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Odd-parity spin-loop-current order mediated by transverse spin fluctuations in cuprates
and related electron systems
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Unconventional symmetry-breaking phenomena due to nontrivial order parameters attract increasing attention
in strongly correlated electron systems. Here, we predict theoretically the occurrence of nanoscale spontaneous
spin current, called the spin-loop-current (sLC) order, as a promising origin of the pseudogap and electronic
nematicity in cuprates. We reveal that the sLC is driven by the odd-parity electron-hole condensations that
are mediated by transverse spin fluctuations around the pseudogap temperature T ∗. At the same temperature,
odd-parity magnon pair condensation occurs. The sLC order is “hidden” in that neither internal magnetic field
nor charge-density modulation is induced, whereas the predicted sLC with finite wave-number naturally gives
the Fermi arc structure. In addition, the fluctuations of sLC order work as attractive pairing interaction between
adjacent hot spots, which enlarges the d-wave superconducting transition temperature Tc. The sLC state will be
a key ingredient in understanding the pseudogap, electronic nematicity, as well as superconductivity in cuprates
and other strongly correlated metals.
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I. INTRODUCTION

Various unconventional symmetry-breaking phenomena,
such as violations of rotational and parity symmetries,
have been discovered in many strongly correlated metals
recently. This fact strongly indicates the emergence of ex-
otic density-wave orders, which are totally different from
usual spin/charge-density waves. Various exotic symmetry-
breaking phenomena, such as violations of rotational and
parity symmetries, are the central issues in cuprate high-Tc su-
perconductors. However, their microscopic mechanisms still
remain as unsolved issues. Figure 1(a) shows a schematic
phase diagram of cuprate superconductors. Below TCDW ∼
200 K, a stripe charge-channel density wave emerges at finite
wave vector q ≈ (π/2, 0) in many compounds [1–4], which
produces the Fermi arc structure and causes a reduction in
the density of states (DOS). However, it cannot be the origin
of the pseudogap temperature T ∗ since T ∗ > TCDW. Short
quasiparticle lifetime due to spin or charge fluctuations could
reduce the DOS [5–7].

Recently, much experimental evidence for the phase tran-
sition at T ∗ has been accumulated [8–13]. Various fascinating
order parameters have been proposed and actively investi-
gated, such as the charge-density wave (CDW) or bond order
(BO) [14–23], the pair-density wave [24,25], and the charge-
loop-current (cLC) order [26–29]. At present, the symmetries
of the hidden order in the pseudogap phase are not yet con-
firmed experimentally. Thus, it is necessary to study various
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possibilities without prejudice based on advanced many-body
theories [15–29].

Let us discuss the symmetry breaking in the correlated
hopping between sites i and j: ti, j → ti, j + δti, j , where δti, j

(=δt j,i )∗ is the order parameter. Then, the BO is given by
a real and even-parity δti, j [14,15,17–23]. A spin-fluctuation
mechanism [22,23] predicts the ferro (q = 0) d-wave BO state
at T ∗ and stripe [q ≈ (π/2, 0)] BO at TCDW. The former order
explains the experimental nematic transition [10,13]. How-
ever, simple translational symmetry preserving ferro-BO does
not explain the pseudogap formation. Also, the cLC order is
given by a pure imaginary and odd-parity δti, j [26–29]. Both
order parameters have been actively investigated.

In contrast, spin current flows if the pure imaginary order
parameter is odd under space and spin inversions: δtσ

i, j =
−δtσ

j,i = −δt−σ
i, j as shown in Fig. 1(b) [29–34]. Here, σ = ±1

represents the spin of the electron. Figures 1(c) and 1(d) depict
the spin-loop-current (sLC) order at the wave vectors qsLC =
(δ, δ) and that at qsLC = (δ, 0) with δ = π/2, respectively. The
sLC is a hidden order in the sense that no internal magnetic
field appears, and charge-density modulation is quite small.
Nonetheless, the sLC is very attracting since the pseudogap
and Fermi surface (FS) reconstruction are induced by band
folding if qsLC �= 0.

In this paper, we discover the emergence of “hidden
symmetry breaking” accompanied by finite spin current at
qsLC ≈ (π/2, π/2). This sLC order originates from the spin-
flipping magnon-exchange process, called the Aslamazov-
Larkin (AL) process [16,35–37]. The sLC order is hidden in
that neither internal magnetic field nor charge-density modu-
lation is induced, while the band folding by these sLC orders
produces the Fermi arc structure and pseudogap in the DOS
[9,38]. The derived transition temperature TsLC is higher than
that of the stripe BO, and comparable to that of the ferro-BO.
The sLC order will be responsible for the pseudogap and
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FIG. 1. (a) Possible phase diagram of hole-doped cuprate su-
perconductors. The sLC phase is obtained by the present study.
(b) Current of spin (σ = ±1) from site 1 to site 2. σ = ±1 is
the spin of the electron. (c),(d) Schematic pictures of the diagonal
sLC at qsLC = (π/2, π/2) and the axial sLC at qsLC = (π/2, 0),
respectively.

electronic nematicity not only in cuprates, but also in iridates
and f -electron systems [32–34,39].

The emergence of the sLC has been discussed in various
electronic systems [29–33]. From the microscopic viewpoint,
however, the mechanism of the sLC is highly nontrivial, since
the realization condition of the sLC order is very severe in the
extended U -V -J Hubbard model within the mean-field theory
[30]. In addition, only the case qsLC = (π, π ) was analyzed in
previous works. The present study can explain the sLC order
based on a simple Hubbard model with on-site U , without
assuming the wave vector qsLC.

II. SPIN-FLUCTUATION-DRIVEN
UNCONVENTIONAL ORDERS

A. Model Hamiltonian

Here, we analyze the single-orbital square-lattice Hubbard
model

H =
∑
k,σ

εkc†
kσ

ckσ + U
∑

i

ni↑ni↓. (1)

We denote the hopping integrals (t1, t2, t3) =
(−1, 1/6,−1/5), where tl is the lth nearest hopping
integral [40,41]. Hereafter, we set the unit of energy as
|t1| = 1, which corresponds to ∼4000 K in cuprates,
and fix the temperature T = 0.05 (∼200 K). The FS
at filling n = 0.85 is given in Fig. 2(a). The spin
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FIG. 2. (a) The FS of the present model at n = 0.85. Qs are
the major nesting vectors. Qd = (δ, δ) and Qa = (δ, 0) (δ ≈ δFS) are
minor nesting vectors. They correspond to the sLC order wavelength
in the present theory. (b) χ s(q) given by the RPA. It shows the incom-
mensurate peak at q = Qs. (c) Obtained eigenvalue λq for the BO at
n = 0.80–0.88. They have peaks at q = 0 and q = Qa. (d) Relations
αS = 1 − 0.444p2 (full line) and αS = 1.01 − 0.2p (broken line).
(e) Obtained d-wave form factor fq(k) for q = 0 together with the
FS.

susceptibility in the random-phase-approximation (RPA) is
χ s(q) = χ0(q)/[1 − Uχ0(q)], where χ0(q) is the irreducible
susceptibility without U and q ≡ (q, ωl ). The spin Stoner
factor is defined as αS ≡ maxq{Uχ0(q)} = Uχ0(Qs, 0).
Figure 2(b) shows the obtained χ s(q) at αS = 0.99
(U = 3.27). Here, χ s(Qs, 0) ∼ 30 [1/t1] ∼80 [μ2

B/eV], which
is still smaller than Im χ s(Qs, E =31 meV) ∼ 200 [μ2

B/eV]
at T ∼ 200 K in 60 K YBCO [42]. Thus, αS > 0.99 in real
compounds. Owing to the Mermin-Wagner theorem, the
relation αS � 1 is naturally satisfied for U 
 3.3 without any
fine tuning of U by considering the spin-fluctuation-induced
self-energy self-consistently [40].

B. Introduction of singlet and triplet DW equations

From now on, we investigate possible exotic density-wave
(DW) states for both charge and spin channels with general
wave vector (q), which is generally expressed as [30]

Dσρ
q (k) = 〈c†

k−,σ
ck+,ρ〉 − 〈c†

k−,σ
ck+,ρ〉0

= fq(k)δσ,ρ + gq(k) · σσ,ρ,

where k± ≡ k ± q/2, and dc
q (k) [ds

q(k)] is the charge (spin)
channel order parameter. It induces the symmetry breaking in
the self-energy:

��σρ
q (k) = fq(k)δσ,ρ + gq(k) · σσ,ρ, (2)
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which we call the form factors in this paper. Below, we as-
sume gq(k) = gq(k)ez without losing generality. The DW is
interpreted as the electron-hole pairing condensation [30].

Here, fq(k) is given by the Fourier transforma-
tion of the spin-independent hopping modulation∑

ri,r j
δti, jei(ri−r j )·kei(ri+r j )·q/2. When δti, j = ±δt j,i, the

relation fq(k) = ± fq(−k) holds. Also, gq(k) is given by
the spin-dependent modulation δt↑

i, j = −δt↓
i, j . The even-parity

fq(k) and the odd-parity gq(k) respectively correspond to
the BO state and the sLC state. Both states preserve the
time-reversal symmetry.

To find possible DWs in an unbiased way, we generalize
the DW equation [23] for both spin and charge channels:

λq fq(k) = −T
∑

p

Ic
q (k, p)G(p−)G(p+) fq(p), (3)

ηqgq(k) = −T
∑

p

Is
q (k, p)G(p−)G(p+)gq(p), (4)

where λq (ηq) is the eigenvalue that represents the charge
(spin) channel DW instability, k ≡ (k, εn), and p ≡ (p, εm)
(εn, εm are fermion Matsubara frequencies). These DW equa-
tions are interpreted as the “spin/charge channel electron-hole
pairing equations.”

The charge (spin) channel kernel function is Ic(s)
q =

I↑,↑
q + (−)I↑,↓

q ; Iσ,ρ
q at q = 0 is given by the Ward identity

−δ�σ (k)/δGρ (k′), which is composed of one single-magnon
exchange term and two double-magnon exchange ones: The
former and the latter are called the Maki-Thompson (MT)
term and the AL terms; see Fig. 7 in Appendix A. The lowest
order Hartree term −Uδσ,ρ in Iσ,ρ

q gives the RPA contribu-
tion. while the AL terms are significant for αS � 1 in various
strongly correlated systems [23,35,43,44]. The significance
of the AL processes has been revealed by a functional-
renormalization-group (fRG) study, in which higher-order
vertex corrections are produced in an unbiased way [22,45–
47]. Note that the MT term is important for the superconduct-
ing gap equation, transport phenomena [40], and cLC order
[48].

Figure 2(c) shows the charge-channel eigenvalue λq de-
rived from the DW equation (3) [23,49,50]. Hereafter, we put
U to satisfy the relation αS = 1 − 0.444p2 with p ≡ 1 − n,
shown as full line in Fig. 2(d). The obtained form factor fq(k)
at q = 0, Qd, shown in Fig. 2(e), belongs to B1g symmetry
BO, consistent with previous studies [22,23]. As we discuss in
Appendix B, the large eigenvalue in Fig. 2(c) [and Fig. 3(a)]
is strongly suppressed to O(1) by considering the small quasi-
particle weight z = m/m∗ ∼ O(10−1) due to the self-energy
in cuprates [23,49].

III. DERIVATION OF sLC ORDER BASED
ON TRIPLET DW EQUATION

A. Origin of sLC order

Next, we discuss the spin-fluctuation-driven sLC order,
which is the main issue of this paper. Figure 3(a) exhibits the
spin-channel eigenvalue ηq derived from the DW equation (4).
Peaks of ηq are located at the nesting vectors q = Qd (diag-
onal) and q = Qa (axial). The obtained form factor gq(k) at
q = Qd (diagonal sLC) is shown in Fig. 3(b). The odd-parity
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FIG. 3. (a) Obtained eigenvalue ηq for spin-channel DWs at n =
0.80–0.88. They have peaks at q = Qd and Qa. (b) Form factor of the
diagonal sLC order gQd

(k). We also show the shifted FSs given by
μ = εk±Qd/2. (c) Im gQa

(r), which is even (odd) with respect to x + y
(x − y).

solution gq(k) = −gq(−k) means the emergence of the sLC
order. The reason for large ηQd

is that all hot spots contribute
to the diagonal sLC as shown in Fig. 3(b). Figure 3(c) shows
the form factor in real space, Im gQa

(r) with r = (x, y). Here,
δtσ

i, j = σgQa
(ri− j ) cos(ri+ j · Qa/2).

To understand why sLC state is obtained, we simplify
Eq. (4) by taking the Matsubara summation analytically by
approximating that Is

q and gq(k) are static:

ηqgq(k) =
∑

p

Is
q (k, p)Fq(p)gq(p), (5)

where

Fq(p) ≡ −T
∑

m

G(p+)G(p−) = n(εp+ ) − n(εp− )

εp− − εp+

is a positive function, and n(ε) is Fermi distribution function;
see Appendix A. In general, the peak positions of ηq in Eq. (5)
are located at q = 0 and/or nesting vectors with small wave-
length (q = Qa, Qd in the present model). The reason is that
Iq ∼ T

∑
p χ s(p+)χ s(p−) by AL terms is large for small |q|,

and Fq(p) is large for a wide area of p when q is a nesting
vector.

To understand why an odd-parity form factor is obtained,
we show the spin-channel “electron-hole pairing interaction”
Is
q=0(k, k′) on the FS in Fig. 4(a). The charge-channel one

Ic
q=0(k, k′) is also shown in Fig. 4(b). Here, θ represents the

position of k shown in Figs. 4(c) and 4(d). Is
q (k, k′) in Fig. 4(a)

gives a large attractive interaction for k ≈ k′ and a large re-
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q=0(θ, θ ′), where θ represents the position of k. We see
that Is

0 and Ic
0 have large negative and positive values for θ ′ ≈ θ + π ,

respectively, due to the p-p channel (= Cooper channel) in AL2.
(c) Origin of p-wave sLC order and (d) that of d-wave BO. Red
(blue) color arrows represent the attractive (repulsive) interaction. (e)
Spin-flipping AL processes in Is

q (k, p) that give the sLC order. The
wavy lines are transverse spin susceptibilities. (Spin-nonflipping AL
processes caused by longitudinal susceptibility are canceled out in
Is = I↑,↑ − I↑,↓.) The AL1 term with an antiparallel (p-h) pair gives
the red line on θ ≈ θ ′ in (a). Also, the AL2 term with a parallel (p-p)
pair gives the blue line on θ ≈ θ ′ + π in (a).

pulsive one for k ≈ −k′. In this case, we naturally obtain the
p-wave form factor gq(k) shown in Fig. 3(b), as we explain
in Fig. 4(c). Here, red (blue) arrows represent the attractive
(repulsive) interaction.

The strong k, k′ dependence of Is
q=0(k, k′) originates from

the AL1 and AL2 terms in Fig. 4(e), or Fig. 7(a) in Ap-
pendix A. Owing to the spin-conservation law, AL terms
in Is = I↑,↑ − I↑,↓ originate from the spin-flipping processes
due to transverse spin fluctuations in Fig. 4(e), in proportion
to χ s

±(Qs)χ s
±(Qs). [In Is, the spin non-flipping AL processes

in proportion to χ s
z (Qs)χ s

z (Qs) are exactly canceled out.]
Therefore, Is = [AL1] − [AL2]. The AL1 term with the p-
h (antiparallel) pair Green functions causes large attractive
interaction for k ≈ k′, and the AL2 term with the p-p (par-
allel) ones does so for k ≈ −k′, as explained in Ref. [49] in
detail. Thus, θ, θ ′ dependence in Fig. 4(a) and the resultant
odd-parity solution is understood naturally.

In contrast, the charge channel kernel Ic
q (k, k′) gives an

attractive interaction for both k ≈ ±k′ as shown in Fig. 4(b),
because Ic = 3([AL1] + [AL2])/2. Then, we obtain the d-
wave form factor fq(k) in Fig. 2(e), as we explain in Fig. 4(d)
[23,49].

In the present transverse spin fluctuation mechanism, the g
vector will be parallel to z direction when χ s

x(y)(Qs) > χ s
z (Qs)

(XY anisotropy) due to the spin-orbit interaction (SOI). When

p = 1 − n

ei
ge

nv
al

ue

q = Qd
Qa

q = 0
Qa

sLC BO

p+

p−

p'+

p'−

χs χs χs χs χs χs χs χs χs

Jq
s(c)

(a)

(c)

+ ··· ++

αs

(b) p = 0.16

λSC
(dx2-y2-wave)

10

20

30

5
4
3

2
0.97 0.98 0.990.1 0.15 0.2

0

5

10

FIG. 5. (a) Obtained eigenvalues of sLC and BO as functions of
p = 1 − n. (b) αS dependences of the eigenvalues at p = 0.16. λSC

is the eigenvalue of the superconducting gap equation. (c) Diagram-
matic expression for the odd/even parity magnon-pair condensation,
which is the physical origin of the sLC/BO.

the XY anisotropy of χ s
μ(Qs) is very large, Ic due to AL terms

is multiplied by 2/3 whereas Is is unchanged, so it is suitable
condition for the sLC order.

B. Filling dependences of sLC/BO instabilities

The sLC and BO eigenvalues are summarized in Fig. 5(a).
The relation ηQd

> λQa
around the optimal doping (p ∼ 0.15)

means that the sLC transition temperature TsLC is higher than
TCDW, as in Fig. 1(a). The robustness of Fig. 5(a) is verified in
Appendix B. We also verify in Fig. 5(b) that both ηQd

and λQa

are larger than the dx2−y2 -wave superconducting eigenvalue
λSC for αS � 0.98. Here, λSC is derived from the gap equation

λSC�(k) = T
∑

p

V SC(k, p)|G(p)|2�(p), (6)

where V SC(k, p) = − 3
2U 2χ s(k − p) + 1

2U 2χ c(k − p) − U is
the MT-type kernel [51]. Note that ηq, λq < λSC if AL terms
are dropped [52]. The large eigenvalues in Fig. 5 are sup-
pressed to O(1) by small z; see Refs. [23,40,49] and Appendix
B. We stress that sLC is not suppressed by the ferro-BO
that induces neither Fermi arc nor pseudogap, as explained
in Appendix B.

Here, we analyzed the sLC/BO in terms of the electron-
hole pairing. Another physical interpretation of the sLC/BO
is the “condensation of odd/even parity magnon pairs,” which
is the origin of the nematic order in quantum spin sys-
tems [53–55]. In fact, the two-magnon propagator shown
in Fig. 5(c) diverges when the eigenvalue of DW equa-
tion reaches unity, as we explain in Appendix C. That is,
triplet (singlet) magnon-pair condensation occurs at T =
TsLC(TCDW). Thus, the sLC/BO discussed here and the spin
nematic order in quantum spin systems are essentially the
same phenomenon.
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the diagonal sLC order (q = Qd). In calculating (a)–(c), we intro-
duced BCS-type cutoff energy ωc = 0.5 for the band hybridization
by gq(k).

C. Fermi arc and pseudogap under sLC order

Now, we discuss the band-folding and hybridization gap
due to the diagonal sLC order. Figures 6(a) and 6(b) show
the Fermi arc structures in the cases of (a) single-q and (b)
double-q orders. We set gmax ≡ maxk{gQd

(k)} = 0.1. Here,
the folded band structure under the sLC order with finite qsLC
is “unfolded” into the original Brillouin zone by following
Ref. [56] to make a comparison with angle-resolved photoe-
mission spectroscopy (ARPES) results. The Fermi arc due to
the single-q order in Fig. 6(a) belongs to B2g symmetry. In
contrast, the Fermi arc due to the double-q order in Fig. 6(b)
preserves the C4 symmetry. The resultant pseudogap in the
DOS is shown in Fig. 6(c). The unfolded band structure in the
single-Qd sLC order is displayed in Fig. 12 in Appendix B.

Recent magnetic torque measurements revealed that the
B1g symmetry breaking at T = T ∗ occurs in YBCO [10],
while the B2g one appears in Hg-based cuprates [11]. To
understand different symmetry breakings, we examine the t3
dependence of the DW equation solution in Appendix B 2: As
shown in Figs. 9(b)–9(e), the sLC wave vector qsLC changes
from Qd to Qa for larger t3/t1. When qsLC = Qd, the symmetry
of the Fermi arc is B2g in Fig. 6(a). On the other hand, the
Fermi arc has B2g symmetry in the axial sLC order in Fig. 1(d),
as we show in Fig. 10(b).

Since the van Vleck susceptibility becomes anisotropic
when C4 symmetry of the FS is broken [57], the reported
compound-dependent symmetry breaking [10,11] would be
explained by the sLC order scenario. This is an important
future issue.

D. Spin-current pattern under sLC order

Next, we investigate the spin current in real space, which
is driven by a fictitious Peierls phase due to the “spin-
dependent self-energy” δtσ

i, j = σgi, j . As shown in Fig. 3(c),
δti, j is purely imaginary and odd with respect to i ↔ j.
The conservation law ṅσ

i = ∑
j jσi, j directly leads to the

definition the spin current operator from site j to site i
as jσi, j = −i

∑
σ σ (hσ

i, jc
†
iσ c jσ − (i ↔ j)), where hσ

i, j = ti, j +
δtσ

i, j . Then, the spontaneous spin current from j to i is Js
i, j =

〈 js
i, j〉ĥσ .
Here, we calculate the spin current for the commensurate

sLC order at qsLC = (π/2, π/2), which is achieved by putting
n = 1.0. Then, the unit cells are composed of four sites A–D.

In Fig. 14 in Appendix D, we show the obtained spin cur-
rent Js

i, j from the center site ( j = A–B) to a different site in
Fig. 1(c). The derived spin current pattern between the nearest
and second-nearest sites is depicted in Fig. 1(c).

The Fermi arc structure and the DOS in Fig. 6 are indepen-
dent of the phase shift gq → eiψgq. In contrast, the real space
current pattern depends on the phase shift. We discuss other
possible sLC patterns in Appendix D. The charge modulation
due to the sLC is just |�ni| ∼ 5 × 10−4 for gmax = 0.1 since
|�ni| ∝ (gmax)2. Thus, experimental detection of translational
symmetry breaking by sLC order may be difficult. However,
the cLC is induced by applying a uniform magnetic field
parallel to gi, j . In the present sLC state, under 10 T magnetic
field, the induced cLC gives �H ∼ ±0.1 Oe when m∗/m ∼
10, which may be measurable by nuclear magnetic resonance
(NMR) or muon spin resonance (μSR) study.

E. sLC fluctuation mediated superconductivity

Finally, we discuss the result that the sLC fluctuations can
contribute to the dx2−y2 -wave pairing mechanism. The sLC
fluctuations connect the close hot spots at P and P′ = P + q
in Fig. 2(a). At both points, the dx2−y2 -wave gap function �k

has the same sign. The pairing interaction mediated by the
spin-channel sLC fluctuations between singlet pairs (P,−P)
and (P′,−P′) is

V sLC(P, P′) ∝ gq(k)gq(−k) · [−χsLC(q)], (7)

where k = (P + P′)/2 and q = P − P′ ∼ Qa. χsLC(q) (> 0)
is the sLC susceptibility and gq(k) = −gq(−k) is its form
factor. Thus, Eq. (7) give a positive (i.e., attractive) pairing
interaction between close hot spots. The derivation of Eq. (7)
is given in Appendix A and in Supplemental Material Sec. F
of Ref. [50]. This mechanism may be important for slightly
overdoped cuprates with TsLC � Tc.

IV. SUMMARY

In summary, we proposed a long-sought formation mecha-
nism for the nanoscale spin-current order, which violates the
parity and translational symmetry while time-reversal symme-
try is preserved. It was revealed that the formation of triplet
odd-parity electron-hole pairs is mediated by spin fluctua-
tions, and therefore the spontaneous sLC is established at
T = TsLC. In the present spin-fluctuation mechanism, the con-
densation of odd-parity magnon pairs occurs simultaneously.
The band folding by the sLC orders results in the forma-
tions of the Fermi arc structure and pseudogap at T ∼ T ∗.
In the sLC state, a staggered moment is expected to appear
under a uniform magnetic field. The sLC order will be a key
ingredient in understanding pseudogap phase and electronic
nematicity not only in cuprates, but also in iridates [32,39]
and heavy-fermion compounds. It is an important future issue
to incorporate the self-energy effect into the present theory.
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APPENDIX A: DERIVATION OF SINGLET AND TRIPLET
DW EQUATIONS

Here, we discuss the linearized density-wave (DW) equa-
tion driven by spin fluctuations. For this purpose, we introduce
the irreducible four-point vertex function Iσ,ρ

q (k, k′). It is
given by the Ward identity at q = 0, that is, Iσ,ρ

q (k, k′) ≡
−δ�σ (k)/δGρ (k′). Here, we use the one-loop self-energy
given as

�σ (k) = T
∑

q

U 2χσ
L (q)Gσ (k + q)

+ T
∑

p

U 2(χσ
T (q) − χ

(0)σ
T (q))G−σ (k + q), (A1)

where χσ
L (q) and χσ

T (q) are longitudinal and transverse sus-
ceptibilities. They are given as

χσ
L (q) = χ

(0)σ
L (q)

(
1 − U 2χ

(0)σ
L (q)χ (0)−σ

L (q)
)−1

, (A2)

χσ
T (q) = χ

(0)σ
T (q)

(
1 − Uχ

(0)σ
T (q)

)−1
, (A3)

where χ
(0)σ
L (q) = −T

∑
p Gσ (p)Gσ (p + q) and χ

(0)σ
T (q) =

−T
∑

p Gσ (p)G−σ (p + q) are longitudinal and transverse
irreducible susceptibilities. Then, the irreducible vertex func-
tion Iσ,ρ

q (k, k′) given by the Ward identity is composed of
one MT term and two AL terms in Fig. 7(a). Note that Iσ,ρ

q
contains the lowest order Hartree term −Uδσ,ρ .

First, we derive the charge-channel (singlet) DW equation
in the absence of the magnetic field, where the form factor is
independent of spin: f ↑

q (k) = f ↓
q (k) = fq(k). The singlet DW

equation was introduced in the study of Fe-based supercon-
ductors [49] and cuprate superconductors [23]. It is given as

λq fq(k) = −T
∑

k′
Ic
q (k, k′)G(k′

−)G(k′
+) fq(k′), (A4)

which is shown in Fig. 7(b), and k± ≡ k ± q/2. Here,
Ic
q (k, k′) = Iσ,σ

q (k, k′) + Iσ,−σ
q (k, k′). It is given as

Ic
q (k, k′) = −3

2
V s(k − k′) − 1

2
V c(k − k′)

+ T
∑

p

[
3

2
V s(p+)V s(p−) + 1

2
V c(p+)V c(p−)

]

× G(k − p)G(k′ − p)

+ T
∑

p

[
3

2
V s(p+)V s(p−) + 1

2
V c(p+)V c(p−)

]

× G(k − p)G(k′ + p), (A5)

where p = (p, ωl ), V̂ s(q) = U + U 2χ̂ s(q), and V̂ c(q) =
−U + U 2χ̂ c(q). The first, the second, the third terms in
Eq. (A5) corresponds to the MT, AL1, and AL2 terms in
Fig. 7(a).

ρ

k−

(b)

λq

k+ k'+

k'−

=
fq(k')

(c)

ηq

+ +=

MT AL1 AL2

∑T

Icq(k,k')
fq(k) k−

k+ k'+

k'−

=
gq(k')

Isq(k,k')
gq(k)

σ

ρσ

σ

σ

σ

σ

ρ

ρ

ρ

ρ

k−

k+ k'+

k'−

σ

σ

ρ

ρ

p+(a)

−p−

p+

−p−
Iσ,ρq (k,k')

p1

p2

p3

p

∑T2

p1,p2,p3

δp1+p2+p3,q

(d)

(e)

=
k−

k+ k'+

k'−
+ + + ∙∙∙

3-magnon exchange term

Γq
s(c)(k,k')

FIG. 7. (a) Irreducible four-point vertex Iσ,ρ
q (k, k′) composed of

one MT term and two AL terms. (b) Linearized singlet DW equation
with the kernel Ic ≡ Iσ,σ + Iσ,−σ . (c) Linearized triplet DW equa-
tion with the kernel Is ≡ Iσ,σ − Iσ,−σ . (d) A three-magnon exchange
term, which is less important. (e) Full four-point vertex function
�s(c)

q (k, k′) given by solving the DW equation. The sLC order (BO)
emerges when �s(c)

q (k, k′) diverges.

In cuprates, Eq. (A4) gives an even-parity solution with
wave vector q = 0 and q ≈ (π/2, 0). This singlet and even-
parity electron-hole condensation is interpreted as the BO.

Next, we derive the spin-channel (triplet) DW equation in
the absence of the magnetic field, the spin-dependent form
factor is gq(k) ≡ g↑

q (k) = −g↓
q (k). It is given as

ηqgq(k) = −T
∑

k′
Is
q (k, k′)G(k′

−)G(k′
+)gq(k′), (A6)

which is shown in Fig. 7 (c). Here, Is
q (k, k′) = Iσ,σ

q (k, k′) −
Iσ,−σ
q (k, k′). It is given as

Is
q (k, k′) = 1

2
V s(k − k′) − 1

2
V c(k − k′)

+ T
∑

p

[
V s(p+)V s(p−) + 1

2
V s(p+)V c(p−)

+ 1

2
V c(p+)V s(p−)

]
G(k − p)G(k′ − p)

+ T
∑

p

[
− V s(p+)V s(p−) + 1

2
V s(p+)V c(p−)

+ 1

2
V c(p+)V s(p−)

]
G(k − p)G(k′ + p), (A7)

where the first, second, and third terms in Eq. (A5) correspond
to the MT, AL1, and AL2 terms in Fig. 7(a). The AL terms
with V s(p+)V s(p−) are shown in Fig. 4 (e). In cuprates,
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Eq. (A6) gives the odd-parity solution at wave vectors q =
(π/2, π/2) and (π/2, 0). This triplet and odd-parity electron-
hole pairing is interpreted as the spin-loop current (sLC).

In both Eqs. (A5) and (A7), the AL terms are proportional
to φ(2)

q ≡ T
∑

p1,p2
V s(p1)V s(p2) · δp1+p2,q. The AL terms are

significant when the spin fluctuations are large, since both
V s(p1) and V s(q − p1) take large value simultaneously when
p1 ≈ Qs in the case of q ≈ 0. If we put V s(p) ∝ ξ 2/[1 +
ξ 2(p − Qs)2] at zero Matsubara frequency, where ξ (

1) is the magnetic correlation length, φ

(2)
q=0 ∝ T ξ 2 in two-

dimensional systems. Therefore, double-magnon exchange
(AL) terms induce not only BO, but also the sLC order when
ξ 
 1. A three-magnon exchange term shown in Fig. 7(d)
is proportional to φ(3)

q ≡ T 2 ∑
p1,p2,p3

V s(p1)V s(p2)V s(p3) ·
δp1+p2+p3,q. Then, φ

(3)
q=0 ∝ T 2ξ 2 in two-dimensional systems

for q ∼ Qs, which is smaller than φ
(2)
q=0 at low temperatures

T � EF. Thus, the AL process would be the most significant,
which is also indicated by functional-renormalization-group
studies [22].

The electron-hole pairing order is generally expressed in
real space as follows [30]:

Dσ,ρ
i, j ≡ 〈c†

iσ c jρ〉 − 〈c†
iσ c jρ〉0

= dc
i, jδσ,ρ + ds

i, j · σσ,ρ,

where Dσ,ρ
i, j = {Dρ,σ

j,i }∗, and dc
i, j [ds

i, j] is the spin singlet
(triplet) pairing. It induces the symmetry breaking in the self-
energy:

��
σρ
i, j = fi, jδσ,ρ + gi, j · σσ,ρ, (A8)

which we call the form factors in this paper. The BO is
given by real even-parity function fi, j = f j,i, and the sLC is
given by pure imaginary odd-parity vector gi, j = −g j,i. Both
orders preserve the time-reversal symmetry. Note that fq(k)
and gq(k) in Eqs. (A4) and (A6) correspond to fi, j and gz

i, j ,
respectively.

Finally, we discuss the effective interaction driven by the
BO/sLC fluctuations. By solving the DW equation (A4),
we obtain the full four-point vertex function �c

q(k, k′) that
is composed of Ic

q and G(k+)G(k−) shown in Fig. 7(e),
which increases in proportion to (1 − ηq)−1. Thus, we obtain
the relation �c

q(k, k′) ≈ fq(k){ fq(k′)}∗ Ī c
q (1 − λq)−1, which is

well satisfied when λq is close to unity. Here, Ī c(s)
q ≡

T 2 ∑
k,k′ { fq(k)}∗Ic(s)

q (k, k′) fq(k′)/T
∑

k | fq(k)|2. In the same
way, we obtain the relation �s

q(k, k′) ≈ gq(k){gq(k′)}∗ Ī s
q (1 −

ηq)−1. Thus, it is apparent that the sLC order g (BO f )
emerges when �s(c)

q (k, k′) diverges.
The pairing interaction due to the sLC fluctuations is given

by the full four-point vertex. It is approximately expressed as
V SC(k+, k−) = −�s

q(k,−k) ∝ −gq(k){gq(−k)}∗(1 − ηq)−1.
Since g is an odd function, the sLC fluctuations cause
attractive interaction: V SC(k+, k−) ∝ −|gq(k)|2(1 − ηq)−1.

0

5

10

( , ) (0, 0) ( , 0)
q

ηq

fmax
q=0 = 0

0.01
0.03

FIG. 8. Obtained ηq for n = 0.85 (αS = 0.99) under the ferro-
BO with f max

q=0 = 0, 0.01, 0.03. Thus, the ferro-BO does not prohibit
the emergence of the sLC order.

APPENDIX B: ADDITIONAL NUMERICAL RESULTS
OF DW EQUATIONS

1. Enhancement of the sLC instability under the finite ferro-BO

In Figs. 5(a) and 5(b) in the main text, the sLC eigenvalue
ηq=Qd

is comparable to the BO eigenvalue λq=0 for a wide
doping range. This result means that the sLC order at qsLC =
Qd and the ferro-BO occur at almost the same temperature
∼T ∗. Here, we discuss the possibility of coexistence of sLC
order and ferro-BO.

Since the ferro-BO does not induce the band folding and
pseudogap, the sLC order will emerge even if the ferro-BO
transiting temperature is higher. To verify this expectation, we
calculated the triplet DW equation (A6) under the ferro-BO
with f max

q=0 = 0, 0.01, 0.03. Figure 8 shows the eigenvalue of
sLC as function of q for n = 0.85 and U = 3.27 (αS = 0.99)
under the ferro-BO form factor obtained by the spin-singlet
DW equation (A4). It is verified that the ferro-BO does not
prohibit the emergence of the sLC order. The eigenvalue ηq

slightly increases with f max
q=0 , since the spin Stoner factor αS is

enlarged by the ferro-BO [22,23].

2. Change in the phase diagram by t3

In the main text, we show that the sLC eigenvalue at
q = Qd develops as large as the ferro-BO eigenvalue near the
optimal-doping case (p ∼ 0.15), based on the Hubbard model
with the hopping integrals (t1, t2, t3) = (−1.0, 1/6,−1/5).
The obtained Fermi surface (FS) has the flat part near the
Brillouin zone boundary, which captures the characteristic of
YBCO compounds.

Here, we examine a key model parameter for the phase
diagram, and reveal that the sLC instability is sensitively con-
trolled by t3. Figure 9(a) shows the FSs for t3 = −0.20 to −
0.25 in the case of t1 = −1.0 and t2 = 1/6. The shape of the
flat part of the FS near the BZ, which is significant for the
density wave (DW) instabilities at q = Qa, Qd, is sensitively
modified by t3.

Figures 9(b)–9(e) show the obtained spin-channel eigen-
value ηq and the charge-channel one λq in the cases of t3 =
−0.23 [(b) and (c)] and t3 = −0.25 [(d) and (e)]. (We set the
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t3 = −0.23, sLC t3 = −0.23, BO
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FIG. 9. (a) FSs for t3 = −0.20 to − 0.25 at n = 0.85, in the case
of t1 = −1.0 and t2 = 1/6. The set t3 = 0.20 in the main text. (b)–(e)
Obtained eigenvalue ηq and λq in the cases of t3 = −0.23 [(b) and
(c)] and t3 = −0.25 [(d) and (e)].

condition αS = 1 − 0.444p2 by following the main text.) With
increasing |t3|, the peak of sLC instability is found to shift to
the underdoped region. Interestingly, the SLC eigenvalue at
q = Qa becomes larger than that at q = Qd for t3 = −0.25.
Its spin current pattern in real space is shown in Fig. 10(a).

We note that recent experiments indicate that the phase
diagram of cuprate superconductors is very diverse and rich.
For example, the in-plain anisotropy of the ferromagnetic
susceptibility at T = T ∗ is B1g in YBCO [10], whereas
B2g in Hg compound [11]. Also, the antiferromagnetic
susceptibility in slightly underdoped YBCO exhibits a clear
symmetry breaking at a temperature between T ∗ and TCDW

[58]. The present sensitive t3 dependent sLC may give an
important hint to understand diverse symmetry breaking in
cuprates.

Here, we discuss the band folding and hybridization gap
in the axial sLC phase. Figures 10(b) and 10(c) show the
Fermi arc structures induced by the axial sLC order in the
cases of (a) single-q and (b) double-q orders. We set gmax ≡
maxk{gQd

(k)} = 0.1. Here, the folded band structure under
the sLC order with finite qsLC is “unfolded” to make a com-
parison with ARPES results. The Fermi arc due to the single-q

single-Qa
double-Qa

ky

(b) single-Qa (c) double-Qa

E

N
(E

)

(d)

MM

0 20

π

2π

0 2 −0.4 −0.2 0 0.2 0.4
0

0.1

0.2

0.3

A B C DD

((a))  axial sLC

FIG. 10. (a) Schematic spin current pattern due to the sLC order
at q = Qa. (b) Fermi arc structure due to the single-q order, (c) that
due to the double-q order, and (d) pseudogap in the DOS due to the
axial sLC order (q = Qa).

order in Fig. 10(b) belongs to the B1g symmetry. The resultant
pseudogap in the DOS is shown in Fig. 10(d).

3. Reduction of eigenvalues by z < 1

In the present work, we study the mechanism of exotic DW
orders due to the interference between paramagnons based on
the linearized DW equation. The obtained form factor repre-
sents the characteristics and the symmetry of the DW, and the
eigenvalue expresses the strength of the DW instability. In the
present numerical study, we drop the self-energy in the DW
equation. Then, the obtained eigenvalues shown in Figs. 5 and
9 are much larger than unity. In addition, the eigenvalue of the
superconducting gap equation, λSC, shown in Fig. 5(b) is also
very large.

The self-energy gives the quasiparticle weight as z ≡ [1 −
Re ∂�(ε)/∂ε|ε=μ]−1 (<1), and z−1 (>1) is the mass enhance-
ment. The effect of the self-energy in the DW equation has
been studied in Ref. [50] for Fe-based superconductors (z ∼
1/3), and it was revealed that the eigenvalue of the orbital
fluctuations is reduced by the self-energy, and the orbital order
temperature is reduced to ∼100 K, consistent with experi-
ments.

Here, we study the effect of the renormalization factor z on
the eigenvalues in the present single-orbital Hubbard model.
Then, the Green function is given as

Gz(k) = 1

iεn/z − μ − εk
. (B1)

First, we discuss the effect of z on λSC, by replacing two G’s
in Eq. (6) with Gz given by Eq. (B1). On the other hand, we do
not include z in the susceptibilities χ s,c in V s,c in the pairing
interaction, in order not to change the Stoner factor αS . Then,
it is well known that λSC is reduced as zλSC based on the
Eliashberg equation [59].
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FIG. 11. Obtained eigenvalues (a) ηq and (b) λq as functions of z.

Next, we discuss the effect of z on λq (ηq) by replacing four
G’s in Eqs. (A4) and (A5) [Eqs. (A6) and (A7)] with Gz given
by Eq. (B1). The obtained z dependences of the eigenvalues at
T = 0.03 are shown in Fig. 11. It is verified that both λq and
ηq are reduced in proportion to z. Although this approximation
may be justified only for z � 1, the obtained results strongly
indicate that both λq and ηq are reduced to O(1) in the case of
z � 0.2, which is realized in cuprate superconductors.

4. Unfolded band structure under the sLC order

Here, we examine the experimentally observed band struc-
ture in the sLC ordered state, by applying the unfolding
procedure proposed in Ref. [56]. Figure 12 shows the “un-
folded” band structure in the single-Qd sLC order at gmax =
0.1, which corresponds to Fig. 6(a) in the main text. The
pseudogap closes on the X -Y line owing to the odd-parity
form factor. This Dirac point which will be smeared out for
T ∼ T ∗ (
 TCDW) because of very large inelastic scattering
at the hot spot [5–7,40]. In addition, the Dirac point should be
masked by the d wave BO below TCDW.

0.5

0

−1

−0.5
E

(b)

(a) 

π 2π

π

0
kx

ky

k1

k5

2
3
4

FIG. 12. The unfolded band structure in the single-Qd sLC order
corresponds to Fig. 6(a) in the main text.

FIG. 13. Diagrammatic expression of �̄s(c)
q (p, p′), which rep-

resents the scattering process of the magnon pair through the
interaction Js(c)

q (p, p′). Mathematically, �̄s(c)
q (p, p′) diverges when

magnon pairs with momentum q condense. Thus, sLC/BO is inter-
preted as the condensation of odd/even parity magnon pairs.

APPENDIX C: BO/sLC ORDER AS MAGNON-PAIR
CONDENSATION

We explain that the sLC order is exactly the same as the
magnon-pair condensation. The following spin quadrupole
order occurs owing to the magnon-pair condensation [53]:

Kα,β
i, j ≡ 〈

sα
i sβ

j

〉 − 〈
sα

i sβ
j

〉
0, (C1)

where α, β = x, y, z, and the relation Kα,β
i, j = Kβ,α

j,i holds. We
will explain that the even-parity function ai, j ≡ Kα,α

i, j /3 (with
ai, j = a j,i) corresponds the BO state, and the odd-parity func-
tion bα

i, j ≡ iεαβγ Kβ,γ
i, j /2 (with bα

i, j = −bα
j,i) corresponds the

sLC order.
Here, we explain that �s,c

q (k, k′) due to the AL pro-
cesses represents the scattering between two-magnons. To
simplify the discussion, we drop the MT term, and consider
only AL terms with two χ s’s. Then, we define �̄s(c)

q (p, p′)
by the following relation: �c(s)

q (k, k′) = T 2 ∑
p,p′ [G(k − p) +

(−)G(k + p)]�̄c(s)
q (p, p′)G(k′ − p). Figure 13 shows the di-

agrammatic expression of �̄s,c
q (p, p′), which represents the

scattering process of magnon pair amplitude bz (a) through
the interaction Js(c)

q (p, p′), which is a moderate function of
T . With decreasing temperatures, �̄c(s)

q (p, p′) diverges when
singlet (triplet) magnon pairs with momentum q condense,
and the critical temperature corresponds to λq = 1 (ηq = 1).

Here, we introduce f̄q(k) ≡ T
∑

p Hq(k, p) fq(p)
and ḡq(k) ≡ T

∑
p Hq(k, p)gq(p), where Hq(k, p) =

G(p+)G(p−)G(p − k), and fq(p) and gq(p) are form factors
of the DW equations. Then, the DW equations are rewritten
as

λq f̄q(k) = T
∑

p

Jc
q (k, p)χ s(p+)χ s(p−) f̄q(p), (C2)

ηqḡq(k) = T
∑

p

Js
q (k, p)χ s(p+)χ s(p−)ḡq(k), (C3)

where the kernel function Jc,s
q (k, p) is given in Fig. 13. These

equations means that f̄q(k) [ḡq(k)] corresponds to the singlet
(triplet) magnon pair condensation. Therefore, their Fourier
transformations correspond to ai, j and bz

i, j , respectively.
To summarize, in the present double spin-flip mecha-

nism, magnon-pair condensation a, bz �= 0 occurs at T =
TsLC. Therefore, the sLC/BO given by the present mecha-
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FIG. 14. Obtained spin current from the center site (A–D) to
different sites under the diagonal sLC with period 4aCu-Cu. The real
space pattern is depicted in Fig. 1(c), with sites A–D in a unit cell.

nism is exactly the same as “condensation of odd/even parity
magnon pairs.”

APPENDIX D: SPONTANEOUS SPIN CURRENT
IN THE sLC PHASE

1. Calculation of the spin current

Here, we investigate the spin current in real space due
to the “spin-dependent self-energy” δtσ

i, j = σgi, j shown in
Fig. 3(c), which is purely imaginary and odd with respect
to i ↔ j. The spin current operator from site j to site i
is jσi, j = −i

∑
σ σ (hσ

i, jc
†
iσ c jσ − (i ↔ j)), where hσ

i, j = ti, j +
δtσ

i, j . Then, the spin current from j to i is given as Js
i, j =

〈 js
i, j〉ĥσ .
Here, we calculate the spin current for the commensurate

sLC order at qsLC = (π/2, π/2), which is achieved by putting
n = 1.0. Then, the unit cells are composed four sites A–D.
Figure 14 shows the obtained spin current Js

i, j from the center
site ( j = A–B) to a different site in Fig. 1(c), by setting gmax =
0.1. The obtained current is |Js

i, j | ∼ 10−2 in units |t1|/h̄. The
derived spin current pattern between the nearest and second-
nearest sites is depicted in Fig. 1(c). The spin current is exactly
conserved at each site.

2. Possible diagonal sLC patterns in real space

Next, we explain that the spin current pattern derived from
the form factor gq(k) in Fig. 3(b) is not uniquely determined.
In fact, the form factor in real space is given as i Im{gi, jeiψ } ∼
i Im{eiq·(ri+r j )/2eiψ }, where ψ is an arbitrary phase. Here, we
discuss other possible spin current patterns by choosing ψ .

First, we discuss the real space pattern for qsLC =
(π/2, π/2), (π/2,−π/2). We assume that Fig. 1(c) corre-
sponds to ψ = 0. Then, the single-q spin current pattern for
ψ = π/2 is given in Fig. 15(a). The double-q spin current
order is given by the combination of the sLC order at qsLC =

FIG. 15. Examples of the diagonal sLC pattern in real space for
qsLC = (π/2, π/2), (π/2,−π/2). (a) Single-q sLC pattern for ψ =
π/2. (b)–(e) Four examples of double-q sLC patterns.

(π/2, π/2) and that at qsLC = (π/2,−π/2) with arbitrary
phase factors. Figures 15(b) and 15(c) are given by the com-
bination of Fig. 1(c) with its π/2 rotation, and Figs. 15(d)
and 15(e) are given by the combination of Fig. 15(a) with
its π/2 rotation. We stress that the magnitude of spin current
|Js

i, j | in Figs. 15(b) and 15(c) has C4 symmetry, whereas that
in Figs. 15(d) and 15(e) breaks the C4 symmetry.
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