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Classical open systems with balanced gain and loss, i.e., parity-time (P7) symmetric systems, have attracted
tremendous attention over the past decade. Their exotic properties arise from exceptional point degeneracies of
non-Hermitian Hamiltonians that govern their dynamics. In recent years, increasingly sophisticated models of
PT symmetric systems with time-periodic (Floquet) driving, time-periodic gain and loss, and time-delayed cou-
pling have been investigated, and such systems have been realized across numerous platforms comprising optics,
acoustics, mechanical oscillators, optomechanics, and electrical circuits. Here, we introduce a P77 symmetric
(balanced gain and loss) system with memory and investigate its dynamics analytically and numerically. Our
model consists of two coupled LC oscillators with positive and negative resistance, respectively. We introduce
memory by replacing either the resistor with a memristor, or the coupling inductor with a meminductor, and
investigate the circuit energy dynamics as characterized by P77 symmetric or P77 symmetry broken phases. Due
to the resulting nonlinearity, we find that energy dynamics depend on the sign and strength of initial voltages
and currents, as well as the distribution of initial circuit energy across its different components. Surprisingly, at
strong inputs, the system exhibits self-organized Floquet dynamics, including a P77 symmetry broken phase at
vanishingly small dissipation strength. Our results indicate that P7 symmetric systems with memory show a

rich landscape.
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I. INTRODUCTION

Over the past decade, open systems with balanced, spa-
tially separated gain and loss have become a rich area of
research. They are described by a special class of non-
Hermitian Hamiltonians that are invariant under space and
time reflections, i.e., parity-time (P7) symmetric Hamiltoni-
ans [1]. More than two decades ago, Bender and co-workers
first introduced a broad class of such continuum Hamiltoni-
ans on an infinite line [2] and showed that, in spite of their
non-Hermitian nature, they have purely real spectra when the
non-Hermiticity is small. The initial, theoretical studies of P77
symmetric Hamiltonians were focused on developing a com-
plex extension of quantum theory [3-5]. Over the past decade,
however, it has become clear that such Hamiltonians describe
the dynamics of classical energy density within different parts
of a system, in the presence of localized sources or sinks
[6-9]. A non-Hermitian Hamiltonian H (y ) is called P77 sym-
metric if it commutes with an antilinear operator P77, where
P is the parity operator satisfying P?> =1 and 7 = UK,
where U is a unitary operator and K denotes the (antilinear)
complex conjugation operation. At y =0, H is Hermitian
and has real eigenvalues and a complete set of orthonormal
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eigenvectors that lead to a unitary time evolution. At small
non-Hermiticity y < ypr, the spectrum of H(y ) is purely real,
but the nonorthogonal eigenvectors generate a nonunitary,
bounded, oscillatory-in-time dynamics. At a critical gain-loss
strength y = ypr, eigenvalues of H become degenerate, as do
the corresponding eigenvectors. Such degeneracies, where the
nonorthogonal eigenvectors of H (ypr) do not span the space,
are called exceptional points (EPs) [10-12]. Beyond the EP,
eigenvalues of H(y) occur in complex conjugate pairs. Due
to the antilinear nature of the P7 operator that commutes
with H, an eigenstate |y,) of H with eigenvalue ¢, is a
simultaneous eigenstate of the P7 operator with eigenvalue
+1 if and only if €, is real; when €, is complex, P7T |¥,)
gives rise to the eigenvector corresponding to the complex
conjugate eigenvalue e, = €.

The transition from a P7T symmetric region (real spec-
trum) to the P77 symmetry broken region (complex conjugate
spectrum) across the EP has been extensively studied in clas-
sical wave systems where both gain and loss are readily
implemented. Realizations include coupled optical waveg-
uides [13], fiber loops [14], microring resonators [15],
acoustic setups [16], coupled mechanical oscillators [17], and
coupled electrical circuits [18,19]. Due to quantum fluctua-
tions associated with a linear gain [20], balanced gain and
loss configurations are not possible at a quantum level [21].
However, EP degeneracies are also present in dissipative sys-
tems with mode-selective losses, thus extending the ideas of
‘PT symmetry into the quantum domain, where the passive,
PT symmetric systems [22,23] have been realized with table-
top [24] and integrated quantum photonics, ultracold atoms
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FIG. 1. Schematic of a P77 symmetric dimer. (a) An LC circuit with resistance R (top) is coupled to another with negative resistance —R
(bottom) via a coupling inductor L. (b) The flow of four eigenvalues €, of the Hamiltonian Eq. (3), which describes the coupled dimer as a
function of gain-loss strength y, is shown when R(x) and L.(y) are constant. The first exceptional point occurs at y = ypr, while the second
one occurs at y = y,. For a dimer with u = 1, these values are ypr = 0.732w) and y. = 2.732wy, giving y, = 3.732ypr. (c) A simple model
for a memory resistor (memristor) is a doped, low-resistance region in series with an undoped, high-resistance region, where the dynamics
of the fractional width of the doped region x(#) = w(¢)/D are governed by dopant mobility, i.e., Eq. (8). (d) A similar model is used for the
meminductor, where the internal-state variable y(¢) denotes the linear fraction of the inductor core that is spin polarized, Eq. (20).

[25], a single nitrogen-vacancy (NV) center in diamond [26],
and a single superconducting qubit [27]. Most of these sys-
tems are modeled with a static, P77 symmetric Hamiltonian
whose eigenvalues and eigenvectors determine the P77 phase
diagram of the system. This landscape is dramatically trans-
formed when one considers P77 symmetric Hamiltonians that
are periodic in time with period 7 [28,29]. In this case, the
eigenvalues €, () of the instantaneous Hamiltonian do not
govern the system dynamics; instead, the P77 phase diagram
is determined by an equivalent static Hamiltonian H called
the Floquet Hamiltonian [25,30,31]. Another level of com-
plexity is added when we consider systems described by a
nonlinear, P7 symmetric Schrodinger equation [32]. How-
ever, in almost all cases [33] the dynamics are Markovian; that
is, the state of the system at the next instance depends only on
its state at present, but not on its history.

Here, we introduce P77 symmetric systems with memory.
Formally, this is achieved by making either the gain-loss or
the Hermitian part of the Hamiltonian history dependent. We
use active and passive LC circuits [18,19,30] as the model
because they also provide an excellent platform for topolog-
ical band structures [34-36]. Because resistive and inductive
elements with memory, i.e., memristors and meminductors,
are well understood, we use them to model memory. In
contrast to a nonlinear resistor, a memristor shows hystere-
sis in its current-voltage characteristics, and thus memristive
PT symmetric systems go beyond those with dissipation-
induced nonlinearity. The plan of the paper is as follows.
In Sec. II we review properties of a lossy RLC circuit in-
ductively coupled to an LC circuit with negative resistance
—R. Modeling and numerical results for a system where the
resistance is replaced by a memristor (and the negative resis-
tance is matched) are presented in Secs. III and I'V. Section V
has corresponding results for a system where the coupling
between the two LC circuits is mediated by a meminductor
instead of a regular inductor. We conclude with discussion in
Sec. VL.

II. COUPLED LC CIRCUITS WITH PT SYMMETRY

We start with the review of an electrical P77 symmetric
dimer [18,19,30,31]. Let us consider two identical LC circuits,
with effective, parallel resistors £R, respectively, that are
connected with a coupling inductor L, as shown in Fig. 1(a).
When the two circuits are uncoupled, the energy in the stan-
dard RLC circuit undergoes overdamped or underdamped
decay, while the energy in the —RLC circuit, with negative ef-
fective resistance, grows with time reflecting a time-reversed
dynamics. The state of the coupled system is characterized by
a real vector |¢(¢)) = [Vi(t), Va(t), I, (), L(¢), I.(t)]T, where
Viy(t) is the voltage across the first (second) capacitor,
Ii2)(¢) is the current through the first (second) inductor, and
1.(t) is the current flowing through the coupling inductor L.
Its equation of motion, determined by the Kirchhoff laws, can
be written as id;|¢(t)) = M|¢p(t)), where the purely imagi-
nary, 5 X 5 matrix M of rank 4 is given by

1 1 1
e 0 -z 0 -
R R
M=i| 1 0 0 0 0 (1)
0 i 0 0 0
1 1
t - 0 0 0

Although i0;|¢(t)) = M|¢p(¢)) is a first-order, linear dif-
ferential equation, the non-Hermitian matrix M does not
transparently reflect the conserved total energy in the cir-
cuit when 1/RC = 0. To map it into the Schrodinger-like
equation that encodes the conservation law, we note that
the circuit energy is given by £(t) = (¢(¢)|A|p(t)), where
A =diag(C,C, L, L, L.)/2 is a diagonal matrix. Therefore we
consider the dynamics of energy density by defining |¢) =
A'/2|¢) such that the norm of the state |) is the total energy
in the circuit. This mapping transforms the Kirchhoff-law
equations into

i |y) = H|y), 2
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where the purely imaginary, rank-4 Hamiltonian Hey =
A'2MA~1/? is given by

-r 0 -1 0 —u

0 r 0O -1 pu
Her = iwg| 1 0 0 0 0 [. 3)

0 1 0 0 0

uw —u 0 0 0

Here, wy =1/ J/LC is the fundamental frequency of a sin-
gle LC circuit, © = /L/L. is the dimensionless inductive
coupling between the lossy and active oscillators, and y =
1/RC = Twy is the gain-loss rate for the circuit. When y = 0,
the Hamiltonian H.g is Hermitian, and the norm of the state,
i.e., the total energy in the circuit, is conserved. We also note
that Her(y) is PT symmetric with respect to

o 0 0 1 0
P=|0 o 0|, T:U/C:[O2 _E}IC, 4)
0 0 -1 3

where o, is the standard Pauli matrix and 1 is a k x k identity
matrix. Heg also satisfies [THey = —Heg I1, where IT = PU.
This chiral symmetry is responsible for its spectrum consist-
ing of a trivial zero and two pairs of particle-hole symmetric
eigenvalues [37] given by

wo
V2
It is easy to check that €, are purely real for y < ypr =

wo(y/1 +2u? — 1) and become purely imaginary when y >
Ye = wo(y/1 + 212 + 1). Figure 1(b) shows the flow of the
four eigenvalues in units of wy as a function of the gain-loss
strength y /ypr for a strongly coupled LC circuit with u = 1.

When the dissipation y is time dependent, the electrical-
circuit dynamics still maps onto a Hamiltonian given by
Ha(t) = AY2M(1)A~'/2. On the other hand, if a conservative
circuit element varies with time, the change-of-basis matrix
A'2(t) leads to a new Hamiltonian [31]

Hl = A2(OM @A™ (t) 4 (i/2)8, InA@r).  (6)

€o =t —[242u% — T2+ /2u2 —T2)2 —412]'2, (5)

Whether the additional gauge term in Eq. (6) commutes with
the PT operator depends on the functional time dependence
of matrix A(t). However (with a little license with notation),
we will continue to call such a system a P77 symmetric dimer.
In the following sections, we will consider models where the
time dependence arises through memory in either the gain-
loss strength y or the inductive coupling .

III. MEMRISTIVE P7 SYMMETRIC MODEL

A memristor is a resistor whose resistance R(x) depends on
an internal, dimensionless state variable x [38]. The equation
of motion for the state variable x(¢), in turn, is determined
by the underlying microscopic model for the memristor. A
memristor (memory resistor) was postulated by Chua more
than half a century ago based on symmetry arguments [39].
It was realized just over a decade ago in a thin-film device
with one monolayer of TiO, and its oxygen-vacancy doped
counterpart, TiO,_s [40,41]. Since then it has become clear
that memristive systems, with their pinched-loop hysteresis

signature [42] in the current-voltage characteristics, manifest
themselves in semiconductor thin films and thermistors [43],
as well as ion channels [44] in biological membranes [45].
Here, we will consider the simplest model for its internal-
state variable [40,46]. The TiO,/TiO,_s thin film with size D
(D ~ 5 nm) can be modeled as two resistors in series, where
the size of the doped part is given by w = xD and the size
of the undoped region is D — w = (1 — x)D [Fig. 1(c)]. The
resistance of this two-terminal passive device is given by

R(x) = xRon + (1 — X)Roft, (7)

where R,, (~1 k) is the resistance of the device if it is
entirely doped and Ru ~ 102Ro, > Roy is the resistance of
the insulating TiO, device. When voltage is applied to such
a device, in addition to conduction electrons, the charge +2
oxygen vacancies also move. The effect of their motion is am-
plified due to the two-monolayer thickness of TiO,/TiO,_s,
and it determines the fractional width x(¢) of the doped region.
By equating the rate of change of x(¢) with the drift velocity
of the oxygen-vacancy dopants, we get

dx/dt = n(I/Qo)F (x). ®)

Here, [ is the electronic current through the memristor, Qy =
D?/upRoy is the characteristic charge scale for the memris-
tor, the dopant mobility up (~107'% cm? V=!s7!) is 10-12
orders of magnitude smaller than the corresponding electron
mobilities, and n = =£1 signifies whether the doped region is
shrinking or growing, i.e., the polarity of the memristor.

The window function F(x) in Eq. (8) suppresses dopant
mobility when the interface between undoped and doped re-
gions approaches the device boundaries, i.e., x — 0 or x —
1. We use a family of window functions Fj,(x) =1 — (2x —
1)?7 [46]. When p > 1, this window function gives constant
dopant mobility for most x values but cuts it off sharply
when x(t) approaches either boundary. Since x = {0, 1} are
fixed points of Eq. (8), if the time-evolved state variable
x(t) reaches either fixed point, it has no further dynamics.
However, the amount of charge required to change the state-
variable value from x = §; < 1 to x = §, < §; diverges as
(D?/4pupRon) In(8,/85). Thus, starting from an x € (0, 1), it
is impossible to reach the boundaries in a finite amount of
time [47]. In calculations, if x(¢y + 8t) reaches or exceeds the
fixed-point values while x(#p) € (0, 1), either a smaller time
step At is chosen or the updated x value is shifted to just
inside the boundaries to circumvent this numerical artifact.
This corresponds to formally choosing p — oo or, equiva-
lently, choosing the window function such that F(x) = 1 for
O<x<l,and F(0) =0=F(1).

We now consider a P77 symmetric dimer with a mem-
ristor R(x) and a balanced gain resistor that matches the
instantaneous dissipation in the memristor. Such a setup is
experimentally feasible with lock-in amplifiers and synthetic
elements. The circuit dynamics now are described by two
coupled, nonlinear, first-order equations,

10| (1)) = Hege[y CO1|¢ (1)), ©
dx_ F(x) Vi) = F(x) 2 L 10
E_nR(x—)Qo 1()_n1?(x—)Qo E( [ (1)), (10)
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where y (x) = 1/R(x)C denotes the variable gain-loss strength
and (1|y(¢)) is the first element of the energy-density state
vector |{(¢)). Note that due to nonlinearities, the system
dynamics depend on the initial state norm or, equivalently, the
initial energy in the system. Therefore the fate of the P77 sym-
metric system with memory cannot be analyzed in terms of
its state-variable-dependent Hamiltonian Heg[y (x)]. Instead,
we track the time-dependent energy £(t) = (Y (t)|y(¢)) in the
circuit. As in the standard P77 symmetric case, this circuit
energy £(t) shows bounded, periodic, oscillatory behavior for
some parameter regimes, while for others, it shows nonperi-
odic, divergent behavior. As we will demonstrate below, this
behavior can sensitively depend on the initial state |y (0))
as well. To characterize these two trends, we calculate the
long-time amplification rate,

T—>00 T

A . 11 max £(0 <t < 271) a1
mp = lim — .
amp maxE0 <t < 1)

When the system is in the P77 symmetric phase, the dynamics
are oscillatory, and therefore A,mp = 0. In the P7T broken
phase, due to the presence of amplifying modes, the energy
grows exponentially with time, and Eq. (11) characterizes its
growth rate. Since the energy £(¢) is obtained numerically, in
practice, we must choose 7 to be larger than any other relevant
timescale in the problem.

For a P7 symmetric circuit without memory, the fast
timescales are given by Ty = 27 /wy and Ty/u” > Tp. The
longest timescale is given by the inverse of the smallest eigen-
value difference, Eq. (5), and it diverges as one approaches
the static P77 threshold ypr. Thus one needs data at arbitrarily
long timescales to distinguish a system in the P77 symmetric
phase from one in the P7 symmetry broken phase. For a
memristor, the state-variable dynamics timescale depends on
the dopant drift velocity or, equivalently, the applied voltage
strength vy and is given by T, = D? /voup [46]. Equating
these two timescales, we obtain the characteristic voltage
scale vo = D?wo/2m wp; this voltage gives rise to a linear drift
of size D in one oscillation of the LC circuit. Note that since
the memristor value is confined within R, < R(x) < Ry, the
dissipation strength y (x) is also bounded between y,g and .
If both strengths are below ypr, the time-averaged dissipation,
defined as

1 t
y(@) = ;/ ylx@Hldt’, 12)
0

will be smaller than the threshold for any t. Then, in the
absence of any Floquet resonances [28,29], the system
dynamics will be bounded and oscillatory. Similarly, if both
are above ypr, so is the time-averaged dissipation, and with
the same caveat, the system will be in the P7 symmetry
broken region, as indicated by a divergent circuit energy
growth. Therefore, for simulations, we choose 0 < yofr < ¥pr
and YPT g Yon g Ve-

Figure 2 shows the typical energy dynamics £(¢) for a
memristive dimer as a function of y,g. The circuit parameters
are 1 = 0.3, Yon = 2ypr, and x(0) = 0.5. The initial state

10° ‘ A
- - Yot = 0.259p7 ",.""
Yot = 0.57pT i

10} oy = 0.757p7 s E
— "t = 1ypT :

— %t = 0.59pr
— Yt = 0.75ypr

AU

m

20 25 30 35 40 45
unitless time ¢/T;

scaled circuit energy £(t)/€(0)

FIG. 2. Scaled circuit energy £(¢)/£(0) as a function of unitless
time ¢ /7, shows a transition from oscillatory behavior at small dis-
sipation Yo /ypr < 0.5 to exponential growth at large dissipation,
Yot/ Yer = {0.75, 1}. The fast oscillations with period Ty = 27 /w
on top of the slow dynamics are present in both phases. The circuit
parameters are Yo, = 2ypr, 4 = 0.3, x(0) = 0.5, and [ (0)) = |y)
with a small initial voltage V;(0) = 0.5vy. Inset: the internal-state
variable shows small-amplitude oscillations about its initial value in
the PT symmetric phase, whereas in the P7T broken phase, x(¢)
oscillates while reaching both of its extrema.

vector | (0)) of the system is given by

l¥1) = v/C/2[V1(0),0,0,0,0]", 13)
Vl(()) = O.SU(). (14)

At low dissipation strength, Yo = {0.25, 0.5}ypr, the scaled
circuit energy shows bounded oscillations whose period in-
creases as the dissipation is increased. At large dissipations,
Yoft = {0.75, 1}ypr, the scaled circuit energy shows exponen-
tial growth that is characteristic of a P77 symmetry broken
phase. The inset in Fig. 2 shows the corresponding dynamics
of the internal-state variable x(¢). In the P77 symmetric phase,
the doped fraction x(#) undergoes small oscillations around its
mean value, whereas in the P77 broken phase, it reaches its
extremal values, thus driving the dissipation between y,, and
Yoft over the timescale Tp. The results in Fig. 2 are, for the
most part, expected even for a P7 symmetric dimer without
memory. In the following paragraphs, we will show the unique
features that arise from the memristive nature of dissipation
and the resultant nonlinearity in this system.

Figure 3(a) shows the temporal evolution of circuit en-
ergy for four initial states | (0)) = {20, 40, 60, 80}|v1), with
circuit parameters i = 0.3, Yon = 2¥pT, Yoff = 0.3ypr, and
x(0) = 0.5. At small initial energies £(0) = (¥ (0)|v(0)), the
dynamics are oscillatory with a period that increases with
increasing energy; this behavior changes over to exponential
growth when |y (0)) = 80|¢). In a linear P77 symmetric
dimer—static or Floquet—all of these states are equivalent to
[¥1) and will exhibit identical results for the scaled circuit
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scaled circuit energy £(t)/£(0)
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unitless time ¢/Tj

FIG. 3. Nontrivial dynamics of a 7 symmetric dimer with memristive dissipation. (a) Depending on the initial state norm £(0), the scaled
circuit energy shows oscillations or exponential growth. (b) At small initial voltages V;(0) = £0.5v,, the circuit energy shows oscillatory
behavior after an exponential-growth transient. At large initial voltages, V;(0) = £40vy, the scaled circuit energy either oscillates without
notable amplification (| (0)) = +80]yr,)) or grows exponentially (| (0)) = —80|yr,)). (c) For the same initial energy, changing the initial
state from o) to —a|y;) shows qualitatively different energy dynamics; here, 0.2 < o < 80 spans all different initial states considered.
(d) Initial states 75|yry) and 75P|y) with the same norm show oscillatory and exponential behavior, as do states |[V4) and |{3) = P|Y4),
respectively. Insets: the average dissipation strength 7 (¢)/ypr is less than unity at long times for oscillatory behavior and exceeds unity at long
times for exponential behavior. The rest of the system parameters for results in (a)—(d) are given in the text.

energy £(¢)/€(0). Instead, due to the nonlinearity introduced
by dynamics of the internal-state variable, now the fate of the
system depends on the initial circuit energy.

Figure 3(b) shows the diverse energy dynamics that occur
for four initial states given by | (0)) = =£|v), £80|¢); the
initial doped fraction is x(0) = 0.9, and the rest of the circuit
parameters are the same as in Fig. 3(a). We see that the fate of
the scaled circuit energy depends not only on the initial energy
but also on the sign of the initial voltage V;(0), or equivalently,
the polarity n = %1 of the memristor. This can also be inter-
preted as the phase of the initial state |1 (0)). (Recall that the
phase of the purely real state vector | (¢)) is restricted to O or
). Specifically, at small initial energies, i.e., V;(0) = 0.5vy,
the scaled energy shows an exponential-growth transient fol-
lowed by an oscillatory behavior that persists at long times

t/Ty ~ 10% (not shown). At higher initial energy, the system
starting in the initial state |{(0)) = —80|y;) shows a clear
oscillatory energy dynamics with minimal net amplification,
whereas with initial state +80]v;), the scaled circuit energy
undergoes exponential amplification.

Figure 3(c) shows results for a moderately cou-
pled dimer with w =0.5, Yon =2¥pr, Yot = 0.3vpr,
x(0) =0.9, and four initial states given by |¥(0)) =
{—0.2, —26.8, —53.4, —80}|¢1). As the negative prefactor of
|[1) is increased in magnitude, we see that the scaled circuit
energy £(1)/€(0) settles into oscillations about a mean that
is monotonically suppressed. When the initial circuit energy
£(0) is small, V;(0)/vg = —0.1, the scaled energy starts
oscillating after an exponential-growth transient similar to
that seen in Fig. 3(b) for small initial voltages. It is important
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to note that this behavior also contrasts with Fig. 3(a), where
the largest V;(0) value resulted in a P77 symmetry broken
phase.

Lastly, in Fig. 3(d), we explore the behavior of the
circuit energy for four initial states given by 75|y),
[Y2) =T75PIyn),  I¥3) = VL/2(0,0,1,(0),0,0]",  and
|¥4) = Ply). The initial voltages Vi(0) = V,(0) = 35v,
or initial currents /;(0) = I,(0) are chosen such that all
states have the same initial energy (or state norm); the
rest of the circuit parameters are the same as those for
Fig. 3(a). We see that when the system starts with nonzero
voltage on the dissipative LC circuit (75|y)), after a growth
transient, the scaled circuit energy oscillates with a mean
that is below the initial circuit energy. In contrast, when
the system starts with nonzero voltage on the amplifying
LC circuit (|yp) = 75P|y1)), the scaled energy diverges
exponentially indicating a P7 symmetry broken state. In
contrast, when we start with a nonzero inductor current in
the dissipative LC circuit (Jy3)), the scaled energy shows
exponential growth, while switching the nonzero initial
current to the amplifying LC circuit (|y4) = P|¥3)) leads
to stable oscillatory dynamics for the scaled circuit energy.
These properties are dramatically different from those of
a traditional, memoryless P7 symmetric system. In the
latter, different distributions of the initial energy density only
introduce temporal shift in the dynamics of scaled circuit
energy.

The insets in Fig. 3 show the evolution of the average
dissipation strength y(¢) relative to the P77 breaking threshold
strength ypr in a PT symmetric dimer with no memory. A
common pattern observed is that when their ratio is less than
unity at long times, the scaled circuit energy shows oscil-
latory behavior, whereas if the ratio exceeds unity at long
times, the scaled circuit energy grows exponentially. In the
following section, we will show that this naive expectation is
wrong.

IV. PT SYSTEM WITH SELF-ORGANIZED FLOQUET
DYNAMICS

In realistic memristors, the resistance of the undoped re-
gion can be orders of magnitude higher than that of the doped
regions. When the initial state voltage is sufficiently high,
the internal-state variable x(¢) switches periodically between
0 and 1 at frequency wy as shown in the inset in Fig. 2. It
implies that the gain-loss strength in the P77 symmetric dimer
effectively switches on and off, with y,i < Yon; that is, the
system behaves as if it has a time-periodic gain-loss strength
whose periodicity is given by Ty = 27 /wy.

It is known that in memoryless PT symmetric systems
with periodic non-Hermiticity, the landscape of exceptional
points that separate the P7 symmetric phase from the P7T
symmetry broken phase is dramatically altered relative to its
static limit [28,29]. In particular, the P77 broken phase occurs
at vanishingly small gain-loss strengths when the modulation
frequency wy is an odd subharmonic of the Hermitian energy

gap A = wy(y/1 +2u2 — 1) of the system [25,30,31],

wo 1 1

s)

AT (T2 -1) @i+D)

where n > 0. This analogy suggests that at pu, =
v/ (2n+3)(2n 4+ 1)/2, the memristive P77 symmetric system
might show similar properties. The strongest P77 symmetry
broken region should then occur at the first resonance
o = +/3/2~ 1225 for a vanishingly small gain-loss
strength Yott <K Yon ,S VPT-

We therefore carry out simulations with Egs. (9) and (10)
for circuit parameters Yo = 0.01ypr, 0.1 < Yon/yer < 0.9;
initial doped fraction 0.1 < xp < 0.9; and different initial
states and memristor polarities. These initial conditions ensure
that time-averaged dissipation remains below the static P77
symmetry breaking threshold at all times, i.e., Y (f) < ypr.

Figure 4(a) shows the typical plot for the amplification
factor Aamp, Eq. (11), in the p-yo, plane. It is obtained with
[ (0)) = 70|vr1), xo = 0.85, and T = 1007y. We see that the
system is in the P7 symmetric state (Aamp = 0) for most
of the region except in the vicinity of o = 4/3/2 = 1.225,
where the amplification factor is positive and grows with
increasing y,,. These qualitative features remain the same
for different initial circuit energies, state-variable values xy,
and memristor polarities. Figure 4(b) shows the temporal
evolution of the scaled circuit energy for |y (0)) = 70|y),
Yon = 0.4ypr, and three different couplings marked by squares
in Fig. 4(a). At u = 1.1, the system is in the P77 symmetric
phase with an approximately constant total energy. At slightly
higher coupling 1 =~ 1, the scaled energy shows a clear ex-
ponential growth indicating a P77 symmetry broken regime.
As the coupling is increased further to p = 1.3, the system
again enters the P77 symmetric phase, albeit with an enhanced
mean for the scaled circuit energy. The inset in Fig. 4(b) shows
the dynamics of the internal-state variable x(¢) at the three
coupling values. In the P77 symmetric region (1 = 1.1), the
doped fraction oscillates without reaching both extrema; at
w = 1.225, this changes to square-wave oscillations between
the two extrema; and at u = 1.3, the system is back in the
PT symmetric phase, and the x(¢) oscillation range is reduced
again.

Figure 4(c) shows corresponding time-averaged gain-loss
strengths (7). We see that at © = 1.1 and p = 1.3, the aver-
age y saturates to ~5% of the static threshold value, whereas
for u = 1.225, it saturates towards ~20% of the static thresh-
old. In all cases, however, it is significantly smaller than unity.
This emergence of a positive amplification factor at specific
couplings and very small gain-loss strengths is a key hallmark
of the Floquet P77 symmetry breaking phenomenon [25,28—
31]. It can be qualitatively understood as follows: The energy
oscillates between the lossy LC unit and the active LC circuit
at frequency A(u) that is governed by the dimensionless cou-
pling. If it is on the gain unit when x = 1 and moves to the loss
unit when x = 0, the circuit energy will continue to amplify
even if the gain-loss strengths yo and y,, are small relative
to ypr. However, this synchronization requires the memristor
switching frequency to match the energy sloshing frequency,
i.e., u = /3/2. Our results for the P77 broken phase at small
time-averaged y in the vicinity of the primary resonance re-
main qualitatively unchanged in the limit of vanishing gain
and loss, i.e., Yoff < Yon — 0. We also note that numerically,
we do not find any evidence for the P7T broken region at
higher values of u, suggesting the absence of such an effect at
odd subharmonics.
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FIG. 4. Self-induced Floquet dynamics. (a) Plot of Aump, Eq. (11), in the small gain-loss and large coupling (i > 1) domain shows
a vertical, PT symmetry broken region near o ~ 1.225. Three red squares along the white dot-dashed line (Von/ypr = 0.4) are at
w = {1.1,4/3/2, 1.3}. (b) The scaled circuit energy shows oscillatory behavior at u = 1.1; it changes over to exponential at u = 1.225,
and back to amplified, oscillatory behavior at ;= = 1.3. Inset: the internal-state variable x(¢) oscillates between both extrema in the P77 broken
phase; in the P77 symmetric phase, x(¢) oscillations do not reach small values. (c) Time-averaged gain-loss strength 77 (¢) at each of the three
w values remains well below the static P77 threshold (black dot-dashed line), showing a key feature of P77 symmetry breaking due to Floquet

modulation of gain-loss strength.

We emphasize that the self-induced Floquet dynamics and
resultant P77 broken phase at vanishingly small 'y, are valid
over a wide range of parameters and do not require “fine-
tuning” the initial state |1 (0)). They remain valid irrespective
of the initial state energy and different distributions of energy
density across different elements. Only at large initial energies
does the phase of the initial state strongly affect the amplifica-
tion factor, a result consistent with Fig. 3(b). In all cases, as is
expected, the nonzero amplification factor increases with yop,
increases with £(0), and decreases with the initial fraction of
the doped region x(0).

The wide range of dynamics displayed by the circuit en-
ergy in a memristive P7 symmetric dimer raises several
considerations. First, the approximation of a constant negative
resistor —R or memristor —R(x) breaks down at sufficiently
large net amplification £(r)/£(0), just as the approximation of
a constant gain coefficient breaks down in the optical domain.
Therefore, in reality, the exponential growth in the circuit
energy will saturate and reach a steady-state value in the P77~
symmetry broken region, just as it does in the optical domain.
Second, due to the very large parameter space in Egs. (9) and
(10), gaining a global understanding of whether the trajecto-
ries of |1/ (¢)) in the four-dimensional space R* exhibit closed
orbits, fixed points, open diverging orbits, or chaotic behavior
is difficult. On the other hand, with an increase in the number
of studies of P77 symmetric electrical lattice models [48] and
the easy availability of memristor emulators [49], experimen-
tal investigation of these systems seems highly feasible.

V. PT7T SYMMETRIC DIMER WITH MEMINDUCTIVE
COUPLING

A meminductor (memory inductor) is a two-terminal
passive device whose inductance L.(y) depends on a dimen-
sionless state variable y whose dynamics, in turn, are governed
by the current /. flowing through the inductor [38]. Such a
device shows a pinched hysteresis loop in the plane spanned

by the current /. and the time integral of the voltage (called the
flux) ¢ across the device [50]. The simplest, intuitive model
of a meminductor is a solenoid with a ferromagnetic rod that
can move in and out of its core [51]. However, the motion
of the rod depends on the current /. through a second-order
derivative, i.e., d%y/dt* o I. [51], and sets it apart from the
viscous, drift-velocity model for the internal-state variable of
a memristor, Eq. (8).

To circumvent this distinction, we only consider memin-
ductors in which the internal-state variable y(¢) has a viscous,
drift dynamics [38], i.e.,

¢ = Lc(y)lc’ (16)

dy/dt = f(V), a7

where the function f(y) depends on the physical realiza-
tion of a meminductor and corresponding system parameters.
Inspired by the ferromagnetic-rod example, we consider
L.(y) =yL. + (1 —y)L_., where y(¢) is the fractional size of
the “effective magnetic core” [Fig. 1(d)]. One microscopic
mechanism for generating a current-induced spin polarization
(or magnetization) is the spin Hall magnetoresistance effect
[52,53], which enabled the realization of the meminductor in a
platinum yttrium-iron-garnet (Pt/YIG) hybrid structure [54].
We note that since Eq. (16) relates the flux to the current, the
Kirchhoff-law equation for the current through the inductor is
modified to

dl. (Vi—V,) ALdy

di =~ L, L. dr
where AL = L. — L_ is the maximum change in the induc-
tance. It is worth its while to emphasize that the second,
I.-dependent term in Eq. (18) is absent for an inductor without
memory. Its presence changes the sign of the gauge term
introduced by a time-dependent change of basis, Eq. (6), giv-
ing rise to a new, effective Hamiltonian Hy = Heg[1(y)] —
(i/2)9, InA(y). Thus, to investigate energy dynamics in a

I, (18)
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meminductive dimer, we solve the following set of coupled,
nonlinear equations,

10,19 (1)) = Hee LY (1)), 19)

dy FO»),  Fo) [ 2
& =g k=" [T SO, o

where 7 is the polarity of the meminductor, F(y) is a win-
dow function that suppresses the change in y(¢) near its fixed
points, and Q. is the material-dependent characteristic charge
that generates sufficient spin accumulation to change y from
zero to unity. The corresponding characteristic current scale
for the coupling meminductor is given by iy = woQ.. This
phenomenological drift model, Eq. (20), produces key me-
minductor features such as a pinched-loop hysteresis in the
¢-1. plot for an alternating current input [38,54].

For a pair of £RLC circuits with variable coupling in-
ductance L., the dimensionless gain-loss strength is given by
[ = y/wy = /L/CR?. The threshold coupling at which the
memoryless PT symmetric dimer transitions from the PT
broken region at 4 = 0 to a P77 symmetric region is given by

upr = +/L/Lpr = /T(T +2)/2. 1)

When the meminductance value changes from maximum to
minimum, the coupling increases, potentially pushing the
system into the P77 symmetric region; on the flip side, the
reduced coupling may push the system into the P77 broken
region. We investigate the behavior of the system for different
meminductor strengths. The dimensionless gain-loss strength
in each circuit is I' = 0.5, the initial magnetic-core fraction
is given by y(0) = 0.5, and the initial state vector |¢(0)) is
given by

1x1) =10,0,0,0,i]". (22)

Note that we specify |¢(0)) instead of the energy-density
state vector |y (0)) because the latter also depends upon y(0),
i.e., the initial coupling meminductor value.

Figure 5(a) shows the transition from a P77 broken phase to
a’P7T symmetric phase that occurs when the coupling strength
is increased; the vertical axis is logarithmic. Figure 5(b) shows
results for . = 1.3upr and w. = {1.4, 1.5} upr. When the
initial state is |x;), as is seen in Fig. 5(a), the system is in
the P77 symmetric phase with bounded oscillations for the
scaled circuit energy. In contrast, when the initial memin-
ductor current is reversed, i.e., the initial state is given by
—|x1), the system goes into a P7 symmetry broken state
with exponential growth for the scaled circuit energy. The
inset shows dynamics of the internal-state variable y(¢). The
key difference between oscillatory behavior and exponential
growth is that for the latter, y(¢) switches between the two
extrema in an almost square-wave fashion. Although we have
shown only two instances of this highly unusual behavior, it is
generically found over wide parameter ranges. It is solely due
to the internal dynamics, or memory, of the coupling inductor
that the fate of the system depends on the sign of the initial
state, with states &|x;) leading to P7T symmetric and PT
broken states, respectively.

Figure 5(c) shows a typical instance where the circuit
energy dynamics are stabilized by increasing the initial me-

minductor current. The circuit parameters are I' = 0.5, y(0) =
0.5, and (-, u<) = (1.1, 1.3)upr. We see that the exponen-
tial growth for the initial state |x;) changes to an oscillatory
energy dynamics for the state 100] x;). This qualitative change
in the dynamics is reflected in the y(z) dynamics [Fig. 5(c),
inset], where a square-wave modulation between extremum
values corresponds to the P77 symmetry broken state whereas
oscillations that do not reach both extrema show the PT
symmetric phase. Another example of stabilization is shown
in Fig. 5(d); here, the circuit parameters are (u-, <) =
(1.5, 1.7)ppr. For initial state |x;), the scaled circuit energy
decays before settling into a constant-amplitude oscillatory
behavior. When the initial state is changed to 50|x;), that
decay is arrested, and the system settles into an oscillatory
dynamics. The inset in Fig. 5(d) shows that both amplifying
and decaying cases have an internal-state variable y(z) that
switches between the two extrema.

Lastly, we obtain the landscape of P77 symmetric and P77~
broken phases via the amplification factor Aayp in the p-pt-
plane for initial states &|x;). The relevant circuit parameters
are I' = 0.5 and y(0) = 0.5. The top plane in Fig. 5(e) shows
that at small couplings - -~ /upr S 1, the system is in the PT
broken phase. As both couplings are increased, emergence of
the P77 symmetric phase is signaled by A,mp, = 0. However,
this trend is not monotonic. When the weakest coupling -
exceeds upr, Eq. (21), the system shows a reentrant P7T
symmetry broken phase. The bottom plane in Fig. 5(e) shows
corresponding results for a system with initial state —|x;).
We see that in the region p. - /upr S 1, changing the sign
of the initial meminductor current does not change the fate
of the system. On the other hand, some regions at moderate
coupling values exhibit a change from exponential to oscilla-
tory circuit energy dynamics. Since these results depend upon
the internal-state-variable value y(0) and the initial circuit
energy, Fig. 5(e) provides only a glimpse of the rich and di-
verse amplification-factor landscape for a meminductive P7T
symmetric dimer.

The results in this section, too, open up many more ques-
tions than they answer. The nonlinear, initial state sign- and
strength-dependent dynamics of such a system, combined
with the multidimensional relevant parameter space, make it
hard to obtain significant analytical results or straightforward
insights into the long-term dynamics. Our results suggest that
a dynamical systems theory approach may be required to
understand the long-term temporal behavior of P77 symmetric
systems with memory.

VI. DISCUSSION

During the past decade, open, classical systems with bal-
anced gain and loss have seen an explosion of interest. This
interest has been driven by their counterintuitive behavior,
their diverse experimental realizations that span decades in
relevant space scales and timescales, and the rich landscape
of their properties that emerges when simple, canonical, static
models are generalized to include time periodicity (Floquet),
time delay, noise, correlations, and nonlinearities. Here, we
have presented a new paradigm for P7 symmetric sys-
tems. By introducing memory in a physically meaningful and
achievable manner, we have investigated the dynamics of a
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FIG. 5. Dynamics of a meminductive, P77 symmetric dimer. (a) Scaled circuit energy £(¢)/E£(0) shows transition from an exponential

growth at small u_ = {1.2, 1.3} upr to bounded oscillatory behavior at large n. = {1.4, 1.5}upr; I' = 0.5, y(0) =

0.5, and initial state is | x).

(b) With initial state —| x), the scaled circuit energy dynamics changes from bounded oscillatory behavior to an exponential growth; I' = 0.5,
y(0) = 0.5, and p. = 1.3upr. Inset: y(¢) oscillates in a square-wave fashion between its extremum values in the P77 broken phase, whereas
it does not fall below 0.5 in the P77 symmetric state. The fast oscillations with period Ty = 27 /w, on top of the slow dynamics are present
in both phases. (c) Exponential growth of the scaled energy for initial state |x;) is stabilized to oscillatory behavior when the initial state is
changed to 100|x,), i.e., the initial meminductor current is increased 100-fold; I' = 0.5, y(0) = 0.5, and (u~, u-) = (1.1, 1.3)upr. (d) For
(U=, uo) = (1.5, 1.7)upr and initial state |x;), the circuit energy decays before settling into bounded, oscillatory behavior. This decay is
arrested for an initial state 50| x;). The insets in (c) and (d) show snapshots of the y(¢) dynamics. (¢) Amplification factor Aamp(it=, p<) in the
lower half plane (. greater than p- ) for initial states &| ) shows differences seen in (b).

‘PT symmetric electric dimer. The nonlinearity introduced by
the internal-state variable that instills the memory, we find,
leads to circuit energy dynamics that depend on both the
strength and the sign of the initial state. Surprisingly, a PT
symmetric electric dimer with memristive gain and loss shows
self-organized Floquet dynamics that lead to a P7T broken
phase at small gain-loss strength and large coupling. Similar
results are obtained when the coupling between the gain and
loss LC circuits has memory.

It is worthwhile to point out that the energy dynamics’
sensitivity to the sign of the initial state [Figs. 5(b) and
5(e)] is most unusual. Typical models for the Schrédinger
equation have nonlinearities that depend on the absolute value
of elements in the state vector (or the wave function) and

thus do not become sensitive to the global phase of the state
vector. This aspect distinguishes P77 symmetric systems with
memory from traditional nonlinear P77 systems, or systems
where the dissipation is nonlinear because, for example,
the resistance in the circuit is nonlinear, but does not have
memory. We note that due to high dimensionality of the
state-vector space, it is challenging to identify distinct initial
states that evolve to the same state at a later time and diverge
again in their temporal evolution; nonetheless, the memory
(of the current flow) is built into the dissipation in this model
through Egs. (9) and (10).

Our results expand the pool of simple, canonical, P7T
symmetric models. The notion of memory or non-Markovian
behavior arises across diverse platforms, both classical and
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quantum. In particular, some non-Markovian aspects of quan-
tum information and its flow between the system and its
environment have been studied in dissipative [55] or P77 sym-
metric quantum models with a static Hamiltonian [56-58].
Our work, on the other hand, introduces memory into the ef-
fective non-Hermitian Hamiltonian and leads to nonlinear and
sign-dependent effects that are absent in the aforementioned
works. Our memory mechanism is implemented through the
internal-state-variable dynamics, a non-local-in-time memory
kernel, or a process tensor. Our work suggests that adding the

non-Markovian aspect to P77 symmetric systems will lead to
nontrivial, unanticipated results.
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