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ZN lattice gauge theory in a ladder geometry

Jens Nyhegn , Chia-Min Chung , and Michele Burrello
Niels Bohr International Academy and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen,

Universitetsparken 5, 2100 Copenhagen, Denmark

(Received 17 November 2020; revised 14 January 2021; accepted 15 January 2021; published 10 February 2021)

Under the perspective of realizing analog quantum simulations of lattice gauge theories, ladder geometries
offer an intriguing playground, relevant for ultracold atom experiments. Here, we investigate Hamiltonian lattice
gauge theories defined in two-leg ladders. We consider a model that includes both gauge boson and Higgs
matter degrees of freedom with local ZN gauge symmetries. We study its phase diagram based on both an
effective low-energy field theory and density matrix renormalization group simulations. For N � 5, an extended
gapless Coulomb phase emerges, which is separated by a Berezinskii-Kosterlitz-Thouless phase transition from
the surrounding gapped phase. Besides the traditional confined and Higgs regimes, we also observe a novel
quadrupolar region, originated by the ladder geometry.
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I. INTRODUCTION

Gauge theories are both the backbone of the standard
model of particle physics and the key to understand a wide
variety of condensed matter systems [1]. Their pervasive im-
portance, however, is flanked by the extreme difficulty in
obtaining exact solutions for such strongly correlated models:
many nonperturbative phenomena of quantum chromody-
namics and other gauge theories remain open challenges
at the core of intense research efforts [2]. These difficul-
ties prompted a long-standing endeavor in the simulation of
gauge theories, generally based on the framework of lat-
tice gauge theories (LGT) [3] and Monte Carlo techniques,
which achieved many accurate results, including, for exam-
ple, the definition of both the hadrons and light mesons
spectra [4].

In addition to these traditional simulations, novel strategies
to analyze gauge theories are being explored in the last years,
based on the knowledge acquired in the field of classical and
quantum simulations of many-body quantum systems (see, for
example, the reviews [5–8]). These efforts develop on several
directions and include new effective theoretical approaches
to LGTs, the experimental realizations of the building blocks
for their quantum simulation (for instance in trapped ion [9]
and ultracold atom systems [10–14]), and tensor network
calculations based on the Kogut and Susskind Hamiltonian
formulation of LGTs [15].

The general development of these novel approaches relies
on implementing progressive steps of increasing complexity
on several levels. On one side, Abelian LGTs have been the
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first basic platform to test these techniques, before consider-
ing non-Abelian models. On the other, one-dimensional (1D)
quantum systems offer the easiest playground to test tensor-
network simulations before addressing higher dimensions.

Concerning the simulation of Abelian gauge theories and
quantum electrodynamics (QED), for most numerical and
experimental quantum simulations, it is useful to restrict the
number of degrees of freedom in the considered many-body
systems. Two main possibilities have been considered: (1) to
maintain a continuous U(1) gauge symmetry by truncating the
maximal value of the electric field flux propagating in each
link; this is consistent with a quantum link model approach
[16–18] or with a truncation of the choices of the gauge boson
states corresponding to different representations of the U(1)
group [19–21]; and (2) to consider ZN gauge theories [22–31]
which reproduce the U(1) physics in the large N limit and
rapidly converge to the exact compact QED observables in
one dimension [18] (see also [32]).

Concerning the dimensionality of the systems, very
recently there have been first attempts to investigate two-
dimensional (2D) models with Abelian gauge symmetries.
Truncated U(1) models have been studied based on both the-
oretical [33,34] and finite-size tensor-network investigations
[35]; the phase diagram of the pure Z3 LGT, instead, has
been studied with both infinite-size tensor networks [30] and
finite tensor networks combined with variational Monte Carlo
procedures [31].

In this work, we address ZN LGTs in the geometry of
ladder systems. This geometry offers an interesting com-
promise between one and two dimensions: on one side,
it is the simplest geometry featuring plaquette interactions,
thus enabling a full investigation of the Kogut and Susskind
Hamiltonian; on the other, its quasi-1D nature allows us to
develop an effective quantum field theory based on bosoniza-
tion [36], which guides us in the exploration of the phase
diagram of the model. Furthermore, ladder geometries have
been very recently adopted for small-size digital quantum
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simulations with superconducting qubits of a truncated non-
Abelian SU(2) lattice gauge model [37].

Our aim is to investigate the ZN models independently on
their continuum and U(1) limit. Models with discrete Abelian
gauge symmetries, indeed, have recently been a focus of
attention on their own; for instance, several ZN symmetric
models have been discussed in the context of 2D topological
order [38–41]. Furthermore, the last generation of experi-
mental platforms for quantum simulators based on Rydberg
atoms displayed the emergence of phases with discrete ZN

symmetries [42].
In general, these Abelian LGTs constitute simplified mod-

els in which the gauge bosons mediating the interactions
among the matter particles behave like photons and do not
directly interact with themselves. Despite this simplifica-
tion, Abelian models are known for displaying phenomena,
such as confinement, which are common to more complex
non-Abelian theories such as, for example, quantum chro-
modynamics, which is characterized by a non-Abelian SU(3)
gauge symmetry [2]. In particular, several mechanisms pro-
posed to explain the confinement forces in SU(N) symmetric
models are tied to their Abelian ZN center symmetries (see,
for instance, Ref. [43]). Therefore, the study of confinement in
ZN models can shed light also on more advanced non-Abelian
theories. In this respect, we will focus on several properties
related to the confinement and the screening of the electric
ZN charges in the ground states of our model. In particular, we
choose to study a ZN symmetric model with electric charges
represented by bosonic Higgs matter degrees of freedom and
we will identify the emerging thermodynamic phases and
regimes based on the behavior of static and dynamical charges
of the system.

In the following, we will investigate the phase diagram
and main features of the ZN Abelian gauge theories with
Higgs matter. In Sec. II we introduce the model in the lad-
der geometry. In Sec. III we study the pure lattice gauge
theory limit and we show that the electric field term in this
quasi-1D system always dominates over the magnetic energy,
thus leading the model into a confined phase for every N .
In Sec. IV we introduce the Higgs matter and we set up a
low-energy field theoretical description of the model based
on bosonization. Section V is devoted to the renormalization
group (RG) analysis and density matrix renormalization group
(DMRG) simulation of the model, focusing on its thermo-
dynamic phases and their properties in terms of the main
observables. We show that for N = 2, 3, 4 the phase diagram
is, in general, trivial and displays only a single gapped phase
interpolating between the confined and Higgs regimes. For
N � 5, instead, an extended gapless phase appears which
we interpret as a Coulomb phase. In Sec. VI we discuss the
possible extension of the model to a larger number of legs and
in Sec. VII we present our conclusions. The Appendixes are
devoted to several details of the analysis of the model and its
renormalization group study.

II. THE GAUGE THEORY IN THE LADDER GEOMETRY

The quantum simulation of ladder systems has been
broadly investigated in connection with the introduction of
artificial gauge fluxes; in ultracold atom setups, ladders can be

FIG. 1. Schematic representation of the terms in the gauge-
invariant Hamiltonian (3). Squares and circles refer to Higgs matter
and gauge boson degrees of freedom lying, respectively, on the
vertices and links of the ladder. The yellow circle depicts the elec-
tric field energy, the orange square the matter mass, the green link
represents a rung tunneling term, and the blue plaquettes displays
the magnetic plaquette interaction. In red we depict one of the gauge
constraints (dashed ellipse). The dashed purple rectangle depicts the
first unit cell on the left (rough boundary); the boundary conditions
on the right are of the smooth kind.

realized either in real 2D systems [44] or using inner degrees
of freedom to implement a synthetic dimension [45,46]. On
the theoretical side, their study is closely related to the coupled
wire construction of interacting topological phases of matter
(see Ref. [47] and references therein).

In connection with lattice gauge theories, ladder models
offer the simplest scenario to study the plaquette interactions
which are at the basis for the appearance of deconfined and
topological phases in two space dimensions. In the following,
we consider an Abelian ZN theory, in which the connection
and plaquette operators are unitary [48]. Our model is com-
posed by bosonic ZN gauge field degrees of freedom living
on the edges of the ladder, which represent N possible values
of the electric field, and “frozen” Higgs matter degrees of
freedom lying on the ladder vertices, which represent N dif-
ferent charge states (see Fig. 1). Both the edges and vertices,
therefore, are characterized by an N-dimensional local Hilbert
space and we introduce two pairs of clock operators acting
on the gauge and matter degrees of freedom respectively. The
first pair is given by τ ∼ ei 2π

N E and σ ∼ eiA, which affect the
gauge degrees of freedom and are respectively related to the
electric field operator E and the magnetic connection A. They
obey the algebra of ZN clock operators:

σ N = τN = 1, σ † = σ−1, τ † = τ−1, σ τ = ei 2π
N τσ.

(1)
In the following, we will label with indices σr,↑ and σr,↓ the
clock operators on the links in the upper and lower leg of the
ladder at position r. σr,0 refers instead to the clock operators
along the rung r. The same indices apply to the τ operators.

The second pair of clock operators is given by ζr,y and ηr,y

which, instead, act on the Higgs matter degrees of freedom
lying in the upper (y = ↑) or lower (y = ↓) legs. ζ , in par-
ticular, represents the phase of a Higgs field, whose radial
mode is frozen to unity (London limit). Therefore, ζ and ζ † re-
spectively annihilate and create a ZN electric charge, whereas
η = ei 2πq

N is linked to the charge operator q = 0, . . . , N − 1
defined modulo N . They obey the same onsite algebraic rela-
tions as the previous clock operators:

ζ N = ηN = 1, ζ † = ζ−1, η† = η−1, ζη = ei 2π
N ηζ .

(2)
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Based on these definitions, the Kogut-Susskind Hamiltonian
[15,49] in the ladder geometry is:

H = −1

g

L−1∑
r=1

(σr,0σr+1,↑σ
†
r+1,0σ

†
r+1,↓ + H.c.)

− g
∑

s=↑,↓,0

L∑
r=1

(τr,s + τ †
r,s) − 1

λ

∑
s=↑,↓

L∑
r=1

(ηr,s + η†
r,s)

− λ

[∑
s=↑,↓

L−1∑
r=1

ζ †
r,sσ

†
r+1,sζr+1,s +

L∑
r=1

ζ
†
r,↑σr,0ζr,↓ + H.c.

]
.

(3)

The terms appearing in this Hamiltonian are represented in
Fig. 1. The first corresponds to the plaquette interaction; it
is a function of the σ connection operator which define the
mass of the ZN magnetic fluxes in the rth plaquette of the
ladder. The second term, with coupling constant g, provides
a dynamics to the magnetic fluxes and defines the electric
field energy density on each link of the ladder. The term in
1/λ represents the mass of the electric charges of the model,
whereas the last line corresponds to their tunneling mediated
by the gauge degrees of freedom. In this work, we consider
λ and g as free parameters, which are not directly related to
the continuum U(1) theory. In this respect, we adopted the
notation in Ref. [1] and we label by g the coupling constant for
the gauge boson interactions, rather than using the standard
particle physics g2 notation [15].

The Hamiltonian (3) corresponds to rough boundary con-
ditions on the left side and smooth boundary conditions on the
right side (see Fig. 1). In this situation, the ladder geometry
can be described in terms of L unit cells, each including two
matter sites and three gauge-boson links. Such Hamiltonian
can be supplemented by boundary operators:

Hleft bound. = −λb

∑
s=↓,↑

(σ †
1,sζ1,s + σ1,sζ

†
1,s). (4)

This additional term allows for single matter charges to enter
or leave the system from the left boundary, thus breaking their
global charge conservation if λb �= 0.

The total Hamiltonian H + Hleft bound. is symmetric with
respect to the following local gauge transformations for the
bulk vertices of the ladder:

Gr,↑ = τr,↑τr,0τ
†
r+1,↑ηr,↑, Gr,↓ = τr,↓τ

†
r,0τ

†
r+1,↓ηr,↓, (5)

with 1 < r < L − 1; depending on the boundary conditions,
additional boundary gauge constraints may appear. For our
choice of rough-smooth boundaries we have the boundary
gauge symmetries:

GL,↑ = τL,↑τL,0ηL,↑, GL,↓ = τL,↓τ
†
L,0ηL,↓. (6)

The physical Hilbert space (without static charges) is defined
by the gauge constraint:

Gr,s|ψphys〉 = |ψphys〉, for each r, s, (7)

which imposes a ZN Gauss law on each vertex.
The gauge constraints can be used to rewrite the Hamilto-

nian in specific gauge choices. In the following we will adopt

either the axial gauge, in which the local gauge transforma-
tions are used to set all the gauge degrees of freedom along
the two legs to the trivial state σr,↑/↓|ψaxial〉 = |ψaxial〉, or the
unitary gauge in which all the matter sites are set to the trivial
state ζr,y|ψuni〉 = |ψuni〉. The latter choice is adopted in our
tensor network simulations.

In the next sections we will focus on several properties re-
lated to the confinement and screening of the electric charges
of the model. These properties are conveniently examined by
introducing opposite pairs of electric charged in different po-
sitions along the ladder. The introduction of charges, however,
implies the introduction of suitable electric fields as well, in
order not to violate the gauge constraints. In the following we
will distinguish static and dynamical charges. Static charges
are necessary to study the behavior of the system in the
pure LGT limit λ → 0, which is the focus of Sec. III. The
pure LGT is confined when the interaction energy among
static charges grows linearly with their distance. Dynamical
charges, instead, appear naturally for any finite λ, and, typi-
cally, they are nucleated in pairs by the tunneling term in the
Hamiltonian (3). These pairs of opposite electric charges are
connected by electric flux lines and constitute the mesons of
the theory. The study of the mesons in the ground state of
the theory is addressed in Sec. V and allows us to distinguish
different thermodynamic regimes of our model and examine
the screening properties of its ground states.

III. CONFINEMENT OF THE PURE GAUGE THEORY

We begin our analysis from the pure gauge limit (λ → 0),
in which the matter degrees of freedom are frozen in ηr,y|ψ〉 =
|ψ〉. This limit is conveniently studied in the axial gauge in
which the Hamiltonian is expressed as a function of the rung
degrees of freedom only (we drop, for convenience the index
0):

Hgauge = −1

g

L−1∑
r=1

(σrσ
†
r+1 + H.c.) − g

L∑
r=1

(τr + τ †
r )

− 2g
L∑

r=1

[
L∏

j=r

τ j +
L∏

j=r

τ
†
j

]
. (8)

Based on the axial gauge choice, the plaquette term is mapped
on a ferromagnetic coupling between the gauge bosons on
neighboring rungs, whereas the electric field energy of the
rung is left invariant. These two terms are therefore mapped
into a standard 1D ZN quantum clock model (see, for example,
Refs. [50,51]). The electric field energy of the gauge bosons
in the links, instead, corresponds to the last nonlocal term in
Hgauge, and it distinguishes this LGT from the model studied in
Ref. [52] in the context of topologically ordered systems (see
also Ref. [53] for a study of the Z2 toric code on the ladder
geometry). This term can be easily derived by considering the
products of all the gauge constraints

∏L
j=r G j,s for the s leg.

These string operators are equivalent to the identity on the
physical states and, for the pure LGT, relate the electric field
operator τr,s on both legs with the string operators appearing
in Eq. (8).

The pure LGT Hamiltonian with the boundary term (4)
enjoys a global ZN symmetry given by the t’Hooft string
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G =∏r τr,0. This corresponds to the ZN symmetry underlying
the clock model defined by the first two terms of Eq. (8) only.
For our choice of boundary conditions, this symmetry directly
appears as the first of the nonlocal terms (r = 1) in the second
line of (8), proportional to the coupling g.

The clock model (local terms of Hgauge) is characterized
by two gapped phases for N = 2, 3, 4: an ordered phase, in
which the ZN G symmetry is broken for small g, and a disor-
dered phase for large g. For N � 5 a critical phase appears at
intermediate values of g [51,54–58]. This picture is modified
by the addition of the nonlocal terms, which include all the
disorder operators acting on each link. Physically these oper-
ators correspond to the introduction of quanta of magnetic flux
±2π/N on each plaquette and these disorder operators always
favor the disordered phase. For each finite value of N , Hgauge

displays indeed only a single gapped (disordered) phase for
each value of g > 0.

The only exception is given by the limit g → 0 in which
only the plaquette terms survive. In this limit, the ground state
is a state without any magnetic vortex and, for rough-smooth
boundary conditions, it presents an N-fold degeneracy cor-
responding to the breaking of the t’Hooft G symmetry. This
symmetry can be explicitly broken by different boundary con-
ditions, including, for example, rough boundary conditions
with an additional three-site boundary plaquette terms.

The nonlocal Hamiltonian Hgauge can be mapped through
a bond-algebraic duality [51] to the local Hamiltonian of a
quantum clock model with both transverse and longitudinal
fields, generalizing the analogous Z2 Ising model. The Ising
model in transverse and longitudinal fields displays indeed
only a single gapped phase (see, for example, Refs. [59,60]),
and we show in Appendix A that the same is true for its ZN

generalization.
The analysis of the properties of the gapped phase of

the pure lattice gauge theory for g > 0 is conveniently per-
formed by considering perturbation theory in the two limits
g → ∞ and g → 0. In the first limit, the ground state is just
the product state of rungs displaying zero electric field, thus
τr,0|ψ〉 = |ψ〉. The plaquette operators with small amplitude
1/g introduce pairs of gapped local excitations which do
not qualitatively modify the paramagnetic ground state. For
g → 0, instead, it is easy to see that the degeneracy of the
ferromagnetic ground states is split by the term gG appearing
in Hgauge and corresponding to τ1,s. Furthermore, we observe
that the nonlocal symmetry G is mapped into an holographic
symmetry in the dual model [61] and the resulting ground
state is symmetric under G for any g �= 0 (see Appendix A).

This gapped phase corresponds to a confined phase for
static charges; whereas only the limit g → 0 results in a
deconfined phase. This can be proved by the introduction
of static charges in the system through a violation of the
gauge constraint in arbitrary pairs of sites. In particular, we
consider a system in which we introduce a pair of opposite
static charges in the sites x and y of the lower leg. This is
done by imposing that, in these sites Gx,↓|ψ〉 = ei 2π

N |ψ〉 and
Gy,↓|ψ〉 = e−i 2π

N |ψ〉 (see Appendix A for more detail). By
introducing these static charges, the energy of the ground state
of the system is increased by a quantity 	E which represents
their interaction energy. We find that this interaction energy

FIG. 2. String tension T of two static charges on the ladder
model in the pure Z5 lattice gauge theory. T is estimated by eval-
uating the ground state energy difference 	E of the system with and
without static charges. 	E behaves linearly with the separation R of
the static charges for each g > 0, as shown in the insets for g = 0.02
(a) and g = 10 (b) [see Eqs. (A7) and (A8)].

between the two charges grows linearly with the distance R =
|y − x|, 	E ≈ T R, for any g > 0. We estimated the string
tension T as a function of g through perturbation theory close
to the limits g → 0 and g → ∞ (see Fig. 2 and Appendix A),
and the results of our DMRG simulations show that the string
tension interpolates between the two predicted behaviors, as
shown in Fig. 2 for N = 5.

We conclude that the pure ZN lattice gauge theory in the
ladder is always confined and, in this respect, it behaves as a
1D LGT.

It is interesting to inspect the behavior of the expectation
values of the electric fields, E = −i(N/2π ) log τ , in the pres-
ence of the two static charges. No phase transition characterize
the pure lattice gauge theory at finite g; however, we can
distinguish two different regimes. For large values of g, when
the string tension is strong, the electric field propagates in
a straight line from one static charge to the opposite when
the two of them are on the same leg [Fig. 3(a)]. For larger
and larger g, indeed, the ground state progressively becomes
a product state of the τ eigenstates in all the links and the
energy cost of prolonging the electric field lines from one leg
to the other is excessive. For small g, instead, the expectation
value of τ decreases in modulo. The average electric field,
however, propagates in both legs in the region between the two
static charges [Fig. 3(b)], as dictated by the strong plaquette
interactions.

IV. AN EFFECTIVE FIELD THEORY DESCRIPTION

A. The quantum clock model limit

The next step in our analysis is to examine the role of
the Higgs matter degrees of freedom, in the spirit of the
seminal work by Fradkin and Shenker [49]. To investigate the
physics of the Hamiltonian (3), we begin our study from the
limit g → 0. In this limit, the gauge bosons are frozen in a
state without any magnetic excitation in the plaquettes of the
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0.983e-4

0.02

0.974e-6 3e-40.98
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4e-60.97

(a)

0.260.02

0.06

0.233e-3 0.020.26

0.06

3e-30.23

(b)

FIG. 3. Behavior of the electric field in the pure Z5 lattice gauge
theory (λ → 0) for (a) g = 1.5 and (b) g = 0.3 in the presence of
two opposite static charges. The static charges are indicated by the
circles and are introduced in the central region of a ladder of size
L = 41 with smooth boundaries. The thickness of the ladder edges
indicate the expectation value of the electric field 〈E〉 in arbitrary
units. Some example of their value is reported in the blue labels.

ladder. Therefore, it is easy to rewrite the Hamiltonian in the
axial gauge by imposing all the link states to be aligned in
such a way that σr,s|ψ〉 = |ψ〉 [1]. Hence, the Hamiltonian H
takes the form of a ZN quantum clock model on the ladder
geometry:

H (g = 0) = −λ

[∑
s,r

ζ †
r,sζr+1,s +

∑
r

ζ
†
r,↑ζr,↓ + H.c.

]

− 1

λ

∑
r,s

(ηr,s + η†
r,s). (9)

The first line corresponds to a ferromagnetic interaction be-
tween any pair of neighboring clock operators representing
the Higgs matter, along both the rungs and the legs of the
ladder. The second line can be interpreted as the sum of the
disorder operators in all the ladder vertices.

Quantum clock models of this kind are in general charac-
terized by a symmetry broken ordered “ferromagnetic” phase
for large λ and a disordered “paramagnetic” phase for small
values of λ. We stress that, in the lattice gauge theory, the or-
der parameter ζ is not a well-defined gauge invariant operator.
The corresponding order parameter can be written in a gauge-
invariant form only when considering at least an edge with
“rough” boundary conditions by including the boundary in-
teraction (4), which explicitly breaks the global conservation
of the matter charge associated to the symmetry

∏
r,s ηr,s. The

boundary term (4) allows us to introduce a gauge-invariant
order parameter Or,s = 〈∏r

j=1 σ
†
j,sζr,s〉 which matches 〈ζr,s〉 in

the axial gauge.
In Fig. 4 we illustrate the value of this order parameter in

ladders with rough-smooth boundary conditions for N = 3, 4,
and 5. One can see a phase transition between the ordered
and the disordered phases for N = 3 and 4. For N = 5, an
intermediate gapless phase appears as indicated in the gray
region in Fig. 4(c).

The appearance of a gapless phase in this model for N > 4
is reminiscent of the study of ferromagnetic 1D quantum clock
models. In these 1D chains, it is well known that the quantum
clock model displays an extended gapless phase for N � 5

0.0

0.5

1.0 (a)

N = 3
L = 21

L = 41

L = 81

0.0

0.5

1.0

∑
r
O

r,
↑/

L

(b)

N = 4

0.4 0.5 0.6 0.7 0.8 0.9 1.0
λ

0.0

0.5

1.0 (c)

N = 5

FIG. 4. Averaged order parameters
∑

r Or,↑/L as functions of
λ for systems in the clock limit (g = 0) for N = 3, 4, and 5. The
system has rough and smooth boundaries at the left and the right
sides respectively. For N = 3 and 4, the dashed lines indicate the
proposed critical values of λ. For N = 5, the gray region represents
the gapless phase determined by the fidelity susceptibility in a system
of smooth-smooth boundaries (see Fig. 6).

separating the gapped ordered and disordered phases (see,
for example, Refs. [51,54,55]). The phase transitions between
them are of the Berezinsky-Kosterlitz-Thouless (BKT) kind
[57]. Similar properties characterize the ladder clock model
in Eq. (9), such that for N � 5 a gapless phase appears in the
system for intermediate values of λ. In the following, we will
investigate the properties of this gapless system by describing
the low-energy sector of the theory through an effective field
theory inspired by bosonization, and we will numerically ex-
amine its main features through DMRG simulations.

B. Bosonization of the model

To build an effective low-energy description of the model
we construct a representation of the clock operators based
on vertex operators of a pair of dual bosonic massless
fields, θ and ϕ. The following construction matches the
dual sine-Gordon model description of 1D systems with ZN

symmetry presented in Ref. [54] and it is inspired by standard
bosonization techniques [36]. A similar strategy has also been
recently applied to the study of the Z2 lattice gauge theory on
the chain [62].

Our first step is to introduce the pairs of dual bosonic
massless fields θs(x) and ϕs(x), with s = 0,↑,↓ that fulfill the
following commutation relations:

[θs(x), ϕs′ (x′)] = −i
2π

N
�(x − x′)δss′ , (10)
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where � is the Heaviside step function with �(x � 0) = 1
and �(x < 0) = 0. Based on this commutation relations, we
build the following mapping between the clock operators of
the ladder model expressed in the axial gauge and the vertex
operators, in such a way that the algebraic properties of the
clock operators (1) and (2) are satisfied. For the Higgs matter
operators (s = ↑,↓) the mapping reads

ζ j,s → e−iθs ( ja), η j,s → e−iϕs ( ja)+iϕs ( ja+a). (11)

For the gauge bosons on the rungs we analogously impose the
following:

σ j,0 → e−iθ0 ( ja), τ j,0 → e−iϕ0 ( ja)+iϕ0( ja+a). (12)

In these relations we introduced the lattice spacing a, which
is useful to define a proper ultraviolet cutoff of the theory.
In particular, we consider the bosonic fields ϕ and θ to vary
slowly in space with respect to the length scale set by a. It
is easy to verify that the previous definitions fulfill (1) and
(2) based on Eq. (10) (see Appendix C). The physical inter-
pretation of the bosonic fields can be deduced as well from
the previous equations. The fields ϕ↑,↓ represent the electric
field propagating along the legs, whereas θ0 is associated to
the magnetic field flux along the rungs.

Some care is required in dealing with the boundary condi-
tions: smooth boundary conditions on the ladder, for example,
impose Dirichlet boundary constraint on ϕ↑,↓, since they re-
quire that no electric flux is allowed to enter the system from
outside. Rough boundary conditions, instead, impose Dirich-
let boundary constraints on θ↑,↓. Adopting the axial gauge, we
obtain the following effective Hamiltonian on the continuum
(see Appendix C for further details):

H = N

4π

∫
dx

∑
s=0,↑,↓

v

[
Ks(∂xϕs)2 + 1

Ks
(∂xθs)2

]

− T
∫

dx cos (θ↑ − θ↓ − θ0)

− G
∫

dx [cos (ϕ↑ + ϕ0) + cos (ϕ↓ − ϕ0)]

−
∑

s=0,↑,↓

∫
dx [Ps cos Nθs + Qs cos Nϕs]. (13)

In this Hamiltonian, the s = ↑,↓ contributions of the first line
account for the tunneling term along the legs of the ladder
and the onsite term for the mass of the charges. The s = 0
contribution of the first line describes instead both the pla-
quette term and the electric field interaction along the rungs.
These terms of the Hamiltonian in the axial gauge can in-
deed be mapped into a three-component Luttinger liquid. The
mapping between clock and vertex operators suggest that, in
proximity to the gapless phase, K↑ = K↓ ≈ 1/λ and we expect
K0 to be proportional to g close to g = 1. The velocity is
the same for all sectors: v = 4πa/N . The second line in the
Hamiltonian (13) describes the rung tunneling term; the third
line corresponds instead to the electric field interaction along
the leg links, which has a nonlocal description in the axial
gauge but recovers its locality in this description. For later
convenience we labeled their coupling constants as T and G

such that

T = 2λ

a
, G = 2g

a
. (14)

The final terms in the Hamiltonian (13) are aimed at restor-
ing the ZN symmetry of the model and we will refer to
them as “background interactions.” The mapping (11) and
(12) promote indeed the clock operators from discrete op-
erators to continuous rotors (see, for example, Ref. [63]).
The background interactions have the role of breaking the
system symmetries from U(1) to ZN , consistently with the
field theoretical description of clock models [54,58,64]. The
values of the constants Ps and Qs can be roughly estimated
by comparing the energy of the kinks of these sine-Gordon
interactions with the energy of the domain walls in the corre-
sponding operators (see Appendix C):

Ps = N2(1 − cos 2π/N )2

32aKs
, (15)

Qs = N2Ks(1 − cos 2π/N )2

32a
. (16)

Let us finally observe that the Hamiltonian (13) is invari-
ant under the global ZN transformation θ↑/↓ → θ↑/↓ + 2π/N .
The fields ϕ↑,↓, instead, do not enjoy such discrete global
symmetry due to the leg electric field term. The ZN transfor-
mation ϕ↑/↓ → ϕ↑/↓ + 2π/N corresponds to the addition of a
background electric field, thus to a change of the θ vacuum of
the theory. This is analogous to similar features in truncated
1D models with U(1) gauge symmetry (see, for example,
Refs. [65–68]).

C. Properties of the clock model limit

We can obtain the main features of the system in the limit
g → 0 by considering the Hamiltonian (13). In this limit θ0 =
0 everywhere (σr,0 = 1), consistently with the Hamiltonian
(9), and the electric field term disappears. We are effec-
tively left with a two-component Luttinger liquid perturbed
by the interleg tunneling and the background interactions. As
customary in these cases [36], it is convenient to separate sym-
metric “charge” ρ and antisymmetric “spin” σ combinations
of the fields (the terms “charge” and “spin” are taken from the
study of 1D two-component fermionic systems):

ϕρ = ϕ↑ + ϕ↓√
2

, θρ = θ↑ + θ↓√
2

, (17)

ϕσ = ϕ↑ − ϕ↓√
2

, θσ = θ↑ − θ↓√
2

. (18)

The effective bosonized Hamiltonian reads

H (g = 0) = N

4π

∫
dx

∑
q=ρ,σ

v

[
Kq(∂xϕq)2 + 1

Kq
(∂xθq)2

]

− T
∫

dx cos(
√

2θσ )

− 2
∫

dx

[
P cos

Nθρ√
2

cos
Nθσ√

2

+ Q cos
Nϕρ√

2
cos

Nϕσ√
2

]
. (19)
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A first-order renormalization group analysis shows that,
for N = 2, the system at g = 0 displays, as expected, two
gapped phases separated by a critical point. For N > 2, the
competition between the rung tunneling term and the back-
ground Q term is nontrivial and yields the possibility of
having a phase in which only the spin sector is gapped. This
can be understood by comparing the scaling dimensions of
the interactions. The scaling dimension of the rung tunnel-
ing is DT = Kσ /N , whereas the scaling dimensions of the
background interactions are DP = (Kρ + Kσ )N/4 and DQ =
(K−1

σ + K−1
ρ )N/4. In particular, the bare value of the Luttinger

parameters matches Kσ = Kρ ≈ 1/λ and we will label it with
K only. Based on the previous scaling dimension, for K ∈
(4/N, N/

√
2), the rung tunneling T term is the dominating

interactions, with the P interaction being irrelevant and the Q
interaction being suppressed by T . Therefore T gaps the spin
sector of the system.

Moreover, a two-step renormalization group analysis (see
Appendix shows that additional emergent second-order terms
gap also the charge sector for all values of λ in the cases N =
3, 4; only for N > 4 does an extended gapless phase appear
in the phase diagram, characterized by a gapless charge sector
(see the next section and Appendix D).

In general, for small λ (thus large K) the background inter-
action Q dominates; the fields ϕ are semiclassically pinned to
one of their minima and the system is in a disordered phase
of the corresponding clock model. For large λ, instead, the
tunneling and background P terms dominate and the system
is in an ordered state.

Let us discuss next the behavior of the system as a function
of N . For N = 2 and 3, we expect a single critical point to
separate these phases. This critical point falls in the Ising and
Potts universality class respectively.

For N = 4, the limit g = 0 can be examined through the
mapping of the Z4 quantum clock model into two separate
copies of the Ising model in the same geometry [51] (see
Appendix B for more detail). Therefore, also in this case, the
system behaves as its 1D counterpart with only two gapped
phases separated by a single critical point corresponding to
two copies of the Ising critical point.

We additionally observe from our numerical results that
for N = 2, 3, 4, the critical value of λc is smaller than 1, due
to the presence of the rung tunneling interaction. This is a
signature that, indeed, our model interpolates between one and
two dimensions. In particular, our rough numerical estimates
for N = 3 provide a value λc ≈ 0.75 based on the expectation
value of the order parameter 〈Or,s〉. In the 1D clock model
the critical value is λ(1)

c = 1, whereas in the 2D system the
paramagnetic and ferromagnetic phases are separated by a
first-order phase transition for λ(2)

c ≈ 0.498 calculated with
tensor network techniques [30,69]; therefore λ(2)

c < λc < λ(1)
c .

For N = 5 (or larger), the phase diagram at g = 0 becomes
richer and the second-order renormalization group analysis
confirms the existence of a gapless phase between the ordered
and disordered phases [see Fig. 5(b)]. There is indeed a finite
intermediate interval of λ, thus of the bare Luttinger parame-
ter, such that the spin sector of the Hamiltonian (19) is gapped
by the tunneling interaction, but the charge sector remains
gapless. In the next section we analyze in detail the phase
diagram for N = 5, and we verify through tensor network

simulations that such gapless phase exists and extends also
to finite g.

V. THE PHASE DIAGRAM AND THE ONSET
OF THE COULOMB PHASE

In the following, we analyze the phase diagram for N =
5 based on density matrix renormalization group (DMRG)
[70–72] and Wilsonian second-order renormalization group
(RG). Our results are displayed in Fig. 5. Our bosonization
description, however, does not rely on specific assumptions
about N and qualitatively similar results hold for N > 5 as
well, as shown in Appendix D.

The ladder model presents a single extended gapped phase
that surrounds a gapless phase appearing around λ ∼ 0.75
for g � 0.05 (depicted in green in Fig. 5). These phases are
separated by a Berezinskii-Kosterlitz-Thouless (BKT) phase

0.0 0.5 1.0 1.5 2.0 2.5
1
K(∼ λ)

0.0

0.2

0.4

0.6

0.8

1.0

K
0
(∼

g
)

(b)

0.0 0.5 1.0 1.5 2.0 2.5
λ

0.0

0.2

0.4

0.6

0.8

1.0

g
(a)

Quadrupolar

Confined

HiggsCoulomb

0.65 0.70 0.75 0.80
0.00

0.02

0.04

0.06

FIG. 5. Phase diagram from DMRG (a) and second-order RG
(b). In panel (a), a gapless (green) and a gapped (other colors com-
bined) phases are separated by a BKT phase transition (black dots).
The gapped phase is further distinguished into three “phases,” the
quadrupolar phase (blue), the Higgs phase (yellow), and the confined
rung-dominated phase (red), separated by crossovers. The cyan dots
indicate finite peaks in the fidelity susceptibility of the system. The
inset zooms in the Coulomb phase. In panel (b), different phases are
shown by different colors, including the deconfined phase (purple),
the quadrupolar phase (blue), the Coulomb phase (green), the Higgs
phase (yellow), the fully confined phase (brown), and the confined
rung-dominated phase (red). See Table I for their properties.
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TABLE I. Summary of the regimes appearing in the phase diagram as predicted by the second-order RG flow. The first table displays the
phases of the clock limit g = 0 (in which θ0 is always pinned). The gapless Coulomb phase extends for finite g. The gapped phases, instead,
cross over into the additional confined phases listed in the second table. Columns with white or colored background distinguish the phases
of the pure LGT (λ → 0) and the ones appearing at finite λ, respectively [the background colors match the regions in Fig. 5(a)]. The listed
dominating interactions refer to the coupling constants in Eqs. (13), (19), and (D5).

Phases at g = 0 Deconfined (λ → 0) Quadrupolar / disordered Coulomb (gapless) Higgs / ordered (λ � 1)
Pinned fields ϕσ, ϕρ θσ, ϕρ θσ θσ, θρ

Dominating
interactions

Q, Cρ, Cσ T, Cρ T P, T

Observables
〈Or,s〉 = 0

Constant Gρ

Exp. decay of R and mesons

〈Or,s〉 = 0
Exp. decay of Mρ

Constant Gρ, Mσ and R

Alg. decay of Os

Alg. dec. of Gρ and Mρ

Constant Mσ and R

〈Or,s〉 �= 0
Exp. decay of Gρ

Constant Mρ, Mσ and R

Additional phases at g > 0 Fully confined (λ → 0) Confined rung-dominated

Pinned fields ϕσ, ϕρ, ϕ0 ϕρ,
√

2θσ − θ0, ϕσ +
√

2ϕ0

Dominating interactions Q, Q0, G, Cρ, C′
ρ, Cσ, C′

σ T, G, Cρ, C′
ρ, C′

σ

Observables
Constant Gρ

Exp. decay of R
Exp. decay of Mρ and Mσ

Constant Gρ

Constant R
Exp. decay of Mρ and Mσ

transition, which can be detected by evaluating the fidelity
susceptibility (FS) of the system [57,73].

The gapless phase displays the properties of a Coulomb
phase, characterized by an emergent U(1) symmetry, in which
electric fields may propagate without mass gaps along the legs
of the ladder and they appear to be only weakly screened by
the dynamical matter.

The gapped phase displays instead several crossovers con-
necting different regimes which include a confined and a
Higgs regime, as typical for Abelian LGTs [49]. These
crossovers are signaled by extrema in both the susceptibilities
associated with the Hamiltonian terms and fidelity suscepti-
bility. In both cases these susceptibilities do not diverge with
the system size, consistently with crossovers rather than phase
transitions. For simplicity, we will refer to the different gapped
regimes as “phases,” although they are not separated phases
in the thermodynamic meaning, but rather adiabatically con-
nected regimes, as in the case of Fradkin-Shenker LGTs (in
the fundamental representation for the matter degrees of free-
dom) [49].

In the following, we will discuss the origin of the dif-
ferent phases based on their bosonized description and we
will identify the phase transitions and crossovers based on
numerical simulations. Then we will focus on the properties
and identification of the thermodynamic regimes in the phase
diagram which can be obtained by the analysis of the behavior
of several observables over the ground states of the model, and
by the screening properties that characterize the system upon
the introduction of static charges. Table I offers a summary of
the thermodynamic regimes appearing in the model.

A. The analysis of the Z5 gauge model in the clock limit

We begin our analysis of the Z5 LGT from the clock limit
(g → 0), which is described by the Hamiltonian (19). In the
previous section, we emphasized that a simple scaling analysis
predicts that the competition of the background interactions P
and Q yields the onset of two fully gapped phases, separated
by an additional gapless phase for N � 5. In this critical

phase, a gap is opened in the spin sector only, as effect of the
rung tunneling T ; therefore its central charge is c = 1, and its
charge sector is characterized by an emerging U(1) symmetry
(θρ → θρ + α) in a way analogous to the 1D quantum clock
models [51]. We call this phase Coulomb phase, in analogy
with its higher-dimensional counterparts.

According to the first-order scaling analysis of the Hamil-
tonian (19), the three phases alternate in the following way:
for K < 4/N , P dominates and the model is fully gapped; for
4/N < K < N/

√
2, the tunneling term dominates and only the

spin sector is gapped; for K > N/
√

2, the background Q term
dominates and the gap in the charge sector is restored. In these
estimates we consider K = Kσ = Kρ ∼ 1/λ.

The P-dominated phase (large λ) corresponds to both
the Higgs phase of the LGT and the ordered phase in the
corresponding clock model. In this phase the θ fields are
semiclassically pinned.

In the gapless Coulomb phase, only the field θσ is semi-
classically pinned. Finally, the Q-dominated phase would
correspond to a symmetric and disordered phase in the clock
model, with the ϕ fields pinned, which can be mapped into the
deconfined phase of the LGT.

These simple predictions obtained with a first-order renor-
malization approach, however, are not sufficient to completely
describe the behavior of the system. Due to the presence of
noncommuting interactions, the renormalization group flow
yields in general the appearance of novel effective interac-
tions, which can be more relevant than the original terms in
Eq. (19) and must be taken into account for a more rigor-
ous study of the phase diagram. These emergent interactions
appear naturally when considering higher orders of the sine-
Gordon interactions. In particular, among the set of operators
appearing in its second-order analysis, we focus on the fol-
lowing terms:

H (2)
int (g = 0) =

∑
q=ρ,σ

∫
dx Cq cos(

√
2Nϕq ). (20)
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In Appendix D, their derivation is presented in detail. A key
feature of the second-order interactions (20) is that the term
Cρ commutes with the rung tunneling. Therefore, it allows
for the appearance of a new gapped phase in which both T
and Cρ flow towards strong coupling, such that both ϕρ and
θσ can be qualitatively considered pinned to a semiclassical
minimum. Therefore, for values of λ intermediate between
the deconfined (small λ) and the Coulomb phase (λ ∼ 0.75),
a new phase appears, which corresponds to a clock model
ordered along the rungs but disordered along the two legs. We
call this regime quadrupolar, since it is characterized by the
condensation of pairs of mesons with opposite dipoles along
the two legs (see Sec. V D).

We additionally observe that the Cρ interaction is respon-
sible for completely gapping the first-order gapless phase for
N = 3 and N = 4 (see Appendix E. For N = 5, instead, the
gapless phase is reduced at second order but it survives over an
extended region (see Fig. 5). The four phases appearing in the
Z5 clock limit (and, in general for N � 5) are summarized in
the first part of Table I and their main properties are discussed
in Sec. V D.

To understand the phase diagram of the model, it is use-
ful to compare the two panels of Fig. 5, which depict the
results of the numerical DMRG simulations [Fig. 5(a)] and
the numerical solution of the second-order RG equations in
Appendix D [Fig. 5(b)]. The DMRG results clearly provide
a more rigorous scenario, although our numerical analysis is
based on finite system sizes and an accurate scaling analysis of
the phase boundaries is beyond the scope of this work. The RG
results, instead, give an insight on the thermodynamical be-
havior of the system and provide a useful reference to compare
its different regimes. They can be easily extended to N > 5
(see Appendix D), but they suffer from several approxima-
tions adopted in the bosonization procedures, and their results
are not reliable in the extreme regions λ � 1 and λ � 1.

The numerical solution of the RG flow equations derived
from the Hamiltonian (19) determine the g = 0 axes of the
phase diagram in Fig. 5. The so-obtained phase diagram
displays all four phases (deconfined, quadrupolar, Coulomb,
Higgs) in its lowest part. We observe that both the DMRG
simulations and the second-order RG equations confirm the
appearance of the gapless Coulomb phase between the dis-
ordered and Higgs phases. The main difference between the
two approaches in the limit g → 0 is about the deconfined
phase. The DMRG results present a smooth behavior of the
low λ region compatible with the quadrupolar phase extending
everywhere but in the limit λ = g = 0. The second-order RG
calculation would instead indicate the onset of an extended
deconfined phase for small g and λ.

This difference is due to a limitation of our second-order
RG approach, which relies on the assumption that the bare
values of the Luttinger parameters are given by 1/λ. This
assumption is realistic only for λ in a neighborhood of 1, but
it is likely that the bare values of Ks do not diverge for λ → 0.
Taking into account this limitation, the region on the extreme
left of the phase diagram 5(b) must be considered nonphysical
and, similarly to what we discussed for the pure LGT case, the
deconfined phase shrinks to the single point g = λ = 0.

In order to understand the extension of the phase diagram
for g > 0, in the following we present numerical tensor net-

0.0 0.5 1.0
λ

0

2

4

6

χ
F

L = 21

L = 41

L = 61

L = 81

L = 101

0.25 0.30
1/ log(L)

2.5

5.0

7.5
χF (λ∗)

(a)

0 100
�

1.50

1.75

S

(b)

DMRG

fit

FIG. 6. Fidelity susceptibility per link χF as a function of λ for
systems in the clock limit (g = 0) with smooth-smooth boundary
conditions. (a) Finite-size scaling of the peak values of χ for the
left (blue) peak and the right (red) peak. (b) Entanglement entropy
as a function of � for λ = 0.75 (in the gapless phase), for L = 101.
The blue dots are from DMRG, and the red curve is the fitting by the
Calabrese and Cardy formula.

work simulations of the model, and we compare them with the
bosonization predictions provided by the Hamiltonian (13).

B. DMRG phase diagram

In Fig. 5(a) we show the phase diagram obtained from
DMRG simulations with bond dimension up to 300. Our re-
sults confirm the presence of two extended phases: the gapless
Coulomb phase appearing for intermediate values of λ and
small g [green area in Fig. 5(a)], and the surrounding gapped
phase, which is depicted in blue, red and yellow in Fig. 5(a),
to distinguish the quadrupolar, confined rung-dominated, and
Higgs regimes, respectively. The Coulomb phase is separated
from the gapped phase by BKT phase transitions, whereas
the gapped regimes are adiabatically connected by smooth
crossovers.

The typical DMRG truncation errors are about 10−9 around
the BKT transition points and are smaller than 10−10 in other
region including the gapped and gapless phases.

The gapless Coulomb phase is the only one characterized
by a logarithmic growth of the entanglement entropy as a
function of the subsystem size �; therefore, it can be easily
distinguished from the others. The entanglement entropy of
the system in this phase follows indeed the Calabrese and
Cardy formula [74]

S� = c

6
log

(
2L

π
sin

π�

L

)
+ cα

2
, (21)

where c is central charge of the underlying conformal field
theory and cα is a nonuniversal constant. In Fig. 6(b) we show
the entanglement entropy as a function of � for λ = 0.75 in
the gapless phase. The central charge from the fitting is 1.02
which is consistent with the bosonization prediction c = 1,
confirming that only one of the Luttinger liquid sectors re-
mains gapless.

To verify that the phase transitions between the gapless and
gapped phases are of the BKT kind, we analyze the behavior
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FIG. 7. Fidelity susceptibility per link χF as a function of g for
λ = 0.75 for systems with rough-smooth boundary conditions. The
peak in χF indicates a transition between the gapless and the gapped
phases.

of fidelity susceptibility (FS). The FS per link is defined by

χF = 1

3L
lim

δ�→0

−2 log(F (�,� + δ�))
(δ�)2

, (22)

where the fidelity F (�,� + δ�) = |〈ψ0(�)|ψ0(� + δ�)〉|
is defined as the overlap between two ground states of Hamil-
tonians H (�) and H (� + δ�), with � any parameter in
the Hamiltonian. The susceptibility χF remains finite across
a BKT phase transition and approaches its thermodynamic
value with a characteristic 1/ log(L) dependence [57,73],
which distinguishes BKT from other phase transitions. In
Fig. 6 we show χF as a function of λ for different system
sizes. The two peaks correspond to the transitions between
the gapless Coulomb and the gapped quadrupolar and Higgs
regimes. The BKT transition points are determined by these
peaks and we verify in Fig. 6(a) that their finite-size scaling
approximately follows the predicted logarithmic behavior.

We observe that the critical FS grows very weakly with
the system size when varying the parameter g (see Fig. 7). To
characterize the transition driven by g, we consider a system
with rough (smooth) boundary condition at the left (right)
boundary, where the critical FS grows faster than the case
with smooth-smooth boundaries. Figure 7 shows the FS as
a function of g for λ = 0.75. Based on the system sizes we
can numerically access (L � 161), the data display the evolu-
tion of the FS towards the formation of a peak for g � 0.05,
without the possibility of a well-defined system size scaling.
Given this difficulty, in the definition of the phase diagram in
Fig. 5(a), we set the critical value of g by the position of the
maximum for L = 161, and the upper edge of the Coulomb
phase must be considered a tentative line.

The fidelity susceptibility across the gapped phase displays
additional maxima, characterized by curves smoother than the
BKT behavior (compare Fig. 8 with Fig. 6). These maxima
typically appear in correspondence with the maxima of other
susceptibilities of the system and, in particular, we consider
the susceptibilities χτ and χσ , defined by

χτ = 1

3L

∂〈Hτ 〉
∂g

, χσ = 1

3L

∂〈Htunnel〉
∂λ

, (23)
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0.0

0.2

0.4

0.6

0.8 χF (L = 81)

χτ

0.2 0.3
1/ log(L)

0.56
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χF (g∗)
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1/L
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0.78625
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FIG. 8. Fidelity susceptibility (dots), χF , and the susceptibility
of τ (crosses), χτ , as functions of g for L = 21, 41, 81, 161, and 321,
for λ = 1.8. χτ of different L are indistinguishable in the scale of the
figure. The insets shows the finite-size analysis of the peak values of
χF and χτ .

where

Hτ =
∑

s=↑,↓,0

L∑
r=1

(τr,s + τ †
r,s), (24)

Htunnel =
∑

s=↑,↓

L−1∑
r=1

ζ †
r,sσ

†
r+1,sζr+1,s (25)

+
L∑

r=1

ζ
†
r,↑σr,0ζr,↓ + H.c. (26)

correspond to the second and the fourth terms (proportional
to g and λ) in the Hamiltonian [Eq. (3)]. The maxima of the
susceptibilities χF , χτ (χσ ) appear at the same value of g
(λ) when scanning λ (g). We present an example in Fig. 8,
where χF and χτ are shown as functions of g for λ = 1.8,
thus across the crossover between the Higgs and confined
(rung-dominated) regimes. The maxima of χF and χτ indicate
a crossover at g ≈ 0.67. These susceptibilities, however, do
not diverge when increasing the system size. The insets of
Fig. 8 show the system size dependence of χF and χτ : both
susceptibilities clearly converge to a finite value for larger and
larger system sizes (see the insets in Fig. 8).

As already mentioned, χF does not diverge even at a BKT
phase transitions. However, by comparing its behavior in the
insets of Fig. 6 and Fig. 8, we observe that in the crossovers
within the gapped phase, χF grows even slower with the
system size.

Within the gapped phase, we can distinguish three main
crossovers that correspond with the boundaries between
the Higgs (yellow), quadrupolar (blue), and confined rung-
dominated (red) regimes in Fig. 5(a). In these cases we
observe clear maxima in all the relevant susceptibilities and,
based on the observables we will introduce in the next subsec-
tions, we can distinguish these three phases consistently with
the properties listed in Table I.

In particular, the crossover between the Higgs and confined
regime is qualitatively the same with respect to the analogous
crossover in the Fradkin and Shenker LGTs in higher dimen-
sions [49]. As a function of g we find not only a maximum
of χF and χg, but also a maximum in the susceptibilities
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associated with the plaquette energy and other observables.
Analogously to other LGTs with Higgs matter [75–77], these
features suggest that such crossover can be a Kertész line,
namely, a percolation phase transition in a corresponding 2D
classical model at finite temperature, which is not accompa-
nied by any singularity in the thermodynamic properties of
the system.

Finally, let us mention that inside the confined and
quadrupolar phases, there appears an additional line of max-
ima of χF (associated with either very weak local maxima
or inflection points of χλ). We did not consider this line
to be an additional crossover because of the fundamentally
equal behavior of the system for λ larger and smaller than
these maxima. These maxima of χF , in particular, seem to
be associated with a prolongation within the gapped phase
of the BKT phase transition separating the quadrupolar and
Coulomb phases [see Fig. 5(a)].

C. The observables of the system

The results from the RG analysis of the low-energy
bosonized description of the system (13) do not allow us to
clearly distinguish between crossovers and phase transitions
within the gapped phases. However, they confirm that the
gapless Coulomb phase survives at finite values of g. In the
following we summarize the main results from the complete
study of second-order RG equations derived from the Hamil-
tonian (13). The detail of their derivation is presented in
Appendix D.

When considering g > 0 the two fundamental interactions
which determine the properties of the system are the rung
tunneling and the electric field energy. We can express them
in the following form:

−T
∫

dx cos(
√

2θσ − θ0)

− G
∫

dx

[
cos

(
ϕρ√

2
+ ϕσ√

2
+ ϕ0

)

+ cos

(
ϕρ√

2
− ϕσ√

2
− ϕ0

)]
. (27)

These interactions commute and can be simultaneously min-
imized. When relevant, they tend to pin the combinations of
fields

√
2θσ − θ0, ϕσ√

2
+ ϕ0, and ϕρ .

The solution of the second-order RG equations shows the
onset of the two additional confined phases listed in the sec-
ond part of Table I for g � 0.4 [red and brown phases in
Fig. 5(b)]. The fully confined phase appears only when the
electric field and background Q terms dominate, thus pinning
all the ϕ fields. This implies, in particular, that the rung clock
degrees of freedom are in a disordered state and, based on our
DMRG results, this happens only in the λ = 0 limit (for any
value of g > 0). As soon as λ > 0, indeed, the numerical re-
sults display ordered rung operators (σ0 in the unitary gauge).

The different regimes appearing in the phase diagram
can be characterized and distinguished based on suitable
observables calculated over the ground state of the sys-
tem. Therefore, in the following, we introduce several
gauge-invariant correlations and string-order parameters that
constitute a diagnostic toolbox to characterize the thermody-

namic phases of the model, in order to be able to compare the
field-theory prediction with the numerical results.

To investigate the clock limit of the system, we introduced
the order parameter Or,s which allows us to distinguish the
phases for g → 0. This string-order parameter can be ex-
tended to define the creation operators of the mesons in the
system:

Ms(x, y) ≡ ζx,s

(
y−1∏
j=x

σ j,s

)
ζ †

y,s → ei[θs (y)−θs (x)]. (28)

The operator Ms introduces a meson lying on the s leg of the
system by introducing opposite dynamical charges on the sites
x and y linked by an electric flux line. By considering the axial
gauge, it is straightforward to derive the bosonized description
of these string operators in the right hand side of Eq. (28)
through the mapping (11).

Our former analysis of the low-energy sector of the model
displayed a separation between spin and charge degrees of
freedom. To this purpose it is useful to introduce also the
following combination of the meson operators:

Mσ (x, y) ≡ M↑(x, y)M†
↓(x, y) → ei

√
2[θσ (y)−θσ (x)], (29)

Mρ (x, y) ≡ M↑(x, y)M↓(x, y) → ei
√

2[θρ (y)−θρ (x)], (30)

where we specified their explicit form in terms of the bosonic
fields. Mσ creates a pair of opposite dipoles on the rungs x
and y, which are connected by two opposite electric flux lines
lying on the two legs of the ladder. Due to this configuration,
the resulting doubled meson presents a vanishing total electric
dipole, but a nonvanishing electric quadrupole. In the case of
Mρ , instead, two parallel mesons are created with two negative
charges in the rung x and two positive charges in the rung
y, connected by parallel electric fluxes along the legs of the
ladder.

The meson strings are mostly useful to investigate the prop-
erties of the matter in the system: depending on their behavior
at large space separation x − y one can distinguish phases in
which the mesons condense (for example, the Higgs phase),
and phases in which the dynamical matter is screened or con-
fined. In this respect, the quadrupolar phase is characterized
by a condensation of the spin meson Mσ accompanied by an
exponential decay of the charge meson Mρ .

We introduce next another family of observables which
describes on one side the charge fluctuations of the system,
and, on the other, the behavior of the electric field. We call
these string operators t’Hooft operators since they are a gener-
alization of the t’Hooft string G. In particular, we define them
for a system displaying smooth boundary conditions on the
right edge and rough boundary conditions on the left as in
Fig. 1 (the extension to smooth boundaries on both sides is
straightforward):

G↑(r) ≡
L∏

j=r

η
†
↑,r = τr,↑

L∏
j=r

τ j,0 → eiϕ↑(r), (31)

G↓(r) ≡
L∏

j=r

η
†
↓,r = τr,↓

L∏
j=r

τ
†
j,0 → eiϕ↓(r). (32)
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The string operator Gs corresponds to the exponential of the
total charge laying on the leg s between the rth site and the end
of the ladder. Through the Gauss law, it also corresponds to
the exponential of the total electric field generated generated
by these charges. It can also be considered an operator moving
a magnetic flux from the right edge, along all the plaquettes
of the ladder until the rth rung and then pushing it out of
the ladder through the operator τr,s. Having smooth boundary
conditions on the right edge (see the boundary conditions in
Appendix C), the t’Hooft operators Gs(r) additionally exem-
plify the physical meaning of the fields ϕs.

In analogy with the meson strings (which can be consid-
ered the dual operators of the t’Hooft strings), it is convenient
to define the following t’Hooft operators addressing the spin
and charge sectors:

Gσ (r) ≡ G↑(r)G†
↓(r) = τr,↑τ

†
r,↓

L∏
j=r

τ 2
j,0 → ei

√
2ϕσ (r), (33)

Gρ (r) ≡ G↑(r)G↓(r) = τr,↑τr,↓ → ei
√

2ϕρ (r). (34)

We observe, in particular, that the operator Gρ (r) = e−i 2π
N Qr is

local (due to the smooth right boundary conditions we have
chosen) and measures the charge Qr of all the matter sites on
the right of the rth links. Gσ is instead related to the charge
differences between the two legs.

Finally we introduce the two-point correlation function of
the rung tunneling operators:

R(x, y) = ζ
†
x,↑σx,0ζx,↓ζy,↑σ

†
y,0ζ

†
y,↓

→ ei(
√

2θσ −θ0 )(x)−i(
√

2θσ −θ0 )(y). (35)

Its expectation value gives us information about the gap
opened by the rung tunneling term, corresponding to the T
interaction in Eq. (13), and it provides a direct evidence of the
fact that both the fully confined and deconfined phases do not
extend for finite values of λ.

D. Features of the thermodynamic phases

After defining the gauge-invariant observables of the sys-
tem, we can proceed with the study of the phases and regimes
we observe in the numerical simulation, summarized in the
phase diagram Fig. 5(a). In particular, our main findings are
that for small values of g, the Coulomb phase is stable for g �
0.05, whereas both the Higgs and quadrupolar phase smoothly
cross over towards the confined-rung dominated regime.

From the field theoretical description, we can predict the
behavior of the two-point and string correlation functions
introduced above. In particular, when a bosonic field, for ex-
ample, θσ , is semiclassically pinned by a relevant interaction,
its fluctuations are suppressed and its correlation are approxi-
mately constant across the system; the fluctuations of its dual
field, ϕσ , are instead maximal, yielding an exponential decay
of the two-point correlation functions of the related vertex
operators, thus of Gσ in the example [see Eq. (33)].

Our bosonization and RG analysis predicts that the gapless
Coulomb phase is characterized by a gap in the spin σ and
rung 0 sectors, whereas the charge ρ sector is gapless. This
implies that the expectation value of both the meson Mρ

and the t’Hooft operator Gρ decay as a power law. In Fig. 9
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M
ρ
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ρ
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FIG. 9. Mρ (x1, x2) and Gρ (r) in the gapless Coulomb phase as
functions of d̃ (x1 − x2|2L) (with x2 = 2) and d (r|L) in log-log scale.
The system is a ladder of length L = 101 with smooth boundary
conditions for g = 0.001 and λ = 0.75. The black lines are the results
of fits with a power-law decay.

we display the typical behavior of these two observables in
the ground state of the system within the Coulomb phase.
In particular, we considered a ladder with smooth boundary
conditions on both sides of the system. This implies Dirichlet
boundary conditions for ϕσ and Neumann boundary condi-
tions for θσ at the two edges. Consequently one obtains the
following leading behaviors:

〈Gρ (r)〉 ∝ [d (r|L + a)]−
1

NKρ , (36)

〈Mρ (x, y)〉 ∝ [d̃ (x − y|2L)]−
2Kρ

N , (37)

where we introduced the chord distance d and a modified
chord distance d̃ (see [78] for detailed calculations):

d (r|L) = L

π

∣∣∣sin
πr

L

∣∣∣, (38)

d̃ (x − y|2L) = d (x + y|2L)d (x − y|2L)√
d (2x|2L)d (2y|2L)

. (39)

These analytical predictions are roughly compatible with the
numerical results in Fig. 9: the t’Hooft operator Gρ decays as
a power law with its distance from the edges of the system
and, for smooth boundary conditions, it is symmetric under
space inversion; the meson Mρ approximately decays as a
power law of the modified chord distance between its charges,
although it presents a bent shape in the logarithmic plot 9(a),
most probably caused by subleading terms in its bosonized
description (in analogy with bosonic systems [78]). Strong
subleading deviations from the predictions in Eqs. (36) and
(37) are observed approaching the BKT transitions.

Concerning the gapped thermodynamical phase we be-
gin our analysis by observing that the numerical results are
consistent with having an approximately constant expectation
value of the rung two-point correlation function 〈R(x, y)〉 for
any λ > 0 (see Fig. 10). In the limit λ → 0, our findings
suggest that R maintains its distance-independent behavior,
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FIG. 10. Examples of R(x1, x2), Gρ (r), Mρ (x1, x2) and
Mσ (x1, x2) in semilog scale for each regime of the gapped phase.
The related values of the coupling constants are indicated by the
stars with the corresponding colors in Fig. 5. The system is a L = 81
ladder with smooth boundaries. x1 is chosen to be 2.

although its value considerably decreases and is smaller than
10−8 when λ � 0.01. As previously mentioned, the constant
behavior of R indicates that the fully confined and decon-
fined regimes exist only in the pure lattice gauge theory limit
λ = 0, whereas the gapped phase for any finite λ > 0 falls
in one of the following three regimes: quadrupolar, confined
rung-dominated and Higgs [see Table I and Fig. 5(a)]. This
is consistent with the fact that the Luttinger parameter ap-
proximation Kσ/ρ ∼ 1/λ breaks for small values of λ and the
bare values of the Luttinger parameter must be considered
bounded. In particular, our findings suggest that the rung
tunneling term T is relevant for all values λ > 0.

To distinguish the quadrupolar, confined, and Higgs
gapped regimes, we can compare the behavior of the meson
strings Mρ and Mσ and the t’Hooft parameter Gρ . As sum-
marized in Table I these three regimes are identified, from
the RG analysis, by different behaviors of the gauge-invariant
observables, which we discuss in the following.

The confined (rung-dominated) regime appears for g � 0.4
(red region in Fig. 5). In this phase both the electric field
energy and the interleg tunneling flow to strong coupling, thus
pinning the field combinations ϕρ,

√
2θσ − θ0, ϕσ + √

2ϕ0,
as can be derived by the Hamiltonian (13) [see also the action
(D5)]. Consequently Gρ is constant, whereas all the mesons
display an exponential decay (see the red curves in Fig. 10
for a typical scenario) and, in this region, we have a good
agreement between the RG and DMRG predictions.

The picture is more complicated in the gapped phase at
low values of g. In the quadrupolar phase the bosonization
analysis yields that the interactions T and Cρ pin the fields θσ

and ϕρ , whereas θ0 is pinned by the background P0 interaction.
Therefore, based on RG, the meson string Mσ should display
a constant behavior in this regime; this implies that pairs of
mesonic strings with opposite dipoles at each end condense.
This kind of mesons are indeed compatible with having or-
dered rung operators.
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M
σ
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1.90

FIG. 11. (a) Meson Mσ for λ = 0.4 as a function of its length.
Different colors represent different values of g. Mσ is a constant in
the limit g → 0 and decays exponentially for g > 0. (b) Decay length
ξMσ

of Mσ as a function of g. For small g, ξMσ
is approximately

proportional to g−4. In the crossover between the quadrupolar and
confined phases, the behavior of ξMσ

changes. The vertical dashed
line in panel (b) indicates the value of g corresponding to the peak of
the fidelity susceptibility at g ≈ 0.375.

However, what is observed by the DMRG results is that
this picture captures the behavior of the system only for g = 0
[blue limit in Fig. 11(a)]. For small but finite values of g,
instead, Mσ always displays a weak exponential decay. Nev-
ertheless, for g � 0.2 the corresponding decay length ξMσ

is
larger than the typical system sizes we can probe (L ∼ 100)
and it diverges for g → 0. This smooth evolution from a
constant value at g = 0 to a weak exponential decay is the
first signature of the crossover between the quadrupolar and
confined phase. We additionally observe that ξMσ

transitions
from a behavior proportional to g−4 to a slower decay for g
increasing towards the confined phase [see Fig. 11(b)].

Concerning the meson Mρ , its expectation value clearly
decays exponentially with a very short decay length for any
value of g in the quadrupolar phase. This can be seen by con-
sidering the data for λ � 0.7 (blue curves) in Fig. 12, which
depicts the observables of the system for g = 0.2 as a function
of λ. This is consistent with the fact that this meson string
does not commute with the relevant and ordered T interaction.
Finally, Gρ is approximately constant, showing that also in this
phase the fluctuations of the dynamical charge are suppressed
[blue curves in Fig. 12(a)].

Concerning the Higgs regime, the features of the crossover
into the confined phase for growing g are even stronger. The
bosonization prediction is that the tunneling and background
P terms pin all the θ fields to their semiclassical minima. This
implies that all the mesons should condense in this regime and
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FIG. 12. Upper panels: Gρ (r) (a), Mρ (x1, x2 ) (b) and Mσ (x1, x2) (c) for λ from 0.2 to 1.4 and g = 0.2 in semilog scale. The system is a
L = 81 ladder with smooth boundaries. x1 is chosen to be 2. Lower panels: (d) and (e) are the correlation lengths of Mρ and Mσ . The dashed
lines indicate the positions of the peaks of χF at λ ≈ 0.655 and 0.83 [see Fig. 5(a)].

all the M strings should display an approximately constant
expectation value. On the contrary, the fluctuations of the
charge are maximal and Gρ must decay exponentially from
the boundary of the system. What we observe in the DMRG is
that, once again, the bosonization predictions are accurate in
the clock limit. For any g > 0, instead, all the meson strings
acquire a weak exponential decay, with a decay length diverg-
ing as g−4 for g → 0 (see Fig. 13), compatibly with results
from a quasiadiabatic continuation estimating the following:

ξMρ
≈ ξMσ

≈ (λg + 1)2
(
1 − cos 2π

5

)
g4

. (40)

See Appendix F for detail. Equation (40) relies on g � 1 in
general, and we display its result for small values of g in
Figs. 13(e) and 13(f) (orange lines). For large values of g
and λ, instead, the approximate behavior of the mesons can
be deduced by approximating the ground state with a product
state that minimizes the electric field and tunneling energies

only. The results of this approximation are depicted as the
green lines in Figs. 13(e) and 13(f) and provide a reasonable
estimate of the behavior of the meson even for the chosen
value λ = 1.4 and g � 1. The smooth crossover between these
behaviors of the decay length is a further signature of the
Higgs/confined crossover.

The Higgs/confined crossover has an even more interesting
effect over Gρ . In systems with smooth boundary conditions,
Gρ decays exponentially away from the edge as predicted for
the clock limit. However, for finite g, this exponential decay
stops at a certain distance �∗ from the edge, and Gρ stabilizes
to a bulk constant [see Fig. 13(a), showing the results for
λ = 1.4]. In the limit g → 0, �∗ increases and the bulk region
shrinks with smaller and smaller bulk values of Gρ . For g ap-
proaching the crossover line, instead, Gρ becomes essentially
flat, corresponding to �∗ � 1.

We finally comment on the regime at very low λ. As
we previously mentioned, the two-point correlation func-
tion R displays approximately a constant behavior for any
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FIG. 13. Upper panels: Gρ (r) (a), Mρ (x1, x2) (b) and Mσ (x1, x2), (c) for g from 0.02 to 1.9 and λ = 1.4 in semilog scale. The system is a
L = 81 ladder with smooth boundaries. x1 is chosen to be 2. Lower panels: (d) Estimate of the distance from the edge �∗ at which Gρ transitions
from an exponential decay to a constant as a function of g. (e, f) Decay lengths of Mρ and Mσ in log-log scale. The dashed lines indicate the
crossover at g ≈ 0.575. The orange (green) curves are the analytic predictions for g � 1 (g � 1 and λ � 1); see Eq. (40).
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λ > 0, and this is the main reason for which we consider the
regions at small λ in the phase diagram 5(a) to belong to the
quadrupolar and confined rung-dominated phase, rather than
the deconfined and fully confined phases. However, based on
the DMRG data, we observe a very weak exponential decay
of 〈R(x, y)〉 for the regions at very small λ: the corresponding
decay length is typically ξR > 104 for λ = 0.02. This tiny
decay may be interpreted as an effective crossover from the
fully confined phase of the pure LGT to the quadrupolar and
confined rung-dominated phases. At the level of the field the-
oretical description, this may also be due to the weak mixing
between the spin σ and gauge 0 sectors of the theory which
appears at second order in the perturbative RG analysis and
we neglected in our flow equations (see Appendix D).

E. Static charges and screening

When introducing dynamical charges in the system by
considering λ > 0, the confinement of the pure lattice gauge
theory is disrupted in general by screening. In particular, when
we insert two opposite static charges through the violation of
the Gauss law in two specific sites at a distance R, as done
in Sec. III, dynamical charges can accumulate in a screening
cloud around them and, in general, they will suppress the
electric field propagation in the intermediate region.

To roughly estimate the extent of this screening mecha-
nism, we can compare the electric field string energy T R (see
Fig. 2) and the mass of a pair of dynamical charges 2m =
4(1 − cos 2π/N )/λ. We define the length scale R∗ such that
T (g)R∗ = 2m(λ); R∗ provides a rough approximation of the
size of the screening clouds of the dynamical charges around
the static ones. When T R < 2m, thus R < R∗, the energy
cost of an electric field string connecting the static charges is
smaller than the mass cost required to screen them. Therefore
	E increases linearly with R as in the pure lattice gauge
theory, and the corresponding states do not display a complete
screening of the static charges such that electric lines clearly
propagate between them [see, for example, Fig. 14(b)]. When
R > R∗, instead, screening dominates, and 	E stabilizes
towards an asymptotic value (typically smaller than 2m). In
this case, localized clouds of dynamical particles completely
screen the static charges and the electric field rapidly decays
away from them [see, for example, the behavior in Fig. 14(c)].

In Fig. 15 we display the behavior of 	E as a function of
the static charge distance R within the different regions of the
phase diagram. In the quadrupolar phase (blue) the string ten-
sion is small whereas the mass of the Higgs charges is large,
therefore screening does not occur on the length scales here
presented. R∗ is indeed large, and, as expected, for R < R∗ the
electric field propagates along both legs in the intermediate
regime [see Fig. 14(b)]. In this regime, in particular, the ex-
pectation value of the electric field E decreases only weakly
away from the static charges and it is approximately constant
along the leg connecting them [see Fig. 16(b)]. The electric
field along the rungs is typically much smaller than the one
along the legs, consistently with the rung tunneling being a
relevant interaction.

By increasing g, the system smoothly evolves into the con-
fined rung-dominated phase [see Fig. 15(d)]; in this regime the
string tension is stronger, thus R∗ decreases. For R < R∗ the
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FIG. 14. Examples of the dynamical charge and electric field
distributions in the intermediate region between two opposite static
charges. The size of the dots represent the expectation value of
the dynamical charge q; the thickness of the links represents the
expectation value of the electric field E in arbitrary units. The electric
field and charge smaller than 10−6 are not shown in the figures.
Black and blue numbers label examples of the q and E expectation
values. Panel (a) represents a typical example in the Coulomb phase
(g = 0.01, λ = 0.75); panels (b), (c), and (d) correspond to the values
of the coupling constants in Fig. 10 (the stars in Fig. 5), and they
represent typical examples taken within the quadrupolar, confined
rung-dominated, and Higgs regimes respectively.

state is again analogous to the confined limit and, depending
on g, the electric field either propagates on both legs (inter-
mediate values of g) or only in the leg of the static charges
(large g). In the former case, we observe that the electric field
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FIG. 15. Energy cost 	E for the introduction of two static
charges in the same leg of the ladder as a function of their distance
R. The four panels correspond to the same coupling constants chosen
in Fig. 14. The gray dashed lines indicate the static charge distance
R = 8 used in Fig. 14.
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FIG. 16. Decay of the electric field 〈E〉 between two static
charges as a function of the distance r from the negative charge.
The distance between the static charges is R = 34. (a) Coulomb
phase (log-log scale): 〈E〉 decays approximately as a power law for
r < R/2. (b) Quadrupolar phase: 〈E〉 is approximately constant (no
screening). (c) and (d) Screened states in the Higgs and confined
regimes (log-normal scale). 〈E〉 decays approximately exponentially
for r < R/2. The four panels correspond to the same coupling con-
stants chosen in Fig. 14.

predominantly flows from one leg to the other along the same
rungs of the static charges. The case R > R∗ is exemplified
instead by Figs. 14(d) and 16(d): the electric field is exponen-
tially suppressed away from the static charges by a screening
cloud of dynamical charges.

In the Higgs phase, screening is extremely strong such
that R∗ is typically around one [see Fig. 15(c)]. Also in this
case the electric field is exponentially suppressed with the
distance from the static charges [Figs. 14(c) and 16(c)]. In this
regime the amplitude |〈τ 〉| is in general very small due to the
strong plaquette and tunneling interactions, thus concurring in
suppressing further the expectation values 〈E〉.

Finally, in the Coulomb phase, we observe that R∗ is very
large due to the weak string tension; thus, the static charges
display confinement over long distances [see Fig. 15(a)]. In
this gapless phase, the electric field 〈E〉 decays weakly as a
power law away from the static charges [Figs. 14(a) and 16(a)]
and it propagates on both legs, consistently with the predicted
algebraic decay of the correlation functions in the charge ρ

sector.

VI. EXTENSION TO MULTIPLE LEGS

The field theoretical approach we adopted for the analysis
of the system can be extended to investigate wider ladders
with a finite number of legs Ly. To this purpose, we can
apply a so-called coupled-wire construction (see, for example,
the review [47] and references therein): we decompose the
system (in the axial gauge) into a set of Luttinger liquids that
describe each horizontal stripe of the lattice and interact with
each other. In particular, we consider the axial gauge and we
generalize the matter bosonic fields ϕs and θs in Eq. (11) into
pairs of dual fields ϕy and θy labeled by the coordinate y =
1, . . . , Ly which specifies the row they refer to. In a similar
way, the fields ϕ0 and θ0 in Eq. (12) are extended to ϕ0,y and
θ0,y (with y = 1, . . . , Ly − 1), in order to represent the gauge

bosons on the vertical links between the matter rows y and
y + 1. As before, each pair of dual bosonic fields requires the
addition of a pair of background interactions of the P and Q
kinds.

The major difference between two and multiple legs relies
in the form of the electric field and tunneling interactions;
Eq. (27) takes a more symmetric form:

−T
∑

y

∫
dx cos (θy+1 − θy − θ0,y)

− G
∑

y

∫
dx cos (ϕ0,y+1 − ϕ0,y − ϕy+1). (41)

The electric field energy on each horizontal link can indeed
be described by a combination of the difference of electric
fluxes ingoing and outgoing from the vertical links and the
total Higgs charge on the same row. These interactions must
be supported by suitable boundary conditions.

This form of the coupling between subsequent rows allows
for the existence of a Coulomb phase also for multiple legs
(with smooth boundaries at y = 1 and y = Ly). Such a phase
can be understood by the emergence of a gapless sector char-
acterized by the dual fields:

θbulk = 1√
Ly

∑
y

θy, ϕbulk = 1√
Ly

∑
y

ϕy. (42)

These fields are a linear superposition of all the matter fields
and they generalize the charge sector into a bulk mode of the
system; the operator eiϕbulk , for example, is linked to the motion
of a magnetic flux along the vertical direction of the lattice.
Analogously to its two-leg counterpart, this sector remains
gapless for intermediate values of λ (such that the related
background terms are irrelevant) and small g (such that the
G term in (41) is irrelevant and does not open a gap in this
sector).

A key aspect of the interactions (41) is that the electric
field energy involves three bosonic fields in the multileg case
(differently from the corresponding equation (C11) for the
ladder). This implies that its scaling dimension increases and
its growth in the RG flow is slightly suppressed. This has
the important implication of increasing the extension of the
Coulomb phase to larger values of g. The extension of the
gapless phase is further increased due to the second-order
terms generated by the G interactions being suppressed as well
[the generalization of the C′

ρ terms in (D5) in particular].
Concerning the further extension to a fully 2D system, the

analysis becomes qualitatively more complex: an extended
deconfined and topological phase appears for small values of
g and λ, whereas the gapless phase is supposed to evolve into
a U(1) symmetric weakly gapped phase [79]. The mechanism
gapping the critical phase is nontrivial and can be understood
based on the mapping, for g = 0, into the 2D ZN quantum
clock model and its classical three-dimensional (3D) analog.
In three dimensions, it is indeed known that the classical clock
model does not display an extended gapless phase due to the
P background terms being “dangerously irrelevant” perturba-
tions and the system displays only a single phase transition in
the 3D XY model universality class. This is due to the fact that
the irrelevant P operators become relevant when approaching
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the U(1) symmetric gapless Nambu-Goldstone fixed point
[80], thus causing a second step in the RG flow towards the
ordered ferromagnetic phase of the clock model (see the phase
diagrams evaluated in Refs. [81,82]). As a consequence, the
system is characterized by two different length scales ξ < ξ ′,
both diverging at the critical point, which are associated with
the onset of U(1) and ZN symmetric features respectively.
This causes indeed the appearance of a crossover between a
U(1) symmetric and a ZN symmetric regime in the ordered
phase. This analysis has been numerically well verified for the
classical 3D model (see, for example, Refs. [79,81]), and it has
been recently confirmed also for the quantum 2D case [82],
thus leading to the conclusion that no gapless phase exists for
the clock limit g → 0 and the dual pure LGT λ → 0 [79].

We conclude our comparison between the quasi-1D ladder
geometry and the fully 2D systems by observing that, in
general, the Hamiltonian (3) presents neither true topological
order nor symmetry-protected topological phases.

Concerning topological order, even in the limit λ → 0 and
g → 0, in the ladder system local operators such as Gρ (r)
in Eq. (34) mix the degenerate ground states appearing with
periodic (or rough) boundary conditions. Despite that, we
observe that the Higgs matter excitations and the magnetic
flux excitations obey a mutual anyonic statistics, as in the
analogous 2D ZN models with topological order [38–41].

This suggests to investigate under which conditions it is
possible to obtain symmetry-protected topological phases in
the system, for example, by extending the Z2 surface code on
the ladder [53] to its ZN generalizations. We must observe
that, in the Hamiltonian (3), the electric field energy term
along the legs of the ladder and the tunneling term along
the rungs break the ZN × ZN symmetry required to design
symmetry-protected phases analogous to Ref. [53] (see also
Ref. [52] for similar non-Abelian constructions). By exclud-
ing these terms from our system, it is possible to design
error-resilient model to store quantum information. With this
purpose, the symmetry-protected Z2 model in Ref. [53] was
used to study the self-localization of anyons for highly excited
states. The study of similar dynamical properties of the ZN

anyons is an interesting open problem which we leave for
future studies.

VII. CONCLUSIONS

Ladder setups offer the simplest realization of a lattice
gauge theory whose dynamics crucially relies on the pla-
quette interactions. In the path towards the experimental
analog quantum simulations of gauge theories, therefore, the
realization of gauge models in the ladder geometry would
constitute an important milestone bridging 1D chains and
higher dimensional setups. The first steps in this direction
have already been accomplished in ultracold atom systems
trapped in optical lattices: a recent experiment [11] has proved
that a tunneling term mediated by an effective Z2 gauge de-
grees of freedom can be realized based on density-dependent
laser-assisted tunneling techniques. This is indeed the rung
tunneling interaction required for the realization of a gauge
theory in the ladder based on the axial gauge [83]. With
respect to the double-well systems proposed in Ref. [83], our
model additionally includes the plaquette interaction, which,

in the axial gauge, must be engineered as an operator acting
on two neighboring rung double wells.

Previous works focused on the analysis of several aspects
of dynamical gauge theories in ladders [33,37,52,53,83,84].
In this article, we explored the general features of the full
Kogut-Susskind model with a ZN LGT and Higgs matter
degrees of freedom. We analyzed its phase diagram based
on both a low-energy field theoretical description inspired by
bosonization, and DMRG numerical simulations. The model
displays different features for N � 4, where a single critical
point is observed in the limit of strong plaquette interac-
tions (g → 0), and N � 5, where instead an extended critical
Coulomb phase, with emergent U(1) symmetry appears.

Our numerical analysis focused mostly on the N = 5 case,
but, based on the renormalization group study of the field the-
ory description of the model, we conclude that the existence
of this extended gapless phase is stable for larger (but finite)
values of N , in which the gapless phase covers broader and
broader domains in the λ coupling constant.

On the technical side, our bosonization description of this
gauge theory can be applied, in general, to describe a broad
family of quantum clock models and our description can be
extended to the study of more complicated quasi-1D ribbon
geometries.
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APPENDIX A: DETAILS ON THE PURE
LATTICE GAUGE THEORY

In this Appendix we provide further information about the
pure lattice gauge theory and the calculation of its electric
string tension.

Equation (8) shows that the pure lattice gauge theory in
the axial gauge is equivalent to a ZN quantum clock model
with the addition of nonlocal disorder operators. This Hamil-
tonian can be reduced in a completely local form by use of a
unitary bond-algebraic duality transformation, as presented in
Refs. [1,51]:

σ †
r σr−1 → τ̃ †

r for r � 2 , σ1 → τ̃1, (A1)

τr → σ̃
†
r+1σ̃r for r �= L , τL → σ̃L, (A2)

L∏
j=r

τ j → σ̃r . (A3)
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This mapping preserves indeed all the commutation relations
and maps the disorder operators into a local term. The dual
Hamiltonian reads

H̃ = −1

g

L∑
i=2

(τ̃ †
i + τ̃i ) − g

L−1∑
i=1

(σ̃ †
i σ̃i+1 + H.c.)

− 2g
L∑

i=1

(σ̃i + σ̃
†
i ) − g(σ̃L + σ̃

†
L ). (A4)

This dual Hamiltonian describes the N-clock model in a longi-
tudinal field, with the important feature that τ̃1 does not appear
in the dual model. As a consequence, the global symmetry G
is mapped into the holographic symmetry defined by G̃ = σ̃1,
such that [σ̃1, H̃ ] = 0 (see [61] for more detail on holographic
symmetries in ZN models with Higgs matter).

From Eq. (A4) we see that the ground state is degenerate in
the limit g → 0, because the first clock degree of freedom may
assume any of its N states. This corresponds to the ordered fer-
romagnetic limit for the Hamiltonian (8). For any value g > 0,
however, the degeneracy is split by the term proportional to G̃
entering the Hamiltonian. The ground state is then symmetric
and nondegenerate for any g > 0 and the gap separating it
from the first excited states grows linearly with g. For N = 2
this corresponds indeed to the Ising model in a longitudinal
and transverse field which presents only one gapped phase
[59,60]. This feature distinguishes our ladder model from its
2D counterpart, since, for pure ZN lattice gauge theories in
2D square lattices, there exists a phase transition between a
confined (g > gc) and a deconfined (g < gc) phase for a finite
gc > 0 [1,49].

To verify that the extended gapped phase characterizing
the pure lattice gauge model (8) at g > 0 corresponds to a
confined phase, we consider the behavior of the system in the
presence of external static charges and we estimate their string
tension.

In order to simplify our analysis, we modify the rough
boundary on the left of the ladder by including an additional
three-site boundary plaquette term which does not violate any
of the gauge constraints:

Hleft plaq. = − 1

gb
(σ1,↑σ

†
1,0σ

†
1,↓ + H.c.). (A5)

This magnetic field term must be added to the boundary term
in Eq. (4) and its inclusion explicitly breaks the G symmetry,
favoring a symmetry-broken ferromagnetic ground state with
all the operators σ0 aligned along their eigenvalue 1 in the
axial gauge choice of Eq. (8).

A confined phase is characterized by the presence of
a linear string tension for the electric flux lines. When
introducing two opposite static charges, the energy of
the ground state displays a linear dependence on the
distance R between them. The static charges are intro-
duced by modifying the gauge constraints (7) associated
to two arbitrary ladder sites. In particular, we impose that
the physical Hilbert space fulfills Gx,↓|ψ〉 = ei 2π

N |ψ〉 and
Gy,↓|ψ〉 = e−i 2π

N |ψ〉. For simplicity, we introduce the charges
in the same leg and we consider y > x. In this physical sub-

space, the Hamiltonian in the axial gauge takes the form

Hgauge = −1

g

L−1∑
r=1

(σrσ
†
r+1 + H.c.) − g

L∑
r=1

(τr + τ †
r )

− g
∑

y�r>x

[
(e−i 2π

N + 1)
L∏

j=r

τ j + (e
i2π
N + 1)

L∏
j=r

τ
†
j

]

− 2g
∑

r � x or r > y

[
L∏

j=r

τ j +
L∏

j=r

τ
†
j

]
− 1

g
(σ1,0 + σ

†
1,0).

(A6)

To verify that this Hamiltonian supports only a confined phase
for any g > 0, we consider the behavior in the two limits
g → 0,∞. For g → ∞ the ground state is a (paramagnetic)
product state with all sites obeying τr |ψaxial〉 = |ψaxial〉. The
electric energy of this product state with the two static charges
is E (g → ∞) = −6gL + 2gR[1 − cos(2π/N )] such that

	E (g → ∞) = 2g[1 − cos(2π/N )]R = T R, (A7)

where 	E describes the energy difference between the ground
states with and without the static charges separated by the
distance R = |x − y| and T denotes the string tension (see
Fig. 2). The phase in this limit is therefore confined. Includ-
ing also the plaquette interaction, for g � 1 the system still
supports a confined phase, and from perturbation theory one
finds

	E (g � 1) =
(

2g

[
1 − cos

(
2π

N

)]

− 1

g3

{
1

2[3−2 cos (2π/N )− cos (4π/N )]

})
R

+ O

(
1

g7

)
. (A8)

In the other limit, g → 0, the ground state is instead a product
state with all sites obeying σr |ψaxial〉 = |ψaxial〉. Exactly at the
g = 0 limit, the ground state is deconfined since 	E (g →
0) = 0. For small values of g > 0 we apply a standard nonde-
generate perturbation theory and the lowest order correction
to the energy yields

	E (g � 1) = 2g3R + O(g7). (A9)

Also in this case, the static charge energy presents a linear
dependence with respect to their distance R, thus showing
that that the deconfined phase is unstable under any small
g perturbation (see Fig. 2). In this respect, the ladder model
behaves like a fully 1D system and the ground state of the
pure lattice gauge theory displays confinement of the static
charges for any g > 0.

APPENDIX B: THE CASE N = 4 IN THE LIMIT g = 0

In the limit g = 0, the lattice gauge theory model is equiva-
lent to the quantum clock model (9) in the ladder geometry. In
the specific case N = 4, we can apply a unitary mapping from
the Z4 clock operators into two pairs of Z2 Ising operators

013133-18



ZN LATTICE GAUGE THEORY IN A … PHYSICAL REVIEW RESEARCH 3, 013133 (2021)

[51]. We introduce an additional index j = 1, 2 to label these
two sets of Pauli matrices:

ζr,s = e
iπ
4√
2

(
σ z

r,s,1 − iσ z
r,s,2

)
, (B1)

ηr,s = 1

2

(
σ x

r,s,1 + σ x
r,s,2

)+ i

2

(
σ z

r,s,1σ
y
r,s,2 − σ

y
r,s,1σ

z
r,s,2

)
, (B2)

where σ a label the Pauli matrices. Based on this unitary map-
ping, the model of Eq. (9) for N = 4 becomes

HN=4(g = 0) = −λ

[∑
r,s, j

σ z
r,s, jσ

z
r+1,s, j +

∑
r, j

σ z
r,↑, jσ

z
r,↓, j

]

− 1

λ

∑
r,s, j

σ x
r,s, j . (B3)

The resulting Hamiltonian corresponds to two copies j = 1, 2
of the Hamiltonian (9) for N = 2 (up to an overall rescaling
of the energy by a factor 1/2). Therefore the critical value of
λ at g = 0 is the same for N = 2 and N = 4.

APPENDIX C: DETAILS ABOUT BOSONIZATION

In this Appendix, we present the detail about the construc-
tion of the effective Hamiltonian (13).

The fundamental criterion to built a low-energy description
in continuum space of the ZN LGT on the ladder is to create
a mapping from the clock operators to the bosonic fields θs

and ϕs which preserves their algebraic properties. To this
purpose, we verify first that Eqs. (10), (11), and (12) fulfill
the commutation relation in Eq. (2):

ζr,sηr′,s′ → e−iθs (r)e−iϕs′ (r′ )+iϕs′ (r′+a)

= e−iϕs′ (r′ )+iϕs′ (r′+a)e−iθs (r)e−[θs (r),ϕs′ (r′ )−ϕs′ (r′+a)]

= e−iϕs′ (r′ )+iϕs′ (r′+a)e−iθs (r)ei 2π
N [�(r−r′ )−�(r−r′−a)]δs,s′

= e−iϕs′ (r′ )+iϕs′ (r′+a)e−iθs (r)ei 2π
N δr,r′ δs,s′

→ ηr′,s′ζr,se
i 2π

N δr,r′ δs,s′ , (C1)

which verifies Eq. (2). In the previous calculation we used
the Campbell-Baker-Haussdorf formula, and we adopted the
convention that �(x) = 1 for x � 0. The analogous property
in Eq. (1) can be verified in the same way.

Concerning finite systems, we observe that for the right
edge, characterized by smooth boundary conditions (see
Fig. 1), the definition of ηL,s and τL,0 must be taken with
Dirichlet boundary conditions ϕs(L + a) = 0 such that

ηL,s → e−iϕs (L), τL,0 → e−iϕ0(L). (C2)

By introducing different boundary conditions for ϕ↑/↓ at the
two edges it is possible to add a background electric field thus
modifying the θ vacuum of the theory.

Based on the mapping (11) and (12), we are now ready
to derive the effective Hamiltonian (13). We list in the
following all the Hamiltonian terms in the axial gauge
and their continuum approximations. The intraleg tunneling

terms read

−λ
∑

r

ζ †
r,sζr+1,s + H.c. → −λ

a

∫
dx ei[θs (x)−θs (x+a)] + H.c.

= −2λ

a

∫
dx cos [θs(x)−θs(x + a)] ≈

∫
dx aλ[∂xθs(x)]2,

(C3)

where we considered that the bosonic fields vary slowly over
the length scale a, and we neglected constant contributions.
This term clearly contributes to the first line of Eq. (13) for
s = ↑,↓. An analogous contribution, for s = 0, is obtained
from the plaquette term:

−1

g

∑
r

σ
†
r,0σr+1, + H.c. ≈

∫
dx

a

g
[∂xθ0(x)]2. (C4)

The additional quadratic terms of the fields ϕs are derived
from the mass and rung electric field contributions. The for-
mer reads

−1

λ

∑
r

(ηr,s + η†
r,s) → − 2

aλ

∫
dx cos [ϕs(x) − ϕs(x + a)]

≈
∫

dx
a

λ
[∂xϕs(x)]2, (C5)

for s = ↑,↓. The rung electric energy has an analogous form:

−g
∑

r

(τr,0 + τ
†
r,0) ≈

∫
dx ag[∂xϕ0(x)]2. (C6)

The sum of these four quadratic terms determines the Lut-
tinger liquid part of the Hamiltonian (13) with the following
parameters:

K↑,↓ = 1

λ
, K0 = g, (C7)

v↑ = v↓ = v0 = 4πa

N
≡ v. (C8)

These values of the Luttinger parameters provide the bare
values entering the renormalization group flow, whereas the
velocities are equal in all the Luttinger sectors and are in-
variant through RG due to the emergent Lorentz symmetry
of (13).

The interacting terms in (13) are determined by the inter-
leg tunneling and the leg electric field term. The former is
straightforwardly obtained by the mapping (11), (12):

−λ

L∑
r=1

ζ
†
r,↑σr,0ζr,↓ + H.c. → −2λ

a

∫
dx cos (θ↑ − θ↓ − θ0).

(C9)
The latter must be estimated by considering its string operator
formulation in the axial gauge, which is derived from the form
of the gauge constraints (in the case of a smooth right edge).
In particular, on the physical states, we have

τr,↑ =
∏
r′>r

τ
†
r′,0η

†
r′,↑. (C10)

This expression is derived from Eqs. (5), (6), and (7) similarly
to the pure LGT case in Eq. (8). Based on Eqs. (11), (12), and
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(C2) we obtain

−g
∑

r

(τr,↑ + τ
†
r,↑) → −2g

a

∫
dx cos (ϕ↑ + ϕ0). (C11)

The analogous expression for the lower leg completes the
electric energy terms in (13).

Finally, we must consider the background terms. They are
meant to restore the original ZN symmetry of the system, and,
indeed, when translated back to the clock operators, the back-
ground terms become proportional to the identity because they
correspond to the N th power of the clock operators. Despite
this, they play a crucial role in determining the phase diagram
of the system and their interplay is crucial to understand the
transitions from gapped to gapless phases for N > 4, in a way
similar to the 1D quantum clock model.

The coupling constants Ps and Qs must be determined by
comparing the energy spectra of the field theory (13) with the
lattice model. This task is nontrivial but a rough estimate of
their value can be obtained by considering the limiting cases
λ → 0,∞ and g → 0,∞ and neglecting all the irrelevant
terms. Let us consider, in particular, the clock model limit with
frozen gauge boson degrees of freedom. For simplicity, we
also neglect the coupling between the two legs of the ladder,
and we focus in the following on a single 1D clock chain.

In the case λ → ∞, thus K↑, K↓ → 0, only the P↑,↓ terms
are relevant and we neglect all the other interactions. In
this case we expect that the corresponding clock model is
deep in its ferromagnetic phase, where the elementary ex-
citation is provided by the domain walls with mass Mcl =
2λ(1 − cos 2π/N ). We compare this mass with the mass of
a kink in the classical and static sine-Gordon model with
quadratic part corresponding to the one in the Hamiltonian
(13). This classical mass can be obtained by using standard
techniques (see, for example, Chap. 16 in Ref. [86]):

Mkink = 4

√
2Psv

πNKs
≈ 8

√
2Psλa

N2
. (C12)

By comparing the two masses we derive

P↑,↓ ≈ λN2(1 − cos 2π/N )2

32a
, (C13)

which provides Eq. (15) through K = 1/λ for s = ↑,↓. This
expression sets the bare coupling constant of the θ↑ and θ↓
background terms and it must be considered as an approxi-
mation valid for small Ks. The result for the small λ limit,
corresponding to the paramagnetic phase of the clock model,
can be easily retrieved through the duality θ ↔ ϕ and K ↔
K−1. It results into Eq. (16). The calculation of P0 and Q0

follows the same procedure. In this case, though, it is conve-
nient to consider first the pure lattice gauge theory limit for
g → 0. In this way, the plaquette term plays the role of the
ferromagnetic coupling of the clock model (8) and one obtains
Eq. (15) for K0 = 1/g. Finally, the duality K0 ↔ K−1

0 allows
for the estimate of Q0.

APPENDIX D: THE SECOND-ORDER
RENORMALIZATION GROUP EQUATIONS

Our renormalization group analysis is based on Wilson’s
approach and, in particular, on a second-order perturba-
tive calculation in momentum space of the Euclidean action
corresponding to the Hamiltonian (13). In this Appendix
we summarize the main steps for the derivation of the
second-order RG equations we adopted in the study of the
phase diagram, and, in particular, we focus on the onset of
the main effective interactions that are generated through the
flow of the sine-Gordon terms in (13).

Our perturbative approach relies on considering all the in-
teraction terms in (13) as perturbations of the Gaussian action
S0 corresponding to the quadratic terms in the bosonic fields.
The quadratic action can be written as a function of either the
ϕ or the θ fields and, with the former choice, it reads

S0 = N

4π

∫
d2r

[ ∑
s=σ,ρ,0

Ks

v
(∂τϕs)2 + Ksv(∂xϕs)2

]
, (D1)

where we consider a 2D Euclidean space-time. In the follow-
ing, we will use both the charge and spin degrees of freedom,
and the spin ↑ and ↓ fields, depending on the most convenient
notation.

Based on Wilson’s prescription, we distinguish fast and
slow oscillating modes for each of the bosonic fields. In par-
ticular, we introduce an effective cutoff �̃ in momentum space
such that the slow modes are characterized by k < �̃, whereas
the fast modes are defined by the choice �̃ < k < �, with
� = 2π/a being the ultraviolet cutoff of the system. To per-
form the Wilsonian RG, we will integrate out the fast modes
of each field, and, in particular, we are interested in the limit
�/�̃ = 1 + dl , with dl infinitesimal. The decomposition of
the bosonic fields in fast and slow modes reads

ϕs(x, τ ) = ϕs,s(x, τ ) + ϕf,s(x, τ ), (D2)

θs(x, τ ) = θs,s(x, τ ) + θf,s(x, τ ). (D3)

To derive the RG equations, we will define an effective
action for the slow modes in the following form:

Seff (�̃) = S0(ϕs) − ln〈e−SI (ϕs+ϕf )〉f

≈ S0(ϕs) + 〈SI (ϕs + ϕf)〉f︸ ︷︷ ︸
A

− 1

2

⎛
⎜⎝〈S2

I (ϕs + ϕf)
〉
f︸ ︷︷ ︸

B

−〈SI (ϕs + ϕf)〉2
f︸ ︷︷ ︸

A2

⎞
⎟⎠+ · · · ,

(D4)

where the average values are taken over the fast oscillating
modes. The interacting part SI of the action matches the inter-
acting part of the Hamiltonian (13). SI , however, collects also
many effective interactions whose bare coupling constants
vanish, but acquire nontrivial values during the RG flow. As
discussed in the main text, we keep track only of the most
relevant of these terms appearing at second order of perturba-
tion, and we neglect simple powers of the terms appearing in
the bare Hamiltonian which do not qualitatively affect the RG
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flow. We list here, for reference, the main interaction terms we
consider:

SI = −T
∫

d2r cos(
√

2θσ − θ0)

− G
∫

d2r [cos (ϕ↑ + ϕ0) + cos (ϕ↓ − ϕ0)]

−
∑

s=↑,↓

∫
d2r [P cos Nθs + Q cos Nϕs]

−
∫

d2r [P0 cos Nθ0 + Q0 cos Nϕ0]

+
∑

q=ρ,σ

∫
d2r Cq cos(

√
2Nϕq)

+
∫

d2r [C′
ρ cos

√
2ϕρ + C′

σ cos(
√

2ϕσ + 2ϕ0)]. (D5)

The last two integrals, in particular, refer to interactions that
appear only at second order in perturbation theory, but bear
important implications for identifying the physical regimes
of the system. The C′ interactions, in particular, appear only
when g > 0, differently from the C interactions which influ-
ence the system in the clock limit as well.

We emphasize that these interactions are only a small
subset of all the terms appearing at second order. Let us
consider, for example, the operators appearing in the clock
limit. Beyond the interactions (20), one should consider sim-
ilar interactions in the θ fields. We point out, however, that
such interactions would be in general less relevant than the
P and T terms and commute with them, in such a way that
their effect in determining the phase diagram is marginal, as
we verified through a numerical solution of the second-order
RG equations including also these additional terms.

Before proceeding in the evaluation of the main second-
order terms, we summarize here some of the properties of
the bosonic fields we will utilize. Concerning their duality
relations in Euclidean time τ = it , we have

∂τ θ j = ivKj∂xϕ j, ∂τϕ j = i
v

Kj
∂xθ j . (D6)

Concerning the correlation functions of the fast modes, we
will adopt the following approximations:〈

ϕ2
f, j (x)

〉
f, j

= 1

NKj
ln

�

�̃
, (D7)

〈ϕf, j (x1, τ1)ϕf, j (x2, τ2)〉f ≈ C(r)

NKj
ln

�

�̃
, (D8)

〈
θ2

f, j (x)
〉
f, j

= Kj

N
ln

�

�̃
, (D9)

〈θf, j (x1, τ1)θf, j (x2, τ2)〉f ≈ KjC(r)

N
ln

�

�̃
. (D10)

Here the logarithm captures the dominant scaling behavior,
whereas C(r) is a function of r =

√
v2(τ1 − τ2)2 + (x1 − x2)2.

In the following we will consider C(r) to be suitably short-
ranged; for a sharp momentum cutoff, C(r) ≈ J0(�r) and this
assumption is not satisfactorily fulfilled; however, C(r) can
be made sufficiently short-ranged with more refined cutoffs
[87,88].

The first-order contribution A of the interacting action
(D4) provides the standard dependence from the scaling di-
mensions of the RG equations. We focus in the following
in the second-order contributions and, in particular, on the
nontrivial terms appearing in B.

We begin our analysis by studying a part of B which
appears already in the clock limit (g = 0) and we consider,
in particular, the following terms:

B ⊃
∫

d2r1d2r2 Q2
∑

q,q′=↑,↓
〈cos N[ϕq,s(r1) + ϕq,f(r1)] cos N[ϕq′,s(r2) + ϕq′,f(r2)]〉f

=
∫

d2r1d2r2
Q2

4

∑
q, q′ = ↑, ↓
μ,μ′ = ±1

〈eiNμ[ϕq,s(r1 )+ϕq,f (r1 )]eiNμ′[ϕq′ ,s(r2 )+ϕq′ ,f (r2 )]〉f

=
∫

d2r1d2r2
Q2

4

∑
q, q′ = ↑, ↓
μ,μ′ = ±1

eiN[μϕq,s(r1 )+μ′ϕq′ ,s(r2 )]〈eiN[μϕq,f (r1 )+μ′ϕq′ ,f (r2 )]〉f. (D11)

In this expression, (1) the terms with q �= q′ and μ = μ′ return the Cρ interaction, (2) the terms with q �= q′ and μ = −μ′ return
the Cσ term, and (3) the terms with q = q′ and μ = −μ′ provide a correction to the quadratic part of the action which we must
evaluate to obtain the RG equations for the Luttinger parameters. The last terms, q = q′ and μ = μ′, result instead in highly
irrelevant interactions which we neglect.

We consider the contributions (1) first. We obtain

B ⊃
∫

d2r1d2r2
Q2

2
eiN[ϕ↑,s(r1 )+ϕ↓,s(r2 )]〈eiN[ϕ↑,f (r1 )+ϕ↓,f (r2 )]〉f + H.c.

=
∫

d2r1d2r2
Q2

2
ei N√

2
[ϕρ,s(r1 )+ϕσ,s(r1 )+ϕρ,s(r2 )−ϕσ,s(r2 )]

(
�̃

�

) N
2Kρ

+ N
2Kσ

+ NC
2Kρ

− NC
2Kσ

+ H.c.

013133-21



NYHEGN, CHUNG, AND BURRELLO PHYSICAL REVIEW RESEARCH 3, 013133 (2021)

=
∫

d2r′
1d2r′

2(1 + 4dl )
Q2

2
ei N√

2
[ϕρ (r′

1 )+ϕσ (r′
1 )+ϕρ (r′

2 )−ϕσ (r′
2 )]

×
[

1 − dl

(
N

2Kρ

+ N

2Kσ

+ NC
2Kρ

− NC
2Kσ

)]
+ H.c., (D12)

where we used Eqs. (D7) and (D8), we decomposed the fields
in the charge and spin sectors, we imposed �̃ = �(1 − dl ),
and we applied a general rescaling of the coordinates d2r =
(1 + 2dl )d2r′. The coordinate dependence of the correlation
C has been suppressed for ease of notation. Among the terms
in the previous expression, only the ones proportional to C
contribute to the second-order correction of the action. The
others are simplified by the analogous terms in A2 in Eq. (D4).
In this expression, we approximate C(r) ≈ (a2/v)δ(r). This
results in the following contribution to the renormalized ac-
tion:

Q2a2

v
dl

(
N

4Kρ

− N

4Kσ

)∫
d2r cos[

√
2Nϕρ (r)]. (D13)

By following the same approach, in the case (2), we obtain
instead

−Q2a2

v
dl

(
N

4Kρ

− N

4Kσ

)∫
d2r cos[

√
2Nϕσ (r)]. (D14)

From these results we can immediately derive the second-
order RG equations for the coupling constants Cρ and Cσ [see
Eqs. (D25) and (D26)].

The terms (3) in Eq. (D11) provide a paradigmatic example
of the feedback of the interactions in the definition of the
Luttinger parameters. For q = q′ and μ = −μ′ we obtain the
following contribution in B:∫

d2r1d2r2
Q2

4

∑
q=±1

ei N√
2

[ϕρ,s(r1 )+qϕσ,s(r1 )−ϕρ,s(r2 )−qϕσ,s(r2 )]

×
(

�̃

�

) N
2Kρ

+ N
2Kσ

− NC
2Kρ

− NC
2Kσ

+ H.c. (D15)

Also in this case, we must consider that �̃/� = 1 − dl , and
the effective action will include only the terms that are pro-
portional to the correlation function C(r1 − r2). To manipulate
this expression, we take into account that C is localized and
peaked around r1 − r2 = 0. In particular, we approximate
it with a function different from zero only in a range of
width a (see, for example, Ref. [36]). It is thus convenient
to rewrite the former expression in terms of the center of
mass and relative coordinates. The integral over the relative
coordinate r1 − r2 gives a non-negligible contribution only
around zero. After rescaling the center of mass coordinate we
obtain an effective contribution to the action of the following
kind:

−NQ2a2dl

8v

∫
d2r

(
1

Kρ

+ 1

Kσ

)

×
[

cos
Na√

2
(∇ϕρ + ∇ϕσ ) + cos

Na√
2

(∇ϕρ − ∇ϕσ )

]

≈ N3Q2a4dl

16v

(
1

Kρ

+ 1

Kσ

)

×
∫

d2r
∑

q=ρ,σ

[
(∂xϕq)2 + (∂τϕq)2

v2

]
. (D16)

By considering the relations (D6), one can add these second-
order terms to the Gaussian action S0 and derive the
corresponding corrections to the Luttinger parameters, which
contribute to Eqs. (D29) and (D30).

All the second-order terms we considered so far stemmed
from the background Q interaction. The analogous results for
the P interaction can be easily derived by applying the field
duality ϕ ↔ θ and K ↔ 1/K . This allows us to determine the
dependence of dKq/dl on P2, and it yields to the appearance
of additional sine-Gordon interactions analogous to the ones
in (D13) and (D14) for the θ fields. We numerically verified
that their role in the solution of the RG equations and in the
definition of the phase diagram of the system is negligible,
therefore, for simplicity, we did not include them in our effec-
tive action (D5).

To estimate the role of the fields ϕ0 and θ0, we must con-
sider instead the tunneling T , electric field G and background
P0 and Q0 interactions in the action (D5). Their second-order
terms yield the additional interactions C′ and provide addi-
tional contributions to the Luttinger parameter flow equations.

The analysis of the P0 and Q0 terms are completely anal-
ogous to the previous example. The tunneling T term, at
second order, presents instead a mixing of the matter σ and
gauge 0 sectors. Such a mixing would require to modify our
description of the field theory by introducing an l-dependent
rotation of the field sectors. In the following we neglect the
mixing terms (proportional to ∇θσ∇θ0) and we maintain the
separation of the ρ, σ and 0 sectors: this simplification is
justified only for small values of l and may determine a tiny
shift of the phase boundaries of the system resulting from the
solution of the RG equations. Additionally, it can also yield a
small systematic error in estimating the correlation functions
and string parameters of the system.

A similar mixing appears also in the terms generated by
the G interaction. The contribution to SI obtained from the
second-order estimate of the G terms reads

G2dl

16N

∫
d2r1 d2r2

∑
μ,μ′,ν,ν ′,=±1

(
μμ′

Kρ

+ νν ′

Kσ

+ 2νν ′

K0

)
C

× ei( μϕρ√
2

+ νϕσ√
2

+νϕ0 )(r1 )ei(
μ′ϕρ√

2
+ ν′ϕσ√

2
+ν ′ϕ0 )(r2 )

. (D17)

Analogously with the previous analysis, the terms with μ =
−μ′ and ν = −ν ′ generate a correction of the Gaussian action
and yield the G2 contribution in Eqs. (D29), (D30), and (D31),
which are obtained neglecting the mixing between ϕ0 and ϕσ .
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The terms μ = μ′ and ν = −ν ′, instead, generate the
t’Hooft Gρ interaction, corresponding to the C′

ρ in the action
(D5):

G2a2dl

4Nv

[
1

Kρ

− 1

Kσ

− 2

K0

] ∫
d2r cos

√
2ϕρ. (D18)

This is a highly relevant term which is crucial in determining
the boundaries of the Coulomb phase. By increasing g, it
is indeed the dominant operator that gaps the charge sector.
The term C′

σ originates in a similar way from the contribu-
tion μ = −μ′ and ν = ν ′ in (D17). Both the C′ terms, in
turn, provide a second-order contribution to the flow of G
[see Eq. (D24)].

We conclude by summarizing all the RG equations. The
flow equations for the background coupling constants do not
have second-order terms:

dP

dl
=
[
2 − N

4
(Kρ + Kσ )

]
P, (D19)

dQ

dl
=
[

2 − N

4

(
1

Kρ

+ 1

Kσ

)]
Q, (D20)

dP0

dl
=
[
2 − NK0

2

]
P0, (D21)

dQ0

dl
=
[
2 − N

2K0

]
Q0. (D22)

The second-order equations for the coupling constants read

dT

dl
=
(

2 − Kσ

N
− K0

2N

)
T, (D23)

dG

dl
= (2 − Dg)G − C′

ρGa2

4NKρv
− C′

σ Ga2

4Nv

(
1

Kσ

+ 2

K0

)
, (D24)

dCρ

dl
=
(

2 − 2
N

Kρ

)
Cρ + Q2a2

v

(
N

4Kρ

− N

4Kσ

)
, (D25)

dCσ

dl
=
(

2 − 2
N

Kσ

)
Cσ − Q2a2

v

(
N

4Kρ

− N

4Kσ

)
, (D26)

dC′
ρ

dl
=
(

2 − 1

KρN

)
C′

ρ + G2a2

4Nv

[
1

Kρ

− 1

Kσ

− 2

K0

]
, (D27)

dC′
σ

dl
=
(

2 − 1

Kσ N
− 2

NK0

)
C′

σ − G2a2

4Nv

[
1

Kρ

− 1

Kσ

− 2

K0

]
, (D28)

with Dg = 1
4N [ 1

Kρ
+ 1

Kσ
+ 2

K0
]. Finally, the RG equations for the Luttinger parameters read

dKρ

dl
= −πN2P2a4K2

ρ (Kσ + Kρ )

4v2
+ πN2Q2a4

4v2

(
1

Kσ

+ 1

Kρ

)
+ 8πN2C2

ρa4

4v2Kρ

+ 2πC′2
ρ a4

N2v2Kρ

+ πG2a4

4N2v2

[
1

Kρ

+ 1

Kσ

+ 2

K0

]
, (D29)

dKσ

dl
= −πN2P2a4K2

σ (Kσ + Kρ )

4v2
+ πN2Q2a4

4v2

(
1

Kσ

+ 1

Kρ

)
+ 2πN2C2

σ a4

v2Kσ

− 2πT 2a4K2
σ

N2v2

(
Kσ + K0

2

)
+ 2πC′2

σ a4

N2v2

(
1

Kσ

+ 1

K0

)
+ πG2a4

4N2v2

[
1

Kρ

+ 1

Kσ

+ 2

K0

]
, (D30)

dK0

dl
= πN2Q2

0a4

v2K0
− πN2P2

0 a4K3
0

v2
− πT 2a4K2

0

N2v2

(
Kσ + K0

2

)
+ 2πC′2

σ a4

N2v2

(
1

Kσ

+ 2

K0

)
+ πG2a4

2N2v2

[
1

Kρ

+ 1

Kσ

+ 2

K0

]
. (D31)

To determine the phase diagram in Fig. 5(b) we adopted an
implicit Runge-Kutta method to solve numerical these differ-
ential equations. We set a fixed lower threshold (∼0.2) below
which the coupling constants were considered negligible, in
order to determine the extension of the gapless phase. We set
a variable upper cutoff whose level sets the scale above which
the constants were considered in the strong coupling regime.
This upper cutoff was taken to be larger than all the bare
constants. We stopped the flow every time a set of interactions
sufficient to gap all the sectors reached the strong-coupling
upper cutoff, or when the σ and 0 interactions reached the
upper thresholds whereas the ρ interactions fell below the
lower cutoff. In case of noncommuting operators reaching

together the upper threshold, we considered the largest to
classify the corresponding phase.

In Fig. 5(b) we presented the phase diagram obtained
from the numerical solutions of the RG flow equations for
N = 5. The numerical solution of the flow equations can be
straightforwardly extended to N > 5: in Fig. 17 we show
the predicted phase diagrams for N = 8 (a) and N = 15 (b).
These figures display how increasing N leads the confined
rung-dominated phase to grow and the gapless phase to be
more extended in the λ direction and less in the g direction.
For larger values of N the gapless phase is seen to be spread
out onto the g = 0 line whereas the confined rung-dominated
phase dominates all the gapped regions of the phase diagram.
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FIG. 17. Phase diagram from second-order RG for N = 8 (a) and
N = 15 (b). The different phases are shown by different colors, in-
cluding the deconfined phase (purple), the quadrupolar phase (blue),
the Coulomb phase (green), the Higgs phase (yellow), the fully con-
fined phase (brown), and the confined rung-dominated phase (red).

APPENDIX E: MODIFIED FIRST-ORDER PHASE
DIAGRAM FOR g = 0

To simplify the full second-order renormalization group
analysis, it is possible to consider a “quasi”-second-order
approach to illuminate the behavior of the higher order terms.
This analysis shows that the phase diagram for N � 4 does not
display the extended gapless Coulomb phase and we present
it here for the clock limit g = 0 [Eq. (9)], based on the low-
energy Hamiltonian (19).

In the first-order RG analysis both the rung tunneling term
and the background Q term are relevant for K ∈ [N/4, 2N].
Since these terms do not commute, the first order analysis
demands the less relevant term of the two to be neglected.
Therefore, the first-order analysis predicts a gapless phase to
appear for N > 2, which is ultimately shown to be wrong by
the numerical simulations. A simple way of improving the
Rg predictions is to adopt a two-step RG approach, where
the flow is divided into separate parts, where each part is
terminated when a coupling constant reaches a suitable upper
threshold, which indicates when a given interaction semi-
classically pins the related fields. After each separate flow,
an effective Hamiltonian for the remaining unpinned sectors
is considered. For K < N/

√
2, where the rung tunneling is

the most relevant term, θσ is the first field being pinned to

an energy minimum; hence, the effective Hamiltonian of the
charge sector for the second RG step results

Hstep 2(g = 0) = N

4π

∫
dx v

[
K (∂xϕρ )2 + 1

K
(∂xθρ )2

]

− 2
∫

dx P̃ cos
Nθρ√

2
, (E1)

where P̃ is a suitable renormalized parameter deriving from
the background P term. We observe that, after the initial
flow pins θσ , the scaling dimension of this background term
decreases by a factor of 2, DP̃ = KN/4. Based on a scaling
analysis of the second step Hamiltonian Hstep 2, the extended
gapless phase disappears for N = 3.

In the above analysis the background Q term was ne-
glected, since we considered first-order contributions only.
By following the two-step approach adopted in Ref. [89], we
refine Hstep 2 by including the most relevant second-order term,
which matches the Cρ interaction in Eq. (D5):

Hstep 2(g = 0) = N

4π

∫
dx v

[
K (∂xϕρ )2 + 1

K
(∂xθρ )2

]

− 2
∫

dx

[
P̃ cos

Nθρ√
2

+ C̃ρ cos
√

2Nϕρ

]
.

(E2)

Here C̃ρ is a suitable renormalized coupling constant deter-
mined by the first step in the flow. Its scaling dimension
is DC̃ρ

= N/K , such that this term reduces the extension
of the gapless phase for N > 4, and it completely removes
it for N = 4. In conclusion, the two-step RG procedure
indicates how the P̃ and C̃ρ terms are responsible for gap-
ping the gapless phase for N = 3 and 4. In particular, the
gapped phases for N = 2 and 4 coincide, consistently with
Appendix B.

APPENDIX F: ESTIMATE OF THE MESON
DECAY FOR LARGE λ

To obtain an estimate of the decay of the mesons in the
Higgs phase, in the limit of large λ and small g, we consider
a quasiadiabatic continuation technique [52,90,91]. We begin
our analysis from an unperturbed Hamiltonian (in the unitary
gauge) given by

H0 = −1

g

∑
r

(σr,0σr+1,↑σ
†
r+1,0σ

†
r+1,↓ + H.c.)

− λ
∑
s,r

(σ †
r,s + σr,s). (F1)

The ground state |�0〉 of this Hamiltonian is a product state of
clocks aligned on the state |σ = 1〉. By applying either the op-
erator τ or τ † to any link along the legs of the ladder we create
an excitation with energy δE = 2(g−1 + λ)(1 − cos 2π/N ).
We express the ground state of the Hamiltonian with small
g and large λ by use of a unitary quasiadiabatic oper-
ator, such that |�g〉 = V (g)|�0〉. A general definition of
the quasiadiabatic operator V can be found, for example,
in Ref. [92]. In the following, we will approximate it by
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considering:

|�g〉 = V (g)|�0〉 ≈ eigD|�0〉, (F2)

D =
∫ +∞

−∞
dt eiH0t ·

∑
r,s=↑,↓

(τr,s + τ †
r,s)e−iH0t F [δEt]. (F3)

In the general case, the Hermitian operator D depends on g,
and V requires to be defined as an ordered exponential. Here,
instead, we approximated D by considering a time evolution
dictated by the Hamiltonian H0 only, and we neglected the
electric field energy of the rungs which has only a minor effect
on the mesons, in such a way that D is independent on g. In the
previous equation, F (t ) is an odd and analytical filter function
such that its Fourier transform results in

F̃ (ω) =
∫ +∞

−∞
dt eiωt F (t ) = − 1

ω
for |ω| � 1, (F4)

and F̃ (0) = 0 [92]. Next, we consider that V is applied over
the product state |�0〉 and we observe that

D|�0〉 =
∫ +∞

−∞
dt eiδEt

∑
r,s=↑,↓

(τr,s + τ †
r,s)F [δEt]|�0〉

= − 1

δE

∑
r,s=↑,↓

(τr,s + τ †
r,s)|�0〉. (F5)

Therefore, we approximate (F2) with

V (g)|�0〉 ≈ e−iα
∑

r,s=↑,↓(τr,s+τ †
r,s )|�0〉, (F6)

where

α = g2

2(1 − cos 2π/N )(λg + 1)
. (F7)

This approximation amounts to overestimate the energy of the
higher excitations of the single links with multiples of δE ,
which, however, has a negligible effect for long mesons. Every
meson string under these approximations factorizes into the
product of expectation values of the following kind:

〈σ = 1|eiα(τ+τ † )σe−iα(τ+τ † )|σ = 1〉 ≈ e−2α2(1−cos 2π/N ) (F8)

for small α. From the previous relation one derives Eq. (40)
by considering the Mρ and Mσ string operators.

In the regime with both g and λ much greater than 1, the
ground state of the system can be approximated by the product
state which minimizes the Hamiltonian without the plaquette
and mass terms (proportional to 1/g and 1/λ, respectively). In
this state each link is in the state |χ (g/λ)〉. The estimate of the
expectation value

〈χ (g/λ)|σ |χ (g/λ)〉 = 〈χ (g/λ)|σ †|χ (g/λ)〉 (F9)

provides an approximation of e−2/ξM , for the Mρ and Mσ

mesons. For large value of g/λ the expectation value (F9) can
be approximated by ∼1.45λ/g.

APPENDIX G: DETAIL OF NUMERICAL CALCULATIONS

In this section we include further details about the numeri-
cal calculations by DMRG.
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FIG. 18. Fidelity susceptibility peaks at two BKT transitions at
the boundaries of gapless phase for g = 0 (the same as Fig. 6). The
system length is L = 101. The results of different bound dimensions
m are shown.

1. Fidelity susceptibility

The physical quantity that is most affected by the finite
bond dimension m of our simulations is the fidelity suscepti-
bility (FS), which is based on the overlap between two ground
states that are very close in parameter space. For longer
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FIG. 19. The correlations Mρ (a) and Gρ (c) in the gapless phase
for different bond dimensions m for L = 101, g = 0.001 and λ =
0.75. The results of the extrapolations based on the truncation error
are also shown (red curves) and they overlap with the m = 300 data.
(b), (d) The extrapolations of Mρ and Gρ with the square root of
truncation error for x1 = 1, x2 = 50, and r = 50, respectively. The
smallest truncation error is about 10−11 for m = 300.
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FIG. 20. R(x1, x2), Mρ (x1, x2), and Mσ (x1, x2) for x1 = 2 and
x2 = 40, and Gρ (r) for r = 40, as functions of truncation errors,
corresponding to bond dimension m = 32, 64, and 128. The system
is a L = 81 ladder with λ = 0.4 and g = 0.2. (See red curves in
Fig. 10 for the correlations in full range.)

systems and smaller parameter differences, one typically
needs larger bond dimension to obtain the same accuracy. In
Fig. 18 we illustrate the FS for several bond dimensions for
the two peaks at BKT transitions shown in Fig. 6. Although
the FS does has not completely converged at m = 300, the
peak positions do not change with the bond dimension in the
parameter resolution we consider. We note that the values of λ

we present here are in a quite small region (which means high
resolution) compared to the phase diagram shown in Fig. 5.

2. Gapless phase

The ground state in a gapless phase requires larger bond
dimension in DMRG to converge. In this work, we use bond
dimensions up to m = 300 to reach a truncation error εtrunc ≈
10−11 in the gapless phase. In Figs. 19(a) and 19(c) we show
Mρ and Gρ for different bond dimensions from m = 128 to
m = 300. It is useful to extrapolate the physical quantities
based on the truncation error to estimate the values at infinite
bond dimension. We perform extrapolations of Mρ and Gρ

with
√

εtrunc, as shown in Figs. 19(b) and 19(d), and display
the comparison with the finite bond dimension calculations
in Figs. 19(a) and 19(c). It can be seen that for m = 300 the
correlations are already very close to the extrapolated results
and are indistinguishable in the figure. This demonstrates the
high accuracy of our results.

3. Gapped phase

In the gapped phase, the DMRG with bond dimension m =
128 reaches a truncation error of about 10−11. Figure 20 shows
the convergences of several quantities in the gapped phase at
λ = 0.4 and g = 0.2, which is a typical example in the gapped
phase. R(x1, x2), Mρ (x1, x2), and Mσ (x1, x2) for x1 = 2 and
x2 = 40, and Gρ (r) for r = 40, are shown as functions of
truncation errors, corresponding to bond dimension m = 32,
64, and 128. It can be seen that the uncertainty between
m = 64 and m = 128 is already very small (∼0.1% for Mρ ,
∼0.01% for Mσ , and ∼0.00001% for R and Gρ), therefore no
extrapolation is needed.
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