
PHYSICAL REVIEW RESEARCH 3, 013147 (2021)

Relativistic effective action of dynamical gravitomagnetic tides for slowly rotating neutron stars
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Gravitomagnetic quasinormal modes of neutron stars are resonantly excited by tidal effects during a binary
inspiral, leading to a potentially measurable effect in the gravitational-wave signal. We take an important step
towards incorporating these effects in waveform models by developing a relativistic effective action for the
gravitomagnetic dynamics that clarifies a number of subtleties. Working in the slow-rotation limit, we first
consider the post-Newtonian approximation and explicitly derive the effective action from the equations of
motion. We demonstrate that this formulation opens a way to compute mode frequencies, yields insights into the
relevant matter variables, and elucidates the role of a shift symmetry of the fluid properties under a displacement
of the gravitomagnetic mode amplitudes. We then construct a fully relativistic action based on the symmetries
and a power counting scheme. This action involves four coupling coefficients that depend on the internal
structure of the neutron star and characterize the key matter parameters imprinted in the gravitational waves.
We show that, after fixing one of the coefficients by normalization, the other three directly involve the two
kinds of gravitomagnetic Love numbers (static and irrotational), and the mode frequencies. We discuss several
interesting features and dynamical consequences of this action, and analyze the frequency-domain response
function (the frequency-dependent ratio between the induced flux quadrupole and the external gravitomagnetic
field), and a corresponding Love operator representing the time-domain response. Our results provide the
foundation for deriving precision predictions of gravitomagnetic effects, and the nuclear physics they encode,
for gravitational-wave astronomy.
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I. INTRODUCTION

Gravitational waves from inspiraling binary neutron stars
encode unique information on the matter at supranuclear
densities in their interiors [1–6]. Understanding the proper-
ties of matter at such extreme density remains an important
frontier in subatomic physics [7,8]. Among the most inter-
esting imprints of matter on the gravitational waves during
a binary inspiral are signatures of tidal effects. Tidal ef-
fects comprise a rich set of phenomena associated with the
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excitation of the stars’ quasinormal modes. The mode exci-
tation can be either resonant or adiabatic, depending on the
rate of variations in the tidal fields due to the spacetime cur-
vature produced by the orbiting companion compared to the
characteristic mode frequency. The excitation of quasinormal
modes is most commonly considered for the ringdown sig-
nals in black-hole binaries, where the merger excites a broad
spectrum of quasinormal modes of the remnant which damp
away due to gravitational radiation. Neutron stars have a much
richer mode spectrum than black holes due to the presence
of matter. Several classes of neutron star modes have suffi-
ciently low frequencies to become individually excited during
a binary inspiral. This opens the possibility for a detailed,
spectroscopic characterization of the ground-state matter in
neutron star interiors from gravitational waves emitted during
their inspiral, provided that the modes have sufficiently large
tidal coupling strengths to lead to a noticeable effect. The
fundamental modes typically have the largest tidal couplings.
They are an example of gravitoelectric phenomena associated
with the tidal deformability, a parameter that is measurable in
the gravitational-wave signals [2,4,9]. There are also several
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other interesting classes of modes predominantly connected
with gravitoelectric tides [10].

An intriguing feature of general relativity is the emer-
gence of new types of gravitomagnetic tides, which have no
Newtonian analogs. Gravitomagnetic tides most strongly ex-
cite the magnetic (odd-parity) sector of inertial modes of a
rotating star. Inertial modes are associated with the Coriolis
effect and include the r modes [11–14], which are inertial
modes with purely magnetic parity. The r modes have re-
ceived significant attention due to their unusual properties
and the fact that they can become unstable to gravitational
radiation (see, e.g., Refs. [13,15–22]). The remaining inertial
modes have no specific name and are of mixed parity. In
the slow-rotation limit, only their magnetic parts are directly
relevant for gravitomagnetic tides. The inertial mode frequen-
cies are approximately proportional to the rotation frequency
of the star. Consequently, the gravitomagnetic inertial-mode
resonances in a binary generally lie well within the sensitive
frequency band of ground-based gravitational-wave detectors
[23–26]. This opens interesting prospects for probing prop-
erties of neutron star matter beyond the information encoded
in gravitoelectric tidal deformability or radius. However, it is
currently not possible to measure this new physics because a
relativistic modeling framework of gravitomagnetic dynami-
cal tides is not developed.

The tidal excitation of a quasinormal mode in quasicir-
cular binaries is analogous to a harmonic oscillator with a
quasiperiodic force. The effect of quadrupolar gravitomag-
netic tidal mode excitation was estimated in Refs. [18–20,22];
see Refs. [12,27,28] for studies based on the weaker cou-
pling to gravitoelectric fields. These results indicate that the
impact on the gravitational-wave phasing is large enough
to be potentially measurable with the planned future up-
grades to current detectors and third-generation facilities. The
gravitational-wave signatures from mode excitations directly
depend on key matter parameters: the Love numbers char-
acterizing how strongly the mode couples to the tidal field,
and the mode frequency. These parameters are computed from
linearized perturbations to a relativistic star in equilibrium.
The gravitomagnetic mode frequencies were obtained, e.g.,
in Refs. [10,17,29–31]. The Love numbers, however, require
taking the limit that the perturbing frequency goes to zero,
which has proved subtle, and leads to two distinct Love num-
bers. They are associated with the different assumptions of a
static or irrotational perturbed fluid. These unusual features
of the response of a neutron star to a gravitomagnetic tidal
perturbation have prompted several discussions in the litera-
ture [32–37], and were recently reexamined in the context of
a post-Newtonian star in Refs. [19–21].

The promising prospects for measuring the gravitomag-
netic modes motivate the need for modern gravitational-wave
models to include these phenomena. A crucial foundation for
developing state-of-the-art waveform models of matter effects
in binary inspirals is a relativistic effective action for the
dynamics. The Love numbers and mode frequencies imme-
diately appear in the coupling coefficients in this effective
action. In this paper, we derive a relativistic effective action
for gravitomagnetic tidal effects in the slow-rotation limit.
We develop the theory by first considering a post-Newtonian
approximation of the neutron star interior. This enables us

to identify a way to compute the mode frequencies from the
perspective of a rotation-induced shift away from its vanishing
value for nonrotating stars. It also yields important insights
into the relevant matter variables for the dynamics, and their
connection to the mode functions. Further, these studies reveal
the important role of a shift symmetry, whereby a displace-
ment of the gravitomagnetic mode amplitudes leaves the
global properties of the fluid unchanged. Ensuring that the
action respects this symmetry has direct consequences for its
formulations in the corotating and inertial frames.

Next, we develop the fully relativistic theory based on
the symmetries and a power counting scheme. We find that
within our approximations, the dominant effects are described
by four nontrivial couplings that come with coefficients that
encode the microphysics of neutron star interiors. We discuss
the matching of these coefficients to the relativistic magnetic
tidal deformabilities (Love numbers) and mode frequencies.
Notably, we show that both kinds of magnetic Love numbers,
the static and irrotational ones, appear in the action and are
thus relevant for gravitational waves. The static Love number
corresponds to the coefficient of a nonlinear field contribution,
as discussed in the post-Newtonian context in Ref. [21]. The
difference between static and irrotational Love numbers char-
acterizes the direct contribution from the magnetic modes.
To identify and match the mode frequency we calculate the
relativistic response function and discuss its features. We also
derive its limiting form in several regimes after clarifying
various subtleties, and obtain a corresponding Love operator
representing the time-domain response. Our action provides
a key foundation for accurately modeling gravitomagnetic
effects in gravitational waves and interpreting the information
on subatomic physics they encode.

The paper is organized as follows. In Sec. II we review the
treatment of dynamical gravitomagnetic tides in a first post-
Newtonian (1PN) approximation from Ref. [18]. We work to
linear order in the rotation of the star and derive an action
that encodes the excitation of magnetic modes by an exter-
nal gravitomagnetic field. We discuss the relevant degrees of
freedom and their relation to contributions from individual
modes. We also highlight the shift symmetry that occurs in the
gravitomagnetic sector and its importance for the Lagrangians
in the corotating and inertial frames. In Sec. III we construct
a fully relativistic action in the framework of effective field
theory. We briefly discuss the power counting scheme, and
further specialize to the four interaction terms that are most
important based on the post-Newtonian limit. In Sec. IV we
perform the matching of the coefficients in the effective action
to the relativistic mode frequencies and tidal deformabilities.
Section V discusses the frequency- and time-domain tidal re-
sponse and their limiting forms in different regimes. In Sec. VI
we provide a brief summary of the relativistic Lagrangian
and the coupling coefficients involved. We also discuss the
physical insights and dynamical consequences of this action.
Section VII summarizes our conclusions, and the Appendix
contains a short compilation of useful formulas.

We use geometric units with G = c = 1, with G being the
gravitational constant and c the speed of light, except in cases
where we make the post-Newtonian counting explicit as a
formal expansion in c−2. We denote spatial tensors expressed
in the corotating frame of the star by capital Latin letters
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I, J, K, . . ., and use boldface notation for three-dimensional
vectors in this frame. We use lowercase letters i, j, k, . . .

for the inertial frame. Greek letters denote four-dimensional
spacetime coordinate indices in the inertial frame, and a
calligraphic index B indicates the magnetic part of a quantity.
Our convention for the Riemann tensor is

Rμ
ναβ = �μ

νβ,α − �μ
να,β + �ρ

νβ�μ
ρα − �ρ

να�μ
ρβ, (1.1)

where �μ
νβ is the Christoffel symbol and the comma denotes

a partial derivative.

II. DYNAMICAL MAGNETIC TIDES OF ROTATING STARS

In this section, we briefly review the description of grav-
itomagnetic modes of a neutron star in the presence of an
external gravitomagnetic field from Ref. [18]. We work within
a double perturbative expansion in the post-Newtonian and
slow-rotation approximations. From the equations of motion
we develop an effective action in the corotating frame of the
neutron star. The Lagrangian formulation provides a clean,
elegantly concise description of the unusual features of the
gravitomagnetic dynamics compared to the more familiar
gravitoelectric tides. We formulate the action in terms of
symmetric-trace-free tensors of magnetic parity, which con-
veniently isolates the relevant contributions from associated
modes into effective degrees of freedom and elucidates the
underlying physics of gravitomagnetic tides. We give an ex-
plicit example demonstrating the utility of the Lagrangian
by exhibiting a way to calculate the gravitomagnetic mode
frequency. We also discuss the important role of a shift sym-
metry, whereby a displacement in the mode amplitudes leaves
the fluid properties unchanged. Requiring that the Lagrangian
respect this symmetry has an impact on its form in the inertial
frame. The insights on the matter variables and symmetries
developed in this section will be important for constructing
the relativistic theory in Sec. III.

A. Metric of a slowly rotating neutron star

We consider a (approximately) spherical neutron star of
mass M that is slowly rotating with angular velocity � and im-
mersed in an external gravitomagnetic tidal potential of 1PN
order. The post-Newtonian approximation can be understood
as a formal expansion in the squared inverse of the speed of
light c. To highlight similarities with electromagnetism, it is
convenient to write the metric for the neutron star in the iner-
tial1 frame, denoted by indices i, j, k, ..., in the form [38–40]

ds2 = − exp

[
2φ

c2

][
c dt − 1

c3
Aidxi

]2

+ exp

[
−2φ

c2

]
γi j dxidx j, (2.1)

where φ is the gravitoelectric (Newtonian) potential, Ai is
the gravitomagnetic potential, and to 1PN order γi j = δi j +

1We understand here an inertial frame in the global Newtonian
sense. The metric asymptotically approaches the Minkowski one in
the inertial frame.

O(c−4). We next make a spatial coordinate change that keeps
t unchanged from the inertial frame xi to the corotating
frame xI (denoted by capitalized indices I , J , K , ...). This
transformation is given by

x j = RI
jxI , RI

j = CJ
j exp(∗� t )I

J , (2.2)

where � is the angular velocity vector, ∗�IJ ≡ �IJ = εIJK�K

is its antisymmetric dual tensor, εIJK is the Levi-Civita sym-
bol, RI

j is a rotation matrix (RI
kRJk = δIJ ) expressed here

using a matrix exponential of ∗� t , and CI
j is a constant rota-

tion matrix identical to RI
j at t = 0. We adopt the convention

that boldface notation for spatial vectors refers to components
in the corotating frame, e.g., � = (�I ), and that spatial in-
dices are raised and lowered using the Kronecker delta. The
angular velocity can be expressed as

�I = 1
2εIJK�JK , �JK = −�KJ = ṘJ

iRKi. (2.3)

Applying this coordinate change to the line element (2.1)
is straightforward. The differentials of the coordinates are
related by

dx j = RI
j[dxI − (x × �)I dt], (2.4)

which leads to the corotating-frame 1PN line element:

ds2 = −
[

c2 + 2φ + 2φ2

c2
− 2

c2
� · (x × A)

]
dt2

+ 2

[
−x × �

(
1 − 2φ

c2

)
+ A

c2

]
· dx dt

+
[

1 − 2φ

c2

]
dx · dx + O(c−4,�2). (2.5)

We have only kept terms linear in the angular velocity, since
we are interested in slowly rotating stars. In the next section,
we use the metric in Eq. (2.5) to obtain the Euler equation for
the matter inside the slowly rotating neutron star.

B. Fluid perturbation in the corotating frame

We describe the matter inside the neutron star as a perfect
fluid with energy-momentum tensor

T μν =
(
ρ + p

c2

)
uμuν + p gμν, (2.6)

where ρ is the mass density, p is the pressure, and uμ is
the four-velocity of the fluid normalized as uμuμ = −c2. The
neutron star matter is subject to energy-momentum conser-
vation T μν

;ν = 0, where the semicolon denotes the covariant
derivative. Evaluating the energy-momentum conservation us-
ing the metric in Eq. (2.5) leads to the corotating-frame Euler
equation in Lagrangian form given by

u̇ + 2� × u + u · ∇u = −∇p

ρ
− ∇φ + ζ

c2
+ . . . . (2.7)

Here, at 1PN order (c−2) we show only the terms involving
the gravitomagnetic potential defined by

ζ=−Ȧ − � × A+(� × x) · ∇A + (u + � × x) × (∇ × A),
(2.8)

where the overdot denotes a time derivative ˙ = ∂/∂t . Recall
that we also work to linear order in the angular velocity. This
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is the reason for the absence of the centripetal force, which is
quadratic in �, from Eq. (2.7).

Next, we consider Eq. (2.7) for small linearized pertur-
bations about an equilibrium background configuration. We
denote the background quantities by a subscript zero and use
a δ in front of the perturbed quantities, as in u = u0 + δu.
Let us recapitulate the arguments in Ref. [18] that lead to
the finding that the magnetic part of the perturbation equation
for the fluid at the leading 1PN order simply reduces to the
Newtonian one augmented by a 1PN driving force from ζ.
We assume that the fluid perturbation is only generated by
an external gravitomagnetic field Aext, which is of 1PN order.
This implies that all perturbed quantities must also be of
1PN order, e.g., δu = O(c−2). The perturbed magnetic Euler
equation at 1PN order is then given by a perturbation of the
Newtonian terms and ζ, that is, it derives solely from the terms
shown in Eq. (2.7). The matter inside the perturbed neutron
star is not static, and thus there is a gravitomagnetic field
emanating from the neutron star. However, the perturbations
sourcing this field are of 1PN order and the gravitomagnetic
field equation is 1PN order, so the gravitomagnetic “response”
field of the neutron star perturbation is of 2PN order, which
we can ignore for our purposes here. On the other hand,
the fluid perturbations source a 1PN gravitoelectric field δφ.
Altogether, the 1PN harmonic-gauge perturbed field equations
are given by


δA = 0, 
δφ = 4πG δρ. (2.9)

This implies that the perturbed gravitomagnetic potential only
has contributions from sources external to the star δA = Aext.
As mentioned above, we assume that there is no external
gravitoelectric potential, φext = 0; we further comment on the
1PN gravitoelectric driving of magnetic modes in Sec. III E,
finding that it is subleading at quadrupolar level.

Having identified the relevant field contributions, and terms
at 1PN order, we now consider the perturbed fluid and
no longer exhibit powers of c explicitly. The background
fluid is at rest in the corotating frame, u0 = 0. The external
gravitomagnetic perturbation induces a Lagrangian fluid dis-
placement ξ(x, t ) in the star, such that δu = ξ̇. Calculating
the perturbations to the Euler equation (2.7) and keeping only
1PN terms up to linear order in the perturbations and in the
angular velocity leads to

ξ̈ + 2� × ξ̇ = −∇δp

ρ0
+ ∇p0

ρ2
0

δρ − ∇δφ + aext. (2.10)

The fluid acceleration induced by the external field aext = δζ

is given by

aext = − Ȧext + ∇[(� × x) · Aext]. (2.11)

We emphasize that the above results are in the corotating
frame; the analogous fluid perturbation equation in the inertial
frame can be found in Eq. (5.16) of Ref. [18].

Note that the background quantities in Eq. (2.10) refer to
the zeroth order in the double expansion of post-Newtonian
and rotational corrections: it is the equilibrium configuration
computed for a Newtonian, nonrotating star. The feature that
the background is identical to a nonrotating star at linear
order in angular velocity is due to the fact that the Coriolis

force on the background vanishes and the centripetal force
is quadratic in �. Hence the background quantities ρ0 and
p0 are spherically symmetric in our approximations. In the
following section, we obtain the Lagrangian for the perturbed
Euler equation (2.10).

Before proceeding, we highlight the following. To define
the tidal deformability or Love number one studies the re-
sponse of the star to the external field Aext that is encoded
in the induced gravitomagnetic field A. In our approximation,
this response is sourced by the fluid perturbation ξ and is
hence of 2PN order. At that order, the nonlinear terms in
the field equations lead to another source for the response
field [20,34]. Likewise, in our relativistic theory developed
in Sec. III, we recover two contributions to the response,
which can be attributed to the fluid displacement and field
nonlinearities, respectively. In the present section, however,
we only consider the effect of the external field on the 1PN
fluid displacement and focus instead on understanding the
matter variables.

C. Magnetic tidal Lagrangian for slow rotation

We assume that the fluid is characterized by a simple
temperature- and composition-independent equation of state
of the form p = p(ρ). Then the pressure perturbation is δp =
δρ d p/dρ and the forcing terms on the right-hand side of
Eq. (2.10) can be written as

−∇δp

ρ0
+ ∇p0

ρ2
0

δρ − ∇δφ = −∇
(

c2
s

δρ

ρ0
+ δφ

)
, (2.12)

where c2
s = d p/dρ is the speed of sound. We also use that

δρ = −∇ · (ρ0ξ), which follows from perturbing the Newto-
nian continuity equation ρ̇ = −∇ · (ρu), and a solution for δφ

from its field equation (2.9). Inserting the relation (2.12) into
the equations of motion (2.10) yields

ξ̈ + 2� × ξ̇ = −Dξ + aext, (2.13)

where the linear operator D is defined as

Dξ = −∇
{[

c2
s

ρ0
+ 4πG
−1

]
∇ · (ρ0ξ)

}
. (2.14)

Note that D is the differential operator describing perturba-
tions of a nonrotating Newtonian star, and effects of rotation
are included explicitly as the Coriolis term on the left-hand
side of Eq. (2.13). The operator D is Hermitian under the
product 〈ξ, ξ′〉 = ∫

d3xρ0 ξ∗ · ξ′ [41]. Hence, its eigenvectors
ξn�m—the normal modes—form an orthonormal basis with

〈ξn�m, ξn′�′m′ 〉 = δnn′δ��′δmm′ . (2.15)

Their eigenvalues ω̄2
n� are real:

Dξn�m = ω̄2
n�ξn�m. (2.16)

We can decompose a generic fluid displacement ξ into this
basis as

ξ =
∑
n�m

qn�m(t )ξn�m(x), qn�m = 〈ξn�m, ξ〉, (2.17)

with time-dependent amplitudes qn�m(t ). The fact that the
fluid displacement is real, ξ = ξ∗, implies that q∗

n�m =
(−1)mqn�−m due to the analogous relation for the spherical
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harmonics, which arise because in the corotating frame and
to linear order in the rotation the modes are the same as
for a nonrotating star and can be decomposed into vector
spherical harmonics. In general, three types of vector har-
monics contribute to the modes, each with different parity:
the parity-even electric and radial harmonics, and the parity-
odd magnetic-type ones [42]. For the gravitomagnetic tidal
dynamics considered here, only the magnetic-type (B) con-
tributions ξB = ∑

qB
n�mξBn�m are relevant, and we henceforth

drop the other contributions. The magnetic modes ξBn�m have
the general decomposition into a radial dependence ξB

n�(r) and
the magnetic vector spherical harmonic YB

�m(θ, ϕ) depending
on the polar and azimuthal angles (θ , ϕ) (see the Appendix):

ξBn�m = ξB
n�(r)YB

�m(θ, ϕ). (2.18)

The normalization of the real radial mode function ξB
n� follows

from Eqs. (2.15) and (A9),∫
dr ρ0r2ξB

n�(r)ξB
n′�(r) = δnn′ , (2.19)

and is accompanied by a completeness relation:∑
n

ξB
n�(r)ξB

n�(r′) = δ(r − r′)
ρ0r2

. (2.20)

Note that at linear order in spin (and for the perfect fluid used
here), the radial functions ξB

n�(r) are rather degenerate [11]
and we can pick them to be any complete basis of functions
labeled by n.

An important property of the magnetic modes that di-
rectly follows from the definition of the vector spherical
harmonic (A7) is that ∇·(ρ0ξ

B ) = 0 and DξBn�m = 0. Equa-
tion (2.16) then tells us that the magnetic modes of the
nonrotating star all have zero frequency:

ω̄B
n� = 0. (2.21)

As a result, the equations of motion (2.13) simplify to

ξ̈
B + 2� × ξ̇

B = aext. (2.22)

The Lagrangian for these equations of motion (2.22) is

LB
DT = 1

2
〈ξ̇B, ξ̇

B〉 − 〈ξB,� × ξ̇
B〉 + 〈aext, ξ

B〉. (2.23)

Note that, if φext was nonzero, the magnetic modes do
not couple to the gravitoelectric potential at Newtonian or-
der, 〈∇φext, ξ

B〉 = 0. Indeed, using the definition of the inner
product, the coefficient 〈∇φext, ξ

B〉 is given by∫
d3xρ0 ∇φext · ξB = −

∫
d3x φext∇ · (ρ0ξ

B ) = 0, (2.24)

where we dropped a surface term since ξB = 0 on the surface
of the star and used that ∇ · (ρ0ξ

B ) = 0. We further discuss
the coupling to the gravitoelectric potential beyond Newto-
nian order in Sec. III E.

In the next section, we discuss an interesting application of
this Lagrangian that illustrates the utility of our formalism to
calculate the gravitomagnetic mode frequency for the slowly
rotating neutron star.

D. Gravitomagnetic mode frequency

The operator D associated with the nonrotating star has
eigenvalues (ω̄B

n�)2 = 0. However, the Coriolis term will give
rise to nonzero eigenvalues which correspond to the grav-
itomagnetic mode frequency. The calculation of the mode
frequency does not require the external gravitomagnetic force
term; it is sufficient to consider the free oscillations described
by the Lagrangian from Eq. (2.23):

LB
DT,free = 1

2 〈ξ̇B, ξ̇
B〉 − 〈ξB,� × ξ̇

B〉. (2.25)

Using the decomposition into mode amplitudes (2.17) and
aligning the angular momentum as � = (0, 0,�), the terms
in the Lagrangian simplify as follows:

1

2
〈ξ̇B, ξ̇

B〉 =
∑
n�m

1

2
q̇B∗

n�m(t )q̇B
n�m(t ), (2.26a)

−〈ξB,� × ξ̇
B〉 =

∑
n�m

qB∗
n�m(t )q̇B

n�m(t )
im�

�(� + 1)
. (2.26b)

To arrive at these expressions, we made use of Eqs. (2.19),
(A9), (A10), and (A3). We insert the results (2.26) into the
free Lagrangian (2.25) and obtain the free equations of motion
for the mode amplitudes qB

n�m(t ):

q̈B
n�m = 2im�

�(� + 1)
q̇B

n�m. (2.27)

To determine the mode frequency, we make the ansatz
qn�m(t ) = Ce−iωB

�mt . We choose the minus sign in the exponent
so that the modes with positive m have negative frequencies
(see below), which matches the usual conventions for mode
expansions in the presence of an external tidal driving ≈ e−imφ

[Eq. (2.27)], and find that it is a solution for frequencies
ωB

�m—the mode frequencies—given by

ωB
�m = − 2m�

�(� + 1)
. (2.28)

Our calculation makes explicit that the effect of rotation is to
shift the mode frequency away from its nonspinning value of
ω̄B

n� = 0 to the finite value given in Eq. (2.28). We recall that
these gravitomagnetic mode frequencies are expressed in the
corotating frame.

An important point to note is that the force-free equa-
tions (2.27) have an additional solution with ωB

�m = 0, which
describes a constant mode amplitude. This zero mode is as-
sociated with the trivial displacements analyzed in Ref. [43]
(see also Ref. [18]). That is, constant displacements in the
gravitomagnetic modes corresponding to the transformation

qB
n�m → qB

n�m + constn�m (2.29)

leave the macroscopic properties of the fluid (density, pres-
sure, velocity) unchanged and hence must be physically
inconsequential.

E. Lagrangian in the symmetric-trace-free basis

Next, we transform from the description in terms of (�, m)
modes to an equivalent one in terms of symmetric-trace-free
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tensors. This is advantageous for making the connection to the
relativistic effective action in the next section.

We start by decomposing the Lagrangian (2.23) into the
normal modes, using that

〈ξ̇B, ξ̇
B〉 =

∑
n�m′m

q̇B∗
n�m′ q̇B

n�mN2
� Y∗�m′

S1...S�
Y�m

S1...S�
, (2.30a)

〈ξB,� × ξ̇
B〉 =

∑
n�m′m

1

� + 1
qB∗

n�m′ q̇B
n�m�AB

× N2
� Y∗�m′

AS1...S�−1
Y�m

BS1...S�−1
, (2.30b)

where N� = √
4π�!/(2� + 1)!!, and we have used the identi-

ties in Eqs. (A9) and (A10) together with the normalization
in Eq. (2.19). The symmetric-trace-free tensors Y lm

s1s2...sl
are

explained in the Appendix.
We next evaluate the coupling to the external field from

〈aext, ξ
B〉 and Eq. (2.11). For this purpose, it is useful to

expand the external fields in a Taylor series in x around the
center at x = 0. The first (� = 0) and second (� = 1) term
in this expansion can be ignored, since they cannot have
a physical effect in a local free-falling frame due to the
equivalence principle. Hence from now on we specialize to
the quadrupole case (� = 2) giving the leading-order driving
force, i.e., it contributes the largest effect in a binary. Recalling
that ∇ · (ρ0ξ

B ) = 0, we see that the second term in Eq. (2.11)
does not contribute, since one can partially integrate the gradi-
ent under the integral, as in Eq. (2.24). The only contribution
then comes from the magnetic-spherical-harmonic (YB

2m) part
of Aext, so we write its Taylor expansion in x as (different by
a conventional sign from Ref. [18])

Aext
I = −

∑
m

√
2

3
N2Bm(t )r2Y B I

2m (θ, ϕ) + . . . (2.31)

= −2

3
εIJKBKL(t )xJxL + . . . , (2.32)

where we used the definition of the magnetic vector spherical
harmonic in the form of Eq. (A8) and we encoded the external
quadrupolar gravitomagnetic field in a symmetric-trace-free
tensor BKL(t ) = N2

∑
m Y2m

KLBm(t ). Note that the vacuum field
equations 
Aext = 0 are satisfied. Now we straightforwardly
obtain (for � = 2)

〈aext, ξ
B〉 =

∑
nm

√
2

3
N2

2 InqB
n2mY2m

IJ ḂIJ , (2.33)

using Bm = N2Y∗2m
IJ BIJ and Eqs. (A9) and (A2), and where

we defined the gravitomagnetic overlap integral as [18]

In =
∫

dr ρ0r4ξB
n2. (2.34)

The quadrupolar mode amplitudes can be written in terms
of symmetric-trace-free tensors as

QIJ
Bn(t ) =

∑
m

√
2

3
2N2

2 InY2m
IJ qB

n2m(t ), (2.35)

where the prefactor is chosen to simplify the coupling term
with the external field. With this definition, and after dropping

total time derivatives, the Lagrangian becomes

LB
DT =

∑
n

3

16N2
2 I2

n

(
Q̇IJ

BnQ̇IJ
Bn − 2

3
�JK Q̇IJ

BnQKI
Bn

)

− 1

2
BIJ

∑
n

Q̇IJ
Bn. (2.36)

F. Effective Lagrangian

As we are mainly interested in the bulk interaction of the
star with the gravitomagnetic field rather than the dynamics of
individual modes QIJ

Bn with different radial profiles (but iden-
tical mode frequencies), it is convenient to define an effective
internal degree of freedom as

QIJ
B =

∑
n

QIJ
Bn. (2.37)

Its equation of motion follows from those for the individual
modes QIJ

Bn and is given by

Q̈IJ
B + 2

3�K (I Q̇J )K
B = 4

3 N2
2 I2

BḂIJ , (2.38)

where

I2
B ≡

∑
n

I2
n =

∫
dr ρ0r6. (2.39)

In the last step we used the completeness relation of the
modes (2.20) together with the definition of the In. This new
overlap integral IB only depends on the background density
ρ0; compare also to Eq. (6.13) in Ref. [34]. It is directly re-
lated to the post-Newtonian magnetic tidal deformabilities [cf.
Eq. (6.20) in Ref. [34]]. We elucidate the concrete connection
to the Love numbers in the relativistic case in Sec. IV below.

We can write the Lagrangian for the effective gravitomag-
netic degrees of freedom as

LB
DT = CB

Q̇2 Q̇IJ
B Q̇IJ

B + CB
�QQ̇�JK Q̇IJ

B QKI
B − 1

2
BIJ Q̇IJ

B . (2.40)

Note that this action is not identical to Eq. (2.36) yet de-
scribes a physically equivalent interaction of the star with
the gravitomagnetic field. Here, we have kept the coefficients
of the interaction terms as general constants, as will become
important for the relativistic extension discussed in the next
section. For a neutron star approximated to 1PN order they
take the values (N2

2 = 8π/15)

CB
Q̇2 = 3

16N2
2 I2

B
= 45

128π I2
B

, CB
�QQ̇ = −2

3
CB

Q̇2 . (2.41)

Furthermore, since �IJ = const for an isolated star, the action
(2.40) exhibits a shift symmetry

QIJ
B → QIJ

B + constIJ , (2.42)

as expected from the symmetry of the fluid under trivial
displacements (2.29) of the gravitomagnetic mode ampli-
tudes [43].

The Lagrangian in Eq. (2.40) is expressed in the corotating
frame. The transformation to the inertial frame is accom-
plished similarly as discussed for the metric in the beginning
of Sec. II, e.g., QIJ

B = RI
iRJ

jQi j
B. This implies that the time
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derivatives transform as

Q̇IJ
B = RI

iRJ
j
(
Q̇i j

B − 2�k(iQ j)k
B

)︸ ︷︷ ︸
≡ Q′i j

B

, (2.43)

where �i j = RI
iṘI j . In order to maintain the shift symme-

try (2.42), we express the inertial-frame action using the
quantity Q′i j

B which is invariant under the symmetry. The
action then becomes

LB
DT = CB

Q̇2 Q′i j
B Q′i j

B + CB
�QQ̇� jkQ′i j

B Qki
B − 1

2Bi jQ
′i j
B . (2.44)

The insights about the relevant effective degrees of freedom
and the role of the shift symmetry will be important inputs for
constructing the relativistic effective action, as we discuss in
the next section.

III. Relativistic effective action

In this section, we go beyond the 1PN corotating-frame
Lagrangian for the magnetic modes by developing a fully
relativistic action along a world line. We follow an effective-
field-theory approach [44–49], and construct an ansatz for
such an action from symmetries, keeping interaction terms
only up to a certain order (accuracy) in some power counting,
e.g, the multipole counting. The coefficients of the resulting
terms in this action depend on the internal structure of the
star and are fixed through a matching calculation that we will
discuss in Sec. IV below. Similar effective-field-theory treat-
ments of dynamical tides and tidal absorption can be found in
Refs. [50,51], of spin can be found in Refs. [52–54], and of
spin tides can be found in Refs. [55,56]. Recently, effective-
field-theory calculations of tidal effects in scattering events
have also come into focus [57,58] (see also Ref. [59], and
Refs. [60–63] for analogous work based on massive quantum
fields or scattering amplitudes).

We consider here a world line zμ(τ ) as a macroscopic,
coarse-grained, effective description for a compact star. We
write the action as an integral of a Lagrangian L over the
proper time τ here:

S =
∫

dτ L. (3.1)

The simplest example of the Lagrangian is L = m0 = const,
which describes a point mass and neglects tides and spin. The
oscillation modes of the star are represented by dynamical
variables that evolve along the world line. We start with an
analysis of the symmetries of the problem, and demand that
the building blocks of the action transform irreducibly under
the symmetries.

Equipped with such a relativistic effective action, it is
straightforward to calculate the orbital dynamics and gravita-
tional radiation [44–49] (see Ref. [64] for a publicly available
code and Refs. [65–69] for applications to tidal effects). The
development of a relativistic effective action for gravitomag-
netic tides is hence a crucial step towards more realistic
waveform models for neutron stars.

A. Spherical symmetry and dynamical variables

The most important symmetry assumption is the spher-
ical symmetry of the nonrotating star in equilibrium. This
symmetry means that tidal degrees of freedom, or any other
quantity from which we build the action, can be arranged
into three-dimensional symmetric-trace-free tensors, which
transform irreducibly under rotations [the SO(3) group]. For
generic spinning stars, the spherical symmetry is broken and
only an axial symmetry remains. However, since we treat
the spin perturbatively we can still base our description on
the rotation symmetry and the symmetric-trace-free tensor
representation of the nonrotating case, as in the previous
section. Following the effective action approach for electric
tides [51], we consider a dynamical variable Qμν (τ ) along
the world line representing quadrupolar (� = 2) oscillation
modes. This quantity should be symmetric, Q[μν] = 0, and
trace free, Qμ

μ = 0, and should have physical components in
the rest frame only, QμνUν = 0. The rest frame is aligned with
the tangent to the world line, i.e., the normalized four-velocity
U μ = żμ with UμU μ = −1, and in this section an overdot
denotes a derivative with respect to proper time ˙ = d/dτ . We
thus have a description of the mode in the coordinate frame
with indices μ, ν . . . running through 0, 1, 2, 3.

It is convenient to express the action manifestly in terms of
only the physical components of all quantities. To achieve this,
we introduce a corotating (body-fixed) frame �I

μ with labels
I, J, · · · = 1, 2, 3 and assume orthonormality, �I

μ�Jμ = δIJ .
The temporal part �0

μ is aligned with the rest frame:

�0
μ = U μ, or �I

μUμ = 0. (3.2)

Hence �I
μ contains three independent angular degrees of

freedom, as expected. The three independent components of
the angular velocity are

�I = 1
2εIJK�JK (3.3)

with

�JK = −�KJ = D�J
μ

dτ
�Kμ, (3.4)

and D is the covariant differential (see also Refs. [56,70]).
This is a covariant generalization of the Newtonian angu-
lar velocity (2.3). Now, the independent components of the
dynamical quadrupole are given by a symmetric-trace-free
three-tensor in the corotating frame:

QIJ = �I
μ�J

νQμν, Q[IJ] = 0 = QI
I . (3.5)

Other internal or tidal degrees of freedom can likewise be
expressed as symmetric-trace-free tensors in the corotating
frame, such as an (� = 3) octupole QIJK and higher multipoles
QIJK .... In this section we omit the label n for enumerating
different (families of) modes for simplicity.

B. Coordinate invariance and external fields

Another important symmetry of the action is general coor-
dinate invariance, which requires that external fields coupling
to the world line must be tensors on spacetime. However,
in our setup, the external fields such as the curvature tensor
entering the action must also be expressed in the corotating
frame, followed by a decomposition into symmetric-trace-free
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parts. The curvature tensor Rμναβ can be decomposed into the
Weyl tensor Cμναβ and the Ricci tensor Rμν . The latter can
be removed from the world line action through redefinitions
of the metric [44,50], which essentially corresponds to using
the vacuum field equations Rμν = 0. Furthermore, the Weyl
tensor can be decomposed into symmetric-trace-free electric
EIJ and magnetic BIJ parts as

EIJ = CI0J0 = �I
μ�0

α�J
ν�0

βCμανβ, (3.6)

BIJ = ∗CI0J0 = �I
μ�0

α�J
ν�0

β ∗Cμανβ, (3.7)

with the dual ∗Cμναβ = 1/2ημνρσCρσ
αβ and the volume form

ημνρσ . Notice that εIJK = η0IJK = �0
μ�I

ν�J
ρ�K

σ ημνρσ .
Derivatives of the Weyl curvature can be decomposed into the
tensors (for s � 2)

EK1...Ks =�0
α�0

β�(K1
μ1 . . . �Ks )

μs∇μ3...μsCμ1αμ2β, (3.8)

BK1...Ks =�0
α�0

β�(K1
μ1 . . . �Ks )

μs∇μ3...μs ∗Cμ1αμ2β. (3.9)

Other components can be written as time derivatives via
�0

μ∇μ ≡ D/dτ (see Ref. [54] for more details). We indicate
the parity of the modes by a subscript: QIJK ...

E are even-parity
(electric) and QIJK ...

B are odd-parity (magnetic) modes.

C. Final set of building blocks for the action

Based on the considerations above, the tensors entering the
effective action are

εIJK , �I , QIJ...
E , QIJ...

B , EIJ..., BIJ..., (3.10)

together with their τ derivatives, and the tensors δIJ and δIJ .
Recall that U I = �IμUμ = 0, which implies that the four-
velocity cannot appear explicitly in the action. All of these
building blocks for the action are conveniently written in the
corotating frame.

D. Symmetry restrictions on the possible couplings

Overall, we require the following symmetries from the
effective world line action (see also Ref. [54]).

(1) First, we require general coordinate invariance, re-
quired by general relativity.

(2) Second, we require SO(3) symmetry of internal degrees
of freedom due to the spherical symmetry of the body in the
nonrotating limit. We already discussed one of the implica-
tions of this symmetry in the context of the building blocks of
the action above.

(3) Third, we require an “external” SO(3) symmetry of the
corotating frame describing the orientation of the body.2 In the
case considered here, this SO(3) symmetry appears together
with the internal SO(3) symmetry 2 as one, which is very
economic.

2A point-particle is characterized by an irreducible representation
of the Poincaré group. The external SO(3) symmetry is the so-called
little group of that representation and is associated to the spin (see
also Ref. [56]).

(4) Fourth, we require spacetime parity invariance. In prin-
ciple, weak interactions could violate this symmetry; however,
they play a subdominant role for the structure of a neutron star.

(5) Fifth, we require time-reversal invariance. This would
be broken by dissipative effects such as tidal heating or fluid
viscosity, which we neglect here.3

(6) Sixth, we require shift symmetry of the gravitomagnetic
dynamical tidal variables:

QIJ...
B → QIJ...

B + constIJ..., (3.11)

which is related to macroscopically unobservable fluid dis-
placements [43], as explained in the previous section around
Eq. (2.29). This realization (3.11) of the symmetry was only
demonstrated for �IJ = const and might need to be amended
in a more general setting.

The consequences of the above symmetries on the terms
in the action are the following. The first three symmetries
imply that interactions must be composed of scalar contrac-
tions between the tensors in Eq. (3.10) and their τ derivatives.
Symmetry 4 requires interactions to contain an even number
of odd-parity variables {εIJK ,�I , QIJ...

B , BIJ...}. Symmetry 5
requires an even number of variables that are odd under time
reversal, which comprises �I and BIJ..., plus a number of
extra τ derivatives. Finally, symmetry 6 requires that terms
in the action either depend on QIJ...

B only via Q̇IJ...
B or are of

the form QIJ...
B times a total τ derivative. It is interesting to

note that the terms that are not allowed by these symmetry
requirements exactly match to what one would call selection
rules, in analogy to atomic physics, for the overlap integrals
appearing in Sec. II.

We note that in contrast to Ref. [54], here, we assume time-
reversal invariance and spell out parity invariance explicitly.
Furthermore, we find it more convenient here to not include
world line reparametrization and spin-gauge invariance from
the beginning. Those symmetries are important for calculating
the post-Newtonian binary dynamics and can readily be intro-
duced at a later stage by changing the evolution parameter
from proper time τ to a generic affine parameter and perform-
ing a boost of the corotating frame, as explained in Sec. 3.2 of
Ref. [54]. For the purpose of post-Newtonian calculations, it
is also convenient to promote the spin (conjugate to �I ) to an
additional dynamical variable via a Legendre transformation.
The spin variable then absorbs the derivative coupling to the
metric contained in �I . This leads to considerable simplifica-
tions but will not be needed here.

E. Power counting

The next step in constructing an effective action is to in-
clude all interaction terms allowed by the symmetries listed
above and up to a certain order in some power counting in
a ratio of scales. Here, two distinct types of scale ratios are
relevant.

(1) For spatial scales we use the multipole counting in the
ratio of the object’s size and the radius of curvature of the
external fields.

3An action-based treatment of dissipative tidal effects requires a
more general approach (see Refs. [55,56,70–74]). In this paper, we
consider only conservative effects at the body scale.
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(2) For the time scales, we consider powers of the ratio
of the various internal relaxation times and variations of the
external tidal field.

In the case where the external field is sourced by the
companion in a binary system, ratio 1 involves the orbital
separation and ratio 2 involves multiples of the orbital pe-
riod. These power countings must in general be treated as
independent, e.g., for eccentric orbits. We do not introduce
an a priori cutoff in a ratio of time scales, i.e., we allow
for an arbitrary number of time derivatives. However, we are
interested here in the leading (quadrupolar) gravitomagnetic
interaction, so we work to quadratic order in the odd-parity
quadrupolar variables QIJ

B , BIJ .
We note that a driving of magnetic modes by a quadrupo-

lar gravitoelectric field is possible via couplings such as
EIJ�K Q̇IJK

B and EIJ�
I Q̇J

B, and similar couplings between
electric and magnetic modes. At 1PN order, these derive from
a term of the form � × x φ̇ in the Euler equation (2.7). How-
ever, these couplings are suppressed by the angular velocity
(flux dipole), making them effectively higher than quadrupo-
lar order. Likewise, the octupolar electric driving for the
quadrupolar magnetic modes from the coupling EIJK�K Q̇IJ

B
is of higher order in the multipole counting.

Furthermore, we consider the angular velocity (spin) and
its associated time (length) scale as an independent parameter
and work to linear order in the angular velocity in the tidal
interactions. Finally, variable redefinitions can in general be
used to remove some interaction terms from the action. In par-
ticular higher-order time derivatives of the dynamical degrees
of freedom on the world line can be removed in this way [75].
In the present case, this means that we can disregard ˙̇Q̇IJ

B or
�̇IJ or even higher time derivatives from the ansatz.

F. Relativistic action in the corotating frame

We now have all the inputs for deriving the relativistic
tidal Lagrangian following the procedure outlined above. The
complete Lagrangian consists of a nontidal and a magnetic
tidal part:

L = LNT + LB
DT. (3.12)

The nontidal part contains terms such as

LNT = −m0 + C�2�I�I + CE�2 EIJ�
I�J + . . . , (3.13)

where C�2 is related to the moment of inertia and CE�2

is related to the spin-induced quadrupole moment of the
star [76–78].

Following the symmetries listed above and assuming a
single type of quadrupolar gravitomagnetic modes QIJ

B , we ob-
tain the following relativistic effective action in the corotating
frame for dynamical magnetic tides to quadratic order in the
tidal variables and linear order in the angular velocity of the
star:

LB
DT ≈CB

Q̇2 Q̇IJ
B Q̇IJ

B + CB
�QQ̇�JK Q̇IJ

B QKI
B − 1

2
BIJQ̇IJ

B

+ BIJ

∞∑
k=0

[
CBB(2k)∂2k

τ BIJ + CBB(2k+1)��KI∂2k+1
τ BJK

]
,

(3.14)

where ∂τ = d/dτ . We choose the convention for the nor-
malization of QIJ

B such that the coefficient in front of the
third term is − 1

2 , as in the 1PN case. Higher τ derivatives
on �IJ and QIJ

B can be removed by variable redefinitions
in the action. The second term here is invariant under the
shift symmetry (3.11) since �̇IJ ≈ 0 + O(E , B).4 We note
that BIJ ≈ Aext

K,L(IεJ )LK/2 ≈ BIJ to 1PN order for a star at rest.
This can be checked by calculating the curvature tensor from
the inertial-frame metric (2.1) and using its transformation
property under coordinate changes to arrive at the corotating
frame via Eq. (2.2).

The equations of motion for the mode amplitudes read

CB
Q̇2 Q̈IJ

B − CB
�QQ̇�K (I Q̇J )K

B = 1
4 ḂIJ . (3.15)

The source of the gravitational field equations, the energy
momentum tensor, follows from a variation with respect to
the metric. This source can be decomposed into mass and
flux multipoles, with the order corresponding to the number of
spatial derivatives acting on the metric in the action. Indeed,
the star’s current or flux quadrupole J IJ in the corotating
frame can be identified directly from the action [66]: it is the
quantity that couples to BIJ as 2/3BIJJ IJ , and is given by

J IJ ≡ 3

2

δL

δBIJ
≈ −3

4
Q̇IJ

B + 3
∞∑

k=0

[
CBB(2k)∂2k

τ BIJ

+ CBB(2k+1)��K (I∂
2k+1
τ BJ )K

]
. (3.16)

The flux quadrupole is the source term for the gravitomagnetic
response field of the star. The first contribution in Eq. (3.16)
is due to the odd-parity fluid perturbation described by QIJ

B .
In the absence of any additional fluid modes besides QIJ

B , as
we assume here, the remaining terms in Eq. (3.16) may be in-
terpreted as a nonlinear field contribution. This interpretation
is in agreement with the post-Newtonian analysis in Ref. [34]
and in the last section.

In the post-Newtonian approximation, e.g., for a bound
binary system, each time derivative on BIJ leads to a further
suppression of the term. At leading order, we may therefore
neglect all but the term without τ derivatives in the second line
of Eq. (3.14). By contrast, terms with time derivatives on QIJ

B
must be kept, since the fluid modes can be resonantly excited.
This yields the simplified action

LB
DT ≈CB

Q̇2 Q̇IJ
B Q̇IJ

B + CB
�QQ̇�JK Q̇IJ

B QKI
B

− 1
2 BIJQ̇IJ

B + CB2 BIJBIJ , (3.17)

with CB2 ≡ CBB(0) . The equations of motion (3.15) are not
affected by this additional approximation.

4Strictly speaking, the shift symmetry has to hold without using
equations of motion. However, since one can shift the dynamical
variables to remove time derivatives like �̇, one way to fix this is to
amend the transformation rule (3.11). We leave such a more rigorous
treatment for the case �̇ �= 0 for future work.
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G. Relativistic action in the coordinate frame

It is straightforward to rewrite the action in the coordinate
frame using the transformation matrices �I

μ:

LB
DT ≈CB

Q̇2 Q′μν

B Q′B
μν + CB

�QQ̇�νρQ′μν

B Qρ

Bμ

− 1
2 BμνQ′μν

B + CB2 BμνBμν, (3.18)

where �μν = �I
μD�Iν/dτ . We have defined the quantity

Q′μν

B = DQμν

B
dτ

+ 2�(μ
ρQν)ρ

B , (3.19)

which is invariant under the shift symmetry (3.11). We note
that even though we work to O(�), the dependence on the
angular velocity in Eq. (3.19) should not be expanded out, to
ensure that the zero mode is preserved. Also, since �I

μUμ =
0, the variables in the coordinate-frame action are subject to
constraints (or supplementary conditions):

�μνUν = 0, Qμν

B Uν = 0. (3.20)

From this effective action (3.18), one can follow
Refs. [51,54,64] to work out the post-Newtonian description
of a binary system by performing a Legendre transform
in �μν and Q̇μν

B , introducing world line reparametrization
and spin-gauge invariance, implementing a gauge fixing,
deriving the Feynman rules, and calculating observables. It is
important that the post-Newtonian approximation is applied
only at the scale of the binary. That is, the neutron star interior
is treated in full general relativity and its internal structure is
encoded in the coefficients of the effective action.

The post-Newtonian predictions for observables depend on
the coefficients in the action (3.18). The next important step
is thus to match them for a given fully relativistic neutron star
model. Before doing so, it is illustrative to compare Eq. (3.18)
to the corresponding Lagrangian for dynamical, electric fun-
damental ( f ) modes for a nonrotating star given by [51]

LE
DT ≈ 1

4λω2
f

[
DQμν

E
dτ

DQE
μν

dτ
− ω2

f Qμν

E QE
μν

]
− 1

2
EμνQμν

E ,

(3.21)

where ω f is the f -mode frequency and λ is the electric
quadrupolar Love number (tidal deformability). The differ-
ences to the magnetic action (3.18) are due to the different
parity and time-reversal properties of the magnetic variables
and the shift symmetry (3.11). In particular, the latter im-
plies the absence of a Q2

B term, meaning that the magnetic
modes have zero frequency in the nonrotating case. As a
consequence, the adiabatic limit of the magnetic action is not
immediately obvious, in particular when the nonrotating limit
is taken at the same time (see also Ref. [20]). In fact, as we
show below, in the nonrotating adiabatic case the coefficients
in the action are connected to both the irrotational and static
versions of the Love numbers. Another difference to the grav-
itomagnetic case is that possible EμνEμν terms in Eq. (3.21)
are approximately negligible for the description of dynamical
f modes [51,79].

IV. MATCHING THE COEFFICIENTS

The relativistic effective action (3.17) for dynamical gravit-
omagnetic tides has an immediate connection to gravitational-
wave observables. The action can be directly used in a
post-Newtonian approximate calculation of the binary dynam-
ics as in Refs. [65–69] or included in the effective one-body
model [51,80] to predict the effect of these tidal interactions
on the gravitational waves from a binary inspiral. This pre-
diction generally depends on the coefficients in the effective
action. Hence the constants C... can be measured or con-
strained with gravitational-wave observations.

In order to link measurements to the nuclear physics of
neutron stars, it is essential to theoretically calculate the co-
efficients in the action for relativistic neutron star models. In
this section, we use matching arguments to relate the constants
C... in Eq. (3.17) to the quadrupolar relativistic magnetic mode
frequencies ωB

2m and the tidal deformabilities (Love numbers)
σirr and σstat. Two distinct magnetic Love numbers have been
defined in the literature for nonrotating neutron stars: negative
irrotational ones σirr < 0 [32] and positive static ones σstatic >

0 [33], which differ by the boundary conditions imposed in
the fluid. These can be computed numerically from linear per-
turbations of neutron stars, for ωB

2m (see Refs. [17,29–31,81])
and for σ... (see Refs. [32–35,37]).

Note that the matching of tidal coefficients is inherently
difficult and the definition of Love numbers may even be
considered ambiguous [82]. However, those ambiguities are
expected to be comparable to rather small effects at sixth
post-Newtonian (6PN) order for magnetic tides [fifth post-
Newtonian (5PN) order for electric tides]. For the black-hole
case, it is crucial to understand these subtleties since tidal
effects, if nonzero, would be very small. Here, for neutron
stars described by a perfect fluid equation of state, we can
take a more heuristic approach to the matching as explained
below. But when accounting for more realistic physics such as
different classes of magnetic modes, more terms in the effec-
tive action become relevant and it is important to work out a
more general and rigorous approach to the matching. This can
be accomplished by matching the tidal parameters defined by
coefficients in the effective action based on observables such
as the binding energy, redshift, or scattering angle. We leave
this for future work.

Finally, we note that quasiuniversal relations, i.e., relations
that are approximately independent of the nuclear equation
of state, were studied for the magnetic Love numbers for
neutron stars in Ref. [83]. The result was that these relations
hold only to approximately 5% (10%) for irrotational (static)
Love numbers; for irrotational Love numbers this was also
found in recent follow-up work in Refs. [84–86]. This should
be compared to the nearly sub-percent-level universality for
the electric-type Love numbers [87], and opens interesting
prospects for learning new information about the equation of
state.

A. Matching the static Love number

We start by considering the case of no rotation �I = 0
and a static fluid Q̇IJ

B = 0, and identify which coefficients can
be fixed. The condition Q̇IJ

B = 0 corresponds to a vanishing
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fluid velocity perturbation, which is the boundary condition
leading to the static Love number σstat [34]. Furthermore, the
Love numbers are defined in the adiabatic limit, meaning that
one also neglects time derivatives of BIJ . In this case, the flux
quadrupole (3.16) and the action (3.14) reduce to

J IJ
stat ≈ 3CB2 BIJ , LB

stat ≈ CB2 BIJBIJ . (4.1)

In general, the magnetic quadrupolar Love numbers σ ≡ σ2

can be defined either as the proportionality constant between
the magnetic tidal field BIJ and the flux quadrupole moment
SIJ or as a coefficient in the adiabatic tidal action:

J IJ = 2σBIJ , or LB
ad = 2σ

3
BμνBμν. (4.2)

This definition holds for both the irrotational σirr and static
σstat Love numbers. Since we consider a static fluid in this
subsection, we identify σ with the static Love number σstat

here. Comparing either definition in Eq. (4.2) with the above
relations, we can match CB2 as

CB2 = 2
3σstat. (4.3)

B. Matching the irrotational Love number

The irrotational Love number σirr for a nonrotating fluid
�I = 0 can be obtained by keeping the time/frequency de-
pendence general, here in particular of QIJ

B , and taking the
adiabatic limit after arriving at a master equation for the
perturbations [32,37].

The equation of motion (3.15) for QIJ
B simply reads Q̈IJ

B =
ḂIJ/(4CB

Q̇2 ) in the nonrotating case. Integrating this equation
with respect to τ and dropping the integration constant, which
would lead to a permanent flux quadrupole, we obtain

Q̇IJ
B ≈ BIJ

4CB
Q̇2

. (4.4)

Inserting this into Eq. (3.16) or Eq. (3.14), taking the adiabatic
limit by dropping time derivatives of BIJ , and comparing to
the definition of the Love number (4.2) leads to

σirr = 3CB2

2
− 3

32CB
Q̇2

. (4.5)

To make the matching of the coefficients in the action more
transparent, we split the Love number into its matter σM and
field σF contributions (analogous to the post-Newtonian case
in Ref. [20]):

σM ≡ σirr − σstat < 0, σF ≡ σstat > 0. (4.6)

These quantities are related to coefficients in the nonrotating
action by

CB
Q̇2 = − 3

32σM
> 0, CB2 = 2σF

3
> 0. (4.7)

Indeed, we must have CB
Q̇2 > 0 for consistency since the en-

ergy of the modes must be bounded from below. To the leading
post-Newtonian order, the static and irrotational Love num-
bers are approximately related by σstat ≈ −3σirr [34], which
implies that σF ≈ −3σM/4. However, both Love numbers can
be obtained numerically from full relativistic perturbations of
neutron stars and there is no immediate need to resort to these

approximations. Note that calculations based on the post-
Newtonian theory for the mode amplitudes can be upgraded
to a fully relativistic treatment of the interior by replacing
the coefficients in the action (2.41) by the relativistic values
just identified. Comparing to Eq. (2.41), we hence find for the
overlap integral IB the relativistic expression

I2
B = − 15

4π
σM = 15

4π
(σstat − σirr ). (4.8)

Similarly, for the mode frequencies one should use relativistic
results, which we discuss now.

C. Matching the mode frequency

To identify the mode frequencies we follow the method
discussed in Sec. II D. For this purpose, we first express
the corotating-frame equations of motion (3.15) of the mode
amplitudes for an isolated neutron star at rest in the spherical-
harmonic basis, using QIJ

B = N2
∑

m Y2m
IJ QB

m , where N2 =√
8π/15, and similarly for BIJ . Assuming that the (constant)

angular velocity is aligned with the z axis � = (0, 0,�), the
equations of motion (3.15) read

2CB
Q̇2 Q̈B

m + im�CB
�QQ̇Q̇B

m = 1
2 Ḃm, (4.9)

which follows from contracting the equations of motion with
2N2Y∗2m

IJ and using (A2) and (A3). The reality conditions
QIJ

B = Q∗IJ
B imply that QB∗

m = (−1)mQB
−m and similarly for

Bm. We can determine the corotating-frame mode frequencies
ωB

2m by making the ansatz Qm = Ce−iωB
�mτ in the free (Bm = 0)

equations of motion, which leads to

ω̂B ≡ ωB
2m

m�
=

CB
�QQ̇

2CB
Q̇2

< 0, (4.10)

and to the zero mode ωB
2m = 0. We can thus match the coeffi-

cient CB
�QQ̇

as

CB
�QQ̇ = 2CB

Q̇2 ω̂B = − 3ω̂B
16σM

< 0. (4.11)

This completes the matching of all coefficients in the sim-
plified effective Lagrangian (3.17). We discuss in the next
section how the matching of all coefficients in the Lagrangian
in Eq. (3.14) could be achieved based on the tidal response
function, as a foundation for future work on the matching in
more complicated scenarios.

The relativistic frequencies ωB
2m were computed in

Ref. [29] for polytropes and in Ref. [30] for nuclear physics-
based equations of state. In the slow-rotation limit and for
typical neutron star compactnesses GM/(Rc2) � 0.2, they
may differ by up to 15% from the Newtonian estimate ω̂B ≈
−1/3 [see Eq. (2.28)]. The relativistic corrections introduce a
dependence of the mode frequency on the equation of state.
See Ref. [17] for a review of the magnitude and equation-
of-state dependence of relativistic and higher-order rotational
corrections. For superfluid stars, a second family of r modes
emerges, which has interesting consequences [31,81]. Such a
scenario can be described in our effective theory framework
by introducing effective dynamical tidal variables QIJ

Bn and
corresponding coefficients for each family of modes, where n
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labels the family of modes. We briefly elaborate on the match-
ing in this scenario based on the response function below.

V. TIDAL RESPONSE AND LOVE OPERATOR

The quadrupolar tidal response function, or quadrupole
propagator on the world line, was introduced for the descrip-
tion of dissipative tides in the effective-field-theory context in
Refs. [50,55]. For conservative electric dynamical tides, it was
further explored numerically in Refs. [79,88]. An extension
of this work to magnetic tides and slow rotation would be
valuable.

In this section, we derive the frequency-domain linear
tidal response function from the relativistic effective ac-
tion (3.14). We also discuss the response in three different
limiting regimes: when the external frequency is smaller than
the rotation frequency (preresonance), when they are compa-
rable (near resonance), and when the external frequency is
larger than the rotation frequency (postresonance). In the time
domain, the response is encoded in a tensorial linear integral
operator, which may be dubbed the Love operator.

A. The response function

It is most transparent to study the tidal response in
spherical-harmonic basis and frequency domain. We hence
further transform to the Fourier domain by using

QB
m (τ ) =

∫
dω

2π
Q̃B

m (ω)e−iωτ , (5.1)

and similarly for other tensors like Bm. Based on the trans-
formed flux quadrupole J̃m, we define the linear tidal response
function F̃B

m (ω) of the neutron star in the corotating frame as
a generalization of the Love number (4.2):

J̃m = 2F̃B
m B̃m. (5.2)

This response is the relativistic analog of the Love tensor from
Ref. [21] (see also Ref. [89] for the black-hole case). The
flux quadrupole in the spherical-harmonic decomposition in
the frequency domain J̃m can be obtained from Eq. (3.16):

J̃m = 3

4
iωQ̃B

m + 3B̃m

∞∑
k=0

(iω)2k

[
CBB(2k)

− mω�

2
CBB(2k+1)�

]
. (5.3)

To obtain its explicit expression requires a solution for Q̃B
m ,

which we obtain by writing its equations of motion (4.9) in
the frequency domain:

3

16σM
ω(ω − m�ω̂B )Q̃B

m = − iω

2
B̃m. (5.4)

Solving for Q̃B
m and using the above expression for J̃m, we

arrive at the response function

F̃B
m = σM

ω

ω − m�ω̂B

+ 3

2

∞∑
k=0

(iω)2k

(
CBB(2k) − mω�

2
CBB(2k+1)�

)
(5.5)

≈ σM
ω

ω − m�ω̂B
+ σF , (5.6)

where the last line refers to the simplified action (3.17). With
this, the action can be written as

SB
DT ≈

∫
dω

2π

2∑
m=−2

2

3
F̃B

m B̃mB̃∗
m. (5.7)

Note that although we are working only to linear order in the
spin, we do not expand the denominator in the response (5.5).
The reason is similar to the textbook example of an anhar-
monic oscillator [90], where one perturbatively expands all
terms at the level of the equations of motion yet leaves any
denominators of the solution unexpanded. This is crucial in
order to preserve essential features of the dynamics, i.e., poles
at resonances. For the same reason, it is important to keep the
shift symmetry (3.11) without expanding in spin, so that the
zero-frequency mode is preserved.

The corotating-frame response function (5.5) can be ex-
tended to the case of several mode families by summing over
the contributions from several QIJ

Bn:

F̃B
m =

∑
n

σMn
ω

ω − m�ω̂Bn

+ 3

2

∞∑
n=0

(iω)2n

(
CBB(2n) − mω�

2
CBB(2n+1)�

)
, (5.8)

where 32σMnCB
nQ̇2 = −3 and 16σMnCB

n�QQ̇
= −3ω̂Bn. In the

presence of more than one family of modes, and in order
to fix all coefficients in Eq. (3.14), a more general matching
procedure than outlined above is necessary. This could be ac-
complished through a numerical investigation of the magnetic
tidal response F̃B

m based on relativistic linear perturbation
theory, similar to the nonrotating electric case in Ref. [79].
A fit of such a numerical result for F̃B

m to Eq. (5.8) should
in principle fix all the (linear, conservative) tidal coefficients:
The behavior of the response around its poles fixes the number
of mode families and their coefficients CB

nQ̇2 and CB
n�QQ̇

, while
the global frequency dependence fixes CBB(2k) and CBB(2k+1)�.
Such a matching of the response could be further improved
and made rigorous by basing it on gauge-invariant observ-
ables, as mentioned above.

B. Time-domain response and Love operator

Returning to the case of a single family of modes, we next
show how to transform the response (5.5) back to the time
domain and bypass the problems encountered in Ref. [20]. For
this purpose, we work in the symmetric-trace-free basis and
choose retarded boundary conditions by setting ω → ω + iε2

with the limit ε → 0 implied.5 It is useful then to further shift
the frequency by ω → ω + m�ω̂B, which introduces a phase
e−im�ω̂Bτ from the Fourier transform. Now, in the spherical
harmonic basis, that phase can be absorbed by a shift of the
azimuthal angle ϕ, i.e., a rotation around the spin axis. After

5We note that the denominator describing the propagator is linear
in ω instead of quadratic, the latter being the more familiar case
in field theory. This inhibits one to pick the Feynman prescription
ω2 → ω2 + iε for the propagator/boundary conditions here. Ad-
vanced boundary conditions correspond to ω → ω − iε2.
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this chain of transformations, it is straightforward to perform
the Fourier integral. However, one can follow a more direct
approach, also based on using rotations to conveniently sim-
plify expressions, which we delineate in more detail below.

We start from the equations of motion (3.15) for QIJ
B and

write them in terms of the matter contribution to the flux
quadrupole J IJ

M ≡ −3Q̇IJ
B /4 as

1

4σM
CB

Q̇2

(
J̇ IJ

M − 2ω̂B�K (IJ J )K
M

) = 1

2
ḂIJ . (5.9)

This can be simplified by performing a rotation around the
spin axis with

J IJ
M = R̄I

K R̄J
LJ̄ KL

M , R̄ = exp(−ω̂B ∗�τ ). (5.10)

We note the identity R̄(τ ) = exp(−ω̂B ∗ �Tτ )T = R̄T(−τ )
since ∗�T = − ∗ �, where T denotes the matrix transpose.
Hence R̄ is indeed a rotation matrix, R̄−1 = R̄T. This rotation
turns Eq. (5.9) into the simpler relation

R̄I
K R̄J

L
˙̄J KL
M = 2σMḂIJ , (5.11)

where we recall our assumption that � = const. The retarded
solution for J IJ

M is then given by

J IJ
M (τ ) = 2σMR̄I

K (τ )R̄J
L(τ )

×
∫ τ

−∞
dτ ′ R̄A

K (τ ′)R̄B
L(τ ′)

dBAB(τ ′)
dτ ′ . (5.12)

With this solution at hand, assuming that BAB(−∞) = 0,
and noting that R̄(τ )R̄T(τ ′) = R̄(τ − τ ′), we can define a ten-
sorial magnetic Love operator σ̂ IJKL

ret such that

J IJ = 2σ̂ IJKL
ret BKL ≡ 2

∫ ∞

−∞
dτ ′ F IJKL

B,ret (τ − τ ′)BKL(τ ′),

(5.13)
with the time-domain response given by

F IJKL
B,ret (τ ) ≈ σM δ̂IJAB d[�(τ )R̄A

K (τ )R̄B
L(τ )]

dτ
+ σF δ̂IJKLδ(τ ).

(5.14)

Here, �(τ ) is the Heaviside step function which implements
the retarded boundary conditions, and the symmetric-trace-
free projector is given by

δ̂IJKL = δI (KδL)J − 1
3δIJδKL. (5.15)

This result (5.14) is specialized to the simplified action (3.17).
For the more general action in (3.14), the retarded solu-
tion (5.12) continues to apply but with the response

F IJKL
B,ret (τ ) = σM δ̂IJAB d[�(τ )R̄A

K (τ )R̄B
L(τ )]

dτ

+ 3

2

∞∑
k=0

[
CBB(2k) δ̂IJKL∂2k

τ δ(τ )

+ CBB(2k+1)�δ̂IJA(K�L)A∂2k+1
τ δ(τ )

]
. (5.16)

Finally, we note that the action can be written as

SB
DT =

∫
dτ

2

3
BIJ σ̂

IJKLBKL (5.17)

=
∫

dτdτ ′ 2

3
BIJ (τ )F IJKL

B (τ − τ ′)BKL(τ ′), (5.18)

which is nonlocal in time. However, this action only encodes
the time-symmetric part of the dynamics (the integrand can
be symmetrized under τ ↔ τ ′) and does not correspond to
retarded boundary conditions [74].

C. Asymptotic limits of the response function in
the inertial frame

We next discuss the frequency-domain response for the
simplified effective Lagrangian in Eq. (3.17) involving a
single-mode family in the inertial frame. The frequency in the
inertial frame follows from that in the corotating frame via the
relation

ω̃ = ω + m�. (5.19)

Likewise, the inertial-frame mode frequency is ω̃B
2m = ωB

2m +
m�. The gravitomagnetic response can then be expressed as

F̃B
m ≈ σM

ω̃ − m�

ω̃ − (1 + ω̂B )m�︸ ︷︷ ︸
ω̃B

2m

+ σF , (5.20)

where ω̂B is defined in (4.10) and σM,F is defined in (4.6).
We note that the adiabatic limit ω̃ → 0 and the nonrotating
limit � → 0 of the response do not commute [20]. Physically,
this is not a problem since neither the neutron star rotation
frequency � nor the frequency of the external tidal field ω̃

in a binary system is ever exactly zero. What matters is the
relation between ω̃ and �. Away from the mode resonances,
the response behaves as

F̃B
m ≈

{ σM

1 + ω̂B
+ σF for |ω̃| � |�|, m �= 0,

σM + σF = σirr for |ω̃| � |�| or m = 0.
(5.21)

However, we note that a proper treatment of the postresonance
regime |ω̃| � |�| requires more care, in particular an analysis
of the mode damping after resonant excitation.

VI. SUMMARY AND DISCUSSION

Summarizing our findings, quadrupolar magnetic dynami-
cal tides are approximately described by an effective action in
the corotating frame given by

LB
DT ≈ − 3

32σM

(
Q̇IJ

B Q̇IJ
B + 2ω̂B�JK Q̇IJ

B QKI
B

)
− 1

2
BIJQ̇IJ

B + 2σF

3
BIJBIJ ,

(6.1)

where

σM ≡ σirr − σstat, σF ≡ σstat, ω̂B ≡ ωB
2m

m�
, (6.2)

σirr,stat are the irrotational and static relativistic magnetic tidal
deformabilities, and ωB

2m are the relativistic mode frequencies.
These frequencies ωB

2m are linear in the magnetic spherical-
harmonic number m and angular velocity �. Hence ω̂B is
indeed independent of m and �. We stress that for this action,
the matching of the coefficients does not assume a post-
Newtonian or low-compactness approximation of the neutron
star interior. (In the low-compactness limit, ω̂B ≈ −1/3 and
σF ≈ −3σM/4.)
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However, the above model may become insufficient for a
realistic inclusion of the microphysics of the neutron star. For
instance, the presence of superfluidity implies several families
of magnetic modes [31,81,91] and hence a more involved
matching of the tidal parameters, as explained above. Yet
these complications also open new prospects for extracting
precious information on neutron star structure from gravita-
tional waves.

The response function in the corotating frame is

F̃B
m ≈ σM

ω

ω − m�ω̂B
+ σF . (6.3)

In the inertial frame, where the frequency is ω + m�, the lim-
iting forms of the response for |ω + m�|/|ω| → 0,∞ (away
from resonance) are

F̃B
m ≈

{σirr + ω̂Bσstat

1 + ω̂B
, |ω̃| � |�|, m �= 0,

σirr, |ω̃| � |�| or m = 0.
(6.4)

The main effect of a resonance is a phase shift in the gravita-
tional waves (see the seminal work of Ref. [18] for detailed
calculations and Ref. [22] for data-analysis implications).
This phase shift crucially depends on the overlap integral IB,
which we are able to determine relativistically (for generic
compactness) here:

I2
B = − 15

4π
σM = 15

4π
(σstat − σirr ). (6.5)

In addition, using a convenient set of rotations to simplify
the equations leads to a tensorial magnetic Love operator
characterizing the time-domain response as defined by the
relation between flux quadrupole and gravitomagnetic field:

J IJ = 2σ̂ IJKL
ret BKL ≡ 2

∫ ∞

−∞
dτ ′ F IJKL

B,ret (τ − τ ′)BKL(τ ′),

(6.6)
with the response given by

F IJKL
B,ret (τ ) ≈ σM δ̂IJAB d[�(τ )R̄A

K (τ )R̄B
L(τ )]

dτ

+ σF δ̂IJKLδ(τ ).

(6.7)

It is interesting to consider the importance of the effects
derived here for waveforms. The impact of the dynamical
gravitomagnetic effects on the gravitational-wave phasing can
be approximated as a sudden jump in the gravitational-wave
phase ψ at the resonance as [18]

ψdyn. res. = �( f − fres)

(
1 − f

fres

)

�res, (6.8)

where f is the gravitational-wave frequency. The coefficient

�res, which sets the size of the jump and depends on I2

B
and ω̂B among other binary parameters, is given explicitly in
Eqs. (5.37) in Ref. [18] (the derivation being based on a post-
Newtonian star). The instantaneous effect of the resonance
on the phase is small. However, it occurs early in the inspi-
ral, at frequencies fres ∼ ω̃B

2m/(mπ ) proportional to the spin
frequencies �. This implies that resonances can occur over
a wide range of gravitational-wave frequencies from below
10 Hz to a few hundred hertz. The information about these

effects thus accumulates over numerous gravitational-wave
cycles. As an order-of-magnitude estimate, the net change in
the gravitational-wave phase scales as 
ψ ∼ 0.05R4�2/3 for
equal masses [18]. Measuring these signatures from gravit-
omagnetic mode resonances is thus an important scientific
opportunity with third-generation detectors such as the Ein-
stein Telescope and Cosmic Explorer, and must be taken into
account to avoid biases in the measured parameters [22]. For
loud signals, these modes could also have an impact for mea-
surements with current detectors as they further improve in
their sensitivity to binary inspirals.

The general form of the resonance effects on gravitational
waves (6.8) applies for any kind of tidal resonance that occurs
early during the inspiral, both gravitoelectric and gravitomag-
netic. The kinds of tides are encoded in the coefficient 
�.
These dynamical resonance effects on the phase (6.8) are ap-
proximated by a step function in frequency and are hence very
different from smooth-in- f post-Newtonian contributions. In
general, matter effects in binary systems are described by
distinct perturbative expansions from the post-Newtonian
one (e.g., the multipole expansion), with dimensionless pa-
rameters characterizing finite-size effects as outlined in our
discussion on the effective action and power counting in
Sec. III E. For simplicity, assigning fiducial post-Newtonian
orders to all physical effects is nevertheless often used to de-
scribe terms in the phasing with different powers of f , though
formally this applies only to black holes. For instance, when
considering tidal effects specialized to the adiabatic limit, the
Fourier-domain phasing has the expansion

ψadiabatic = 3

128ηx5/2

[
1 + a1PNx + O(x3/2)

− 39

2
�̃x5 + (δ� + �̃)x6 + . . .

]
, (6.9)

where x = [π f (M1 + M2)]2/3 is a dimensionless frequency
parameter, �̃ and δ� are dimensionless combinations of the
individual gravitoelectric Love numbers λ1,2 and the masses
M1,2 of the binary (characterizing adiabatic gravitoelectric
tidal effects), and �̃ is a similar weighted average of the grav-
itomagnetic Love numbers σ1,2. Effective post-Newtonian
orders are attributed to each contribution according to the
powers of x involved, e.g., the leading-order gravitoelectric
effects scale effectively as 5PN terms would and magnetic
effects start at effectively 6PN in this scheme. The coefficients
� and � differ by nearly two orders of magnitude, i.e., the
adiabatic magnetic effect is much smaller than even the sub-
leading gravitoelectric effect.

However, the dynamical resonance effects induce nearly
sudden changes at a particular frequency, as in Eq. (6.8), and
do not fit even the fiducial post-Newtonian counting scheme
of the adiabatic effects. They are a distinct phenomenon
that can lead to a significantly larger imprint on the gravi-
tational waves than suggested by the adiabatic limit. Thus,
even though the contributions from adiabatic gravitomagnetic
effects (6.9) are very small, the dynamical effects (6.8) can
be much more significant: Reference [22] demonstrates that
including such dynamical effects in waveform models (and
using quasiuniversal relations) could improve constraints on
certain tidal parameters by about two orders of magnitude
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for third-generation detectors. Furthermore, these gravitomag-
netic resonances are not resolvable in numerical-relativity
simulations of binary systems due to the length and timescales
involved. This makes accurate analytical modeling of these
effects critically important. The analytical results depend on
strong-field effects and the microphysics of the neutron stars
in parametrized form through the overlap integral and the
resonance frequency. This makes them broadly applicable to
any type of compact object, and useful for tests of exotic
objects, black holes, and gravity.

VII. CONCLUSIONS

The observation of gravitational waves from binary neu-
tron stars opens up exciting opportunities for exploring
matter at supranuclear density in their interiors. This re-
quires understanding how the nuclear physics of neutron
star matter translates into tidal effects during the long inspi-
ral phase of the binary, which constitutes a substantial part
of the observed gravitational-wave signal. In this paper, we
made important progress on this topic by investigating how
relativistic gravitomagnetic tides of neutron stars can be mod-
eled with an effective action, both in the highly dynamical
regime close to oscillation-mode resonances and away from
resonance.

To gain intuition, we started from the 1PN description
of a slowly rotating isolated neutron star, composed of an
idealized fluid, in the presence of a gravitomagnetic tidal
field. We derived a Lagrangian formulation of the linearized
perturbations to the Euler equations for the fluid displacement.
We used this Lagrangian to calculate the gravitomagnetic
mode frequencies and to develop an effective action for com-
posite degrees of freedom characterizing the gravitomagnetic
interactions of the star. A crucial finding was a symmetry
of the action under shifts of the dynamical mode degrees of
freedom.

The major result of this paper is the fully relativistic effec-
tive action for gravitomagnetic tidal effects for slowly rotating
neutron stars that we developed. We started from symmetry
principles to construct the terms in the action, where the shift
symmetry played an essential role. Each of these interaction
terms comes with undetermined coefficients that encode the
neutron star structure. We demonstrated how the most im-
portant coefficients in the action match to the magnetic Love
numbers and mode frequencies of the neutron star, showing
that both kinds of magnetic Love numbers have physical
relevance. We provide a relativistic expression for the over-
lap integral in terms of the Love numbers that may be used
to improve estimates for the gravitational-wave phase shift
when a neutron star binary inspirals through magnetic-mode
resonances. We also discussed several interesting dynamical
consequences and unusual features compared to the grav-
itoelectric case, including the frequency-domain response
function and time-domain Love operator.

An important goal for future work is to construct waveform
models for gravitational waves from binary inspirals based
on our effective action. The tidal coefficients in the action
directly characterize the potentially measurable parameters
in gravitational waves. These coefficients are related to the
magnetic Love numbers and mode frequencies, which contain

valuable information to better understand the extreme states
of matter inside neutron stars. Another target for future work
is to formulate the matching in terms of the tidal response
function, which would allow a generalization to more realistic
microphysics, e.g., the inclusion of several mode families in
the presence of a superfluid.
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APPENDIX: USEFUL FORMULAS

Let us collect here some useful formulas from symmetric-
trace-free tensor formalism (see, e.g., Refs. [42,92,93]). One
can change from a symmetric-trace-free tensor basis (indices
s1 . . . s�) to a spherical-harmonic basis labeled by (�, m) using
the symbol Y�m

s1...s�
, as in

Y�m(θ, φ) = Y�m
s1s2...s�

ns1 ns2 . . . ns� , (A1)

where ni = xi/r is the unit radial vector. Here, the ordinary
spherical harmonics Y �m(θ, ϕ) depend on the polar and az-
imuthal angles (θ , ϕ). The following holds:

N2
� Y∗�m′

s1...s�
Y�m

s1...s�
= δm′m, (A2)

where N� = √
4π�!/(2� + 1)!!. Furthermore, Eq. (2.26) of

Ref. [42] leads to

ei
zεi jkN2

� Y∗�m′
js1...s�−1

Y�m
ks1...s�−1

= im

�
δm′m, (A3)

where ez = (0, 0, 1).
A very useful integral formula is Eq. (2.3) in Ref. [42]:∫

d� ni1 . . . ni2�
= N2

�

�!

(
δi1i2δi3i4 . . . δi2�−1i2�

+ . . .
)
, (A4)

where the sum runs over all combinations of indices, and
the integral is zero for an odd number of n vectors in the
integrand. For instance,∫

d� nin jnkn� = 4π

15
(δi jδk� + δikδ j� + δi�δ jk ). (A5)

From the general integral formula, one can derive an extension
of Eqs. (2.5) and (2.6) of Ref. [42]: for any two symmetric-
trace-free tensors As1...s�

and Bs1...s�′ with � � �′ the following
holds: ∫

d� nin jAs1...s�
ns1 . . . ns�Br1...r�′ n

r1 . . . nr�′

= N2
�+1

(� + 1)

[
δi jAs1...s�

Bs1...s�

+ 2�As1...s�−1(iB j)s1...s�−1

]
if � = �′ (A6a)

= N2
� Ai js1...s�′ Bs1...s�′ if � = �′ + 2 (A6b)

= 0 else. (A6c)
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The symmetric-trace-free property of A and B is crucial here,
which means any two same indices (a trace) give zero, e.g.,
A...i...i... = 0.

The magnetic vector spherical harmonics Y �m
B play an im-

portant role in the present paper. They are defined as

YB
�m(θ, ϕ) = 1√

�(� + 1)
x × ∇Y �m, (A7)

or more explicitly in components as

Y Bi
�m (θ, ϕ) =

√
�√

� + 1
εi jkn jY�m

ks1...s�−1
ns1 . . . ns�−1 . (A8)

The prefactor is chosen to satisfy the normalization∫
d�YB∗

�′m′ · YB
�m = δ�′�δm′m. (A9)

This can be shown with the help of Eq. (A2), recalling that
the Y�m

s1...s�
are symmetric trace free in the indices si, and the

relation

∫
d�Y B∗i

�′m′ Y
B j
�m = N2

� δ�′�

� + 1
Y∗�m′

as1...s�−1
Y�m

bs1...s�−1

× [�δi jδab − (� − 1)δiaδ jb − �δibδ ja],
(A10)

which in turn follows from Eq. (A6), where one shifts
� → � − 1 and identifies Ak,lm

s1...s�−1
= Y�m

ks1...s�−1
, and similar for

Bk,l ′m′
s1...s�′−1

.
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