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Ultrastrong time-dependent light-matter interactions are gauge relative
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Time-dependent light-matter interactions are a widespread means by which to describe controllable exper-
imental operations. They can be viewed as an approximation in which a third system, the control system, is
treated as external within the Hamiltonian. We demonstrate that this results in nonequivalence between gauges.
We provide a physical example in which each different nonequivalent model coincides with a gauge-invariant
description applied in a different experimental situation. The qualitative final-time predictions obtained from
these models, including entanglement and photon number, depend on the gauge within which the time-dependent
coupling assumption is made. This occurs whenever the interaction switching is sufficiently strong and nonadi-
abatic even if the coupling vanishes at the preparation and measurement stages of the protocol, at which times
the subsystems are unique and experimentally addressable.
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I. INTRODUCTION

Exploiting controlled light-matter coupling is important
for quantum computation [1–5], quantum communication [6],
quantum metrology [7,8], and quantum simulation [9,10].
In the search for scalable platforms operating at room
temperature, strong light-matter coupling has become of
major interest through solid-state systems, such as semi-
conductor quantum wells [11,12] and dots [13,14], through
two-dimensional [15] and organic [16] materials, and through
superconducting circuits [4,17–22].

Here, we consider the implications of the widespread and
important practice of modeling controllable light-matter in-
teractions by assuming that the coupling parameter η of the
model Hamiltonian H (η) depends on an external control
parameter [4,20,23–39]. This means that η varies in time:
η → η(t ). For example, time-dependent couplings in cavity
QED can be used to realize a universal set of gates for quan-
tum computation [32] and ultrastrong ultrafast couplings are
proposed to realize high-fidelity gates using superconducting
circuits [4]. Such models may also result from the rotation
of a model in which a subsystem is classically driven (e.g.,
[26]). Time-dependent Hamiltonian components are of intrin-
sic importance in thermodynamics, where they are used to
define work as a component of energy. They are also impor-
tant in optimal control theory, through models such as the
extended Rabi model [40–43]. The assumption of preparing
or measuring an eigenstate of the noninteracting Hamiltonian
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even when interactions are present is also common, and this
is equivalent to assuming an instantaneous switching of the
interaction (e.g., [44–47]).

The assumption of a time-dependent coupling, or of
preparing and measuring particular noninteracting states, is
highly nontrivial because light and matter quantum subsys-
tems are defined differently by different gauges [48]. Within
traditional weak-coupling regimes, focus has predominantly
been placed on the Coulomb and multipolar gauges [47,49–
52]. The Pauli-Fierz representation, which attempts to isolate
the component of the electromagnetic field tied to the material
system, has also been used to calculate radiative corrections
[53]. These previous studies have focused specifically on
establishing gauge invariance of the S matrix [54–61], or
else have considered the natural line-shape problem of spon-
taneous emission in weak-coupling and Markovian regimes
[44–47,50,62,63]. It is now well known that QED S-matrix
elements calculated using perturbation theory are independent
of the subsystem division at every order [55,60,61]. This result
is physically limited, however, because it is a direct conse-
quence of the adiabatic switching condition definitive of the S
matrix [55].

In scattering theory, virtual processes are allowed only
as intermediates within a “real process.” On the other hand,
beyond scattering theory, virtual effects are especially im-
portant in ultrastrong-coupling regimes and when dealing
with ultrafast interactions. Moreover, ultrastrong light-matter
coupling is now a major field of study for both fundamen-
tal and applied physics [26,64]. Likewise, increasingly fast
interactions are becoming more and more prevalent and, in
particular, may be advantageous in mitigating detrimental en-
vironmental affects occurring over the course of a controlled
process. Subcycle interaction switching was in fact achieved
some time ago [18] and, more recently, sub-optical-cycle dy-
namics have been achieved within the ultrastrong-coupling
regime by exploiting vacuum fluctuations rather than coherent
driving [65].
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Here we consider controllable light-matter interactions, but
we avoid the restrictive scattering-theoretic assumption of
adiabatic switching over infinite times, as is required for mod-
eling any platform that involves sufficiently fast and strong
interaction switching. We also allow the gauge to be arbi-
trary. Since each gauge for H (η) provides a different physical
definition of the interacting “light” and “matter” quantum
subsystems, the promotion η → η(t ) constitutes a different
physical assumption when applied in each different gauge.
Moreover, beyond scattering theory, different gauges gener-
ally treat virtual processes very differently within sufficiently
fast and strong interaction regimes. We show that as a result
of this, in such regimes the final-time predictions obtained
from H (η(t )) are significantly different in different gauges.
This occurs even when the quantum subsystems are unique
at the preparation and measurement stages at which times the
interaction vanishes.

We show using the example of an atom moving through a
cavity that by including from the outset an explicit description
of the degrees of freedom that mediate the interaction, i.e., by
explicitly including the control system at the Lagrangian level,
one can obtain a more complete and gauge-invariant descrip-
tion H̃ (t ). We demonstrate that each different model H (η(t )),
each of which belongs to a different gauge, coincides with
H̃ (t ) applied to a different microscopic arrangement of the
overall system. Thus, when using the assumption of a time-
dependent coupling η → η(t ), each gauge models a specific
microscopic arrangement. These findings place significant re-
strictions on the validity of using this common method when
describing strong and fast interactions because determining
which specific experimental arrangements a particular model
H (η(t )) describes, requires a more complete theory, such as
H̃ (t ), which may be unavailable or intractable except in the
simplest cases.

The paper is organized into five sections. In Sec. II we
provide theoretical background introducing time-dependent
interactions. In Sec. III we provide a simple toy model that
transparently demonstrates the implications of using a time-
dependent coupling parameter. In Sec. IV we consider a more
realistic atom-cavity system which facilitates a comparison
between the time-dependent coupling method and more com-
plete descriptions of the controlled light-matter interaction. In
Sec. V we consider the time-dependent coupling method when
describing fast and strong interactions. Finally, we briefly
summarize our findings in Sec. VI.

II. CONTROLLABLE ELECTROMAGNETIC
INTERACTIONS

A. Definition of interaction and external control approximation

Maxwell’s equations can be derived from the standard
QED Lagrangian

L = Lm −
∫

d3x

[
jμAμ + 1

4
FμνFμν

]
, (1)

where Lm and j are the free Lagrangian and the four-current of
an arbitrary material system such that d j = 0, while F = dA
and A are the electromagnetic tensor and four-potential for
an arbitrary electromagnetic system. All fields are assumed to

vanish sufficiently rapidly at the boundaries of the integration
domain. Under a gauge transformation A → A − dχ , where χ

is arbitrary, the Lagrangian is transformed to one that differs
by a total time derivative, and which is therefore equivalent
to L.

In applications we often wish to control the interaction be-
tween light and matter systems, such as atoms within a cavity.
This control can only occur via a third system, such as a laser,
which we call the control subsystem. Often, the explicit inclu-
sion of this control subsystem via a fully quantum treatment is
cumbersome or even intractable. In this case a simpler alterna-
tive must be sought. The simplest approach is to promote the
light-matter coupling parameter to a time-dependent function,
which then constitutes an implicit model for the control sub-
system. One could instead pursue an explicit description of the
control subsystem as classical and external, i.e., as possessing
preprescribed dynamics. This external control approximation
could be implemented at either the Lagrangian level or the
Hamiltonian level, but it is not clear that these two approaches
will be equivalent.

Even if one confines oneself to attempting to treat the
control subsystem as external, in many situations a tractable
model may still be unavailable. We therefore start here by
considering the simpler approach of using a time-dependent
light-matter coupling parameter, which is a widespread ap-
proach within the literature. Our aim is to understand the
implications of this approach when dealing with very fast and
strong interactions. In due course, we will see within specific
examples how, if at all, this description differs from explicitly
modeling the control subsystem as external.

Our first task is to define what is meant by an interac-
tion. The definition must be such that when the interaction
vanishes, the theory reduces to two free theories. A natural
approach to describing time-dependent interactions would be
to modify the interaction Lagrangian density LI = − jμAμ

via the replacement LI → μ(t )LI , where μ(t ) is a time-
dependent coupling function. However, this alone does not
imply that the interaction vanishes when μ(t ) = 0, due to
Gauss’ law ∇ · E = ρ, where ρ = j0 and Ei = F 0i. Instead, a
modified current may be defined as μ(t ) j. Whenever μ(t ) =
0, one then recovers two independent and free theories with
matter described by Lm, and the electromagnetic subsystem
described by LTEM = (E2

T − B2)/2 where E = ET is trans-
verse and B = ∇ × A is the magnetic field.

Solving ∇ · E = μ(t )ρ to obtain EL, and replacing jμ with
μ(t ) jμ in Eq. (1) yields the Lagrangian

L = Lm + LTEM + μ(t )2

2

∫
d3x ρφCoul

− μ(t )
∫

d3x[ρA0 − J · A], (2)

where Ji = ji, i = 1, 2, 3, and

φCoul(x) =
∫

d3x′ ρ(x′)
4π |x − x′| . (3)

This formulation accommodates an arbitrary time-dependent
interaction, arbitrary material and electromagnetic systems,
and arbitrary choice of gauge.
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B. Nonequivalent Lagrangians

We now consider a gauge transformation Aμ → Aμ − ∂μχ ,
which in terms of scalar and vector potentials reads as

A0 → A0 − ∂tχ, A → A + ∇χ. (4)

This transforms the Lagrangian L in Eq. (2) as

L → L + μ(t )
d

dt

∫
d3x ρχ. (5)

The right-hand side is equivalent to L if and only if μ̇ = 0.
Since the total electric charge is the conserved Noether

charge resulting from gauge symmetry, the nonequivalence
can be understood as a consequence of the fact that if ∂μ jμ =
0, then ∂νμ(t ) jν = 0 if and only if μ̇ = 0. One is naturally
led to seek a different modified current j̃, which includes
the external control μ(t ), but also satisfies ∂ν j̃ν = 0. We
perform this analysis in Appendix A. The construction of j̃
requires inverting the divergence operator, which introduces
an additional, equally significant, gauge arbitrariness into the
formalism. Neither μ(t ) j nor j̃ results in a Lagrangian that
provides invariant dynamics under a complete gauge trans-
formation. Thus, introducing the single additional assumption
that the interaction is controllable has resulted in nonequiva-
lence between different gauges.

As we have noted, a more complete approach would
include an explicit model for the control subsystem. In
Sec. IV A we will consider the example of an atom mov-
ing in and out of a cavity, which is simple enough to be
amenable to such an approach. In this case, the control sub-
system is the atom’s center-of-mass motion. We will see that
approximating the control subsystem as external at the Hamil-
tonian level actually produces the same result as assuming
a time-dependent coupling parameter. Thus, the nonequiva-
lence of models belonging to different gauges when using
the time-dependent coupling method can be understood as
the consequence of an approximation. The situation is anal-
ogous to the effect of material energy-level truncation, which
also produces nonequivalent models when applied in different
gauges [52,66–68]. However, while material level truncation
is often straightforwardly avoidable, avoiding the approxima-
tion of a control system as being external may be much more
difficult.

In Sec. IV B we will see that if we instead approximate the
control subsystem as external at the Lagrangian level, then
the subsequent Hamiltonians belonging to different gauges
are equivalent. Furthermore, through comparison with this
Lagrangian approach it is possible to determine whether or
not the simple time-dependent coupling method will be valid
when applied within a given gauge. We find that the correct
gauge, if any, to employ when using the latter method, de-
pends on the microscopic details of the system. The procedure
is analogous to identifying a gauge that provides the most
accurate material truncation by comparing the approximate
nonequivalent models with a more complete gauge-invariant
theory [52,66–68].

C. Nonequivalent Hamiltonians

To better understand the implications of the transforma-
tion property (5) we consider the example of a point charge

−e with mass m bound in the potential Vext. Choosing the
Coulomb gauge ∇ · A = 0 implies A = AT. From Gauss’ law
∇ · E = μ(t )ρ we then obtain A0 = μ(t )φCoul. Instead of the
Coulomb gauge, we could choose the Poincaré gauge defined
by x · A(x) = 0. We then obtain A(x) = AT(x) + ∇χ1 and
A0 = μ(t )φCoul − ∂tχ

1 where

χ1(x) = −
∫ 1

0
dλ x · AT(λx). (6)

More generally, we can straightforwardly encode the choice
of gauge in a real parameter α such that

Aα = AT + ∇χα, Aα
0 = μ(t )φCoul − ∂tχ

α, (7)

where χα = αχ1 with χ1 given in Eq. (6). Note that AT

is gauge invariant [55], that is, Aα
T = Aα′

T for all α and α′,
because ∇χα is necessarily longitudinal: ∇ × ∇χα ≡ 0.

If we now apply the canonical procedure to derive the
Hamiltonian from the Lagrangian in Eq. (2) we obtain

Hα (t ) = 1

2m
[p + eμ(t )Aα (r)]2 + Vext + Vself (t )

+ 1

2

∫
d3x

[(
� + μ(t )Pα

T

)2 + B2
]
, (8)

where

Vself (t ) = μ(t )2

2

∫
d3x ρφCoul (9)

is the infinite Coulomb self-energy of the charge, which is
usually taken as renormalizing the bare mass and is then
ignored, and where

Pα
T,i = −eα

∫ 1

0
dλ r jδ

T
i j (x − λr) (10)

is the α-gauge transverse polarization. Interpreted as
Schrödinger picture quantum operators the Hamiltonians of
different gauges are nonequivalent being unitarily related by a
generalized time-dependent Power-Zienau-Woolley transfor-
mation as

Hα′
(t ) = Rαα′ (t )Hα (t )Rα′α (t ), (11)

where

Rαα′ (t ) = exp

[
i(α − α′)μ(t )

∫
d3x P1

T · AT

]
. (12)

The nonequivalence of the Hamiltonians for distinct values
of α follows from Eq. (11), which shows that Hα′

(t ) �=
Rαα′ (t )Hα (t )Rα′α (t ) + iṘαα′ (t )Rα′α (t ), where the right-hand
side is equivalent to Hα (t ).

Equation (8) gives the α-gauge Hamiltonian with time-
dependent coupling and no approximations have been made
in its derivation, except the use of μ(t ) as a model for the
control subsystem. Note that the canonical coordinate of the
electromagnetic subsystem is the transverse vector potential
AT, which is manifestly gauge invariant. The α-gauge vector
potential Aα appearing in Eq. (8) is specified as a function
of AT given uniquely by Eqs. (6) and (7). In particular, these
equations together with Eq. (10) imply that eAα (r) can be
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written

eAα (r) = eAT(r) + α∇r

∫
d3x P1

T · AT. (13)

It is common to perform the electric dipole approximation
(EDA) AT(r) ≈ AT(0) and P1

T,i(x) ≈ −er jδ
T
i j (x), which re-

quires the resonant wavelengths to be long compared with
the spatial extent of the material system set by Vext. It is also
common to neglect the infinite self-energy of the charge. One
then obtains the Hamiltonian

Hα (t ) = 1

2m
[p + eμ(t )(1 − α)AT(0)]2 + Vext

+ 1

2

∫
d3x

[[
�(x) + αμ(t )P1

T(x)
]2 + B(x)2

]
.

(14)

The choice α = 0 provides the time-dependent version of the
well-known “p · A” interaction of the Coulomb gauge, while
the choice α = 1 likewise provides the time-dependent ver-
sion of the well-known “−er · �” interaction of the Poincaré
gauge. Both of these interaction forms are commonly found
within the literature. The Hamiltonians of different gauges
continue to be nonequivalent and unitarily related as in
Eq. (11) where now

Rαα′ (t ) = exp [−i(α − α′)eμ(t )r · AT(0)], (15)

which is simply the dipole approximation of Eq. (12).
The canonical formalism explains why the nonequiva-

lence of the Hα (t ) occurs; in different gauges the theoretical
quantum subsystems are defined in terms of different gauge-
invariant observables. In the α gauge the field canonical
momentum is � = −ET − αP1

T. The Coulomb and multipo-
lar gauges are special cases with � = −ET and � = −DT,
respectively, both of which are gauge-invariant observables.
Since the “light” and “matter” subsystems are defined using
the canonical operator sets {AT,�} and {r, p}, they can also
only be specified relative to a choice of gauge. The interaction
being externally controllable constitutes a different physical
assumption when imposed on different physical subsystems
that are defined relative to different gauges [48]. Thus, each
Hα (t ) describes a different experimental protocol, in which a
different interaction is being controlled. This will be demon-
strated directly by way of example in Sec. IV B.

Presented with an experiment that we are asked to model
using a time-dependent coupling, we possess an infinity of
nonequivalent models Hα (t ) which for each different value
of α, we know to model a different experimental protocol.
Without an argument to choose between the available models,
an ambiguity is encountered. Determining the correct model
may be difficult because as we shall see, the theoretical sub-
systems differ between gauges only in their description of
virtual processes. In weak-coupling regimes involving suffi-
ciently adiabatic interactions the “ambiguity” described above
is unproblematic because its consequences are usually negli-
gible in practical calculations. This is no longer the case in
sufficiently strong-coupling nonadiabatic regimes where, as is
apparent in Eq. (23) below, α-dependent components of the
interaction V α (t ) are not negligible.

III. TOY MODEL

Time-dependent interactions between subsystems arise in
many and diverse areas of physics. Here, we consider a very
simple light-matter model. This serves to clearly determine
the situations within which we can expect the gauge nonequiv-
alence of models that result from assuming a time-dependent
coupling to become significant. We will see that it becomes
significant in the description of so-called virtual processes,
which typically become increasingly important with increas-
ing coupling strength.

A. Time-dependent Hamiltonian

We suppose that a charge −e is confined in all spatial di-
mensions except the direction ε of the polarization of a single
cavity mode, in which it is bound harmonically. The position
operator is r = rε and the conjugate momentum is p = pε.
The material canonical commutation relation is [r, p] = i. The
field canonical commutation relation is, in the general case,
given by

[Ai(x),� j (x′)] = iδT
i j (x − x′). (16)

Discretizing the modes within a cavity volume v, the fields
can be expanded in terms of photon creation and annihilation
operators. Restricting the fields to a single mode kλ then gives

AT(x) = gε(a†e−ik·x + aeik·x ), (17)

�(x) = iωgε(a†e−ik·x − aeik·x ), (18)

where g = 1/
√

2ωv, ω = |k|, ε ≡ εkλ is orthogonal to k, and
a ≡ akλ with [a, a†] = 1. Equations (17) and (18) imply that
the cavity canonical operators now satisfy the commutation
relation

[AT,i(x),� j (x′)] = iεiε j

v
cos [k · (x − x′)]. (19)

In the dipole-approximated Hamiltonian of Eq. (14) the
fields are evaluated at the dipolar position 0. The Hamil-
tonian can therefore be expressed entirely in terms of the
cavity variables A = ε · AT(0) and � = ε · �(0). According
to Eqs. (17) and (18), the commutator of these variables is
[A,�] = i/v. Comparing this commutator, or the commutator
in Eq. (19), with Eq. (16), reveals that the transverse delta
function is given within the single-mode approximation by

δT
i j (0) =

∫
d3k

(2π )3

∑
λ

ελ,iελ, j −→ 1

v
εiε j . (20)

It follows that the polarization self-energy term in the
Hamiltonian becomes within the EDA and single-mode ap-
proximations

1

2

∫
d3x PT(x)2 = e2

2
rir jδi j (0) −→ e2

2v
r2. (21)

The dipole and single-mode approximations have no bearing
on gauge invariance or noninvariance because whether they
are performed or not, the Hamiltonians Hα (t ) are equivalent if
and only if μ̇ = 0. The approximations are used here to enable
a simple and transparent example.
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Material bosonic ladder operators can be defined as b =√
1/2mωm(mωmr + ip) with [b, b†] = 1. The Hamiltonian in

Eq. (14) can now be written

Hα = H0 + V α, (22)

where H0 = ω(a†a + 1/2) + ωm(b†b + 1/2) and

V α = η(t )2ω

4
[(1 − α)2(a† + a)2 + δα2(b† + b)2]

+ iu−
α (t )(ab† − a†b) + iu+

α (t )(a†b† − ab) (23)

with δ = ω/ωm and

η(t ) = ημ(t ) = eμ(t )

ω
√

mv
, (24)

u±
α (t ) = 1

2
η(t )ωm

√
δ[(1 − α) ∓ δα]. (25)

B. Bare-energy conservation and α-independent predictions

In QED material systems are often interpreted as sur-
rounded by a cloud of virtual photons [53,55,69–72]. Two
examples of virtual processes are those described by the terms
ab and a†b† having a coupling strength u+

α (t ) in Eq. (23),
which are number nonconserving and so do not commute
with H0. Inspection of Eq. (23) reveals directly that different
subsystem divisions only differ in their description of virtual
processes. All number-nonconserving terms in Eq. (23) are α

dependent, whereas the remaining number-conserving part is
α independent at resonance, which is precisely when this term
conserves the bare energy, because

i

2
ωmη(t )[H0, (ab† − a†b)] = 0. (26)

Thus, despite the α dependence of the subsystems them-
selves, within the approximation of retaining only the
interaction terms that conserve H0, all α dependence drops out
of the theory. In this case, the bare vacuum coincides with the
Hamiltonian ground state. This approximation is valid in the
traditional regime of weakly coupled nearly resonant systems,
a regime that can be understood as gauge nonrelativistic [48].
Therein, one can pretend that the quantum subsystems,“light”
and “matter,” are ostensibly unique, i.e., not gauge relative. In
truth, this is not the case, and the pretense cannot be sustained
if the required approximation is not valid. Therefore, for ultra-
strong and fast interactions, when assuming a time-dependent
coupling it must be determined which gauges describe which
experimental protocols and arrangements. In what follows, we
verify that the correct gauge to use will generally depend on
the microscopic arrangement being considered. No one gauge
is universally correct.

Ultrastrong and fast interactions are now of major impor-
tance [26,64]. For such interactions a model corresponding to
α = 0 or 1, which are both commonly chosen gauges in light-
matter theory, will not generally produce even qualitatively
accurate predictions if the underlying physics of the system
is more correctly described by an interaction corresponding,
for example, to α ∼ αg = 1/(1 + δ), for which u+

α (t ) vanishes
identically. In fact, as we shall show, even conventional gauges
α = 0 and 1 generally give significantly different physical
predictions when the coupling η(t ) is ultrastrong and ultrafast

because the two models possess different dependencies on the
underlying model parameters.

We remark that anharmonic material systems may also be
considered. The α independence of predictions for processes
conserving the noninteracting part of a Hamiltonian is a com-
pletely general result within scattering theory [48,55,56,60].
However, anharmonic matter does not generally admit a sim-
ple analytic treatment at the level of the model Hamiltonian.
An exception is when the material system is sufficiently an-
harmonic that a two-level truncation can be made. In general,
this will break the gauge invariance of the theory and so must
be performed within a gauge in which the truncation is found
to be accurate for the properties of interest [52,66–68].

IV. EXAMPLE: UNIFORM MOTION THROUGH A CAVITY

A. Time-dependent Hamiltonian

The variation of μ(t ) could be interpreted as a model for
the motion of an external potential Vext, which moves in and
out of contact with the electromagnetic fields. As we noted
in Sec. II B, the system responsible for the potential can be
called the control system, which in a more complete descrip-
tion would be included explicitly via additional dynamical
position and momentum variables R and K. To show how
the nonequivalence of the Hamiltonians Hα (t ) results from an
approximation, we consider a hydrogen atom consisting of a
charge +e with mass m2 at r2 and a charge −e with mass m1 at
r1. The charge and current densities are ρ(x) = e[δ(x − r1) −
δ(x − r2)] and J(x) = e[ṙ1δ(x − r1) − ṙ2δ(x − r2)]. Within
the EDA

ρ(x) = er · ∇δ(x − R), (27)

J(x) = −eṙδ(x − R) + eṘ(r · ∇)δ(x − R), (28)

where r = r1 − r2 is the relative position between the charges
and R = (m1r1 + m2r2)/(m1 + m2) is the position of the cen-
ter of mass. The second term on the right-hand side of Eq. (28)
ensures the conservation of charge ∂μ jμ = 0, and also ensures
that the dipole’s interaction with the electric field induced
by the atomic motion in the laboratory frame is properly
included. In particular, in the multipolar gauge this term cor-
rectly ensures the presence of the Röntgen interaction. The
current can be obtained from the nonrelativistic transforma-
tion ρ = ρ ′, J = J′ + Ṙρ ′, which relates the (primed) atomic
rest frame to the (unprimed) laboratory frame in which R =
Ṙt with Ṙ �= 0, up to a constant initial position. The α-gauge
polarization field is

Pα
T,i(x) = −eαr jδ

T
i j (x − R) (29)

and the associated magnetization field Mα is such that ∇ ×
Mα = JT − Ṗα

T. In the multipolar gauge α = 1 we obtain the
expected multipolar expressions. In particular, ∇ × M1(x) =
−e∇ × [r × Ṙδ(x − R)].

Equations (27)–(29) can be used within the Lagrangian of
Eq. (1) and the α-gauge Hamiltonian can be derived with
r, R, and AT as canonical coordinates. Details are given in
Appendix B. If we approximate the center-of-mass position
R as externally prescribed within the Hamiltonian, then we
obtain a bipartite quantum system and the Hamiltonians of
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FIG. 1. A cavity of length L supporting standing waves in the z
direction and a Gaussian perpendicular mode profile with waist wc

is depicted, along with a dipole −er oscillating with frequency ωm.
At t = 0 the cavity and dipole are noninteracting. The dipole follows
a classical trajectory R(t ) through the cavity, entering the cavity at
t0 and exiting at t0 + τ . The Hamiltonian for this system is derived
in Appendix C and can be realized using a time-dependent coupling
φ(R(t )) =: μ(t ) as in Eq. (31).

different gauges become nonequivalent, being given by

Hα (t ) = 1

2m
[p + e(1 − α)AT(R(t))]2 + V (r)

+ 1

2

∫
d3x

[
[� + Pα

T(t )]2 + B2
]
, (30)

where Pα
T(t ) is explicitly time dependent due to its dependence

on R. This expression clearly has the same structure as Eq. (8)
and its dipole approximation (14), which were obtained by
assuming a time-dependent coupling.

To progress further, in Appendix C we specialize the above
Hamiltonian to the case of a Fabry-Perot Gaussian cavity
mode with mirrors orthogonal to the z direction, as depicted in
Fig. 1. Assuming as before that r = rε and p = pε, and that
the atomic potential energy V (r) is harmonic, the Hamiltonian
reads as

Hα (t ) = 1

2m
[p + e(1 − α)AT(R(t ))]2 + mω2

m

2
r2

+ e2 α2r2

2v
|φ(R(t ))|2 − eαr�(R(t ))

+ ω

(
a†a + 1

2

)
, (31)

where φ(x) = eikze−(x2+y2 )/w2
c is a Gaussian mode envelope,

with wc the Gaussian beam waist. We assume the path of the

FIG. 2. η = 1 and δ = 1
2 . The average number of photons found

using Hα (t ) is plotted with time in units of the beam transit time tb =
wc/ν assuming an initial state |0, 0〉. The beam waist is wc = 20 μm,
ωm is chosen in the microwave regime (energy ∼10 μeV), and ν =
10−3c where c is the speed of light. The final values are given where
curves become straight, and are clearly different for different α.

atom to be in the xy plane such that ẑ · R(t ) = 0. The cavity
canonical operators are given by

AT(t, x) = 1√
2ωv

[φ∗(x)a†(t ) + φ(x)a(t )], (32)

�(t, x) = i

√
ω

2v
[φ∗(x)a†(t ) − φ(x)a(t )]. (33)

Letting φ(R(t )) = μ(t ), we see that the Hamiltonian in
Eq. (31) is identical to that defined in Eq. (22), which was
in turn obtained from Eq. (8). This shows that the nonequiv-
alence of the models Hα (t ) for a single atom obtained via the
time-dependent coupling method can indeed be understood as
a consequence of approximating the center-of-mass motion
(the control subsystem) as an external subsystem.

Uniform motion of the dipole in and out of the cavity is
described by a Gaussian function μ(t ). Significant α depen-
dence of final predictions occurs when the interaction time
τ ∼ wc/ν (ν = Ṙ) is comparable to the cycle time 1/ωm. In
the case of a microcavity with wc = 20 μm and ωm in the
microwave regime, this requires ν ∼ 10−3c, which is nonrel-
ativistic. We assume that the system is initially noninteracting
[μ(0) = 0] and starts in the ground state |0, 0〉. The inter-
action is switched on at time t0 > 0, and switched off at
t0 + τ > t0. Thus, at the preparation and measurement stages
the definitions of the quantum subsystems are unique. In Fig. 2
the number of cavity photons is plotted as a function of time
with wcωm/ν ∼ 1, η = 1, and α = 0, 1, αg. The three gauges
give different residual photon populations within the cavity
after the interaction has ceased, consistent with the sugges-
tion of the energy-time uncertainty relation. For longer and
slower interaction switching and weaker couplings than we
have shown all photon populations return to zero independent
of α. In contrast, when the interaction switching is on the
order of a bare cycle and the coupling is sufficiently strong,
there is a significant probability that virtual photons created
near the beginning of the switch-off are not reabsorbed before
the atom has exited the cavity. They therefore detach and are
left behind, remaining inside the cavity. This cannot occur,
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however, for values of α ∼ αg for which ground-state photons
are not explicit.

B. Gauge-invariant class of approximate Hamiltonians

In the case of a sufficiently simple moving bound-charge
system, as considered above, a gauge-invariant set of Hamil-
tonians can be derived. This can only be achieved by starting
with an explicit model for the control system and requires
making the approximation that this control is external at the
Lagrangian level, rather than at the Hamiltonian level. The
procedure is not generally equivalent to assuming a time-
dependent coupling.

In the case of the hydrogen atom within the EDA, we have
three subsystems with position coordinates r, R, and AT. The
control subsystem with coordinate R can be treated as external
at the Lagrangian level, such that it becomes a preprescribed
dynamical vector R(t ) prior to the transition to the canonical
formalism. Now only r and AT remain as dynamical variables.
The resulting α-gauge Hamiltonian, denoted H̃α (t ), is given
by

H̃α (t ) =Hα (t ) + eṘ · [(r · ∇)AT(R)]

− eαṘ · ∇[r · AT(R)], (34)

where Hα (t ) is given in Eq. (30). Full details of the derivation
are given in Appendix B. Unlike the Hamiltonians Hα (t ), as
Schrödinger picture operators the Hamiltonians H̃α (t ) satisfy

H̃α (t ) = R0αH̃0(t )R†
0α + iṘ0αR†

0α (35)

such that Hamiltonians belonging to distinct gauges are
equivalent. It is instructive to consider the multipolar-gauge
example (α = 1):

H̃1(t ) = p2

2m
+ V (r) + 1

2

∫
d3x

[(
� + P1

T

)2 + B2
]

+ er · [Ṙ × B(R)]. (36)

The final term in this expression describes the Röntgen inter-
action in which the dipole experiences an effective electric
field Ṙ × B(R) due to the gross motion in the laboratory
frame [56,73,74]. Such an interaction also appears in the
complete Hamiltonian derived by keeping R as a dynamical
variable where it manifests via a nonmechanical canonical
momentum K = MṘ + er × B(R). The Röntgen interaction
term is lost when R = Ṙt is prescribed as external within the
complete Hamiltonian, which results in Eq. (30).

When using H̃α (t ), any value of α can be chosen and the
final predictions will necessarily be α independent (gauge
invariant). Let us therefore suppose that these predictions are
“correct” (albeit approximate). It follows that the fixed values
of α for which Hα (t ) = H̃α (t ) are those allowed in order to
obtain “correct” results using Hα (t ). Taking the fields given
by Eqs. (32) and (33), we assume that R(t ) = (h − νt )x̂,
implying uniform motion Ṙ = −νx̂ from an initial position
hx̂ outside of the cavity. Under these conditions, the difference
H̃α (t ) − Hα (t ) is given by

eṘ · [(r · ∇)AT(R)] − eαṘ · ∇[r · AT(R)]

= eν√
2ωv

φ(R)εir j

×
[

iωx̂i ẑ j (a
† − a) − 2R

w2
c

(αδi j − x̂ix̂ j )(a
† + a)

]
. (37)

It is straightforward to verify that for α = 1 the right-hand
side of this expression coincides with er · [Ṙ × (∇ × AT(R))]
as required [cf. Eq. (36)]. Since the coefficient of a† − a on
the right-hand side is α independent, there is no choice of α

for which Hα (t ) = H̃α (t ) in general. However, if we make
the simplifying assumption that r = rε [giving Hα (t ) as in
Eq. (31)], then we obtain

H̃α (t ) − Hα (t ) = −eμ̇(t )rAT(0)[α − cos2 θ ], (38)

where cos θ = ε · x̂. Notice that if the switching μ̇ is suffi-
ciently slow, then H̃α (t ) = Hα (t ) independent of α, whereas
if μ̇ is sufficiently fast then the predictions obtained from
different Hα (t ) may become appreciably different. In contrast,
the predictions obtained from H̃α (t ) are always α independent
(gauge invariant). The correct value of α to choose within
Hα (t ) is the value solving the equation Hα (t ) = H̃α (t ). This
value depends on the orientation of the mode polarization and
dipole moment ε relative to the direction of motion x̂. In other
words, the correct value of α to choose when employing the
time-dependent coupling method, depends on the microscopic
arrangement of the system (the microscopic context).

Consider the arrangements θ = ±π/2 (ε and x̂ orthogo-
nal). From Eq. (38) we have H̃0(t )|θ=±π/2 = H0(t ) whereas
H̃α (t )|θ=±π/2 �= Hα (t ) for α �= 0. Therefore, to model these
arrangements the correct value of α to choose when using
Hα (t ) is α = 0. Any other value will yield incorrect predic-
tions as determined by comparison with the gauge-invariant
predictions provided by H̃α (t )|θ=π/2. Similarly, for the al-
ternative arrangements θ = 0, π (ε and x̂ parallel) we have
H̃1(t )|θ=0,π = H1(t ) whereas H̃α (t )|θ=0,π �= Hα (t ) for α �=
1. Therefore, α = 1 is the correct value to choose when
modeling these arrangements using Hα (t ). More generally,
Eq. (38) shows that for modeling the arrangement θ a cor-
rect value of α to choose when using Hα (t ) is a solution of
α = cos2 θ .

We have demonstrated that the determination of when the
time-dependent coupling method will produce correct results
cannot be accomplished without recourse to a more complete
description, which yields the constraint α = cos2 θ . Under
this constraint, Hα (t ) provides a gauge-invariant description
because it coincides with H̃α (t ) which provides a gauge-
invariant description by construction. Under the constraint
that α = cos2 θ , the parameter α may be thought of as select-
ing an experimental context rather than a choice of gauge. It
follows that it is not the case that the Coulomb gauge is always
correct when using a time-dependent coupling, contradicting
Ref. [67]. For example, within the system considered here, the
Coulomb gauge will yield the correct description only when
cos θ = 0. Subsequent time-dependent gauge transformation
using R0α (t ) will of course then yield an equivalent descrip-
tion to H0(t ) as noted in Ref. [67], but this equivalence class
of models is restricted to describing the experimental context
cos θ = 0.

In Fig. 3 the average number of photons is plotted as a
function of time found using H̃α (t ). As expected, the num-
ber differs between gauges when η �= 0, due to the inherent
relativity in the definition of the light quantum subsystem, but
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FIG. 3. All parameters are as in Fig. 2. The average number
of photons is plotted with time in units of tb = wc/ν assuming an
initial state |0, 0〉. The dynamics is generated by H̃α (t ) and we have
assumed cos θ = 0. As expected, during the interaction window the
average photon number differs between gauges. However, in contrast
to Fig. 2 all gauges predict the same final value. Because we have
chosen cos θ = 0, the final value coincides with that predicted by
H0(t ). It is therefore identical to the final value of the α = 0 curve in
Fig. 2.

in contrast to the predictions obtained using Hα (t ) (cf. Fig. 2),
in Fig. 3 all gauges predict the same final value. Since we have
chosen cos θ = 0, this final value coincides with that predicted
by H0(t ) as given by the curve for α = 0 in Fig. 2. Similarly,
if cos θ = 1, the final value coincides with that predicted by
H1(t ), which is given by the α = 1 curve in Fig. 2.

Considering a uniform distribution of random orientations
θ , the average of Eq. (38) is

E [H̃α (t ) − Hα (t )]θ = −eμ̇(t )rAT(0)

[
α − 1

2

]
. (39)

At resonance (δ = 1) the Jaynes-Cummings gauge αg =
1/(1 + δ) now gives the “correct” value, but the difference
|1/2 − αg| increases as the detuning moves away from reso-
nance.

V. GENERAL TIME-DEPENDENT COUPLING

A tunable coupling function could be used to model any
time-dependent interaction, such as those realized by address-
ing specific states of an atomic system [18], or laser-driven
systems [53]. Switchable interactions are also commonly en-
countered in superconducting circuits [20]. It is seldom the
case that the subsystem mediating a controllable interaction
between two other subsystems will admit a straightforward
explicit model of the kind that we have been able to provide
for the simple atom-cavity example considered above. It is
therefore important to understand more generally the extent
to which results obtained from the simple time-dependent
coupling method will apply only to a specific experimental
context. To this end, we consider the general coupling func-
tion

μ(t ) = 1 − tanh
( st0

2

)
sinh2

[
s
2

(
t − τ

2 − t0
)]

cosh
[

s
2 (t − t0)

]
cosh

[
s
2 (τ + t0 − t )

] . (40)

FIG. 4. Starting at t = 0 in the ground state |0, 0〉 of H0 =
Hα (0), the average number of photons 〈a†a〉t in the cavity is plotted
with time. The switch-on function μ(t ) is shown in Fig. 5 and is such
that the switch-on time is roughly 4/ωm. The remaining parameters
are η = 1 and δ = 1

2 , and ωm is in the microwave regime. The final
values after the interaction has ceased are given where the curves
level off, and are clearly different for different α.

This is a smoothed box function with a maximum of one
at t = t0 + τ/2, such that μ(t0) ≈ 1

2 , and τ is roughly the
full-width at half-maximum. The parameter s controls the
smoothness of the switch-on. Through tuning of parameters
this general coupling function can take a variety of forms,
including close resemblance to a Gaussian, as occurs for
uniform atomic motion through a Gaussian cavity. In what
follows, we determine the dependence on α of the final light
and matter properties that result from the dynamics generated
by Hα (t ) in nonadiabatic strong-coupling regimes.

A naive example of time-dependent coupling comprises
instantaneous switching of a constant interaction, but here the
free evolution before and after the interaction window does
not alter the physical quantities of interest. Predictions for the
case of a constant interaction in the ground state |G〉 of the full
Hamiltonian Hα are given in Appendix D.

A more realistic interaction switching is smooth, requiring
finite time. We therefore use the general coupling function
given in Eq. (40) within the simple Hamiltonian given in
Eq. (22). The dynamics of the system is found by numer-
ically solving the closed set of differential equations for
correlations of the form 〈xy〉 where x, y = a, a†, b, b†. For
an initial Gaussian state these correlations suffice to com-
pletely characterize the final state [75]. We find that significant
α dependence of final predictions occurs if the interaction
switching time is ultrafast, i.e., of the order of a bare cycle
ω−1, ω−1

m , and the coupling is sufficiently strong. For longer
switching times predictions from different gauges converge
as the interaction is switched off, such that no differences
remain by the end of the protocol. Figure 4 shows the average
number of photons in the cavity as a function of time, when
the switching time is roughly 4/ωm and the system starts in
the ground state |0, 0〉 of H0 = Hα (0). Again, both initially
and finally there is no ambiguity in the definitions of the light
and matter systems, which are uncoupled. Relevant subcycle,
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FIG. 5. Starting at t = 0 in the ground state |0, 0〉 of H0 =
Hα (0), the mutual information I(α) at a final time t long after
the interaction has been switched off is plotted as a function of α

for various combinations of δ and η. The inset shows the coupling
envelope μ(t ) as a function of time. The interaction duration given
by the difference in the dashed lines is τ = 10/ωm with ωm chosen in
the optical range. The switch on occurs at roughly t0 = τ/2 and the
chosen value of s gives a switching time, represented by the arrow,
of roughly 4/ωm. The α dependence of I(α) varies significantly
depending on the regime considered. I(α) is symmetric about the
minimum of zero at αg = 1/(1 + δ) for all δ and η. The α depen-
dence tends to be more pronounced further from resonance and for
stronger coupling.

ultrastrong couplings have already been achieved in cavity
QED [18].

Since the systems are initially uncoupled, it is natural to
assume that they are not correlated. Correlations may then
build up due to the subsequent interaction. Figure 5 shows the
final mutual information I (α) at a time t after the interaction
has ceased. It exhibits a diversity of behaviors depending
on the values of α, η, and δ. As expected, the variations in
the mutual information become increasingly pronounced as
the coupling strength increases and one moves away from
resonance δ = 1. As noted in Sec. III, the weak-coupling
resonance regime is gauge nonrelativistic, i.e., is such that
all gauges will produce the same final predictions despite the
Hα (t ) being nonequivalent. As shown in Fig. 5, if α = αg the
interaction does not generate any correlations for the values
of η and δ chosen. Thus, this value of α reproduces the
(ostensibly unique) result obtained within the weak-coupling
regime even for ultrastrong coupling. The subsystems defined
relative to this gauge are those for which the ground state is
much closer to the bare vacuum.

To exemplify the importance of our results, we show that
due to the time dependence of the interaction even the qualita-
tive predictions for energy exchange depend strongly on α. To
this end, we consider a situation where the systems are not ini-
tially isolated from their environments. We therefore consider
an initial product state of two Gibbs states ρ(0) = ρ

eq
m (βm) ⊗

ρ
eq
c (βc) where ρ

eq
m (βm) = e−βxHx /tr(·), x = m, c with Hm =

ωm(b†b + 1/2) and Hc = ω(a†a + 1/2). These states result if
before their interaction the systems have separately weakly
coupled and equilibrated with Markovian environments at the
corresponding temperatures β−1

m and β−1
c . For generality, we

FIG. 6. η = 1 and δ = 3 with τ, s, and ωm as in Fig. 5. βc cor-
responds to room temperature while βm = 2βc. The final subsystem
energy changes and net work are plotted with α. The net work and
�Ec are always positive, while �Em becomes negative for certain
α, implying that energy has left the initially cooler system and has
entered the initially hotter system. This is due to the nonzero net
work input.

do not assume these temperatures are equal. If the subsequent
light-matter interaction is relatively short on the order of ω−1

m
as in Figs. 5 and 6, and is also ultrastrong, then a clear separa-
tion of time and energy scales emerges. Weak environmental
interactions can therefore be ignored over the timescales of
interest.

Using the unitarity of the dynamics it is straightforward
to show that changes in the energies of the subsystems de-
fined by �Ex = tr[ρx(t )Hx] − tr[ρeq

x Hx] with x = m, c, are
bounded according to βm�Em + βc�Ec � I � 0 [76,77]. If
the interaction is also such that there is no net input of work,
i.e., 〈�Hα (t )〉 ≡ 〈�H0〉 ≡ �Em + �Ec = 0, then we obtain
(βm − βc)�Em � 0. Thus, without a net input of work, energy
cannot move counter to the initial temperature gradient. On
the other hand, if �Em + �Ec �= 0, then by the end of the
interaction the initially cooler system may have lost energy,
with an accompanying increase in energy of the initially hot-
ter system. Alternatively, both subsystems may simply gain
energy due to the nonzero net work. The final energy that
has been exchanged between the systems after the protocol
has finished is shown as a function of α in Fig. 6. It is clear
that different qualitative thermodynamics can be realized by
varying only the parameter α, which controls the gauge. We
express once more that these qualitative differences in final
properties occur even though the subsystems are uniquely
defined at both the initial and final times.

VI. CONCLUSIONS

We have studied the implications of gauge freedom for
subsystem properties in QED when dealing with tunable
nonadiabatic, strong coupling. When the coupling is nonva-
nishing, there are infinitely many nonequivalent definitions of
the quantum subsystems. For strong enough coupling, “light”
and “matter” subsystem properties like entanglement and
photon number are significantly different for different subsys-
tem definitions. These differences persist in the case of final
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subsystem predictions found when assuming a time-
dependent coupling. The differences become increasingly
pronounced as the coupling switching increases in strength
and speed.

We have shown directly that the time-dependent coupling
assumption can be valid for fast and strong interactions,
but only if one can identify and choose the correct gauge
within which to make the assumption when describing a given
physical arrangement. This is necessary in order to obtain
even qualitatively reliable predictions. The correct choice of
gauge will generally depend on the specific microscopic ar-
rangement being considered. Its determination requires the
availability of, and comparison with, a more complete descrip-
tion that explicitly includes the control degrees of freedom.
This finding is of major importance for current technological
applications including quantum communication, metrology,
simulation, and information processing, where the use of
time-dependent couplings is widespread and final subsystem
properties are of central importance.
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APPENDIX A: INTRODUCTION OF A DIFFERENT
MODIFIED CURRENT

1. Charge conservation

Since the total electric charge is the conserved Noether-
charge associated with gauge symmetry, the nonequivalence
of the Lagrangians associated with different gauges can be
understood as a consequence of the fact that ∂νμ(t ) jν =
0 if and only if μ̇ = 0. A second implication is that the
inhomogeneous Maxwell equations ∇ · E = μ(t )ρ (Gauss’
law) and Ė = ∇ × B − μ(t )J (Ampere’s law), cannot be
simultaneously satisfied. The method of modeling con-
trollable interactions between given subsystems using a
time-dependent coupling parameter is usually adopted at the
Hamiltonian level, and is widespread. It is not our intention
to advocate such an approach, but merely to understand its
implications. The implications above follow from tracing back
the conventional approach to the Lagrangian level or to the
fundamental equations of motion.

Given the discussion above, one is naturally led to seek
a different modified current j̃, which includes the external
control μ(t ), but also satisfies ∂ν j̃ν = 0. Letting j̃0 ≡ ρ̃ = μρ

and then considering ˙̃ρ reveals that the appropriate modified
three-current J̃ must satisfy

∇ · J̃ = μ(t )∇ · J − μ̇(t )ρ. (A1)

This clearly necessitates the addition of a nontrivial term to
the naive modified current μ(t )J. Solving Eq. (A1) for J̃
requires inverting the divergence operator, which introduces
a new arbitrary element into the formalism. The solution can
be expressed as

J̃ = μ(t )J + μ̇(t )P, (A2)

where

P(x) = −
∫

d3x′g(x, x′)ρ(x′) (A3)

in which ∇ · g(x, x′) = δ(x − x′). The polarization P satisfies
−∇ · P = ρ identically, but has arbitrary transverse com-
ponent because ∇ · gT(x, x′) ≡ 0. Defining P̃ = μ(t )P one
recovers the well-known continuity and polarization relations
in terms of the modified quantities:

∂ν j̃ν = 0, −∇ · P̃ = ρ̃. (A4)

The complete construction of the charge and current den-
sities using auxiliary fields requires the introduction of the
magnetization M such that J = Ṗ + ∇ × M. The modified
magnetization required to give J̃ = ˙̃P + ∇ × M̃ is therefore
simply M̃ = μ(t )M. Since P and M are auxiliary fields for ρ

and J, they can be viewed as material analogs of the electro-
magnetic potentials, which are auxiliary fields for E and B.

Like the polarization P the definition of the magnetization
M also possesses an arbitrary freedom. Indeed, the definitions
of these auxiliary quantities in terms of the charge and current
densities possess the same structure as the inhomogeneous
Maxwell equations, but these equations are not supplemented
by any homogeneous Maxwell-type equations. It follows that
any transformation of P and M that leaves the defining in-
homogeneous equations invariant is permissible. Thus, j is
invariant under a transformation by pseudomagnetic and pseu-
doelectric fields as

P → P + ∇ × U, M → M − ∇U0 − U̇, (A5)

where U is an arbitrary pseudo-four-potential. The fields
are in turn invariant under a gauge transformation Uμ →
Uμ − ∂μχ where χ is arbitrary. The modified current J̃ is
not invariant under the transformation (A5), which results in
J̃ → J̃ + μ̇(t )∇ × U.

If we now replace the naive modified current μ(t )J that
appears in Eq. (2) of the main text with J̃ we obtain

L̃ = L + μ̇(t )
∫

d3x P · A. (A6)

Since L̃ is not equivalent to L, it does not possess the same
properties under a gauge transformation of the electromag-
netic potentials, which gives

L̃ → L̃ + d

dt

∫
d3x ρ̃χ (A7)

as desired. However, it can be seen immediately from Eq. (A6)
that unlike the original Lagrangian L, under the transfor-
mation (A5) the Lagrangian L̃ transforms to an equivalent
Lagrangian if and only if μ̇ = 0. Thus, our construction
of j̃, P̃, and L̃ has replaced one gauge noninvariance with
another. The inhomogeneous Maxwell equations are now si-
multaneously satisfied when written in terms of the modified
quantities, but the modified current J̃ is not invariant under
the transformation (A5) and therefore neither is Ampere’s law
when written in terms of J̃. We stress that the freedom to
choose the transverse component of P is an important freedom
within the theory, and is no less significant than the freedom
to choose the potentials. Indeed, as we will see in Sec. A 2
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the freedom to choose PT is what gives rise to the well-known
Poincaré-gauge dipolar interaction Hamiltonian −er · �(0).

Essentially the same result as Eq. (A6) above can be ob-
tained if instead of considering the current, one considers the
interaction Lagrangian. The standard interaction Lagrangian
density jμAμ is not gauge invariant, rather, under a gauge
transformation Aμ → Aμ − ∂μχ it changes as

LI = −
∫

d3x jμAμ −→ −
∫

d3x jμAμ + d

dt

∫
d3x ρχ.

(A8)

Since the remaining Lagrangian components are manifestly
gauge invariant, according to Eq. (A8) the total Lagrangian
changes under a gauge transformation by the addition of a
total time derivative, meaning that the result is equivalent, but
not identical. This equivalence no longer holds if the inter-
action Lagrangian is LI (t ) = μ(t )LI . The additional term that
results from the gauge transformation is now μ(t ) d

dt

∫
d3x ρχ ,

which is not a total time derivative. However, it is clear that
this nonequivalence could be avoided if one starts with a

manifestly gauge-invariant interaction Lagrangian from the
outset. Such an interaction Lagrangian is given by

L′
I =

∫
d3x[P · E + M · B] = −

∫
d3x

[
jμAμ + d

dt
P · A

]
,

(A9)

which is clearly invariant under a gauge transformation. How-
ever, under the transformation (A5) L′

I transforms to an
equivalent but different form as

L′
I → L′

I − d

dt

∫
d3x B · U, (A10)

where we have used Faraday’s law Ḃ = −∇ × E. The original
interaction jμAμ involves the physical matter fields jμ and the
auxiliary electromagnetic fields Aμ, while the interaction L′

I
involves the physical electromagnetic fields and the auxiliary
matter fields. Thus, if we define a new time-dependent inter-
action Lagrangian by

L′
I (t ) = μ(t )L′

I = −μ(t )
∫

d3x

[
jμAμ + d

dt
P · A

]
= μ(t )

∫
d3x[P · E + M · B], (A11)

then we obtain a total Lagrangian that despite including the external control μ(t ), is invariant under a gauge transformation of the
potentials. However, as is to be expected on the basis of the transformation property (A10), this comes at the price of producing
a nonequivalent Lagrangian under the transformation (A5). Indeed, the interaction Lagrangian in Eq. (A11) is actually what
results from using the modified quantities j̃ and P̃ within L′

I . To show this, we denote by L̃′ the total Lagrangian obtained by
replacing in L′, the current j and polarization P with their modified counterparts, and note that a quick calculation gives

L̃′ ≡ Lm + LTEM + μ(t )2

2

∫
d3x ρφCoul −

∫
d3x

[
j̃μAμ + d

dt
P̃ · A

]

= Lm + LTEM + μ(t )2

2

∫
d3x ρφCoul − μ(t )

∫
d3x

[
jμAμ + d

dt
P · A

]
. (A12)

It is now readily verified that

L̃′ = L̃ − d

dt

∫
d3x P̃ · A = L − μ(t )

d

dt

∫
d3x P · A,

(A13)

where L̃ is given by Eq. (A6). The new Lagrangian L̃′ is
equivalent to L̃ which was the result we obtained by replacing
j and P with j̃ and P̃ in L. The only difference between L̃
and L̃′ is that under a gauge transformation (4), L̃ transforms
into an equivalent form, whereas L̃′ is invariant. Whichever of
these equivalent Lagrangians is considered, it is clear that un-
like the original Lagrangian L, neither provides an equivalent
Lagrangian under the transformation (A5). Conversely L is
invariant under the transformation (A5), but does not provide
an equivalent Lagrangian under a gauge transformation of the
electromagnetic potentials.

2. Gauge fixing

In conventional approaches to nonrelativistic QED all
gauge redundancies are eliminated simultaneously through a

gauge-fixing constraint that has the form∫
d3x′g(x′, x) · A(x′) = 0, (A14)

where g must be the same choice of Green’s function as is
made in Eq. (A3). Choosing the potentials

A = AT + ∇χ, A0 = μ(t )φCoul − ∂tχ, (A15)

where

χ (x) =
∫

d3x′gT(x′, x) · AT(x′) (A16)

means that Eq. (A14) is satisfied identically. The freedom
to choose a gauge now reduces to the freedom to choose
gT, which uniquely specifies both the four-potential A and
the polarization P. Two special cases are given by the
Coulomb gauge gT = 0 and the Poincaré gauge gT,i(x, x′) =
−x′

j

∫ 1
0 dλ δT

i j (x − λx′).
The invariance of L′ and of L̃′ under gauge transformations

requires that P is not altered by the gauge transformation, but
this is no longer the case if both A and P are simultaneously
determined by gT. A new choice of gT via gT → g′

T will result
in a gauge transformation of both A and P. The latter will
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transform as in (A5) with

∇ × U(x) =
∫

d3x′[g′
T(x, x′) − gT(x, x′)]ρ(x′). (A17)

This (gauge) freedom in PT is central to quantum optics and
molecular electrodynamics because when transforming from
the Coulomb to Poincaré (multipolar) gauges the additional
contribution ∇ × U = P1

T provides the dominant interaction
Hamiltonian

∫
d3x [� · P1

T + (P1
T)2]. This is the only nonvan-

ishing interaction term in the dipole approximation, wherein

the contribution
∫

d3x � · P1
T possesses the well-known form

−er · �(0).
If μ̇ = 0, then all forms of the Lagrangian are equivalent.

However, if μ̇ �= 0 we have only been able to construct La-
grangians that are at best partially invariant under a complete
gauge transformation of both electromagnetic and mate-
rial potentials. If, in particular, we impose the constraint
(A14), which all standard nonrelativistic gauges satisfy, then∫

d3x P · A = 0, implying that L, L̃, and L̃′ all coincide.
Moving afterwards to the canonical formalism results in
nonequivalent Hamiltonians as was shown in Sec. II C of the
main text.

APPENDIX B: FULL DESCRIPTION OF THE DIPOLE’S MOTION

We consider a two-charge system comprised of a charge e1 = −e with mass m1 at r1 and a charge e2 = e with mass m2 at r2.
We introduce relative and center-of-mass coordinates as

r = r1 − r2, R = m1r1 + m2r2

M
, (B1)

where M = m1 + m2. We start with the standard Lagrangian

L = 1

2
m1ṙ1 + 1

2
m2ṙ2 −

∫
d3x

[
jμAμ + 1

4
FμνFμν

]

= 1

2
m1ṙ1 + 1

2
m2ṙ2 − V (r1 − r2) +

∫
d3x

[
ρ∂tχ

α + J · A + 1

2

(
E2

T − B2
)]

= 1

2
mṙ + 1

2
MṘ − V (r) +

∫
d3x

[
J · AT − d

dt
Pα

T · AT + 1

2

(
E2

T − B2
)]

, (B2)

where m = m1m2/M and V (r1 − r2) = V (r) is the intercharge Coulomb energy. The infinite Coulomb self-energies have been
ignored. The remaining quantities are given by

ρ(x) = e[δ(x − r2) − δ(x − r1)], (B3)

J(x) = eṙ2δ(x − r2) − eṙ1δ(x − r1), (B4)

Pα
T(x) = −

∫
d3gα

T(x, x′)ρ(x′), (B5)

A = AT + ∇χα, (B6)

where

gα
T,i(x, x′) = −α(x′ − R) j

∫ 1

0
dλ δT

i j[x − R − λ(x′ − R)], (B7)

χα (x) =
∫

d3x′gα
T(x′, x) · AT(x′). (B8)

Here, gα
T is chosen such that g1

T gives the usual multipolar transverse polarization. Notice, however, that this means that gα
T

depends on the center-of-mass position R.
The electric dipole approximation (EDA) is obtained by retaining only the leading-order term in the multipole expansion of

ρ about R, which for Ṙ �= 0 results in

ρ(x) = er · ∇δ(x − R), (B9)

J(x) = −eṙδ(x − R) + eṘ(r · ∇)δ(x − R), (B10)

P1
T,i(x) = −er jδ

T
i j (x − R). (B11)

The second term in Eq. (B10) vanishes if and only if the atom is at rest in the laboratory frame. This term is vital for ensuring
that the correct Röntgen interaction due to atomic motion is included. Substituting these expressions into Eqs. (B3)–(B6) and
using the resulting expressions in the Lagrangian gives the Lagrangian within the EDA. This can be taken as the starting point
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for the canonical formalism with r, R, and AT as canonical coordinates. The momenta conjugates are denoted p, K, and �,
respectively. The resulting Hamiltonian is

Hα = 1

2M
[K + e(r · ∇)AT(R) − eα∇Rr · AT(R)]2 + 1

2m
[p + e(1 − α)AT(R)]2 + V (r) + 1

2

∫
d3x

[(
� + Pα

T

)2 + B2
]

= Rα0H0R0α, (B12)

where

P1
T,i(x) = −er jδ

T
i j (x − R), R0α = exp

(
−iα

∫
d3x P1

T · AT

)
= eiαer·AT (R). (B13)

At this stage, the theory is completely gauge invariant because the Hα are unitarily equivalent. The predictions for any physical
observable are independent of the choice of gauge α. It is nevertheless the case that the quantum subsystems are defined
differently in each different gauge. Subsystem properties like photon number and entanglement will generally depend on the
definitions chosen, that is, they will depend on the choice of gauge relative to which the subsystems are defined.

1. Approximation of externally prescribed uniform gross motion in the Hamiltonian

The approximation of an externally controlled coupling between the dipole and the field results from the assumption that the
dynamical variable R(t ) = Ṙt (up to a constant initial position) is external and prescribed. This means that Ṙ is also prescribed.
With this assumption the Hamiltonian in Eq. (B12) becomes that of a bipartite quantum system, and reads as

Hα (t ) =1

2
MṘ2 + 1

2m
[p + e(1 − α)AT(R)]2 + V (r) + 1

2

∫
d3x

[(
� + Pα

T

)2 + B2
]
, (B14)

where now R and Ṙ are given classical variables. Since the first kinetic term MṘ2/2 is not operator valued and for uniform
motion is also constant in time, it can be ignored. Before approximating R(t ) as external, the Hamiltonians in Eq. (B12) were
seen to be equivalent, but the Hα (t ) in Eq. (B14) are not equivalent for different α, being related by

Hα′
(t ) = Rαα′ (t )Hα (t )Rα′α (t ), (B15)

where Rαα′ (t ) = exp[−ie(α − α′)r · AT(R(t ))]. Equation (B15) shows that Hamiltonians associated with different gauges are
not equivalent because

Hα′
(t ) �= Rαα′ (t )Hα (t )Rα′α (t ) + iṘαα′ (t )Rα′α (t ), (B16)

where the right-hand side of this inequality is equivalent to Hα (t ). To obtain the Hamiltonian in Eq. (14) of the main text,
which was obtained by assuming a time-dependent coupling μ(t ), one requires only that AT(R(t )) can be written AT(R(t )) =
μ(t )AT(0). This is indeed the case in the example we consider in the main text and in Appendix C whereby an atom moves in
and out of a Gaussian cavity beam for which AT(x) has the form εA(x), and we also assume that r = rε.

2. Approximation of externally prescribed uniform gross motion in the Lagrangian

If we approximate R = Ṙt as external at the Lagrangian level, then the remaining variables are r and AT. The α-gauge
Hamiltonian is

H̃α = p · ṙ +
∫

d3x � · AT − L

= 1

2m
[p + e(1 − α)AT(R)]2 + V (r) + 1

2

∫
d3x

[(
� + Pα

T

)2 + B2
]

+ eṘ · [(
r · ∇)

AT(R)
] − eα(Ṙ · ∇)r · AT(R), (B17)

where the constant kinetic energy MṘ2/2, which depends only on the external control, has been neglected. This is the
Hamiltonian given in Eq. (34) of the main text. As Schrödinger picture operators these Hamiltonians are related by

H̃α′
(t ) = Rαα′ (t )H̃α (t )Rα′α (t ) + iṘαα′ (t )Rα′α (t ), (B18)

where, as before, Rαα′ (t ) = exp[ie(α − α′)r · AT(R(t ))].

APPENDIX C: ATOM MOVING IN AND OUT OF A
FABRY-PEROT CAVITY

In this Appendix we specialize the Hamiltonian derived
above in Eq. (B14) to describe the interaction between a
Fabry-Perot cavity and an oscillating dipole at an arbitrary
position within the cavity.

1. Quantization of the free cavity

We consider a Fabry-Perot cavity consisting of parallel
mirrors in the xy plane separated by a distance L. In the z
direction the electromagnetic field satisfies periodic boundary
conditions, with a Gaussian profile in the perpendicular direc-
tion xx̂ + yŷ [78]. We restrict our attention to the fundamental
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Gaussian mode in the perpendicular direction. Although not
necessary, for simplicity we also consider only the fundamen-
tal standing wave mode in the z direction. It is straightforward
to extend this model to the multimode case that includes
more standing-wave modes in the z direction. One could also
consider additional Gauss-Hermite or Gauss-Laguerre modes
in the perpendicular direction.

In the present case the single-cavity mode is described by
a pure Gaussian beam propagating in the z direction such that
classically the transverse vector potential is

A(t, x) = εAa u(x)e−iωt + c.c., (C1)

where ε is a transverse polarization in the xy plane and
u(x)e−iωt satisfies the paraxial scalar wave equation [78–80].
Anticipating the transition to the quantum theory we have
written the space and time-independent amplitude Aa as the
product of a real normalization A and a complex number
a. We have also neglected a small nontransverse component
in the z direction [79,80]. We define �(t, x) = Ȧ(t, x) ≡
−ET(t, x) such that the cavity energy is

Hl = 1

2

∫ ′
d3x [ET(x)2 + B(x)2] =

∫ ′
d3x �(x)2, (C2)

where
∫ ′ indicates that spatial integration is restricted to the

cavity length L in the z direction, and B = ∇ × A. We have
assumed that the magnetic and electric energies are the same
in the free theory.

To obtain an explicit expression for Hl that can be quan-
tized, we consider the fundamental Gaussian mode solution
to the paraxial wave equation u(x)e−iωt such that [80]

u(x) = wc

w(z)
e−(x2+y2 )/w(z)2

eik(x2+y2 )/2R(z)+iθ (z)+ikz (C3)

with (0, 0, k) the wave vector such that k = ω and

zR = 1

2
kw2

c , w(z) = wc

√
1 +

( z

zR

2)
,

R(z) = z + z2
R

z
, θ (z) = − arctan

z

zR
, (C4)

where wc denotes the beam waist. For L � zR we have
w(z) ≈ wc, k(x2 + y2)/2R(z) ≈ 0, and θ (z) ≈ −π/2. In this
limit Eq. (C3) reduces to

u(x) ≈ φ(x) = eikze−(x2+y2 )/w2
c , (C5)

where we have ignored a global phase e−iπ/2. We define the
cavity volume by

v = 1

2

∫ ′
d3x|φ(x)|2 = πw2

c L

2
(C6)

and choose the normalization A = 1/
√

2ωv, such that substi-
tution of Eq. (C1) into the right-hand side of Eq. (C2) yields

Hl = ω

2
(a∗a + aa∗) = v

2
(�2 + ω2A2), (C7)

where A ≡ A(x = 0) and � ≡ �(x = 0). This cavity Hamil-
tonian is formally identical to the bare-cavity Hamiltonian
of Sec. III, and in the free (noninteracting) theory it is α

independent. In obtaining Eq. (C7) we have used∫ ′
d3x φ(x)2 =

∫ l+L

l
dz e2ikz

∫
dx dy e−(x2+y2 )/w2

c = 0,

(C8)

where l is arbitrary such that l and l + L are the positions
of the two cavity mirrors along the z axis. Equation (C8)
follows from the vanishing of the z integral due to the peri-
odic boundary conditions in the z direction; k = nπ/L, n =
0, 1, 2, 3, . . . .

Quantization is now straightforward via the replacement of
the complex numbers a and a∗ with bosonic operators a and a†

such that [a, a†] = 1. We thereby obtain the mode expansions

A(t, x) = ε√
2ωv

[φ∗(x)a†(t ) + φ(x)a(t )], (C9)

�(t, x) = iε

√
ω

2v
[φ∗(x)a†(t ) − φ(x)a(t )], (C10)

where a(t ) = ae−iωt in the free theory. All nonzero equal-time
canonical commutation relations are obtained from Eqs. (C9)
and (C10) using [a, a†] = 1;

[Ai(t, x),� j (t, x′)] = i
εiε j

2v
[φ(x)φ∗(x′) + φ∗(x)φ(x′)],

(C11)

[Ai(t, x), Aj (t, x′)] = εiε j

2ωv
[φ(x)φ∗(x′) − φ∗(x)φ(x′)],

(C12)

[�i(t, x),� j (t, x′)] = ω2[Ai(t, x), Aj (t, x′)]. (C13)

In particular, we have [Ai,� j] = iεiε j/v and [Ai, Aj] = 0 =
[�i,� j] in agreement with Sec. III of the main text.

The violation of relativistic causality implied by the nonva-
nishing commutators of fields at spacelike separated events is
a result of the approximations made, namely, the restriction
to a single radiation mode and the paraxial approximation.
The single-mode approximation eliminates the spatiotemporal
structure necessary to elicit causality and has been discussed
in this context recently in Ref. [81]. These authors consider
the propagation direction only and show that by includ-
ing more standing-wave modes, consistency with relativistic
causality is recovered. Here, our aim is to study the role of
the gauge parameter α in the light-matter interaction and for
this purpose it suffices to restrict attention to the fundamental
mode. As noted at the beginning of this section the single-
mode approximation is certainly not necessary and has been
used here for simplicity. Without requiring any essentially
new theoretical machinery one can extend the present treat-
ment in a straightforward manner to include more modes in
the transverse direction or in the z direction. Within the single-
mode treatment, which is adequate for the present purpose, the
canonical commutation relations (C11)–(C13) are necessary
for the formal self-consistency of the framework developed.

2. Cavity-dipole interaction

Using the above expressions for the field of a Gaussian cav-
ity mode the full Hamiltonian for atomic motion in and out of
the cavity is given by Eq. (B12). To preserve gauge invariance
we must also perform the single-mode approximation within
the material polarization. The appropriate approximation can
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be deduced by inspection of the linear polarization interaction
component, which expressed in k space reads as∫

d3k P†
T(k) · �T(k) = i

∫
d3k

√
ω

2

∑
λ

ελ · [PT(k)a†
λ(k)

− P†
T(k)aλ(k)], (C14)

where aλ(k) is the annihilation operator for a photon with
momentum k and polarization λ, and ελ is the corresponding
polarization unit vector, which is orthogonal to k. In writing
Eq. (C14) we have used the Hermiticity of the real-space
fields. Discretizing the modes in a volume v with periodic
boundary conditions and restricting to a single mode kλ, the
interaction becomes∫

d3k P†
T(k) · �T(k) −→ i

√
vω

2
ε · [PT(k)a† − P†

T(k)a].

(C15)

For the Gaussian cavity this must be equal to −er · �(R)
where �(R) is given by Eq. (C10). It follows that the single-
mode approximation of PT(k) appropriate for the Gaussian
cavity is

ε · Pα
T(k) = − e

v
(ε · r)φ∗(R). (C16)

The polarization self-energy term in the Hamiltonian is there-
fore

1

2

∫
d3x PT(x)2 = 1

2

∫
d3k|PT(k)|2

= 1

2

∫
d3k

∑
λ

(ελ · PT(k))(ελ · PT(k))∗

−→ v

2
(ε · PT(k))(ε · PT(k))∗

= e2

2v
r2|φ(R)|2, (C17)

where r = ε · r. We can now specify all terms within the
complete Hamiltonian in Eq. (B12) for the case of a single-
mode Gaussian cavity. The Hamiltonians of different gauges
are unitarily related and therefore equivalent. Assuming for
simplicity that r = rε and p = pε, when we approximate R(t )
as external we obtain Eq. (31) given in the main text. The
resulting Hamiltonians continue to be unitarily related, but are
no longer equivalent. Thus, it is the approximation of treat-
ing R(t ) as external that results in nonequivalence between
gauges.

3. Mutual information

Without loss of generality we can consider cavity mirrors
located at z = ±L/2 centered at (0,0) in the xy plane. Any
prescribed dipolar motion may now be considered. The sim-
plest case consists of uniform motion Ṙ = −νx̂ starting from
rest at the point hx̂, which yields the path R(t ) = x̂(h − νt ).
Quite generally, paths satisfying ẑ · R(t ) = 0 for all t have the
property that the Hamiltonian in Eq. (31) of the main text
with R = R(t ) is identical to that in Eq. (23) of the main
text if the time-dependent coupling function therein is taken

FIG. 7. The mutual information I(α, t ) is plotted with time in
units of tb = wc/ν assuming an initial state |0, 0〉. The beam waist
is wc = 20 μm, ωm is chosen in the microwave regime (energy
∼10 μeV) and ν = 10−3c where c is the speed of light.

as μ(t ) = φ(R(t )). For uniform motion the coupling function
is μ(t ) = e−(h−νt )2/w2

c .
In the case of uniform motion, the Gaussian coupling

envelope incurs a relatively smooth switch-on. For a beam
waist wc = 20 μm, with h substantially larger, so that the
dipole starts well outside of the cavity, and for a dipole with
microwave frequency ωm ∼ GHz, the gross dipolar speed
must be around ν = 10−3c in order that the interaction time
τ ∼ wc/ν is comparable to the cycle time 1/ωm. The velocity
10−3c is not yet relativistic, but significantly larger than the
velocities found in typical atomic beam experiments, which
are around three orders of magnitude smaller. In order to
achieve wcωm/ν ∼ 1 with smaller ν either the cavity beam
waist must be further reduced, or slower dipolar oscilla-
tions must be considered. However wcωm/ν ∼ 1 is achieved,
significant differences occur in predictions associated with
different gauges within this regime, as shown in Fig. 7.

APPENDIX D: GROUND STATE OF THE INTERACTING
HAMILTONIAN, AND THE GROUND-STATE PHOTON

NUMBER AND MUTUAL INFORMATION

A naive example of a time-dependent interaction comprises
instantaneous interaction switch-on and switch-off described
by the function μ(t ) = u(t − t0) − u[t − (t0 + τ )] where u
denotes the unit-step function. For final times t > t0 + τ the
evolution of the system is composed of sequential evolu-
tions as U (0, t ) = U0(0, t0)U α (t0, t0 + τ )U0(t0 + τ, t ) where
U α (t ′, t ) = e−i(t−t ′ )Hα

and U0(t ′, t ) = e−i(t−t ′ )H0 . However, the
free (uncoupled) evolution U0 does not alter either the os-
cillator populations nor the final light-matter correlations. To
find these observables one can set t0 = 0 and t = τ without
loss of generality, which is equivalent to considering the full
interacting system with a constant interaction μ(t ) = 1. In
this case, it is more physically relevant to consider an initial
eigenstate of the full Hamiltonian Hα rather than the free part
H0.

Of considerable interest are light-matter correlations in
the ground state |G〉 of the full Hamiltonian Hα . These are
quantified by the mutual information IG(α) = S(ρα

m) + S(ρα
l )

where S(ρ) = −trρ ln ρ and the reduced material and cavity
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states are defined by ρα
m = trα

l |G〉 〈G| and ρα
l = trα

m |G〉 〈G|,
respectively. The mutual information IG(α) is found to be

IG(α) = (μα + 1) ln

(
μα + 1

2

)
− (μα − 1) ln

(
μα − 1

2

)
,

(D1)

where

μα =
√

1 +
(

ω

ωg

)2 e2

mvω ωm
(α − αg)2. (D2)

It is symmetric about the point α = αg where it takes its
minimum value of zero.

We also consider the average number of α-gauge photons
na(α) = 〈a†a〉G in the ground state. A straightforward calcu-
lation yields

na(α) = 1

4ω

[
ωg + e2(α − αg)2

mvωm,g
+ ω2

ωg

]
− 1

2
, (D3)

where ωg ≡ ωαg and

αg = ωm

ωm + ω
, ω2

m,g = ω2
m + e2

mv
α2

g . (D4)

If one allows the definition of photon number to depend on
material parameters e and m, then the self-energy term

e2(1 − α)2A2/2m = η2ω[(1 − α)2(a† + a)2] (D5)

can be absorbed into a redefinition of the local cavity energy
as

H̃α
l = Hα

l + e2(1 − α)2A2/2m = v

2
(� + ω2

αA2)

= ωα

(
c†c + 1

2

)
, (D6)

FIG. 8. IG(α) is plotted as a function of α with δ = ω/ωm =
1
2 , for three values of the dimensionless coupling parameter η =
e/(ω

√
mv). The strength of the α dependence increases with increas-

ing η. For all η the mutual information IG(α) is symmetric about
the minimum value of zero occurring at αg = 1/(1 + δ) for which
the ground state |G〉 is in fact separable (Appendix D). At resonance
δ = 1 we have αg = 1

2 , implying IG(0) = IG(1). Off-resonant values
of δ determine the shift of the minimum αg relative to the resonant
value; αg is shifted towards α = 1 for δ < 1, and towards α = 0 for
δ > 1.

where

ω2
α = ω2 + e2

mv
(1 − α)2. (D7)

The operators c, c† are related to a, a† by a local Bogoliubov
transformation in Hα

l . The average number of α-gauge renor-
malized ground-state photons nc(α) = 〈c†c〉G is

nc(α) = 1

4ωα

[
ωg + e2(α − αg)2

mvωm,g
+ ω2

α

ωg

]
− 1

2
. (D8)

Unlike the average in Eq. (D3) this average reaches a mini-
mum of zero for α = αg. This can be understood by noting
that for this choice of α the Hamiltonian can be written in
number-conserving form as

Hg = ωm,g

(
d†d + 1

2

)
+ ωg

(
c†c + 1

2

)

+ ie

√
ωωm

mv

1

ωm + ω
(d†c − dc†), (D9)

where the renormalized material modes d are such that

p2

2m
+ mω2

m,g

2
r2 = ωm,g

(
d†d + 1

2

)
. (D10)

The renormalized material modes d are connected to the bare
material modes b via a local Bogoliubov transformation in
Hg

m. The ground state |G〉 of the Hamiltonian is the vacuum
|0d , 0c〉 annihilated by the operators d and c. Thus, nc(αg) =
0. It is important to note that unlike a full diagonalization
of the Hamiltonian, the partially diagonal form (D9) does
not obscure the divisibility of the overall system into “light”
and “matter” subsystems. After a full diagonalization, the

FIG. 9. The ground-state photon number averages na(α) and
nc(α) are plotted as functions of α with δ = ω/ωm = 2. The strength
of the dependence on α increases with increasing η, as does the dif-
ference between the two photon numbers na and nc. For sufficiently
weak coupling η � 0.1, na and nc are indistinguishable within the
resolution of the plot. Both na and nc are minimum at α = αg. For
all couplings, nc is identically zero at αg while na becomes nonzero
for stronger coupling. For α → 1, na(α) → nc(α) because the self-
energy term e2(1 − α)2A2/2m vanishes identically in the Poincaré
gauge α = 1.
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Hamiltonian can be written as the sum of two harmonic os-
cillator energies, but it is not possible to distinguish these
harmonic oscillators such that one can be called “light” and
the other “matter” in any meaningful way. This is because a
completely diagonalizing transformation is necessarily nonlo-
cal with respect to the light-matter Hilbert space bipartition
of any gauge. On the other hand, the number-conserving form
(D9) can be achieved by simply choosing a particular gauge

and then performing nothing but local operations within that
gauge.

Figure 8 shows significant variations in the mutual infor-
mation IG(α), which become increasingly pronounced for
larger dimensionless coupling strengths η. Similarly, Fig. 9
plots na(α) and nc(α) as a functions of α, showing that both
nonrenormalized and renormalized photon numbers vary sig-
nificantly with α.
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