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Concealing an object from incoming waves (light and/or sound) remained science fiction for a long time
due to the absence of wave-shielding materials in nature. Yet, the invention of artificial materials and new
physical principles for optical and sound wave manipulation translated this abstract concept into reality by
making an object optically and acoustically “invisible.” Here, we present the notion of a machine learning driven
acoustic cloak and demonstrate an example of such a cloak with a multilayered core-shell configuration. We
develop deterministic and probabilistic deep learning models based on autoencoderlike neural network structure
to retrieve the structural and material properties of the cloaking shell surrounding the object that suppresses
scattering of sound in a broad spectral range, as if it was not there. The probabilistic model enhances the
generalization ability of design procedure and uncovers the sensitivity of the cloak’s parameters on the spectral
response for practical implementation. This proposal opens up avenues to expedite the design of intelligent
cloaking devices for tailored spectral response and offers a feasible solution for inverse scattering problems.
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I. INTRODUCTION

Cloaking or invisibility, physically related to the cancel-
lation of the natural scattering signature of an object, has
attracted enormous attention. In order to render an object in-
visible to electromagnetic and/or acoustic wave, it is essential
to tailor the interaction of waves with the object such that the
wavefronts in the surrounding medium remain undisturbed,
regardless of the presence of an object. One promising route
to achieve invisibility is via transformation optics, relying on
artificially structured materials [1] that can mold the flow of
waves around the concealed object with specific design of its
constitutive parameters. However, such transformation-based
cloaks [2–4] have the fundamental limitation of narrow-
band operation, due to the strong dispersion, inherent to the
resonance-based meta-atoms, and the undesired material loss;
they are thus challenging due to the difficulty of creating
bulky material compositions, with both anisotropy and inho-
mogeneity [4,5]. In such scenarios, other invisibility schemes
based on scattering cancellation technique [6,7], patterned
metasurfaces [8,9], and complex modulated potentials [10,11]
have also been suggested for different kinds of waves ranging
from microwave [4,12,13], acoustic [14–16], and elastic [17]
to heat waves [18].
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In the past decade, acoustic cloaks via scattering cancella-
tion [19,20] have become a topic of interest due to their robust
designs, operating spectral range and ease of fabrication. In
such schemes, isotropic layers of specific thickness, mass
density, and bulk modulus can be carefully tailored to cancel
the first few scattering orders, which significantly reduce the
scattering cross section of the system, to make the object
nearly undetectable at a particular frequency. Consequently,
the scattering cancellation approach generally employs acous-
tic metamaterials to realize on-demand cloaking devices.
However, practical applications often desire more flexibil-
ity in the operating frequency band and require designing
materials with positive physical properties (density and bulk
modulus). Yet, the design of cloaking shells operating over
broad frequency ranges with realistic material parameters
remains challenging. For instance, the broadband cloaking
operation requires some additional layers in the core-shell
configuration to cancel the higher scattering orders and, as
a consequence, the design complexity grows and thus makes
it extremely challenging to tune the geometry and material
properties with conventional optimization techniques [21,22].
In addition, conventional optimization methods relying on the
evolutionary algorithms suffer from a local minima problem
and require prior knowledge on the selection of objective
function for accurate design. To mitigate such issues, data-
driven approaches based on machine learning have provided
a promising platform where artificial neural networks are
trained to intelligently learn the intrinsic relation between
various structural parameters and their spectral responses, and
significantly reduce the overall computational time by predict-
ing the solution immediately after the training phase [23,24].

The rapid development in machine learning technol-
ogy enables people to efficiently solve numerous physical
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FIG. 1. Framework of the deep learning network for inverse design of the acoustic cloak. (a) Schematic illustration of the core-shell
acoustic cloak and its spectral response (ratio between total scattering cross-section spectra of the cloak σcloak and that of the object, i.e., σobject)
where the neural network learns the relation from D (design parameters) to R (spectral response) and from R to D for forward and inverse
design, respectively. (b), (c) Proposed deep learning models for inverse design of the cloak. (b) Deterministic model where the pretrained
forward network acts as a decoder to predict the spectral response. (c) Probabilistic model where the design space is transformed into the latent
space z, with a standard Gaussian distribution. The physical design parameters are sampled from that distribution in the form of latent variables
to generate the desired spectral response.

problems including quantum physical problems [25], modu-
lation instability in optical fibers [26], and pattern recognition
of photonic modes [27], and streamline the inverse design pro-
cess of protected edge states [28], metasurfaces [29–31], and
complex structures for different applications [32–44]. The in-
verse design process allows for fast and accurate prediction of
the design parameters (structure and material properties) with
complex architectures such as deep neural networks (DNNs)
[29,32], convolutional neural networks (CNNs) [34], recur-
rent neural network (RNNs) [40], and generative adversarial
networks (GANs) [29]. Despite such significant advancement
in this area, the reported studies to date mostly emphasize
solving inverse electromagnetic problems in a deterministic
fashion, while robust deep learning models for inverse acous-
tic scattering problems are yet to be developed. Here, we
propose deep learning models as a practical tool to design
broadband acoustic cloaks using a core-shell configuration.
The proposed model utilizes fully connected DNNs to capture
and generalize the nonlinear intricate relation between the de-
sign parameters and the spectral response for the forward and
the inverse problem [see Fig. 1(a)]. The implementation of the
forward problem is straightforward, and consists in training
the neural network that maps the design parameters directly

to the spectral response, but the inverse design is intrinsi-
cally challenging due to the nonuniqueness of the solution
and inherent convergence problems [33,34]. To address these
issues, we design an autoencoderlike structure consisting of
two DNNs where the pretrained forward network is cascaded
behind the inverse neural network that maps the spectral
response to the design parameters in either a deterministic
[see Fig. 1(b)] or a probabilistic manner [see Fig. 1(c)]. The
deterministic inverse design network provides only one set
of design parameters for a given spectral response. However,
a practical implementation generally demands more flexibil-
ity and diversity in the design due to external perturbation.
Hence, we introduce a model to provide probabilistic distri-
butions of the design parameters, which flexibly generates
the desired spectral response [see Fig. 1(c)]. The probabilistic
design with parameter distributions is more advanced than
the deterministic design with fixed parameters on the basis
of twofold benefits (i) the capability to generate a variety of
design parameters for one desired spectral response and (ii)
the ability to uncover the sensitivity of the design parameters
on the cloaking effect. We find that the bulk modulus (physical
parameter) is less sensitive to external perturbation than the
thickness (geometric parameter) of the layers in designing the
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acoustic cloaks. To verify the predicted cloaking profile, we
also perform full-wave simulations based on the finite element
method (FEM) and obtain excellent cloaking effect. Notably,
this framework allows us to design broadband cloaks using
realistic materials that can be readily achievable for stealth
technologies.

II. DEEP LEARNING MODEL

We consider a two-dimensional acoustic cloaking problem.
Our purpose is to make a cylinder, indicated by the blue core
in Fig. 1(a), acoustically invisible. To achieve this goal, we
consider a four concentric layered shell configuration where
each layer is made of different material with different outer
radius as illustrated in Fig. 1(a). The properties of the cylin-
drical scatterer are described by its radius a, mass density ρ,
and bulk modulus κ , while the m th cloak’s layer is character-
ized by the outer radius am and material properties (ρm, κm),
where m = 1, 2, 3, 4 is the layer index. In order to analyze the
scattering response of this system, we make use of the trans-
fer matrix method (TMM) and compute the total scattering
cross-section (SCS) spectra (see the Supplemental Material
(SM) [45] for details). To quantify the cloak’s performance,
we define the ratio of the SCS spectra of the cloaked object
σcloak and the bare object σobject, i.e., σcloak/σobject (or normal-
ized SCS). This ratio reveals how well the object becomes
acoustically invisible with the presence of the designed cloak.
The ideal cloaking behavior is achieved by optimizing the
design parameters to yield a near-zero SCS at the operation
frequency. Without loss of generality, we set the scatterer’s
parameters as a = 1 m, ρ = ρ0, and κ = 1.5κ0, with ρ0 and
κ0 being the mass density and the bulk modulus of the host
medium, respectively. We use the TMM to generate the train-
ing data samples, where we determine the SCS spectra for
random design space, D = [a1, a2, a3, a4, κ1, κ2, κ3, κ4], with
am and κm the radius and bulk modulus of the mth layer,
respectively, while keeping the density fixed in each layer.
Each training example is represented by eight design parame-
ters (four radii and four bulk moduli) and 100 discrete points
of SCS spectrum R = [r1, r2, r3, r4 · · · r100] covering the nor-
malized frequency range 0 � k0a � π , with k0 = 2π/λ the
acoustic wave number. We design the forward neural network
to map the design D to the spectrum R, and the inverse model
to map the spectrum R to the design D. Both networks are
trained by optimizing the neural network weights. For our
analysis, we generate 68 000 data samples for random design
parameters, which are split into three distinct groups: 60 000
data samples for training, 4000 data samples for validation,
and 4000 data samples for final testing. The training data are
used to train the network by optimizing the neural network
weights, while the validation data set serves for checking
and avoiding the overfitting issue, and the testing data set
examines the prediction accuracy of the network.

A. Forward-modeling network

We first design the forward-modeling network to accu-
rately predict the frequency-dependent SCS for given design
parameters. The forward model builds a fully connected net-
work between the design space D as the input layer and SCS

FIG. 2. Forward network learning of acoustic cloak. (a) Learning
curves for training and validation data sets as a function of training
epochs. (b) Histogram of relative spectral error for testing samples.
The red vertical dashed line shows the mean spectral error. (c)–(e)
Comparison of the spectral response for three representative exam-
ples obtained by machine learning model and TMM. The shaded area
shows the absolute error between the predicted and target response,
which indicates that the machine learning results are in perfect agree-
ment with those of TMM. The design parameters are provided in the
SM [45].

spectra R as the output layer, as shown in Fig. 1(a). We
normalize the data before training, to expedite the conver-
gence of the network. In the training process, the training
data are fed into the network and the weights are contin-
uously optimized to minimize the loss function defined as
L = 1

N

∑
k |rk − r̂k| where rk and r̂k are the ground truth of

the spectral response and the response predicted by the neural
network, respectively. Note that we used the mean absolute
error as a cost function for the training purpose due to the
presence of outliers in the data. The architecture of the for-
ward network is optimized to have four fully connected layers
with each layer having 500-500-500-300 nodes, respectively.
The remaining hyperparameters (batch size, learning rate, ac-
tivation function, etc.) are judiciously selected to minimize
the validation loss (see the SM [45]). The learning curves
for the training and validation data as a function of epoch
are shown in Fig. 2(a). Both the training and validation er-
rors drop as the training goes on, until it converges after
400 epochs, implying the completion of the training phase.
Due to the unique one-to-one mapping between design space
and response in the forward problem, the training process is
straightforward to converge. To check the prediction accuracy
of the trained model, we evaluate it on a group of 4000 data
samples that are not seen in the training process. We predict
the spectral response of the trained network for testing data
and compare the results with those obtained by the TMM. We
report the relative absolute spectral error on the testing data
sets as e = ∑

k |rk − r̂k|/rk where rk is the discretized value
for the target spectral response and r̂k is the corresponding
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predicted spectral response. The results for relative spectral
error are plotted in Fig. 2(b) with a mean error of 3.47% for
testing data, which proves the high prediction accuracy (over
96%) of the network. Figures 2(c)–2(e) depict the spectral
response of three representative cases from the testing data
that clearly indicate the predicted results perfectly match those
of the TMM.

B. Deterministic inverse-modeling network

Typically, practical applications demand the cloaking ef-
fect at a particular frequency or over a broad frequency
band, which requires realizable design parameters to produce
the desired spectral response. Yet, there is no common tool
available for the accurate inverse design of cloaking devices.
The development of such tools significantly reduces the com-
putational time for design optimization and accelerates the
generation of the desired SCS spectra. To achieve this goal,
we attempt to train the network inversely, which takes the
spectral response as the input and the design parameters as
the output. However, we are unable to train the network suc-
cessfully in the inverse direction due to nonunique solutions
in response to design mapping that leads to nonconvergence
issues [(see the SM [45] for more details). To resolve this
issue, we implement the autoencoderlike network where we
cascade the inverse network to the independently trained (or
pretrained) forward-modeling network, as shown in Fig. 1(b).
The forward network is trained separately to substitute the
TMM simulation and acts as a data generator in training.
The pretrained forward network accelerates the inverse de-
sign process due to fast computation time (∼millisecond) as
compared to TMM (∼second) while maintaining good pre-
diction accuracy for the designed spectral response. During
the training process, the pretrained forward network has fixed
weights and biases while the weights of the inverse network
are updated iteratively to minimize the loss function to the
output response of the designed structure predicted by the neu-
ral network. The designed structure refers to the intermediate
layer D in the autoencoderlike network that predicts the eight-
design parameter for the desired spectral response. Figure 3(a)
depicts the learning curves for the training and validation
loss that decrease rapidly and converge after 1000 epochs
of training. The inverse network architecture is designed to
have five fully connected layers with each layer composed of
500-500-500-500-400 nodes, respectively. Details about the
hyperparameters are discussed in the SM [45]. Again, we
use 4000 testing data sets to examine the accuracy of the
inverse design network. Figure 3(b) shows the histogram of
relative spectral error, where the average spectral error across
all predicted spectra is 4.63%. The scattering response for rep-
resentative cases (c-e) confirms the accuracy of the designed
inverse network.

To verify the predicted cloaking effective in the broad
spectral range, we perform full-wave numerical simulations
and plot the results in Fig. 4, which depicts the real part
of the pressure field distributions of the bare object and the
cloaked object under the excitation of a plane wave at different
frequencies. The results are obtained by the finite element
method (COMSOL MULTIPHYSICS). It shows the incident waves
are severely distorted in the case of the bare object, indicating

FIG. 3. Deterministic inverse design of acoustic cloak. (a) Learn-
ing curves for training and validation data sets as functions of the
training epochs. (b) Histogram of the relative spectral error for the
testing data samples. The red vertical dashed line shows the mean
spectral error. (c)–(e) Comparison of the spectral response for three
representative cases obtained with machine learning, TMM, and
COMSOL. These results clearly show that machine learning accurately
predicts the target response. The designed responses require positive
mass density and bulk modulus values that are provided in the SM
[45].

strong scattering behavior. However, the field distributions
with the presence of the cloaked object are similar to those
without any object, as if the cloaked object does not exist,
validating the performance of the designed cloak, in a broad
spectral range.

C. Probabilistic inverse-modeling network

In the deterministic inverse design, we choose one precise
set of design parameters to generate the desired spectral re-
sponse, yet the practical implementation demands diversity in
design parameters due to the possible unavailability of actual
materials and deviations from the original design parameters.
In this scenario, it is essential to enhance the generalization
and robustness of our network by introducing the probabilistic
prediction. To achieve this goal, we propose the stochastic
inverse design that uses the latent space concept [36] for the
probabilistic representation of the physical design parameters.
Our probabilistic inverse design network is basically a gener-
ative model which transforms the input spectral response into
a mean vector μ and a variance vector σ 2 to approximate the
distribution of the latent variables corresponding to the design
space, and then the pretrained forward network, acting as a
decoder, generates the same spectral response as the input
by sampling latent variable vector z from the Gaussian prior
distribution illustrated in Fig. 1(c). Note that latent variables in
such an architecture are strongly correlated with the physical
parameters (i.e., thicknesses and bulk modulus of the layers),
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FIG. 4. Numerical simulations for designed broadband acoustic
cloak. (a) Pressure field distribution produced by an incident plane
wave for the bare object and (b) the cloaked object. The three dif-
ferent normalized frequencies k0a = 1, 1.5, 2 are picked from the
spectral response shown in Fig. 2(c).

indicating that the network automatically learns the physical
relation between the design and the spectral responses. The
loss function for the probabilistic inverse network consists
of mean absolute error for reconstruction LMAE, a Kullback-
Leibler (KL) divergence error LKL, and a precision parameter,
i.e., the inverse of the variance τp = 1/σ 2. The KL divergence
ensures the generated latent space distributions follow the
assumed Gaussian distribution, N (0, 1), and also provides the
discrepancy between the predicted distributions and the stan-
dard normal distribution. The precision term is incorporated
to avoid the zero-variance problem for the generated distribu-
tions of the latent space. The model is trained to minimize the
following loss function:

L = 1

N

N∑

k=1

(
L(k)

MAE + αL(k)
KL + βτ (k)

p

)
, (1)

where N is the total number of training samples, α is the
weight of probabilistic learning, and β is the regularization
parameter. These hyperparameters can be tuned by cross val-
idation during the training process. The detail of the derived
cost function is provided in the SM [45].

Figure 5(a) shows the training and validation learning
curves as a function of the training epoch, where the loss
function for both training and testing data sets converges after
2500 epochs. The architecture of the stochastic inverse model
is designed to have nine fully connected layers with each
layer having 500-500-500-500-500-500-500-500-400 hidden
neurons, respectively (see the details about the hyperparame-
ters in the SM [45]). The designed network essentially learns
the distribution of the design parameters conditioned on its
spectral response. After successful training, we explore the
generated distributions of the design space for the testing
data. The standard deviation of the generated distribution
indicates the range of design parameters that can generate
the same spectral response. It also reveals the sensitivity
of the design parameters on the generation of the spectral
response.

Quantitatively, we can classify the spectral responses by
finding the maximum standard deviation in the latent distribu-
tions of the design parameters for testing data sets. We observe
that the distributions of the bulk modulus parameters exhibit
larger standard deviations as compared to the thicknesses in
the design space. For the analysis, we set criteria of minimum
±2% and ±4% standard deviation (from the mean value of
the corresponding design parameter) in the distribution and
categorize the predicted design parameters in testing samples
based on the maximum standard deviation, as depicted in
Fig. 5(b). We further sort the design space in testing data based
on minimum ±2% and ±4% standard deviation (with respect
to mean value) in different combinations of bulk modulus
parameters as shown in Fig. 5(c). Such classifications identify
the tolerance of the bulk moduli to generate the same spectral
response. Figures 5(d)–5(g) show the spectral response of
four representative cases with maximum standard deviation in
the bulk modulus distributions. The randomly sampled bulk
moduli in the corresponding distribution (indicated by dashed
red and green curves) generate the same spectral responses,
showing the excellent performance of our stochastic design
(see more examples in the SM [45]).

III. DISCUSSION AND CONCLUSION

We use supervised and semisupervised learning algorithms
based on the nonlinear regression technique to develop a deep
learning model that maps the design space to the spectral re-
sponse for the forward design and the spectral response to the
design space in the inverse design of the acoustic cloak. The
mapping functions are implemented by deep learning neural
networks. To solve the inverse problem, we design the de-
terministic and probabilistic encoder-decoder like networks.
The deterministic design encodes the spectral response into
the design parameters, which are decoded with the pretrained
forward model to generate the desired response. Yet, the prob-
abilistic design models the statistical distribution of the design
parameters. Such distributions allow the diversity and flexi-
bility for fabrication and application of the designed cloak.
The training of the probabilistic design process includes four
basic steps: First, the spectral response is transformed into a
distribution over the latent space. Second, a point from the
latent space is randomly sampled from that distribution. Third,
the sampled point is decoded using a pretrained forward
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FIG. 5. Probabilistic inverse design of acoustic cloak. (a) Learning curves for the training and validation data sets over training epoch.
(b) Classification of testing samples based on maximum standard deviation (±2% and ±4% deviation from the mean value) in the generated
distributions of design parameters. Bulk modulus parameters in design space exhibit large standard deviation. (c) Classification of testing
samples based on ±2% and ±4% deviation from the mean value in the generated distributions of different combinations of bulk modulus
parameters. (d)–(g) Gaussian distributions of bulk moduli showing maximum standard deviation for the representative cases. Comparison of
the spectral responses generated from randomly sampled bulk moduli in the corresponding distribution (dashed red and green curves) and
reference response (solid blue curve).

model (acting as a decoder) and the reconstruction error is
computed. Fourth, the reconstruction error is back propagated
through the network to minimize the loss function. We use the
normalized parameters for operating frequency and material
properties, which can be scaled depending on the choice of the
host medium and scatterer. For example, for a 10-cm scatterer
immersed in water, the designed cloak perfectly works over a
broad spectrum ranging from a few Hz to 5 kHz. To demon-
strate this idea, we consider a specific core material to achieve
broadband cloaking by tuning the material and geometry of
the four-layered core-shell system. However, the approach can
be applied to design invisible cloaks for any given core in such

systems (see the SM [45] for broadband cloaking of a steel
core).

We would like to mention that the cloaking effect can
be enhanced by increasing the number of layers for a given
frequency range. However, a large number of layers will
increase the complexity of the design and will be com-
putationally expensive. Therefore, one should balance the
performance and the expenses. In our practice, we choose four
layers to demonstrate that our method offers good cloaking
effect and provides feasible parameters to realize such a de-
vice. The practical implementation of the designed acoustic
cloak demands isotropic materials that exhibit the desired
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effective-medium properties. The effective material parame-
ters can be realized by designing disordered [46], extraordi-
nary crystalline [47], and quasicrystalline architectures [48].
Chiral quasicrystalline metamaterials can be designed to ob-
tain the effective parameters of the designed cloak [48].

To summarize, we demonstrate the machine learning
driven broadband acoustic cloak with multilayer core-shell
configuration. In particular, we develop deterministic and
probabilistic deep learning models for inverse design of an
acoustic cloak that efficiently solves the inverse design prob-
lem. The proposed models utilize the encoder-decoder-like
structure to solve the one-many mapping problem and re-
trieve the design parameters for the given spectral response.
The forward network, acting as a decoder, is trained inde-
pendently and cascaded behind the inverse network either
in deterministic or probabilistic design. In the probabilistic
design, the design parameters in the form of probabilistic
latent variables are obtained by sampling from distributions

in the latent space. The distributions of the design parameters
are used to reveal the sensitivity of the design parameter on
the cloaking functionality and the generation of the desired
spectral response with diverse design. The probabilistic net-
work is a highly attractive route to improve the robustness
of the cloaking effect against the deviation of the design
parameters of the cloak. We envision that our approach can
be generically utilized to automate the designing process of
complex material systems, showing nonunique solution space,
with minimum human intervention.
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W. Rodriguez, Inverse design in nanophotonics, Nat. Photonics
12, 659 (2018).

[35] W. Ma, F. Cheng, and Y. Liu, Deep-learning enabled on-
demand design of chiral metamaterials, ACS Nano 12, 6326
(2018).

[36] D. P. Kingma and M. Welling, Auto-encoding variational
Bayes, arXiv:1312.6114.

[37] S. So, J. Mun, and J. Rho, Simultaneous inverse design of
materials and parameters of core-shell nanoparticle via deep-
learning: Demonstration of dipole resonance engineering, ACS
Appl. Mater. Interfaces 11, 24264 (2019).

[38] W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, Probabilistic
representation and inverse design of metamaterials based on a
deep generative model with semi-supervised learning strategy,
Adv. Mater. 31, 1901111 (2019).

[39] Q. Zhang, H. Yu, M. Barbiero, B. Wang, and M. Gu, Artificial
neural networks enabled by nanophotonics, Light Sci. Appl. 8,
42 (2019).

[40] T. W. Hughes, I. A. Williamson, M. Minkov, and S. Fan, Wave
physics as an analog recurrent neural network, Sci. Adv. 5,
eaay6946 (2019).

[41] Y. Kiarashinejad, S. Abdollahramezani, and A. Adibi, Deep
learning approach based on dimensionality reduction for de-
signing electromagnetic nanostructures, npj Comput. Mater. 6,
12 (2020).

[42] L. Xu, M. Rahmani, Y. Ma, D. A. Smirnova, K. Z. Kamali,
F. Deng, Y. K. Chiang, L. Huang, H. Zhang, S. Gould, D.
N. Neshev, and A. E. Miroshnichenko, Enhanced light–matter
interactions in dielectric nanostructures via machine-learning
approach, Adv. Photonics 2, 026003 (2020).

[43] C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen,
Deep-learning-enabled self-adaptive microwave cloak without
human intervention, Nat. Photonics 14, 383 (2020).

[44] J. Weng, Y. Ding, C. Hu, X.-F. Zhu, B. Liang, J. Yang, J. Cheng,
Meta-neural-network for real-time and passive deep-learning-
based object recognition, Nat. Commun. 11, 6309 (2020).

[45] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.3.013142 for description of design
methods, nonconvergence and overfitting issue in the inverse
problem, details about optimized hyper parameters, and some
additional examples for the designed deterministic and stochas-
tic inverse networks.

[46] Radman, X. Huang, and Y. Xie, Topological optimization for
the design of microstructures of isotropic cellular materials,
Eng. Optim. 45, 1331 (2013).

[47] R. Lakes, Foam structures with a negative Poisson’s ratio,
Science 235, 1038 (1987).

[48] Y. Chen, M. Kadic, S. Guenneau, and M. Wegener, Isotropic
Chiral Acoustic Phonons in 3D Quasicrystalline Metamaterials,
Phys. Rev. Lett. 124, 235502 (2020).

013142-8

https://doi.org/10.1021/acs.nanolett.8b03171
https://doi.org/10.1021/acsphotonics.9b00966
https://doi.org/10.34133/2020/8757403
https://doi.org/10.1126/sciadv.aar4206
https://doi.org/10.1021/acsphotonics.7b01377
https://doi.org/10.1038/s41566-018-0246-9
https://doi.org/10.1021/acsnano.8b03569
http://arxiv.org/abs/arXiv:1312.6114
https://doi.org/10.1021/acsami.9b05857
https://doi.org/10.1002/adma.201901111
https://doi.org/10.1038/s41377-019-0151-0
https://doi.org/10.1126/sciadv.aay6946
https://doi.org/10.1038/s41524-020-0276-y
https://doi.org/10.1117/1.AP.2.2.026003
https://doi.org/10.1038/s41566-020-0604-2
https://doi.org/10.1038/s41467-020-19693-x
http://link.aps.org/supplemental/10.1103/PhysRevResearch.3.013142
https://doi.org/10.1080/0305215X.2012.737781
https://doi.org/10.1126/science.235.4792.1038
https://doi.org/10.1103/PhysRevLett.124.235502

