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High resolution strain measurements in highly disordered materials
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The ability to measure small deformations or strains is useful for understanding many aspects of materials.
Here, an alternate analysis of speckle x-ray diffraction peaks is presented in which the systematic shifts of
the speckles are analyzed allowing for strain (or flow) patterns to be inferred. This speckle tracking technique
measures strain patterns with an accuracy similar to x-ray single crystal measurements but in amorphous or
highly disordered materials.
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I. INTRODUCTION

The measurement of small deformations in samples is
a useful method to characterize the properties of materials,
soft materials in particular. The properties of soft condensed
matter systems are often controlled by small mesoscale struc-
tural changes and/or deformations that have energy scales
comparable to thermal energies. These changes are the ori-
gin of many of their viscoelastic properties. Deformations
are typically measured via strain, or the geometrical relative
displacements of elements in a body. Small deformations
are hard to measure. High resolution strain has been mea-
sured using x rays and neutron scattering [1–3] and visible
light [4–6]. However, these measurements are mostly lim-
ited to crystalline materials and/or macroscopic sections of
samples. There are few measurement techniques involving
amorphous materials with x rays. Nielsen et al. [3] applied
a three-dimensional absorption tomography technique. This
technique provides a high resolution three-dimensional pic-
ture of the static strain of materials. However, this technique
requires measuring many diffraction patterns, potentially re-
stricting its use for in situ measurements. In this paper an
extension of x-ray photon correlation spectroscopy (XPCS)
is proposed for in situ measurements of strain in amorphous
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materials. It measures a two-dimensional (2D) projection of
the strain, but the technique requires taking only two coherent
diffraction patterns. Since the analysis is somewhat involved,
the emphasis of this paper is simply on the technique itself.

For a simple insight into the technique, imagine a de-
formation of the underlying space, �r ′ = M · �r. For small
deformations, the transformation consists of a possible rigid-
body displacement and a local distortion. From this it follows
that the strain is the difference between M and the identity
matrix and related to the gradient of M for small deforma-
tions. That is, �s = M − I is the strain tensor. When M is
independent of �r, a homogeneous deformation results. Since
diffraction is measured in reciprocal space, we consider the
effect on the density ρ(�r) and its Fourier transform ρ(�q). To
get the Fourier transform of the deformed material ρ ′(�q),

ρ ′(�q) =
∫

ρ(M · �r)e−i �q·�rd�r = ρ(M−T · �q)/det(M ) (1)

by simple substitution. This calculation assumes a negli-
gible change in the volume of integration. Speckle sizes
are determined by the diffraction volume, and this sets the
scale determining when a deformation is small and for de-
termining when the change in the volume of integration
can be neglected. Another approach is given by solving the
convection-advection diffusion equation by the method of
characteristics and may be found in Fuller et al. [7]. So if we
can relate features in ρ(�q) (or scattering intensity) before and
after the deformation, their time-dependent shifts in reciprocal
space are

��q = M−T · �q − �q = −�T
s · �q, (2)
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where M−T ≈ I − �T
s for small deformations. For a simple

velocity field

M(t ) · �r = �r +
∫ t

0
�v(�r, τ )dτ

= �r + (�v0 + � · �r)t = (I + �s) · �r, (3)

showing the strain tensor is related to the velocity gradient
matrix � = ∇�v(�r) for a velocity field. The rigid-body shift
gives a phase factor exp(i�v0 · �qτ ) due to the shift in �r and will
be ignored as it will not be seen in the scattered intensity. It
is also assumed that the velocity field is in the steady state for
the time of the measurement of each diffraction pattern.

Using these ideas for the analysis of diffraction patterns
involves relating features in the starting diffraction pattern
and the deformed diffraction pattern, measuring the shift in
these wave vectors, and analyzing the shifts to obtain the strain
matrix.

The illumination of a disordered material with a coherent
source leads to a complicated interference pattern modulating
the conventional (incoherent) diffraction pattern. This pattern
is typically called a speckle pattern. The pattern reflects more
than one length scale. There is a set of short length scales
which reflect the scattering of the pieces or blocks which lead
to longer distances in the diffraction pattern. These are also
reflected in conventional x-ray diffraction, and their analysis
is well developed. The speckles have short length scales in
reciprocal space and arise due to the finite size of the beam.
The rule of thumb is that the modulating speckle pattern has
many peaks of widths 2π/L, where L is the appropriate beam
dimension on the sample. At each point in the diffraction
pattern there is a contribution from each of the many blocks or
subsections, each with its own phase factor randomly varying
from 0 to 2π . These phases will add up to a well-defined phase
under coherent illumination. If they add in phase, the result
is constructive interference, and the intensity is high. Where
they add up out of phase, intensity is low. Each speckle peak
is somewhat like a local Bragg peak. Below we show that
tracking the positions of speckles can be used to infer small
deformations.

II. ANALYSIS

The shift in wave vectors after a deformation can be ob-
tained from the following correlation function:

g2(�q0,��q, τ ) = 〈I (�q, t )I (�q + ��q, t + τ )〉�q
Ī2

. (4)

Since each wave vector shifts by different amounts, the av-
erage over �q is over a small region centered around �q0. This
assumes that the displacement is slowly varying in �q. Notice
that when the shifts are time invariant or slow, it is possible to
also average in time. When the scattering is sharply peaked,
as for Bragg peaks and for speckles, one can measure ��q by
following the local maxima. For Bragg peaks one measures
the shifts of a few peaks. For speckles, the cross correlation
measures the average shift of the speckles over the region
averaged. As pointed out below, this is over many hundreds
of speckles. The correlation function g2(�q0,��q, τ ) is an ex-
tension of the intensity-intensity correlation function used in

XPCS. The time correlations for XPCS are calculated using
��q = 0.

The experiments were carried out at beamline 8-ID-I of
the Advanced Photon Source. For this setup, the energy was
7.488 keV (λ = 1.663 Å) monochromated by double-bounce
Ge(111) crystals. The incident flux was ≈109 photons/s
through a 20×20 μm2 aperture. A direct-illumination deep-
depletion CCD (Princeton Instruments 1152×1242, 22.5-μm
resolution) was used as an area detector. Each pixel in the area
detector corresponds to 2.0×10−5 Å−1, which is close to the
speckle size. The filled rubber samples were held in a vacuum
chamber with an in situ tensile stress-strain cell. The exposure
time per frame was 0.1 s recurring every 2.0 s. Further details
are given in Refs. [8,9].

The sample consists of a cross-linked elastomer (ethylene
propylene diene monomer, rubber) filled with hydroxylated
pyrogenic silica (AEROSIL 200 [10–12]). The volume frac-
tion of silica is close to 0.16. In our measurements, the
1-mm-thick sheets are punched out to a classical dumbbell
shape (width = 4 mm). As described in Ref. [8], upon ap-
plying a step strain on the sample, the stress jumps and then
slowly relaxes as the sample is held at constant strain. For this
article, only one 400-s data set is presented for a sample which
was stretched by 60%, after which the macroscopic strain was
fixed. The data collection for this run started approximately
1250 s after the application of the 60% strain step. These data
are part of those presented in Ref. [8], where emphasis is on
the understanding of the underlying science of elastomers.
Here, since the analysis is somewhat involved, this article
emphasizes the data analysis. Only a single run is described
as this simplifies the discussion while still demonstrating the
generality of the technique. The technique measures small
strains in disordered materials and does not apply only to the
elastomers used here. Using this analysis on the other data
sets presented in Ref. [8] confirms the ideas presented here
and should be used to study the viscoelastic properties of the
elastomers which were studied.

The 200 frames of the data set have been sequentially
averaged by 5 frames to produce 40 images which are an-
alyzed below. To select the small regions of �q for the cross
correlations, the scattering images are decomposed into small
wedges or bins of |q| and φ. The orientation of the detector is
such that vertical on the detector is vertical on the sample. The
azimuthal angle φ is atan(qvert/qhor ). The wedges are 20 pixels
(0.00040 Å−1) wide in | �q| and 10◦ in φ. Cross correlations for
all wedges with more than 1000 pixels up to a wave vector
of 0.024 Å−1 (1200 pixels) were calculated. This gave 376
nonoverlapping wedges. Bins are numbered with φ increasing
for fixed q, and then q increases for the next set of φ. Figure 1
shows a typical bin (bin 57, q = 0.0090 Å−1, φ = 200◦) and
its cross correlation between the first averaged frames. As
for each cross correlation [13,14], it has a peak amplitude of
1 + β (speckle contrast) sitting on a background of height 1.
Each cross correlation is least-squares fit to a 2D Gaussian
peak. Peak widths give the speckle size. The shift of the peak
maximum gives the speckle movement. The cross correlation
is calculated for integral pixel shifts, with no shift defining
zero and points on each side being plus or minus a 1-pixel
shift. If there is no peak shift, the cross correlation will be
symmetric about zero. It is easy to see if a shift by a fraction
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FIG. 1. (a) Speckle intensity for bin 57, q = 0.009 Å−1, φ = 200◦, as placed in a rectangular image. The underlying diffraction intensity
is constant over the wedge, and the fractional intensity fluctuates by approximately ±√

0.3 = 0.55, reflecting the speckle variation. (b) Cross
correlation between the first two averaged by five images. Scale can be determined from (c). (c) Line-outs around the central pixel of the
cross correlation in the vertical (upper curves, offset by 0.1) and horizontal (lower curves) directions. The thick lines are for the 2D Gaussian
that results from fitting the peak. The resulting shifts are 0.24 pixel in the horizontal and −0.10 pixel in the vertical and are reflected in the
asymmetric placement of the measured points.

of a pixel exists as this leads to asymmetric values of the data
at the ±1 positions, as shown in Fig. 1(c). Figure 1(c) also
shows sections of the 2D Gaussian fit for this cross correla-
tion. Note that for this example the center of the peak is offset
by (0.24,−0.10) pixels, or (4.8×10−6,−2.0×10−6) Å−1, in
(qhor, qvert ) from the center or the unshifted correlation point.
The full widths at half maxima are 2.733 and 2.093 pixels
in the horizontal and vertical directions, and β = 0.263. A
preliminary version of this analysis is given in Lhermitte’s
Ph.D. thesis [15].

Figure 2 shows the intensity of the time-averaged small-
angle scattering (the blank rectangle in the top right is the
beam stop). Superimposed is a representation of the speckle
shifts between the first image and two other times. The shift
for each bin is plotted as an arrow starting at the center of the

FIG. 2. Strain field for images from times 5 to 110 s and for
images at 5 to 319 s. Each local q region has a shift in the speckle
pattern given by the arrows, which are scaled up by 10 (q per pixel =
2.00×10−5 Å−1). The coordinates of the shifts for the right panel
are plotted in Fig. 5. The shifts are superimposed on the underlying
small-angle x-ray scattering intensity, and the blank rectangle in the
top right corner is from the beam stop. For reference, bin 57’s shift
is shown with a different color.

bin. Since the shifts are so small, the shift in pixels has been
multiplied by 10, where 1 pixel is 2.0×10−5 Å−1. One can
immediately see that the relaxation of the filled rubber has a
hyperbolic flow pattern. It is away from the beam center in
the vertical (φ = 270◦), which is along the tensile strain, and
towards the beam center in the horizontal (φ = 180◦). One
also sees the shifts increase with | �q|. For reference, the shift
for bin 57 is plotted with a different color.

Equation (4) is similar to the equation for XPCS except the
analysis is only for the ��q = 0 term. XPCS has demonstrated
its ability to measure time constants from microseconds to
many hours. It has demonstrated that static disorder leads
to speckle patterns unchanging in time, also for hours.
Figure 3 shows g2(τ ) as one would calculate it in an XPCS

FIG. 3. A conventional calculation of g2 is shown by the line
with dots, labeled “unshifted” (��q = 0). A measurement following
the in-plane shift observed on the detector is given by the solid
line, labeled “shifted.” For reference, it shows measured data from a
static aerogel sample and for a packed AEROSIL 200 sample (from
Ref. [8], Fig. 7(a)). The data analyzed are from the same q-φ bin as
in Fig. 1.
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FIG. 4. The cumulative shift for bin 57 over the length of the
time series. A pixel is 2.0×10−5 Å−1.

measurement. The slower decaying solid line in Fig. 3 is
obtained by following the peak maximum from fitting the
cross correlation of the first averaged by five patterns in time
versus each consecutive averaged by five sequences of pat-
terns [16]. The decay time of the slower curve is the average
time it takes for speckles in bin 57 to move through the Ewald
sphere in three-dimensional reciprocal space. To demonstrate
stability, data points for g2 from a silica aerogel and a packed
AEROSIL 200 silica (Ref. [8], Fig. 7(a)) measured with the
same setup are shown. They do not decay for the times shown.
The cross-correlation analysis of the aerogel data shows the
speckles do not shift in �q. This can also be inferred from Fig. 3
as any shift would cause g2 to decay.

The fastest decaying curve in Fig. 3 is an example of the
type of curves analyzed in Ref. [8] using conventional relax-
ation correlation functions. Figure 1(c) shows that speckles
are approximately 2 pixels wide. Figure 4 shows that for about
100 s and longer the speckles for bin 57 have shifted by more
than 2 pixels. This is the origin of the loss of correlation for
time delays longer than 100 s. This analysis shows that the
decay in time for g2 is due to the shift of the speckles and
not to random diffusion. That the shifts increase linearly in
�q explains why the time constants vary as 1/q. It also shows
that the time constants measured in Ref. [8] are indirect mea-
sures of velocity gradients. It is important to realize that the
motion of the speckles is happening at constant macroscopic
strain. The measured motion is accompanied by a changing
macroscopic stress. The speckle motion is expected in all
three dimensions. We expect the time for the speckle to move
perpendicular to the detector plane to be comparable to the
time of in-plane motion given the uniaxial nature of the ap-
plied strain. The small angle x-ray scattering (SAXS) with the
speckle averaged away is equivalent to a conventional SAXS
measurement. The SAXS pattern is isotropic and did not vary
for the 200 images of this data set.

A cross correlation can be calculated for each bin and
any pair of diffraction patterns. Only the shifts measured for
each subsequent pair of patterns are used here. Single-frame
cross correlations give quite acceptable correlations, but for
this analysis five images are averaged and then correlated as
this gives cleaner images. Since the correlations die away in
minutes, the shifts are measured by cross correlating each
nearest time pair of the averaged scattering. Using patterns

FIG. 5. Example of a two-parameter fit to a simple diagonal de-
formation pattern. The two components of the vector shift are plotted
separately with dashed lines; positive curves are for the horizontal,
and negative curves are for the vertical. The fitted values (solid lines)
overlap with the data, and so the bottom panel shows the two sets
of differences between the fits and the measurements. The vector
field used in the fit is the same as in the right panel of Fig. 2 and
corresponds to �vert = 31.97×10−6 and �hor = −26.75×10−6 per
second. These two parameters were used to generate the solid lines.
The sawtooth nature of the data reflects the order of the bins in the
diffraction pattern. For a given q the bins increase in φ, and then bins
increase in q, giving the next tooth.

further separated in time leads to compatible shifts, but they
have weaker correlations and are less accurate. Since the
deformations are varying slowly across the whole run, it is
better to measure nearest neighbor shifts and integrate the
shifts for longer time intervals. Summing the shifts leads to
a cumulative shift over the run and is shown in Fig. 4 for bin
57 (q = 0.009 Å−1, φ = 200◦).

For a given time delay and from the cumulative shifts in
each bin, a vector field may be calculated. Two examples of
these are plotted in Fig. 2. For each delay time slice, the vector
field can be fit to a velocity gradient: d �q/dt = −� · �q, where
d �q comes from the measured shifts and dt is the time between
images. Each vector field is well described by a diagonal 2D
matrix. Since it is difficult to compare 2D vector field images,
the quality of a typical fit is shown in Fig. 5 by a compari-
son between the fit and the measured vector components for
the first 350 bins. This gives a quantitative representation of
the quality of the fit. Since the fits agree well with the data, the
white arrows on the right side of Fig. 2 also show this vector
field in another representation. Explicitly, for this image the
deformation is (�qhor,�qvert ) = (−0.0089qhor, 0.0106qvert ),
and the ratio ��q/�q gives the diagonal elements of the strain
tensor. A simple two-parameter fit to all shifts of a given time
delay fits all q-φ bins exceptionally well.

Figure 6 shows the evolution of the diagonal elements of
the velocity gradient tensor � as a function of time obtained
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FIG. 6. Time evolution of the velocity gradient parameters ob-
tained by fitting the vector fields over the run. The cumulative strain
is the integral of � over time.

from all vector field fits. Integrating this over time gives the
strain as discussed above. Remember that here, � is a velocity
gradient tensor. For reference, �vert = 35.0×10−6 s−1 means
that points 10 μm apart in the vertical direction have a differ-
ence in vertical velocity of 3.5 Å/s. These velocity gradients
are quite compatible with the coarser “ballistic” velocity es-
timates using a compressed exponential correlation function
based on Cipelletti et al. [17] (see Ehrburger-Dolle et al. for an
earlier discussion of these data [8]). The evolution of � with
time reflects the slow viscoelastic relaxation in the silica-filled
rubber while the sample is held at constant macroscopic strain.

III. CONCLUSIONS

In conclusion, it has been shown that a simple extension of
XPCS can measure the projection of the strain tensor across
the scattering volume. Since the dimensions of the beam are
20×20 μm2, this gives a submicron measurement of the local
strain fields, and the strain precision is similar to what can be
measured in a single-crystal measurement using the shifts in
a Bragg peaks. It is stressed here that this analysis works for
amorphous or highly disordered materials, in particular most
heterogeneous soft matter systems. Details of the rheological
implications for our samples and for the conventional XPCS
analysis [18] from this approach are left for future work. It is
worth pointing out that the decay of the XPCS signal in this

system can be explained by the viscoelastic flow of the filled
rubber, without any random Brownian motion.

We emphasize that the main result of this paper is that small
strain fields in amorphous materials can be measured by cross
correlating speckle patterns from before and after a change in
strain. Nothing in the above analysis is specific to elastomers
except maybe for the uniaxial approximation used to fit the
vector field. Other distortions may require a different model.
We emphasize that the strain measurement requires only two
images with sufficient intensity to measure their speckle pat-
terns and that the two images are separated in time by less than
the time it takes for the speckles to move off the Ewald sphere
[19]. Too large a change in strain during the exposure time
of the images will smear the speckles and reduce sensitivity.
Also, if the out-of-plane strain between the two images is too
large, there will be no correlation, and the strain cannot be
measured. For SAXS, movement along the beam in either
the forward or backward direction has no in-plane compo-
nent and so does not contribute to the diffraction pattern, but
it can contribute to the motion of the speckle peaks. Also
in-plane motions are averaged through the sample along the
beam.

The advent of the new lattice structures that are being
used to upgrade x-ray synchrotrons will lead to an increase in
coherence by two to three orders of magnitude. Also a new
generation of x-ray area detectors with multikilohertz rates
is becoming commercially available, and still faster ones are
in development. The upgraded sources and the new detectors
will enable speckle measurements to be easily performed with
times on the order of microseconds. For the set of experiments
upon which this analysis is reported these advances allow for
measuring strains during the initial stage of deformation when
the macroscopic strain is applied. We also point out that one of
the nice features of this technique is one can easily measure
nanometer-sized distortions and even slow measurements of
these are extremely important for creep and aging studies in
materials.
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