the whole gapped region (i.e., for |u/f| < 1.2).
Since the zero-energy modes only exist at the exact crossing
point, a switch in the bulk topology might be difficult to
capture. On the other hand, as mentioned already in Sec. IV C,
long-range interactions can weaken or destroy the bulk-edge
correspondence, and therefore we cannot discard the possibil-
ity that the bulk topology does not match the edge dynamics.

013148-8



TOPOLOGICAL PROPERTIES OF THE LONG-RANGE ...

PHYSICAL REVIEW RESEARCH 3, 013148 (2021)

@ ©
2.0 2.0 1.00
15 " 15 0.75
0 E S1L0 0.50%
0.5 0.25
~15 —10 -05 0.00
pu/t
© (d)
1.0 T
05 2 15 0.5
00 & S0 00 2
<4
0.5 -058 o5 —0.5
-5 0 —1.0 ] ! _1.0
p/t Wt

FIG. 7. Energy splitting AE of edge modes (a), quantum fidelity
(b), ground state fermion parity (c) and real-space winding number
(d) for different values of n and «. The energy splitting AE, the
quantum fidelity F' and the ground state fermion parity switches
allow us to detect the crossings, while the winding number v does not
detect it. All the computations consider a system with ¢ = 233, L =
1, and ¢ = m. The winding number is computed using the real-space
approach. Gapless regions (defined by a threshold AE < 0.02r),
where the winding number becomes ill-defined, are colored black
in (c¢). Note that in (b) and (c) the region that corresponds to @ > 1 is
expected to host MMs, but even in this regime, there is a finite-size
splitting of the two modes and a true energy crossing at zero energy
occurs.

For a better understanding of the relation between Majo-
rana physics and the observed zero-energy crossings, we shall
ask how the zero-energy crossing connects to the regime in
which pairing is sufficiently short-range to support an ex-
tended phase with zero-energy modes. To this end, we plot
in Figs. 7(a)-7(d) the energy splitting AE between the two
edge modes, the quantum fidelity F' of the positive mode, the
ground state fermion parity P and the winding number v as
a function of both u and «. For @ > 1, the energy splitting
becomes very small, and, as we demonstrate below, in this
regime the finite value of the splitting is a mere finite-size
effect. Therefore the edge modes in this regime can be in-
terpreted as Majorana zero modes, and such interpretation is
corroborated by the winding number which takes the value
v = 1 for o > 1. Nevertheless, the finite-size splitting still al-
lows to energetically differentiate between the two modes, and
also for @ > 1 we observe a true level crossing, as indicated
by the black line of zero fidelity in Fig. 7(b) and the fermion
parity switch in Fig. 7(c). Interestingly, this curve seamlessly
extends to the level crossing at o < 1. In this regime, however,
the splitting between the two modes takes significantly larger
values [see Fig. 7(a)] and cannot any longer be interpreted as
a finite-size effect. This demonstrates that the isolated zero-
energy modes at @ < 1 are smoothly connected to the MMs
at a > 1. In contrast to this, the bulk topology is different
in the two regimes: the winding number drops from 1 to 0.5
when o < 1 [see Fig. 7(d)]. We also mention that, for ¢ < 1
and u/t < —1, the central gap closes [marked in black colors

2x 1072
=17 x 1072 ,/'_':———'TTT s Pita =08
<] 1.5 % 102 Fo™ e Efita =08
o ! a=08
0.0 0.2 0.4 0.6 0.8 1.0 1.2
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0.0 0.2 0.4 0.6 0.8 1.0 1.2
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FIG. 8. Finite-size scaling of the energy splitting AE of the edge
modes vs. 1/L, where L is the number of supercells, each containing
g = 233 sites. We choose u/t = —1, A = 0.5t, ¢ = 7, so that we
are on the left side of the crossing in Fig. 6. We plot the data for @ =
0.8 (a) and @ = 1.1 (b), and compare both cases with exponential
fits (dashed lines) and polynomial fits (dotted lines). For both fits, we
have assumed that AE — 0 for L — oo (see text). Discrepancy with
both fits at « = 0.8 suggest that the splitting AE remains finite in
this case. (c) Scaling of the infinite system winding number with the

discretization D defining the computational grid of §;, = %”.

in Fig. 7(d) and yielding the second black line in Fig. 7(b)
and a femion parity switch in Fig. 7(c)]. As can be seen from
Fig. 7(b), the zero-energy crossing of the edge modes (right
black line) and the gap closing (left black line) approach each
other, when « is reduced. For completeness, we also mention
that the gap re-opens at even smaller value of p. In this regime,
no edge modes are observed, yet the winding number takes a
nonzero value, v = —0.5.

To conclude this section, we support our claim regarding
the qualitative changes at « = 1 by a finite-size scaling of
the degeneracy splitting of the modes, and of the winding
number. Therefore we focus on two values of o = 0.8 and
1.1, and fix p/t = —1 to a value on the left side of the zero-
energy crossing. For this choice, we plot the mode splitting
AE against the inverse of the system size, 1/L, in Figs. 8(a)
and 8(b). For the finite-size scaling, we assume an exponential
closing of the splitting, AE = ae~"", or a polynomial closing
of the splitting, AE = a(1l /L)b, in both cases with two fit
parameters a and b. Because of the long-range character of
the Hamiltonian, the dispersion relation contains now the HLP
function, which depends on the length of the system L [22]. As
a result, the exponential fit matches the data neither at o > 1
nor at ¢ < 1. In contrast, the polynomial fit perfectly matches
the data for « > 1. However, for the largest system sizes
considered (L = 25 supercells), the observed energy splitting
at « = 0.8 remains above the polynomial fit. This discrepancy
becomes more pronounced and affects more data points for
smaller values of «. Thus we conclude that the energy splitting
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remains finite for ¢ < 1, while it vanishes polynomially with
the system size for o > 1.

The qualitative change at o = 1 is also backed by the
behavior of the winding number: While sufficiently above
o =1, it takes the value one, the winding number is 0.5
when « is sufficiently below one. In the vicinity of o ~ 1,
the winding number takes intermediate values between 0.5
and 1, no matter which algorithm we use to compute the
winding number. However, we find that in the real-space al-
gorithm the intermediate values are due to the finite size of
the system, whereas for the chiral algorithm (considering an
infinite system) the finite discretization of the momentum grid
is the reason for the intermediate values. Scaling the winding
number vs. system size or discretization, we observe that the
invariant approaches the value one, if « > 1, or the value 1/2,
if @ < 1. This is illustrated in Fig. 8(c), for the scaling of the
winding number vs. discretization D at « = 0.8 and 1.1 This
observation suggests a sharp change in the bulk topology at
(or in the vicinity of) « = 1.

V. AUBRY-ANDRE-HARPER EDGE STATES

In the presence of an AAH potential, the system exhibits
topological edge states in the higher energy gaps. These AAH
edge states arise from the AAH potential and can be under-
stood through the dimensional reduction of the 2D Hofstadter
model. The latter describes electrons in a 2D lattice subjected
to a perpendicular magnetic field [63] and its dimensional
reduction onto a family of 1D chains corresponds to the AAH
model. That is why the AAH edge states fall within the A class
of the topological classification of 2D systems. In particular,
different instances of the AAH model are characterized by the
2m-periodic dephasing parameter ¢, which can be interpreted
as one of the quasimomenta of the original 2D system, i.e.,
ky = k and k, = ¢. Historically, the pumping mechanism, i.e.,
relating the presence of edge states in an energy gap of 1D
system through a 2D topological invariant, has been widely
studied in systems containing an AAH potential [59]. Even
though in the 1D system the AAH edge states are not topo-
logically protected for any value of the dephasing parameter
¢, they are protected if there is a crossing point for which
the symmetry of the system is higher. Recent studies such as
Ref. [66] combine this mechanism with systems containing
short-range superconducting pairing. In this section, we study
the fate of this mechanism for a system with long-range su-
perconducting pairing.

In Fig. 9, we compare the edge states for the system with
o < 1 (long-range) and with o > 1 (short-range) and focus on
the energy gap around E = 0.5¢. In the normal (short-range)
scenario [panel (a)], the edge states cross within the energy
gap a given number of times. In the gap considered here,
they cross twice (at ¢ = {1.95, 5.07}). Figure 9(c) shows the
energy spectrum around the second crossing and analyzes
the quantum fidelity F at the crossing. It drops to zero at
¢ = 5.07. This must be contrasted to the situation in the long-
range system. Figure 9(b) depicts the energy spectrum for the
long-range system with OBC, and two avoided crossings are
observed at the same values of ¢ = {1.95, 5.07}. However, the
quantum fidelity F' in Fig. 9(d) stays at 1 around ¢ = 5.07.
This indicates that the long-range superconducting pairing

FIG. 9. Energy spectrum as a function of ¢ € [0, 27], in the
vicinity of the energy gap around E = 0.5¢. (a) and (c) correspond
to the short-range system (o = 5). In (a) we see the energy spectrum
for the full period of the dephasing, while in (c) we zoom into one of
the avoided crossings. Here, we also compute the quantum fidelity ¥
(dashed red line). (b) and (d) correspond to the long-range scenario
(o = 0.5). Again, (b) shows the energy spectrum for the full period
of the dephasing and (d) zooms into the crossing and also considers
the quantum fidelity F (dashed red line). To compute the quantum
fidelity, we follow the edge state highlighted in green. We considered
a system with OBC and ¢ =233, L =1, u/t = 1, and A = 0.3r.

hybridizes the two edge states, such that the total charge
transported in one period of the dephasing now becomes zero.

We now focus on the computation of the 2D Chern num-
bers. They characterize the bulk topology associated to these
edge states, and for a system with bulk-edge correspondence,
the value of the two-dimensional Chern number should coin-
cide with number of crossings, since it indicates the charge
that is pumped at the edges of a 1D cylinder. Here, we use
the Thouless-Kohmoto-Nightingale-Nijs (TKNN) algorithm
introduced in Ref. [78] where they define the Berry curvature
as follows

Qi =1 Y

8kXHa58kyH5a — 83k‘,Haﬂ8kXH5a
(Eq — Ep)?

. (23

where k, and k, are quasimomenta of the Brillouin zone.
Recall that here, k, = k and k, = ¢. We choose the value of
the Fermi energy Er to be located inside the gap that we want
to characterize. Note that

O Hop = (V| Hp), (24)

where we consider the analytical derivative of the infinite
Hamiltonian in Eq. (5). Then, the Chern number is defined
as

1
C=— 1 Q.- (25)
2mi BZ o
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FIG. 10. (a) Energy of the AAH edge states vs. pairing strength
A for fixed @ = 0.5. (b) Energy of the AAH edge states vs. decay
exponent « for fixed A = 0.3z. In both plots, (a) and (b), we take the
value of the phase at the crossing ¢ = 5.07. In (a), the edge states
split as we increase A, while in (b) the edge states come together
as we increase «. The plots are obtained for a system with ¢ = 233,
L=1,and pu/t =1.2.

We here discretize the integral as a Riemann sum

1
C==—> Qi Ak Ak, (26)

2mi s
where Ay, and Ay, are the two discretization lengths. In order
to avoid the singularity that we mentioned in Sec. III, we
consider a discretization of the Brillouin zone that does not
explicitly contain the point k = 0. Nevertheless, the integral
in Eq. (25) is still well defined and converges to the expected
value even if the singularity is included.

We see that at the energy gap around E = 0.5¢ the 2D
Chern number takes the value 2 for any value of the decay
exponent « and of the superconducting pairing A. This does
not agree with the number of crossings within the gap, which
we extract from Figs. 10 and 11. In particular, in Fig. 10, we
study the crossing at ¢ = 5.07. We identify the edge states
in the energy spectrum of the system with OBC and study
them while changing the parameters of the Hamiltonian. We
see that the crossing splits for @ < 1 and increasing values

@ 3 0.15 () 3 L0
2 - 9 -
s 0‘105 S 05
! 0.05 !
0.2 0.4 02 04 00
At AJt

FIG. 11. (a) Energy gap between the edge states at ¢ = 5.07, and
(b) minimum of the quantum fidelity F in the region ¢ € [5, 5.1].
The plots are obtained for a system size of ¢ =233, L =1, and
u/t =0.5. They both indicate an avoided crossing of the AAH
modes for the region where o < 1.

min

of A. In Fig. 11(a), we show the energy gap AE between the
AAH edge states at the crossing point, which clearly increases
for @ < 1 and for any value of A. Accordingly, in Fig. 11(b),
the quantum fidelity min(F#) shows a minimum at zero for
short-range systems but it does not drop to zero when the
system is long-range, indicating that there is no crossing.

We can conclude that the bulk topology arising from the
AAH potential does not match the edge dynamics in the
presence of the long-range superconducting pairing, and from
this we can infer that the weakening of the bulk-boundary
correspondence extends, not only to the MDMs but also to
the AAH topology.

VI. EXPERIMENTAL REALIZATION

Before concluding we discuss shortly the experimental
feasibility of realizing the 1D long-range Kitaev model with
Aubry-André-Harper potential. Below we consider condensed
matter systems and ultracold atomic systems.

A. Condensed matter systems

Although the quest for a Majorana fermion as a fundamen-
tal particle has been illusive, there has been a lot of experi-
ments performed in solid state semiconductor/superconductor
devices [39-46,79-86] aimed at creating Majorana fermions
as quasiparticle excitations. Most of these experimental sys-
tems are 1D nanowires [39-45,81,82], which are modeled
fairly accurately by the short-range Kitaev chain. These ex-
perimental setups either consist of: (a) a semiconducting
nanowire with spin orbit coupling, placed on a conventional
s-wave superconductor which provides proximity-induced su-
perconductivity, while being subjected to a perpendicular
magnetic field; (b) a chain of magnetic adatomic impurities
(with frozen electronic motion) deposited on a supercon-
ducting surface, thus possessing local moments that induce
Yu-Shiba-Rusinov bound states [87-89] within the supercon-
ducting gap, and thereby forming an effective Kitaev chain
[79].

In case (a) under the strong coupling limit, it is theoret-
ically assumed that the magnitude of the proximity-induced
superconductivity is the same as that of the host super-
conductor. In experiments, however, the magnitude of the
induced superconductivity is actually found to be much
smaller. To take this into account, it is necessary to assume a
weak-coupling between the surface system and the host super-
conductor, where it can be shown that exponentially decaying
oscillating long-range pairing and hopping can arise in the
chain with a characteristic length scale of the order of the
coherence length of the Cooper pairs. Hence, the coherence
length is many times larger than the lattice constant, and the
long-range pairings are practically nonlocal [79].

In case (b) of a chain of magnetic impurities placed in
a conventional superconductor, each individual adatom can
create localized, individual subgap Shiba states. These states
hybridize with each other and with the bulk superconducting
condensate and, through multiple Andreev reflections, form
energy bands. This band structure resembles that of the Ki-
taev chain for a helical spin structure of the adatoms and
can be probed by scanning tunneling spectroscopy. In the
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particular case of deep-lying Shiba states, it has been shown
in Ref. [90] that the effective tight-binding Bogoliubov-de
Gennes Hamiltonian representing the Kitaev chain has hop-
pings and pairings that are long-range, with a 1/r-power-law
decay within the coherence length of the host superconductor.
Beyond this length scale, the decay is exponential.

In both cases, the semiconducting nanowire in a magnetic
field, and the nanowire-like chain of magnetic impurities are
plagued by defects, either originating from the spatial variance
of the magnetic field, or through the distribution of the im-
purities constituting the chain. This can be well modeled via
the Aubrey-Andre model, which includes the effect of spatial
inhomogeneity. Recently, it has also been proposed that an
effective Kitaev chain with long-range pairing and hopping
terms can also be formed from the combination of a solid-state
Majorana platform made out of a planar Josephson junction
in proximity to a 2D electron gas with Rashba spin-orbit
coupling placed in an external magnetic field [91].

B. Utracold atoms

We now discuss the building blocks necessary to realize
such a system in a cold-atom quantum simulator. On the
one hand, realizing a setup that generates the Aubry-Andre
modulation is possible. In fact, it has been demonstrated in
numerous experiments using super lattice techniques, pio-
neered in Refs. [92,93]. On the other hand, there has also
been some proposals to realize the Kitaev chain in cold-atomic
setups [94,95]. The main difficulty for our Hamiltonian is to
propose a cold-atomic setup that includes long-range power
law superconducting pairing with a controlled decay rate. One
possibility would be to engineer the long range pairing with
the help of an attractive long-ranged interaction. Here we
discuss three classes of cold atom setups that could lead to
such interactions:

(i) Fermionic atoms/molecules with static dipole moments.
Ultracold dipolar gases are in center of interests of the ultra-
cold atoms quantum matter community since the end of 1990s
(for reviews/books see Refs. [96-99]). Static dipoles can be
magnetic, as it happens in “magnetic atoms” like Chromium
(condensed by T. Pfau group [100]), Erbium (condensed by
F. Ferlaino’s group [101]), or Dysprossium (condensed by B.
Lev’s group [102]). Much stronger static electric dipoles can
be induced in hetero-nuclear molecules (first achieved in D.
Jin’s-J.Ye’s groups [103]). Strong dipole-dipole interactions
lead to nonstandard Hubbard models, with many ingredients
necessary for realization of the long-range Kitaev chain [104].
The progress in the field of ultracold dipolar gases, and in par-
ticular in quantum engineering of chemistry/quantum matter
with ultracold molecules is spectacular [105]. For instance,
a degenerate Fermi gas of polar molecules [106], or a dipolar
quantum gas with metastable supersolid properties [107] were
observed recently. The drawback of the static dipole-dipole
interactions is that they decay as 1/d>, that is with o = 3 the
system is not very different from the short-range chain.

(ii) Fermionic atoms/molecules with laser-induced dipole
moments. Already in 2000, Kurizki and collaborators pro-
pose to induce dipole-dipole interactions using off-resonant
laser excitation. Such interactions are subject to retardation
effects, and as such, in addition to 1/d> term, they include

1/d? and 1/d' terms. O’Dell et al. [108—110] showed that
particular configurations of intense off-resonant laser beams
can give rise to an attractive 1/d interatomic potential. Such
a “gravitational-like” interaction leads to stable Bose-Einstein
condensates that are self-bound (without an additional trap)
with very interesting properties. Light-induced dipole-dipole
interactions were intensively studied in experiments [111]
and theory [112], leading to more recent observations of
long-range one-dimensional gravitational-like interactions in
a neutral atomic cold gas [113], or light induced inverse-
square law interactions between nanoparticles [114]. The
drawback of this approach is that light induced dipole inter-
actions contain not only a conservative part, but a dissipative
part too.

(iii) Fermionic atoms/molecules with synthetic Coulomb
interactions. Finally, there is a recent proposal for analog
quantum chemistry simulation [115], allowing in particular
for synthetic Coulomb interactions between fermionic parti-
cles playing role of electrons. This proposal does not belong
to the mainstream of quantum computational chemistry [116],
which maps fermionic operators to qubits (spins 1/2) via
Jordan-Wigner transformations, and uses quantum devices
operating on qubits. Still it has generated a lot of interest and
excitement in the community, and first experiments in this
direction are on their way [117]. The challenge here would
be to find a regime with attractive interactions.

VII. METHODS

The code that has been used to obtain all the data and
figures for the paper can be found in Ref. [118].

VIII. CONCLUSIONS

In this paper, we studied in detail the bulk topology and
the edge states of the long-range Kitaev chain with an AAH
potential. In this context, we discussed several algorithms
to characterize the bulk topology, and we derived the phase
diagram of the system at half filling. We also studied the
appearance of MMs and MDMs in the system: in both short-
range and long-range systems with an AAH potential, the
appearance of MMs and MDMs requires a nonzero critical
pairing. The critical values of the pairing depend on the long-
range decay exponent «, and as such these values are very
different for the short and the long-range scenario. We also
discovered a peculiar behavior: in the long-range case with
AAH potential, MDMs exhibit true crossings at zero energy.
We found that these crossings have no effect on the winding
number. Nevertheless, we showed that they are adibatically
connected to the extended phase with MMs for > 1, and
thus have a direct relation to Majorana physics. Finally, we
studied the energy gaps at higher fillings. They are charac-
terized by a 2D Chern invariant, which can efficiently be
computed numerically. An interesting behavior appeared in
the study of the edge states: the AAH edge modes were
dramatically affected by the long-range superconducting pair-
ing, and the bulk-boundary correspondence appeared to be
weakened.

As an outlook, it would be interesting to study the
quasiperiodic limit of the system. Quasiperiodic systems are
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known to exhibit a multifractal energy spectra [119,120]
and critical, extended or localized wave functions depending
on the chemical potential amplitude [121]. The multifractal
and localization properties of the AAH model have been
extensively studied for different generalizations of the model
[64,66,121-124], but the interplay between long-range super-
conducting pairing and incommensurability has not yet been
explored. For the system under study there are still several
open questions, such as the effect of the decay exponent «
on the Anderson localization-delocalization transitions and
an investigation of the multifractal properties of the system’s
wave functions.
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APPENDIX A: CONSTRUCTION OF THE
BOGOLIBOV-DE-GENNES MOMENTUM
REPRESENTATION OF THE HAMILTONIAN

We write the Hamiltonian (1) in terms of
the real-space  Bougolibov-de-Gennes  basis x =
T

(co € c1, ¢l ooy ent ey y)
H = x'Hyy, (A1)
where
Ag B c - =B
BT A B Cn—2
Hy = : : (A2)
i 0 ¥
CN72 CN73 CN74 B
-B C), Ch, An-1,

with Aj = —uf(j)o., B = %o, — Aioy, and C, = —%io,.

1
Here, we have replaced the [ of Eq. (1) by dj = min(l, N —[)
to take into account the APBC.

From Eq. (2), we know that the system has a periodicity
of g sites, therefore we can rearrange the Hamiltonian into
three contributions: Hjyea, Which contains the terms within
each supercell of g sites, Hpop, Which contains the hoppings
between the adjacent supercells and H), which connects all
the supercells of the system through the long-range supercon-
ducting pairing

L-1
H = Z[XJHIOCZHXM + (XJHhOPXLH-l + HC)
u=0
L—1
+ ) O Hixus + H.c.>], (A3)
=1
T .
where xu = (Cqus Chyr - - -+ Cquiig—1)» C;u+(q71)) and L is the

number of supercells of the system, namely L = N/q. Each
contribution to the Hamiltonian is defined as follows:

Ao B G SR O
Bt Ay B Cy—
Higeal = T s (A4)
Il i ¥
ci, ¢, c, B
i i i
¢, ¢, c, Ay
0 0 ... 0
0 0 -.- 0
Hhop = . . . BE (AS)
B 0 --- 0
and
Ci0,0 Cio1 Cl0,9-1
Cii0 Cii1 Ciig-1
Crg20 Crgai Crg—2.4-1
Crg-10 Cig-11 Clg—1,9-1
where B’ = §o. and C;,, = —ﬁioy. For the system with
Lx,y -
APBC,

dixy=min(lg — (x —y),N — (g — (x —y))). (A7)

Moreover, we explicitly impose APBC by assuming that

Xut+L = — Xu- (A8)

In order to obtain the momentum space Hamiltonian, we need
to use the Fourier transformation of the spinor ¥,

1 .
— ezku ,
Xu «/Z Ek Xk

where x; = (ck.0, cT_k’O, s Chg—1s cT_kvq_l)T. Note that u €
{0, ..., L — 1} denotes the supercell index.
Combining Eq. (A9) with Eq. (A8), we find

1 ik(u+L) 1 ik
— E Ty = —— E e X, (A9)
VL4 VL4
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which implies that the momentum £ is defined as
_ Q@m+ D

k , Al0
2 (A10)

where m € {0, 1,2,...L —1}.

The momentum representation of the Hamiltonian takes
the form

H= Z|:X;Hlocal)(k + (eikX]thopXk + H.c.)
k

L-1
+> Myl Hix + H.c.)], (A1)
I=1
where in order to simplify the expression, we used
L1
D T = Loy, (A12)
u=0

APPENDIX B: ANTIPERIODIC BOUNDARY CONDITIONS

If we consider a system with 8 = p/q, it has a periodic-
ity of g sites. Then, the total length of the system will be
N = Lq, where L is the number of supercells. We can take
L to be a finite number or consider the system for the limit
L — oo. Either way, we can still consider different types of
boundary conditions. Usually, in order to construct the mo-
mentum space representation of the Hamiltonian, we need to
consider a system with either periodic (PBC) or antiperiodic
(APBC) boundary conditions. The long-range pairing terms
of the Hamiltonian get canceled if we impose PBC, and that
is why we consider APBC when needed in our calculations.
It is important to note that, in the infinite limit L — oo,
the boundary conditions can be neglected. Then, there is no
technical difference between considering APBC or PBC.

APPENDIX C: BLOCK-OFF DIAGONAL INFINITE
HAMILTONIAN

We transform the infinite Hamiltonian H;,¢ of Eq. (5) as
follows:
¢ = RyHineRY,

inf —

(ChH
where R, = /% ® 1,. Moreover, we perform a rotation in

order to rearrange the basis to the following form:

T
Xi = (0o Chg1s € pgronncly DT (€2)

=1.0 —0.5 0.0 0.5 1.0

FIG. 12. Energy spectrum with OBC and real-space winding
number for a system with u/t = 0.5, « = 0.5, and ¢ = 0. We see
that the real-space winding number changes sign at A = 0, while the
edge states exist at both sides of the gap closing. The plot is obtained
for a system with size of g =233 and L = 1.

We are left with

H="Y" x"Hj, xi. (€3)

k

where H, ¢ 1s block-off diagonal.

APPENDIX D: WEAK BULK-BOUNDARY
CORRESPONDENCE

Figure 12 shows the comparison between the behavior of
the edge dynamics and the bulk topology of the long-range
system. In particular, by looking at the energy spectrum for
OBC we notice that the system exhibits MDMs for any value
of A/t € [—1, 1] but A = 0, which corresponds to a gap clos-
ing, and the region around A = 0, for which we find MMs.
The existence of MMs for small values of A was already
adressed in Fig. 4. Here, instead, we are interested in com-
paring the edge dynamics with the bulk topology. If we look
at the real-space winding number for the same system, we see
that it takes a positive value +0.5 for A/t > 0 and a negative
value —0.5 for A/t < 0. This means that at A = 0 we have a
topological phase transition, but this does not affect the edge
dynamics. Therefore we clearly show how the bulk-boundary
correspondence is broken when the sign of the superconduct-
ing pairing A is changed.
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