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Quantum limit cycles and the Rayleigh and van der Pol oscillators
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Self-oscillating systems, described in classical dynamics as limit cycles, are emerging as canonical models
for driven dissipative nonequilibrium open quantum systems and as key elements in quantum technology. We
consider a family of models that interpolates between the classical textbook examples of the Rayleigh and the
van der Pol oscillators and follow their transition from the classical to the quantum domain, while properly
formulating their corresponding quantum descriptions. We derive an exact analytical solution for the steady-state
quantum dynamics of the simplest of these models, applicable to any bosonic system—whether mechanical,
optical, or otherwise—that is coupled to its environment via single-boson and double-boson emission and
absorption. Our solution is a generalization to arbitrary temperature of existing solutions for very-low, or zero,
temperature, often misattributed to the quantum van der Pol oscillator. We closely explore the classical to
quantum transition of the bifurcation to self-oscillations of this oscillator, while noting changes in the dynamics

and identifying features that are uniquely quantum.
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I. INTRODUCTION

Self-oscillating systems are ubiquitous—from human-
made clocks and transistors, through heart cells and neurons
in the living body, to flashing fireflies and circadian rhythms—
and are now emerging as canonical models for driven
dissipative nonequilibrium open quantum systems and as key
elements in quantum technology. The dynamics of self oscilla-
tion are captured mathematically by the notion of a limit cycle.
Here we consider a family of models that interpolates between
the Rayleigh [1] and the van der Pol (vdP) [2] oscillators,
which are probably the most common textbook examples of
limit cycles in classical nonlinear dynamics. These models
consist of a simple harmonic oscillator, driven by a time-
independent energy pump in the form of “negative damping.”
When the pumping rate exceeds that of the normal damp-
ing rate, self-oscillations develop, which are then saturated
by a nonlinear form of damping. The frequency of the os-
cillation is set by the physical parameters of the oscillator,
while the magnitude of the oscillation is set by the ratio of
the linear to the nonlinear damping rates. This provides a
convenient knob with which to transition the oscillator from
large-amplitude classical behavior to small-amplitude quan-
tum behavior, which is our focus here.

Existing models for quantum limit cycles [3] consist of a
harmonic, or possibly anharmonic, quantum oscillator, with
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linear as well as nonlinear coupling to the environment, which
are expressed in terms of quantum Lindblad operators. These
models are currently being used to study quantum entrainment
[4], synchronization [5-7], and the phenomenon of “oscil-
lation collapse” or “amplitude death” [8,9] in systems of
coupled self-sustained oscillators, as well as the nonequi-
librium spectral properties [10], and the critical response to
external drive [11], of single oscillators.

Our current focus is more basic. The classical Rayleigh and
vdP oscillators are known for exhibiting a Hopf bifurcation,
from a state of no motion at all to a state of self-oscillations
at a fixed amplitude. We seek to characterize this bifurcation
as the system transitions from the classical to the quantum
domain. Our goal is to find answers to such questions as: How
exactly should one model the Rayleigh and vdP oscillators in
quantum mechanics? Can the quantum model analytically be
solved, at least in its steady state? Is the quantum bifurcation
different from the classical one? What experimentally observ-
able indications are there to distinguish between quantum and
classical behavior? What would be the first corrections to
classical dynamics as one approaches the quantum domain?

Answers to these questions are relevant to a broad range
of physical systems exhibiting quantum behavior, including
lasers, or more generally photonic systems with nonlinear
loss [12—14], as well as trapped ions [5,15] and electronic or
superconducting circuits [16]. Particularly interesting is the
attempt to observe such quantum behavior in nanotechnology-
based human-made mechanical systems [17]. Indeed, modern
nanomechanical resonators show exceptional behavior as they
routinely operate in the GHz range [18]. With nanoelectrome-
chanical systems (NEMS) [19] and nano-optomechanical
systems (NOMS) [20] it is now possible to perform ultra-
sensitive measurements of physical quantities [21] such as
single spins [22], minute charges [23], and tiny masses [24].
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Relatively weak drive is needed in order for nonlinearity to be
evident in the dynamics of nanomechanical systems [25,26],
which is experimentally observed [27] and also exploited
for applications [28]. Most importantly, at GHz frequencies,
one need only cool to temperatures on the order of tens
to even hundreds of mK for the thermal energy to become
comparable to the quantum energy-level spacing of the me-
chanical resonator. This allows us now to cool mechanical
resonators down to their quantum ground state [29] and to
start investigating fundamental physical questions on the bor-
derline between the quantum and the classical worlds [30], as
it applies to human-made macroscopic nonlinear mechanical
objects. This, in turn, requires a well-based quantum theoreti-
cal framework.

We employ a phase-space approach to study the corre-
spondence between classical and quantum limit cycles. Since
classical notions like a particle trajectory do not have a
straightforward quantum analog, it is reasonable to compare
quantum expectation values with classical statistical ensemble
averages. We do so by solving the classical equations of mo-
tion for many different initial conditions (typically N = 10%)
taken from a Gaussian distribution and keeping track of the
different trajectories, thus representing a statistical distribu-
tion over phase space. The width of the initial distribution in
phase space is taken to be the same as the quantum uncertain-
ties Ax and Ap of an initial coherent-state wave function. In
addition to expectation values, we also compare the full clas-
sical distribution with the quantum Wigner function W (x, p).
The quantum dynamics are those of an open quantum system
and therefore described by a density matrix and its master
equation, which dictates the steady state, and more generally,
the dynamics of the quantum system.

We begin in Sec. II with theoretical background for the
classical dynamics of a family of models described by a gen-
eralized Rayleigh-van der Pol equation of motion (5), which
interpolates continuously between the pure Rayleigh oscil-
lator and the pure vdP oscillator. We provide a perturbative
steady-state solution for limit cycles that are nearly circular
in phase space, obtained for weak driving just above the Hopf
bifurcation to the oscillatory state. Moreover, we note that this
solution is exact, and the limit cycles are always circular, for
the model that lies exactly halfway between the pure Rayleigh
and pure vdP oscillators, which we call the Rayleigh-van der
Pol (RvdP) oscillator. In Sec. III we introduce three quantum
models, differing in the form of the nonlinear coupling of the
oscillator to the environment. We discuss the basic features of
these quantum models and show that, for weak driving, their
classical limits correspond to the RvdP oscillator (Sec. IIT A)
and to the pure vdP (Sec. III B) and pure Rayleigh oscillators
(Sec. I C). In Sec. I D we employ time correlation functions
to elucidate some of the differences between these models. In
Sec. IV we derive an exact analytical solution for the steady-
state dynamics of the quantum RvdP oscillator, which is a
generalization to arbitrary temperature of existing solutions
for very-low, or zero, temperature, often misattributed to the
quantum vdP oscillator. In Sec. V we consider in some detail
the transition from classical to quantum dynamics of the RvdP
oscillator, identifying dynamical behavior that is unique to
the quantum domain. We conclude with a few summarizing
remarks in Sec. VI.

II. THE CLASSICAL RAYLEIGH AND
VAN DER POL OSCILLATORS

Consider the following classical equation of motion, de-
scribing a harmonic oscillator with effective mass m and
natural frequency w,

% X X
’"ZT + mo’x = (k) — m— — ﬁizj—t - c(fh) (1
where tildes denote physical parameters that are soon to be
rescaled. The oscillator is driven by a velocity-dependent
force or “negative damping,” with coefficient & > 0, as de-
scribed earlier. It also experiences normal linear damping,
with coefficient {; > 0, which is unavoidable in most phys-
ical systems, as well as two types of nonlinear damping
mechanisms: vdP damping with coefficient 7 > 0, which is
proportional to the velocity and the squared displacement of
the oscillator, and Rayleigh damping with coefficient £ > 0,
which is proportional to the cubed velocity of the oscillator.

To obtain a dimensionless equation of motion we (a) mea-
sure mass in units of m, effectively setting m in Eq. (1) to
unity; (b) measure inverse time in units of the oscillator fre-
quency o by defining

t = of, (2)

which effectively sets  to unity; (c) measure length in units

of xo = /h/mw by setting

X _ [mw 3)
— =X _,
X0 h

X =

in anticipation of the quantum treatment below; and conse-
quently, (d) measure the pumping and damping rates with
respect to the chosen units of mass and time, by defining

i 71 hi he
Kil=— yi=— »l=—75; adpl=—,

where y, > 0 is an overall dimensionless nonlinear damping
rate, and  and ¢ are numerical factors, indicating the rela-
tive contributions of the two nonlinear damping mechanisms.
Without loss of generality, one can set the larger of the two to
unity and the smaller to a number between 0 and 1.

Finally, we divide the original equation of motion (1) by
the characteristic unit of force, mw?xo, yielding a scaled di-
mensionless equation of the form

¥4+x—ex+pnx® +cx%)x =0, (5)
where

€ =K1 — V1, (6)

and dots denote derivatives with respect to the dimension-
less time ¢. This generalized Rayleigh-van der Pol equation
is usually studied in one of its following limiting cases:
(1) the Rayleigh oscillator [1] with n =0,¢ =1, (2) the
van der Pol (vdP) oscillator [2] with n = 1,¢ =0, and (3)
the Rayleigh-van der Pol (RvdP) oscillator with n = ¢ = 1,
which is sometimes referred to as the harmonic RvdP oscilla-
tor [31]. All these variants are known to generate steady-state
limit cycles for positive €, as shown in Fig. 1.
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FIG. 1. From left to right: Limit cycles of the Rayleigh, the
Rayleigh-van der Pol, and the van der Pol oscillators, as given by
Eq. (5). Top row: Convergence to the limit cycles from different
initial conditions, with € = 1. Bottom row: Scaled limit cycles for
different values of € = 0.01, 0.3, 1, 2, demonstrating that the RvdP
oscillator remains circularly symmetric for all values of €.

In the weak-drive limit of small €, with nearly circular or-
bits, one can use secular perturbation theory [25,26] to obtain
an approximate solution for the generalized RvdP equation
of motion (5) and determine the amplitude of limit-cycle
oscillations. The solution is written as a slow modulation
of harmonic oscillations at unit frequency, with e-dependent
corrections

x(t) = HA(T)e™ + c.c.]+ exy(t) + O(€?), (7)

where T = et is a slow time scale, characteristic of the rate of
relaxation toward the limit cycle, as opposed to the fast time
scale ¢ of the oscillations themselves. As usual, c.c. stands for
the complex conjugate.

The slow time variation of the complex amplitude A(T")
also provides the freedom to eliminate secular terms and to
ensure that the perturbative correction x;(¢), as well as all
higher-order corrections, do not diverge. Substituting the so-
lution (7) into the equation of motion (5) indeed generates
such a secular term (Sec. 11.4 in Ref. [26]), which when
required to vanish leads to a first-order differential equation
for determining the slowly varying amplitude,

dA 1 n+3¢ .,
—=—|1- Al”)A. 8
dT 2( 4A? 4] ®
The parameter
A= = ©)
V2

sets the overall scale of the oscillations, but each variant has
its own particular saturated oscillation amplitude, depending
on the relative contributions of the Rayleigh and van der Pol
damping mechanisms. Steady-state oscillations are obtained

when Eq. (8) is set to zero, and the amplitude satisfies

2A, vdP,

< 24./+/3 Rayleigh, (10)

Al= =t =
Vn+30 g, RvdP.

Note that in the small-amplitude slow limit, without a
particular model at hand, it is difficult to discern the non-
linear terms from one another, as they merely combine into
a single effective coefficient n.s = n + 3¢. However, in the
large-amplitude strong-drive limit, with € > 1, as can be seen
in Fig. 1, the limit cycles look qualitatively very different. In
particular, the RvdP oscillator, with = ¢, is unique in that it
is invariant under phase-space rotations, producing circularly-
symmetric limit cycles, or harmonic oscillations [31], for
arbitrary drive strength €. In fact, one can easily verify that the
zeroth-order term of the expanded solution (7) gives the exact
steady-state solution, x(¢) = A, cos?, for the RvdP oscillator,
with all higher-order corrections canceling out. As we shall
see below, the RvdP oscillator is also the simplest to treat
quantum mechanically.

Finally, as expected for an autonomous or time-indepen-
dent equation of motion (5), the complex amplitude equation
(8) is independent of phase, which drops out of both sides.
This implies that with purely deterministic dynamics the os-
cillator will maintain any initial arbitrary phase, but in the
presence of thermal, or any other source of noise, the phase
of the oscillator will diffuse over time. This is demonstrated
numerically in Fig. 2 for the vdP oscillator with weak thermal
noise, where an initial Gaussian-distributed ensemble of inde-
pendent oscillators quickly relaxes to the expected amplitude
2A. and eventually spreads over the whole limit cycle.

III. ZERO-TEMPERATURE QUANTUM LIMIT CYCLES
A. The quantum Rayleigh-van der Pol oscillator

The simplest quantum model of a limit cycle—which is
often mistaken for “the quantum vdP oscillator’—employs
standard Lindblad formalism to describe the interaction of the
oscillator with its environment, whereby the energy pump,
or negative damping, is implemented in terms of single-
phonon absorption, and the nonlinear damping is described
as two-phonon emission (“phonon” should be replaced with
“photon,” “polaron,” “magnon,” or any other bosonic exci-
tation, depending on the particular physical realization of
the oscillator). The physical realization we have in mind
follows the framework that was introduced by Dykman and
Krivoglaz in the 1970’s, whereby the nonlinear damping [32]
appears as a result of nonlinear interaction of the oscillator
with a continuum of bath oscillators, while energy injection
[33] is introduced in the form of an off-resonance pump,
detuned a frequency A; away from the oscillator frequency
. Within this realization, and as expected in most other
alternative realizations, the coupling of the oscillator to the
bath inevitably will induce normal linear damping with single-
phonon emission, in addition to the two-phonon processes
above. Consequently, the master equation for the density ma-
trix o of the oscillator—considered at 7 = 0, for the time
being—contains three Lindblad operators, or dissipators, of
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FIG. 2. Ensemble of 10* classical vdP oscillators, initially sam-
pled from a Gaussian distribution around (A./2, A./2) with standard
deviation 0.1A.. Dynamics are simulated according to Eq. (5) with
n=1,¢ =0, € =0.1, and delta-correlated Gaussian white noise,
corresponding to a dimensionless temperature T = 0.014,2, or to
thermal energy on the order of 0.01 of the oscillator energy. The
dashed red circles have radius 2A...

the form
DICI(p) = CpC" — L(C'Cp + pCFO), (11)

and is given by

p= %[Ho, pl+ & Pla'l(p) + 71 Dlal(p) + 72 Dla’1(p),
(12)
where Hy = hiw(a’a + 1 /2) is the Hamiltonian of the har-
monic oscillator, and a is its annihilation operator.

This master equation (12) differs conceptually from those
that are commonly used in the literature [4—10]. Common
models assume that as in the classical regime the effect of
the pump, or negative linear damping, combines with the
normal linear damping to give one physical process, with
coefficient (k; — ;) = mwe. Thus they either omit the first
Lindblad operator below the threshold of self oscillations,
when #; < ), or omit the second Lindblad operator above
threshold, for #; > ;. Consequently, as will become evident
below, even though they obtain limit cycles in the steady
state, they miss important physical effects in the quantum
regime, related to the fact that there are three rather than only
two sources of spontaneous quantum processes that affect
the quantum oscillator and its phase stability. For example,
it was shown that keeping both linear Lindblad terms in the
master equation affects the response to external drive near the
bifurcation [11] and enhances the synchronization of weakly
nonlinear oscillators [34].

In order to facilitate the direct comparison between classi-
cal and quantum dynamics of limit cycles, we use the same
scaling here for the quantum master equation (12) as we did
earlier for the classical equation of motion (1). This, again,
amounts to using the effective mass m of the oscillator as the
unit of mass, and its inverse frequency 1/w as the unit of time,
thereby effectively setting both m and w to unity. The choice
of xo = /i/mw as the unit of length, and correspondingly
po = ~/mhw as the unit of momentum, amounts to using 7 as
the unit of action with which phase-space area is measured,
thereby effectively setting % to unity [35]. With this choice
of scaling, energy is measured in units of /iw, the Hamilto-
nian becomes Hy = (p* + x?)/2 = a’a + 1/2, and the master
equation is

p = —ila'a, p] + k1Dla"1(p) + 11 Dlal(p) + y>Dla*1(p),
(13)

where the creation and annihilation operators are defined as

%(x +ip);, d' = L(x —ip), (14)

V2
and the commutator [x, p] = i.

Before proceeding, we should remind the reader that the
Lindblad form (11) of the master equation (13) is derived
under the assumption of weak coupling to the bath, implying
that the damping and pumping rates are all small compared
to the oscillator frequency. This allows one to employ the
rotating-wave or secular approximation, neglecting terms that
do not oscillate close to the frequency of the oscillator. Never-
theless, it is beneficial theoretically to explore the behavior of
the quantum master equation (13) even when using parameter
values for which, strictly speaking, it is not expected to prop-
erly model the physical system, all the while keeping in mind
that corrections may be required. As we saw in the classical
case above, zero-temperature secular perturbation theory (7)
requires only the difference € = k| — y; of the linear rates to
be small, allowing the individual rates to be large, with the
nonlinear rate y; setting the scale of the limit-cycle amplitude
(9). Moreover, in the special case of the RvdP oscillator, ow-
ing to its symmetry, we saw that the zeroth-order perturbative
solution is in fact exact for arbitrary €. This provides further
motivation to explore the behavior of the quantum model
beyond the strict requirement of weak coupling to the bath.

The dimensionless zero-temperature master equation (13)
can be used to study the dynamics of the density matrix itself
or any dynamical quantity that can be derived from it. For
example, Fig. 3 shows the characteristic behavior of the time
evolution of the Wigner function

a =

oo
W p) = — / (x+ylply —y)e P Mdy, (15)
wh J_o
calculated numerically [36], for an oscillator initiated as a
coherent state with o = 0.25(1 4+ i)A.. As in the classical
case, shown in Fig. 2, one can see how the quantum oscillator
first approaches the fixed-amplitude orbit of the limit cycle
and only later loses its phase. Note that the amplitude of the
quantum limit cycle is A, rather than 24, which according to
Eq. (10) seems to indicate that this limit cycle may in fact be
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FIG. 3. Time evolution of the Wigner function of a quantum limit
cycle, calculated numerically using the RvdP master equation (13),
at T = 0 with «; = 0.1, y; =0, y» = 1/640, and therefore A, = 8,
starting at t = O with an initial coherent state with o« = (1 4 i)A./4.
The Wigner function approaches the limit cycle and then loses its
initial phase over time. A square of area /i is shown in panel (a). The
dashed red circles have radius A...

the quantum version of the RvdP oscillator and not that of the
vdP oscillator.

One may use the master equation (13) to obtain the equa-
tion of motion for any expectation value, (O) = Tr{pO}. In
the Schrodinger picture, where operators are time indepen-
dent, one has

d
E(0> = Tr{p0O}. (16)

Thus, for the annihilation operator a—using the fact that the
trace of a product of operators is invariant under their cyclic
permutations—the scaled master equation (13) gives the zero-
temperature equation of motion
d{a) . K1 — V1
T i{a) + 2
We see that the nonlinear term is proportional to (a’a)a or
o+ p2 )a, again, as one would expect for the RvdP oscillator
rather than the vdP oscillator. To see this more clearly, we
take the semiclassical limit where (a'a) > 1, and therefore
(a'a) ~ (aa'). The semiclassical amplitude equation for @ =
(a) is then readily derived from Eq. (17) by replacing (a‘aa)
with |a|?a to give

da _+e 1 2)a)? (18)
ar ~ 472 a2 )%

(@) — y2{a’aa). a7

where Af = €/y, as defined in Eq. (9). In order to use an
equivalent ansatz to the classical one in Eq. (7) we note that,

according to the definition of the creation and annihilation
operators in Eq. (14), o is a factor of +/2 smaller than the
complex amplitude of the oscillator. We therefore take

Do,

with T = €t as before, and find that the slow amplitude equa-

tion is given by
dA 1 |A|?
— =—(1-—)A, 20

dT 2< A? 20)

a(r) = 19)

which corresponds to the classical amplitude equation (10) as
long as one takes ner = 4, or n = ¢ = 1, as expected for the
RvdP oscillator, and in agreement with the amplitude of the
limit cycle observed numerically in Fig. 3.

Finally, using the definition of a in Eq. (14), we can take
the real and imaginary parts of Eq. (18) to obtain the equa-
tions of motion for the expectation values of the position and
momentum operators (Sec. 7.4 in Ref. [37]),

; € (x)? + (p)?
(x) = §<1 - T)(X) +(p), (21a)
Pr=3 A2 P '

Differentiating Eq. (21a) with respect to time, and substi-
tuting Eq. (21b) for (p), yields a second-order equation of
motion for (x) of the form

(0)? + (¥)?

(X) + (x) = e<1 — )(x) + 0(e?). (22)

c

Neglecting corrections of order €2, this explicitly agrees with
the classical equation of motion (5) for the Rayleigh-van der
Pol oscillator, with n = ¢ = 1.

We wish to emphasize the circular symmetry of the steady-
state Wigner function in Fig. 3(d). In order for the steady-state
Wigner function to lack such symmetry, the steady-state den-
sity matrix must contain off-diagonal elements that do not
decay to zero. This can be seen by noting that the Wigner
function (15) is a linear function of the density matrix, which
can be expressed as a sum of its elements, and that the
Wigner function of a diagonal element—given by (Sec. 4.4.4
in Ref. [38])

=n"
wh

where L, (x) is the nth Laguerre polynomial—is rotationally
invariant.

As previous authors [10,12] have noted, the master
equation (13) for the RvdP oscillator does not couple density-
matrix elements that are not on the same diagonal. To see
this, it is helpful to relabel the matrix elements p, ,1n =
(n|p|n + m) according to their degree m of off-diagonality
using a transformation, similar to the one used by Simaan and
Loudon [12],

o z
Qn,m(t) =™ (n:—'m)pn,ner(t)s m+n 2= 0. (24)

Wyn(at, a®) = Ly(4la?)e2kF, (23)
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FIG. 4. Steady state Wigner functions (top row) and absolute
values of the density-matrix elements p, , (bottom row) at 7 =0,
obtained numerically for the quantum RvdP master equation (13),
with y; = 0, y, = €/16, and therefore A, = 4 for different values of
€ = k. All off-diagonal matrix elements decay to zero in the steady
state, yielding the same circular limit cycle, independent of ¢ for
constant A.. Compare with Figs. 6 and 7 below for the quantum vdP

and Rayleigh oscillators.

The rate equations for the transformed matrix elements are
then

Onm = k1t {(n 4+ m)gu-1.m — 52n +m+ 2)0um}
+ 1|+ Dops1m — Q20+ m)onm}
+r2{(n+ D +2)0n12m (25)
— =1+ (n+m)n+m—1))onm}

where evidently matrix elements are coupled only if they
have the same degree m of off-diagonally. Thus, each diag-
onal can be considered as a separate “block” of the density
matrix, evolving independently of all the others, allowing
the off-diagonal elements to decay to zero, as one expects,
independent of the principal diagonal elements, which are the
only ones to survive in the steady state. This is confirmed
numerically in Fig. 4.

B. The quantum van der Pol oscillator

One can obtain a master equation whose classical limit
gives the vdP oscillator, at least to first order in €, and is capa-
ble of producing quantum limit cycles that are noncircular in
phase space. This is done by changing the Lindblad operator
for the nonlinear damping term in Eq. (13) from y,D[a?]
to y,D[xa/+/2], breaking the rotational symmetry in phase
space. The zero-temperature master equation then becomes

p = —ila‘a, p] + k1 Dla’1(p) + 1 Dlal(p) + %D[xa](px
(26)

where we recall that x = (a 4+ a)/+/2. Consequently, the
nonlinear term in Eq. (17) for the dynamics of (a) becomes

—y»(x%a) /4, which in the semiclassical limit, where (x*a) ~
(x)%a yields
da € (x)?
= = -1 == 27
ar et 2( 242 )¢ @7)

in place of Eq. (18). Finally, by taking the real and imaginary
parts of Eq. (27),

2
(%) = %(1 - %)m +(p). (28)
el
() = 5(1 - ﬁ%)“’) ~ (), (28b)

and as in Eqgs. (21), differentiating Eq. (28a) with respect to
time, and substituting Eq. (28b) for (p), we obtain a second-
order equation of motion for (x) of the form

(x)?

(X) + (x) = 6(1 - ?) (x) + 0(e%), (29)

which to within corrections of O(e?) is indeed the classical
equation of motion (5), for the van der Pol oscillator, with
n=1and¢ =0.

Figure 5 shows the steady-state Wigner functions that are
obtained numerically from the vdP master equation (26) for
different values of € at T = 0. A comparison with the phase-
space distributions of 10* classical van der Pol oscillators at
T = 0.1 confirms that for small values of ¢ the quantum and
classical models agree very well. For large values of €, the
quantum master equation clearly deviates from the classical
vdP behavior, as expected, yet it retains the noncircular limit
cycles associated with the relaxation-oscillation behavior of
large-amplitude vdP oscillators.

The rate equations for the transformed density-matrix ele-
ments (24), obtained from the vdP master equation (26), take
the form

Onm = k1{(n+ m)on_1.m — 320+ m +2)0pm}
+y{(+ Dopi1m — 521+ m)oum}
+ 22 { @1 = 260+ m)? + @0+ m) o
+2(n+2)(n+ Dontam

+ e—zit [(n _ m)Qn,WH'Z — nQn—2,WL+2]
+ ¥ 2m 4 n)(n 4+ 1)(n 4 2)0n12.m-2
— e (n+m— 1)(n+m)onm2). (30)

One can see that matrix elements on the mth diagonal are now
coupled to elements from the m + 2 diagonals, thus coupling
the even diagonals to each other and the odd diagonals to each
other. Given the fact that the principle m = 0 diagonal cannot
decay to zero, the rate equations (30) feed the even diagonals
that are coupled to it, generically hindering their decay in the
steady state.

This is demonstrated numerically in Fig. 6, where we plot
the Wigner functions and the absolute values of the density-
matrix elements for different values of €, while keeping the
ratio between € and y,, and therefore A., constant. For small
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24, 24,
E P
224, 224,
24, 24.
P P
224, 24,
24,  x 24,
(e) e=0.01 (f) e=10.3 (g)e=1

FIG. 5. Steady-state Wigner functions of the quantum vdP master equation (26) at T = 0 (top row) and phase-space distributions of the
classical vdP equation (5) with n = 1 and ¢ = 0, for an ensemble of 10* oscillators at 7 = 0.1 (bottom row), both with A, = /10 and y =0.
(a) and (e) show the nearly circular limit cycles, obtained for small values of €, while in (b) and (f) one can begin to see small differences
between the quantum and the classical models that are expected to differ from each other on the order of €2. For larger values of e, clear
deviations appear between the quantum and the classical limit cycles, yet they are both noncircular, lingering for large fractions of the period

where the Wigner functions and the classical distributions are peaked.

values of € the coupling between the off-diagonals is relatively
weak, making the density matrix nearly diagonal and the
Wigner function nearly circular. Increasing y, increases the
coupling between the even diagonals, which become nonzero.
Note that the odd diagonals, which are not coupled to the
principal diagonal, do vanish in the steady state. Compare

4 4
P P
4 4
4 . & 4 4
(a) e=10.01 (b) e=10.3
30 30
20 20
n n
10 10
0 0
6 10 m2 30 0 10m2 30 0 10 m20 30
(d) e=0.01 (e) e=0.3 He=1

FIG. 6. Steady state Wigner functions (top row) and absolute
values of the density-matrix elements p, , (bottom row) at 7 =0,
obtained numerically for the quantum vdP master equation (26),
with A, = 2 and y; = 0. All the odd diagonals are free to decay to
zero, while the even diagonals, which are coupled to the principal
diagonal, are not. Compare with Fig. 4 above for the quantum RvdP
oscillator.

with the corresponding Fig. 4 for the RvdP master equation
(13), where the limit cycles remain circular and the density
matrix remains diagonal, even for large ;.

C. The quantum Rayleigh oscillator

For completeness, let us present a quantum model whose
classical limit at 7 = O yields the classical Rayleigh oscilla-
tor of Eq. (5), with n =0 and ¢ = 1, to within corrections
of O(e?). To do so, we change the Lindblad operator for
the nonlinear damping term in Eq. (13) from y,D[a?] to
v2(Dlxa/~/2] + D[pa]). The Rayleigh master equation is
then given by

p = —ild'a, p] + k1 Dla’lp + yi Dlalp

V2
+3mMm+anm.
After making this change to the nonlinear term in the mas-
ter equation, the nonlinear term in Eq. (17) for the dynamics
of (a) becomes —y,((x*a) + 2(p*a))/4, which in the classical
limit yields an amplitude equation of the form

de . (4 (x)* +2(p)?
ar Y72 242

(3D

(32

in place of Eq. (18). Finally, by taking the real and imaginary
parts of (32),

2 2 2

) = 5(1 - %M i) (33)
2 2 2

5) = 5(1 - %)m (). (33b)
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4 ’ 4 4

P P P

-4 ‘ -4 -4
A X 4 -

4 x4 5 x4
(a) e=0.01 (b) e=10.3 (c)e=1

30 30 30

20 20

10 10

0 0
6 10 m2 30 0 10 m2 30 0 10 m20 30
(d) e=0.01 (e) e=10.3 fle=1

FIG. 7. As in Fig. 6 but for the quantum Rayleigh master equa-
tion (31), with A, = 2+/3 and y; = 0. Compare with Fig. 4 above for
the quantum RvdP oscillator.

and as in Eqgs. (21), differentiating Eq. (33a) with respect to
time, and substituting Eq. (33b), we obtain a second-order
equation of motion for (x) of the form

. @)% . )

(xX) + {x) = e(l — F)(x) + O(€7), (34)
which up to corrections of O(e?) is the classical Rayleigh
equation, given by Eq. (5) with n =0 and ¢ = 1. Wigner
functions for the quantum Rayleigh oscillator are plotted in
Fig. 7 alongside their density matrices, and comparisons be-
tween quantum and classical limit cycles are shown in Fig. 8.

D. Correlations and spectral distributions

It is convenient to consider time correlation functions of
various operators, along with their Fourier spectral distri-
butions [32], in order to characterize the different quantum
limit-cycle models. It is not our intention to provide a thor-
ough analysis of these quantities here, but only to demonstrate
that the models do differ in their dynamics. To compare the
models side by side we use parameters that generate limit
cycles with equal amplitudes A, maintaining the same «; and

y1, and varying y, accordingly, thus setting yy% = 4yRvP
and y, Y8 = y¥dP /3 n all the examples shown here we ini-

tiate the dynamics with the steady state density matrices, thus
following the decay of correlations, while the oscillators are
already in their steady state. Recall that we are still operating
at T = 0, thus the decay of correlations, which results from
noise-induced phase diffusion, is caused by quantum rather
than thermal fluctuations.

Figure 9 shows the displacement correlation function
(x(#)x(0)), along with its spectral distribution, for limit cy-
cles of moderate amplitude A = /10 and different driving
strengths € = k|, with y; = 0. We see that for very small e,
where the steady-state limit cycles are all circular, the relax-
ation dynamics are also very similar, with the correlations for
the RvdP oscillator decaying only slightly slower than for the
other two oscillators. Correspondingly, the RvdP spectral peak
at w = 1 is slightly sharper. Recall that the RvdP oscillator
is the only one that performs exact simple harmonic motion
at frequency w = 1, for any value of €. As € increases, as
shown in Figs. 5 and 8, the vdP and Rayleigh limit cycles
deviate from perfect circles, and the differences between the
three spectral peaks become more evident.

Because the steady-state density matrices of the vdP and
Rayleigh oscillators contain nonzero elements in their even

ﬁ
V3
P
ﬁ
V3
403 x 24443 403 x 24443 U3 x 24443 243 x 24443
(a) e=0.01 (b) e=10.3 (c)e=1 (d)e=2
i
73
p
i
NG
403 x 24443 403 x 24443 U3 x 2443 243 x 24443
(e) e =0.01 (f) e=0.3 (g)e=1 (h) e=2

FIG. 8. Steady-state Wigner functions of the quantum Rayleigh master equation (31) at 7 = 0 (top row), and phase-space distributions of
the classical Rayleigh equation (5) with n = 0 and ¢ = 1, for an ensemble of 10* oscillators at 7 = 0.1 (bottom row), both with A. = 4 and

y1 = 0. Compare with Fig. 5 for the vdP oscillator.
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’ 10 £=0.05] === Rvdp l xxx Rvdp

0 ==ss Rayleigh 103 i === Rayleigh
- £=0.05 ceee vdP | ece vdP
: W e=03| 1
-5 \l\/w e=1 1 é 3 @

5 10 25

I AW
s e=2 -25

0 127 2%z 36z 48z 1 0 67 127 '

(a) (x(t)z(0)) (a) € = 0.05
FIG. 9. (a) Displacement correlation functions (x(¢)x(0)) and 102 \
(b) left or right halves of the corresponding nearly symmetric spec- \\
tral distributions S,,(w) for the three quantum models, with € =
0.05,0.3, 1, 2, and y; = 0. Simulations are initiated from the steady - 101
state at 1 = 0. Parameters are chosen to yield limit cycles with
amplitude A = /10, for all three models, by setting yX% = ¢/10,
Y% = 4€/10, and y, " = 4¢/30. : s 2 : s 2
50 100
o 1 . L 19.19

off-diagonals, as shown in Figs. 6 and 7, it is interesting 0 6r 127 t 0 6r 127 1
to examine the squared-displacement correlation function (c)e=1 (d)e=2

(x2(t)x*(0)), shown in Fig. 10, whose calculation involves
simultaneous creation or annihilation of pairs of phonons.
Again, at very small €, the behavior is quite similar in all three
models, showing two spectral peaks, at @ = 0 and w = 2, as
expected from the squaring of x(z). As € increases, deviations
between the models quickly become noticeable. In particular,

5 ;
10 xxxx  Rvdp
=sss Rayleigh
| eoee vdP
10? i
10! i
1 2 3 ®
25
0 67 127 t
(a) e=0.05
10?
10t
1 2 3 @ 1 2 3 @
75 75
50 Sok;
25
0 61 127 t 0 61 127 t
(c)e=1 (d)e=2
FIG. 10. Squared-displacement correlation functions

(x2(t)x*(0)) (bottom panels) and their corresponding spectral
distributions S,2,2(w) (top panels), calculated for the same
parameters as in Fig. 9 for the three quantum models.

FIG. 11. Bottom panels: Two-phonon correlation function
(a'*z(t)az(O)). Top panels: The corresponding spectral distributions
S 2.2 (w). Calculated for the same parameters as in Fig. 9 for the three
quantum models.

note the rather large shift to higher frequencies of the spectral
peak of the vdP oscillator, as the limit cycle becomes less
and less circular. Also note the different asymptotic values

of the correlation functions, which tend to (xz(O))z, which is

greatest for the Rayleigh oscillator owing to its larger r.m.s.

displacement (see the classical limit-cycle shapes in Fig. 1).
For comparison, Fig. 11 displays the two-phonon correla-

tion function (aTz(t ya*(0)), which is only one of the terms
appearing in the calculation of the squared-displacement cor-
relation function of Fig. 10, annihilating two phonons at time
equal 0, and recreating them at a later time ¢. It directly probes
the m = 2 off-diagonal of the density matrix [10], which
are nonzero for the vdP and Rayleigh models. Indeed, for
these models the two phonon correlations decay to a nonzero

asymptotic value (a*”(0))(a2(0)), which is greater for the vdP
oscillator.

As a final example, we wish to demonstrate that both «;
and yj, and not only their difference €, affect the dynamics
of the oscillators as independent sources of quantum noise,
especially as one approaches the quantum regime. For this
purpose we return to the displacement correlation function
and consider limit cycles of a smaller amplitude A = 0.1,
weakly driven with € = 0.01, at yX'% =1 > €. The cor-
relation functions and their spectral distributions are shown
in Fig. 12, for three different values of the ratio r = y; /k
between the linear damping and the pumping rates. One sees
very clearly that the RvdP oscillator exhibits a much slower
decay of its displacement correlation function, as well as a
higher sensitivity to the value of r, than the other two oscilla-
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Rvdp

vdP

x r=0
20 e r=05
s =09

Rayleigh

o

67 127 187 t 0 1

(a) (z(t)(0)) (b) Sze(w), RvdP

S

[

0.5

=]

1 2 @ 0 1 2 @®

(¢) Sze(w), vdP (d) Sze(w), Rayleigh

FIG. 12. Displacement correlation functions (x(¢)x(0)) and the
corresponding spectral distributions S,,(w) for the three models,
calculated with € = 0.01, for different ratios r = y, /k;. Parameters
are chosen to yield limit cycles with amplitude A = 0.1 by setting
yRYP — 1 yxdP — 4 and y, " = 4/3. The decay of correlations
in the Rayleigh and vdP models is much faster, governed by the large
nonlinear damping rate y, and only slightly affected by changes in r.
The decay rate for the RvdP model is unaffected by the nonlinear
damping rate and is therefore much smaller and increasing as r
approaches 1, as given by Eq. (35).

tors. To see why this is so, consider the rate equations (30) for
the density matrix elements of the vdP oscillator and notice
that all the off-diagonal (m # 0) terms have some negative
coupling due to the nonlinear damping y», which causes these
terms quickly to decay for the large values of y, in the quan-
tum limit. The same holds for the Rayleigh oscillator. On the
other hand, inspection of the rate equations (25) for the RvdP
density matrix reveals that it has a single off-diagonal element
po.1 that does not have a negative coupling term proportional
to y». Assuming that the large nonlinear damping rate quickly
depletes all other off-diagonal matrix elements, one remains
with this last element, whose decay rate,

@N_&q—i—yl __f3+r
po1 2 217

(35)

which is governed by the much smaller rates y; and «j, is
indifferent to the nonlinear damping rate and increases as r
approaches 1. Also note that the contributions of noise in the
energy pump and noise in the linear damping mechanism to
the decay rate are additive. In particular, the decay rate at
the bifurcation, where € = k; — y; = 0, tends to 2«1 = 2.
Thus, the oscillator experiences critical slowing down as it
crosses the bifurcation only if k; and y; are both zero, which
may be difficult to arrange experimentally.

IV. ANALYTICAL SOLUTION FOR THE STEADY-STATE
DENSITY MATRIX OF THE RAYLEIGH-VAN DER POL
OSCILLATOR

An analytical solution for the steady state of the 7 =0
quantum RvdP oscillator can be found in previous work
[13,33,39,40], along with approximate solutions for 7 > 0 in
the limit of kg7 « hw [13,33]. Here we provide a general
analytical solution for arbitrary temperature. In doing so, we
consider a slightly more general physical system than the one
described by our master equation (13) above, by adding to
the model a process of two phonon absorption at rate «,. This
additional process, while only recently demonstrated in a mi-
cromechanical system [41], might be quite relevant for other
physical systems, such as optical ones, where two-photon
absorption might be as likely as two-photon emission.

The revised temperature-dependent master equation is then
written as

o = —i[Hy, p]
+c1{(1 + Ai(A1)Dla’lp + i(A1)Dlalp)
+71{(1 4 A(w))Dlalp + i(w)D[a"1p}
+7((1 + i2w))Da*] + #(2w)Dla'*1p}
+io{(1 4+ (A))Dla"’] + #(A2)D[a*1p),  (36)

where the last line is responsible for two phonon absorp-
tion with a second pump, detuned by a frequency A, away
from twice the oscillator frequency 2w, and where #(w) =
(/T — 1)~! is the Bose-Einstein distribution through
which the temperature T is introduced.

We start by defining four temperature-dependent effective
rates that reduce back to the original rates in the limit of 7 —
0,

[ =1 +a(@)yr +i(Ak, (37a)
K = (1 +a(A)ki + i(w)y, (37b)
[ = +aQw)y, + (A, (37¢)
Ky = (1 + (M) + i2w)ys. (37d)

Using these, we rewrite the revised RvdP master equation
(36) more compactly as

1
p = —[Hy, p] (38)
ih

+T'1Dlal(p)+Ki Dla"(p)+T2Dla*1(p) + KaDla™1(p).

As discussed earlier, the off-diagonal elements of the RvdP
density matrix decay to zero in the steady state, as they
are decoupled from the principal diagonal. The remaining
rate equations for the diagonal elements P, = 0,0 = pm =
(n]p|n) are given by

1 .
=P, =Ki[nP,1 — (n+ 1)P)]
I

+F1 [(” + 1)Pn-i—l - I’an]
+K[n(n — 1)P,_5 — (n+2)(n + 1)P,]
+(+2)n+ DPr —n(n—DP,], (39
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where we have rescaled all the rates by the nonlinear damping
coefficient I',,

I'y 1 K>
Fl = =, K] = =, K2 == =. (40)
) I I
In the steady state, with P, = 0, the set of equations (39)
provide recurrence relations for the Fock-state probabilities
P,, giving the steady-state value of each level in terms of the
four levels preceding it. Dykman [33] and others [13,39,40]
solve these recurrence relations for special limiting cases by
using the method of generating functions, which yields a
second-order differential equation for the generating function.
We use the same method here, but before doing so we note
that when summing consecutive rate equations, one obtains
a telescopic sum in which many terms cancel out. Thus by
summing the first n + 1 equations (39), from 0 to n, and
dividing by an overall factor of (n + 1), we obtain a simpler
equation to solve,

| [ [,
= P, = I’l+2Pn —i—nPn
PR ( WP i2 +1

_K2[(n + 2)Pn + nPn—l]

+TPy — KPP, =0, “41)

where the maximum power of 7 is 1 rather than 2, reducing the
corresponding differential equation from second to first order.

We solve these simplified recurrence relations using the
generating function

A@x) =Y Px", with A'(x)=) (n+ DPux". (42)
n=0 n=0

By multiplying Eq. (41) by x"*!, and summing from n = 0
to 0o, we replace the infinite set of recurrence relations with
a single differential equation with respect to the auxiliary
variable x,

[(1 — Kox?)(1 + x)]A (x)
—[1 4+ KQx+x*) 4+ Kix —T1JA(x) = (T; — DPy + Pi.
(43)

This nonhomogeneous first-order differential equation can be
solved in a standard manner, using an integrating factor. It
should be noted, though, that the apparent constant term on the
right-hand side of the equation depends linearly on the solu-
tion itself, with Py = A(0) and P; = A’(0) [42]. Therefore, the
solution of the associated homogeneous equation as well as
any particular solution of the full nonhomogeneous equation
are both determined only to within a multiplicative factor. As
a consequence, the space of solutions is a two-dimensional
vector space, and we still require two constraints or boundary
conditions to pin down the physically relevant solution. We
shall use the fact that the coefficients P, in the expansion (42)
of A(x) are probabilities. As such, their values are constrained
to be between 0 and 1; they are normalized such that their sum

(o]

Y oP=A)=1;

n=0

(44)

and their alternating sum lies a distance not greater than unity
away from the origin,

oo
Z(—l)”Pn =|A(=DI< L. 45)
n=0
Before solving Eq. (43) we perform the substitution
fz(x))
A(x) = , 46
@) =7 o (46)
with
2a 1+x
z(x) Taltar where a = +/ @7

After some algebra, we obtain a differential equation for f(z)
of the form

, ' +K all'i + K,
1— —1-
(1-2)f (z)+( 2 2a(l _a)z>f(z)
Iy — Py +P
_ T —DPy + L 48)
14+a
which after defining
r K; r K
SN T T e (49)
2a(1 — a) 1 —a?
becomes
(1 =2)f' @+ (c—1-b2)f(z) =Ci, (50)

and we remember that C; is a constant to be determined
through the boundary conditions. The general solution to this
equation is given by

C

f@=—7 R0, b+ Gz (1 =), (5D

c—
where C, is a constant of integration multiplying the solution
of the associated homogeneous equation, and
(@Bl "
V) n!

is the hypergeometric function, where (x), is the so-called
Pochhammer symbol, denoting the rising factorial,

)y =xx+Dx+2)...(x+n—1).

oo

2F1(057,3§)/;Z)=Z

n=0

(52)

(53)

Because (1), = n!, the expansion (52) in our case reduces to

o (b)
Rl by =) —27 (54)
=
and the solution (51) can equivalently be expressed as
f@="" =7 CiBc~ Lb—c+ D+l (59)
where
Z
X e (56)
0

is the incomplete beta function.

Although the power series (54) diverges for |z(x)| > 1,
we need only to evaluate its derivatives at x = 0, and the
condition |z(0)| < 1 is fulfilled as long as the non-negative
parameter a < 1. Recall that > = K, is the ratio between

013130-11



BEN AROSH, CROSS, AND LIFSHITZ

PHYSICAL REVIEW RESEARCH 3, 013130 (2021)

nonlinear absorption and emission, thus the physical interpre-
tation of a < 1 is that there is no steady-state solution when
the nonlinear gain is stronger than the nonlinear damping,
which is indeed the case.

In terms of the original variable, the solution (51) for the
generating function becomes

DR, biesz0))
,D,C2(X
1+ax21 (57)

+Dy(1 4+ ax)’™'(1 — ax)“ 2711 4+ x)' ¢,

Ax) =

where the new constants D; and D, still need to be de-
termined. Clearly, for ¢ > 1, the solution of the associated
homogeneous equation has a singularity at x = —1, in con-
tradiction to the condition of Eq. (45) that the alternating sum
be bounded, requiring us to set D, = 0. The normalization
condition (44) then yields the final form of the generating
function

Ax) = 2F1(1, b; c; 2(x)), (58)
1+ ax
where the normalization constant
1
- e (59)
2F1(1, b; c; (1+_a)2)

With the generating function at hand, we can calculate the
probabilities

n _yn—k
— oY Y RO, e 20), (60)
—o — k!

1 9"A
n! ox"

where f®)(x) denotes the kth derivative of f(x). Finally, the
derivatives of ,F| can be evaluated using the relation (see
equation (15.2.2) in Ref. [43])

P, Bryiz) = %zﬂ(w +k B+ky+kz),
(61)
to give
e [ B (2= 1
h=cta §[<k>(c)k< I+a )
2
2F1<1+k,b+k;c+k;ﬁ>]. (62)

In Fig. 13 we plot the analytical solution given by Eq. (62),
alongside numerical calculations of the steady-state solutions
of the temperature-dependent RvdP master equation (36) for
different parameter values, showing perfect agreement.

As noted above, previous authors [13,33,39,40] used
Eq. (39) directly, without the telescopic sum (41). Instead of
our first-order nonhomogeneous equation (43), they obtained
a homogeneous second-order differential equation of the form

[(1 — K>x?) (1 +x)]A" (x)
+ [y — Kix — 4K>x(1 + x)]A' (x)
—[2K>(1 +x) + K1]A(x) = 0. (63)

Differentiation of the first-order equation (43) yields this
second-order equation (63), thus solutions to the first-order
equation solve the second-order equation as well. Previous

0.103
Py 0.062
0.046
0 10 720 30 0 10720 30 0 10 n 20 30
(a) T=0 (b)y T =2 ()T =4
0.132
Pa 0.079
0.051
0 10 n 20 30 0 10720 30 0 10 n 20 30
(d) T =0 (€) T =2 ()T =4

FIG. 13. Analytical (red lines) and numerical (blue bars) solu-
tions for the Fock-state probability distributions of the steady-state
RvdP oscillator. Top row : k3 =20,k =0,y =1, and y, = 1.
Bottom row: k; = 3,k, = 0.5,y = 1, and y, = 1. Note that tem-
perature is measured in units of 7Ziw/kg. The peak values of the
distributions are indicated inside the panels.

work examined the special case of K, = 0, obtained at 7 = 0
with «, = 0, where the second-order equation reduces to the
so-called Kummer equation

(1 +0)A"(0) + (1 — Kin)A' () — KiA(x) =0, (64)

whose solution
1F(LK + T3 K +x))

Alx) = 65
() 1Fi(L K +T52K) ©3)

involves the confluent hypergeometric function [44]

o0

ey =)

n=0

(@) "
() n!’

(66)

and where the probabilities are then given by (see equation
(13.4.9) in Ref. [43])

_ K" 1Fi(l+n K + T +nKy)

(K 4T, R K +T52K)

One can obtain the solution (65) for the special case of zero

temperature and no two-phonon absorption, from our general
solution (58) by taking the limit of a — 0, where

(67)

n

lim(b) = co,  lim(z(x)) =0,

(68)
lin})(bz(x)) =K;(1+x), and lirr(l)(c) =TI +K.

In this limit, the hypergeometric function ,F(a, b;c;z) re-
duces to the confluent hypergeometric function | Fj (a; c; ),

blim 2Fi(a, b;c;z/b) = 1Fi(a; c; 2), (69)
— 00
such that
Fi(1, b;c; ;K + T K (1
lim 2 1( c;z(x)) _ 1 (LK + T Ko ( +X))’ (70)
a—0 1+ ax 1Fi(1; K +T'152Ky)

as expected.
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FIG. 14. Steady-state Wigner functions and Fock-state distribu-
tions at T = 0, with x; = 0.1 and y, = 0 for different values of y,
in the classical regime. Peak values of the distributions are written
inside the panels. Dashed red circles in the top panels all have radius
A,, indicating that this is indeed the amplitude of the limit cycle as
long as one remains within the classical limit.

V. CLASSICAL TO QUANTUM TRANSITION OF THE
RAYLEIGH-VAN DER POL OSCILLATOR

We saw in Sec. III A that when taken to its classical
limit, with A, > 1, the quantum RvdP limit cycle forms self-
oscillations at an amplitude given by A.. However, as A, is
reduced toward unity, in terms of the quantum unit of length
Xo, the oscillator approaches zero-point motion, and one ex-
pects quantum effects to take place. In this section we examine
how the limit cycle behaves as the oscillator transitions into
this quantum regime.

Figures 14 and 15 show the steady-state Wigner functions
and Fock-state distributions of the quantum RvdP limit-cycle
of Eq. (13) for different values of A.. Figure 14 shows that
when coming from the classical regime, by reducing A, from
8 down to 2, the radius of the limit cycle is approximately A,
and relatively many Fock states are populated. On the other
hand, Fig. 15 shows that when entering the quantum regime,
as A, is lowered further from 1 down to 0.1, only a few Fock
states are populated, and the radius of the limit cycle does not
get much smaller than x,, = xo/ V2.

To see this more quantitatively, we follow Steiner [45] and
sum all the even, or alternatively all the odd, rate equations
(39) for the Fock-state probabilities, thereby telescopically
eliminating all the two-phonon transitions and finding that in
the steady state

P —2P+3P;...)=K((Py—2P+3P,...). (71)

In the quantum limit of large nonlinear damping y,, or small
A., and low temperature kg7 < hw, both I'; and K, de-
fined in Eq. (40), tend to zero with corrections of order yz_l,
while K, tends to zero with corrections of order yz_l or
exp{—2hw/kgT}. An inspection of the first few rate equations
(39) then shows that all P,, with n > 1, are smaller than P and
P, at least by an order of )/2_1 or exp{—2hw/kgT}. Neglecting

FIG. 15. Same as in Fig. 14 but for values of y, approaching
the quantum regime. Dashed red circles in the top panels all have
radius A, indicating that as one approaches the quantum regime, the
amplitude of the limit cycle saturates at a value slightly below 1,
measured in units of xy, even as the classical amplitude A, tends to
zero. As expected, very few Fock states are occupied in the quantum
regime.

all these higher states, with n > 1, in Eq. (71) then yields a
relation between the occupation probabilities of the remaining
two lowest states, given by
I
Py=P 2+F = P2+ R). (72)
1
Thus, with Trp = 1, in the low temperature quantum limit,
with y» — oo, we find that the density matrix becomes
24+R

1
=" 10)(0] + —— 1) (1| + Oy !, e /Ty (73
0 3+R| )(|+3+RI I+ Oy, e ), (73)

where the temperature-dependent ratio

_ T alA) + [+ a(@)]r
T K [+ a(A)D] + a(w)r

tends to the bare ratio r = y; /k of the linear damping rate to
the pumping rate, when 7" — 0. Also note that R approaches 1
as T increases, it is equal to 1 if and only if r = 1 at arbitrary
T, and it approaches exp{—#A/kgT} for fixed T as r tends
to zero.

As was previously understood, in this limit only the |0) and
|1) states are occupied, because all phonons in any other state
are immediately annihilated by the infinitely strong nonlinear
damping. But, contrary to the zero-temperature result of previ-
ous authors [4-10], who take y; = 0 above the bifurcation, we
find that the actual occupation depends on the ratio r = y; /k;
and is not universal. This is demonstrated numerically in
Fig. 16, where we compare the steady-state zero-temperature
Fock-state distributions of the RvdP oscillator with thermal
distributions for the same average phonon occupation, which
according to Eq. (73) is given by

1
P = .
34+T/K1 T-0 34 y1/k

(74)

(N) (75)

YV2—>00
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FIG. 16. Numerically obtained zero-temperature steady-state
Fock distributions of the RvdP oscillator in the quantum limit,
with ¥, =1 and y, = 10°, compared with thermal distributions
with the same average phonon number (N), for different values of
k1. The values of (N) for y, — oo are specified inside each panel.
The numerical values of (N), obtained with y, = 10°, deviate from
the predicted values for infinite y, in Eq. (75) only to within O(107>)
as expected. In this limit only the |0) and |1) states are occupied. As
k1 increases, (N) — 1/3, and the RvdP distribution deviates further
away from the thermal one.

Cross sections through the corresponding Wigner functions
for the same parameter values are shown in Fig. 17, where
one can observe the onset of the bifurcation at (N) = 1/4
as the mean phonon number (N) gradually increases from 0
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FIG. 17. Cross sections through the zero-temperature rotation-
ally symmetric Wigner functions of the RvdP oscillator in the
quantum limit (in solid blue), with y; = 1 and y, = 10°, as compared
to those of thermal states (in dashed red) with the same average
phonon occupation (N). The values of (N) for y, — oo are specified
inside each panel. The parameters used here are the same as in
Fig. 16. The Wigner functions exhibit a Hopf bifurcation at «; = y,,
reminiscent of a continuous phase transition.
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FIG. 18. Zero-temperature amplitude A of the quantum RvdP
limit cycle, calculated numerically with € = 1, as y, — oo, plot-
ted as a function of A, = 4/€/y,, which tends to 0, and showing
the r-dependent saturation predicted by Eq. (77). (a) without linear
damping y; =0, r =0, and (b) for different values of the ratio
r=yi/ki.

to 1/3. Note the quantitative differences between the Wigner
functions that appear even below the bifurcation.

In the case of the quantum RvdP oscillator, we choose to
associate the amplitude A of the limit-cycle oscillations with
the maxima |&|m,x Of its circular Wigner function, which we
evaluate either numerically or using Eq. (23), while recalling
the factor of /2 which arises from the definition of Eq. (14).
For the extreme quantum-limit steady-state density matrix of
Eq. (73) this yields

1
Wq(Ol,O[ ) =

Fl 2
———— (4P + 1+ — |e 2, (76
7T3+F1/K]< |O(| + +K1>e ( )

whose maximum determines the limit-cycle amplitude

1 F] 1 Y1
A2 =2 =—(1-- _>_(1__)
o 2( K1> —al-g)

where in the zero-temperature limit, the ratio R =I'|/K;
appearing in Egs. (76) and (77) is replaced by r = y; /k.
Note that the bifurcation occurs at R = 1, which according
to Eq. (74) happens if and only if = 1 regardless of the tem-
perature. In the case of finite y,, we expect these expressions
to have corrections of (9()/2’1 ), as higher Fock states become
populated.

In the zero-temperature quantum limit, the Wigner func-
tions still exhibit a clear bifurcation to self-oscillations with an
amplitude that grows continuously from zero, as the «; = y,
threshold is crossed. Nevertheless, the nature of this bifurca-
tion is quite different from the classical Hopf bifurcation. In
the classical regime, one expects the amplitude of steady-state
oscillations to scale as the square root of the reduced pumping,
A, = /€/y», where € = k| — y), and therefore for the oscil-
lations to die out for infinite nonlinear damping (unless the
pumping rate  is infinite as well). This is shown by a straight
black line in Fig. 18. However, in the quantum regime, the
|1) state is protected from nonlinear damping, which enables
the oscillator to undergo a bifurcation into self-oscillations,
at an amplitude given by Eq. (77), even when the nonlinear
damping is infinitely strong. The linear pumping rate x| need
only be large compared to the linear damping rate y;. This is
purely a quantum effect. Accordingly, as we noticed earlier in
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FIG. 19. Amplitude A of the RvdP limit cycle as a function of
temperature, for different values of r in the quantum limit, with
ki =1 and y, = 10°, and for pump detunings of (a) A; = 0.1 and
(b) Ay = 1. Numerical values (scattered points), obtained by solving
the steady-state master equation (13), are compared with the approxi-
mate expression of Eq. (77) (solid lines), showing good agreement at
low temperatures, particularly for small detuning. As the temperature
increases, and R approaches 1, the amplitude decreases to zero.

Fig. 15, as y; tends to infinity rather than decaying to zero as
J€/v», the zero-temperature steady-state amplitude saturates
at /(1 —r)/2 = 4/€/2k,. This is demonstrated numerically
by the colored curves in Fig. 18 for a few values of the ratio r.

This quantum effect is somewhat smeared out when
temperature is turned on and the amplitude saturates at
/(1 —R)/2, rather than /(1 —r)/2, decreasing with tem-
perature towards zero, as R increases from r towards 1. This
is confirmed numerically in Fig. 19, showing the oscillation
amplitude in the quantum limit decaying to zero as the temper-
ature increases. As expected, the approximate expression of
Eq. (77) holds better at low temperatures and for small pump
detuning A;.

In the limit of » — 0, as «; increases or y; decreases, the
infinite-y, oscillation amplitude tends to

, 1 < F1> 1 _nay
A= (1L —>—(l—e ksr),
2 K; r=0 2

with an exponential dependence on temperature. This is
demonstrated in Fig. 20(a) for y, = 10°, while Fig. 20(b)
shows essentially no temperature dependence of the ampli-
tude in the classical limit with y», = 1. A closer inspection
of this exponential temperature dependence for r = 0.1 is
shown in Fig. 21, where we plot the Fock-state distributions
and Wigner-function cross sections, for 7 < 0.5. One can see
how the increase in temperature gradually smears out the limit
cycle. On one hand, as can be inferred from Eq. (73), the
increase in R causes an increase of the occupation probability
Py of the |0) state, while at the same time increasing the
neglected corrections of O(exp{—2hw/kgT}) in the form of
nonzero occupation probabilities of the |2) and |3) states.

(78)

VI. CONCLUSIONS

We have studied a collection of master equations that
yield quantum limit cycles in their steady-state dynamics.
They all describe a simple harmonic oscillator, interacting
with the environment through a combination of Lindblad
operators, responsible for linear and nonlinear damping and
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FIG. 20. Amplitude A of the RvdP limit cycle with y; =1 as a
function of «x; = 1/r for different temperatures in (a) the quantum
limit with y, = 10° and (b) the classical limit with y, = 1. The
temperature seems to have no effect on the overall shape of the curves
in the classical limit, whereas in the quantum limit it causes the
amplitude to saturate at lower values as k| increases or r decreases.
Numerical values, obtained by solving the steady-state master equa-
tion (13), are compared in panel (a) to solid lines showing the infinite
2, low temperature, approximate solution of Eq. (77).

energy injection, or pumping, in the form of single-phonon or
double-phonon emission and absorption processes. We have
established the correct correspondence between these quan-
tum master equations and their classical counterparts, noting
that the commonly used quantum model—which is symmet-
ric under phase-space rotations and therefore always yields
circular limit cycles—is often mistaken to be the “van der Pol
(vdP) oscillator,” even though it actually corresponds to the
classical “Rayleigh-van der Pol (RvdP) oscillator.”” We have
also noted that, in all cases, the correspondence holds only for
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FIG. 21. Wigner function cross sections and Fock-state distri-
butions in the quantum limit, with y, = 10°, x; = 10, y; = 1, and
A = 0.1, for different temperatures. The approximate solutions (77)
are shown in orange alongside exact numerical solutions in blue,
showing good agreement. At low temperatures only the |0) and |1)
states are populated, with nonzero occupation probabilities in the |2)
and |3) states beginning to appear at 7 = 0.5. Tick values on the
vertical axes correspond to the approximate values in orange.
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oscillations just above the bifurcation, namely, only to first
order in the bifurcation parameter €. We note that alternative
sets of Lindblad operators for describing the master equations
for the Rayleigh and the vdP oscillators were proposed very
recently by Chia et al. [46] and brought to our attention
recently by the authors.

We have analyzed a generalized version of the quantum
RvdP limit cycle, applicable to a broad range of physical sys-
tems, such as nanomechanical oscillators, optical oscillators
or lasers, electronic or superconducting oscillating circuits,
and cold ions. We have obtained an exact analytical solu-
tion to the master equation in its steady state for arbitrary
temperature, and considered its small-amplitude quantum
limit—obtained by increasing the nonlinear damping rate—in
some detail. A number of features emerge in this quantum
regime, some of which were previously overlooked. Most
important is the fact that, at T = 0, the | 1) state of the quantum
oscillator is protected from nonlinear damping. One there-
fore still obtains limit-cycle oscillations, even with an infinite
nonlinear damping rate, yet these quantum limit cycles are
strongly affected by both the linear damping and the pumping
rates and are not universal as previously believed. We show
that whereas in the classical regime it is only the difference
between the linear pumping and the linear damping rates that
affects the zero-temperature dynamics, in the quantum regime
the ratio of the two rates plays a significant role as well, as
they each contribute an independent source of spontaneous
quantum processes. We have also described the effect of tem-
perature in smearing out these nonclassical bifurcations.

We have performed a numerical comparison between
classical and quantum dynamics of the different models,
showing perfect correspondence—where expected—between
the quantum Wigner functions and the corresponding classical
phase-space distributions. The agreement holds not only for
the steady-state limit cycle dynamics but for the transients as
well, whereby an initial oscillating coherent state first quickly

relaxes, or drifts, to the expected amplitude and only then
slowly diffuses around the limit cycle losing its initial phase.
Deviations between the two occur in the quantum regime,
as just mentioned above, where rather than decaying to zero
as nonlinear damping increases, the quantum limit-cycle is
protected, with its amplitude saturating at around zero-point
motion, at a value that depends on the ratio of the linear
pumping and damping rates. Deviations also occur far above
the bifurcation, where the quantum and classical models no
longer agree with each other. It should be emphasized that
the Wigner functions that describe all the limit cycles are
“essentially classical,” developing no negative regions for any
choice of parameters. This is a well-known property of the
simple harmonic oscillator, which persists in these open sys-
tems, as long as the oscillator is linear [47] and is uncoupled
to additional oscillators or other degrees of freedom.

Our results should provide a firmer theoretical basis
for ongoing studies of physical phenomena such as quan-
tum entrainment and synchronization, and more generally,
nonequilibrium nonlinear quantum dynamics involving self-
sustained oscillators. We hope that our analytical results could
be tested experimentally in the near future, where they should
provide better tools with which to analyze the measured data.
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