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Pairing in spinless fermions and spin chains with next-nearest neighbor interactions
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We investigate the phase diagrams of a one-dimensional lattice model of fermions and of a spin chain with
interactions extending up to next-nearest-neighbor range. In particular, we investigate the appearance of regions
with dominant pairing physics in the presence of nearest-neighbor and next-nearest-neighbor interactions.
Our analysis is based on analytical calculations in the classical limit, bosonization techniques and large-scale
density-matrix renormalization group numerical simulations. The phase diagram, which is investigated in all
relevant filling regimes, displays a remarkably rich collection of phases, including Luttinger liquids, phase
separation, charge-density waves, bond-order phases, and exotic cluster Luttinger liquids with paired particles.
In relation with recent studies, we show several emergent transition lines with a central charge c = 3/2 between
the Luttinger liquid and the cluster Luttinger liquid phases. These results could be experimentally investigated
using highly tunable quantum simulators.
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I. INTRODUCTION

Whether or not unpaired Majorana zero modes could ap-
pear in one-dimensional systems without the coupling to an
external superconducting device is a question that has recently
triggered a lot of interest. Since the mean-field approach
represented by Kitaev’s chain [1] cannot answer the query
because of the low dimensionality of the setup, an increas-
ing recent literature has focused on pairing phenomena in
number-conserving one-dimensional systems [2–10]. As a
main result of this research subject, it has been proposed that
the use of inhomogeneous systems where paired phases are
coupled to normal phases is then expected to reveal zero-
energy Majorana boundary modes, which should be pinned at
the interfaces [6]. For this reason, the study of pairing physics
in one-dimensional fermionic setups has recently become an
extremely interesting topic and this observation constitutes the
broad motivation of the present work.

A paradigmatic model for investigating pairing physics is
a one-dimensional lattice model of fermions with density-
density interactions which extend up to next-nearest neighbors
(NNN) [11–20]. Some parts of its phase diagrams have al-
ready been studied and identified as paired phases, which
appear both for repulsive [21,22] and attractive [9,23] in-
teractions. A systematic analysis has been only presented at
half filling, but limited to the fully repulsive case [24]. Ex-
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tensions to longer-range interactions have been the focus of
Ref. [25]. In general, the employed techniques are various,
and the study of one-dimensional setups naturally benefits
from the possibility of using ad hoc field-theory methods
such as bosonization [26–28] or numerical tensor-network
approaches based on matrix-product states [29,30].

In this article we present a comprehensive study of the
general structure of the phase diagram of the aforemen-
tioned model using both approximate analytical treatments
and extensive numerical simulations. Our study reproduces
the mentioned known results, and extends the analysis to a
larger parameter space focusing on four representative den-
sities, n = 1

5 , 1
3 , 2

5 , and 1
2 . Our discussion highlights that

the phase diagram enriches progressively as the density is
increased. Obviously, we put a particular emphasis on pairing
phenomena, which appear both for attractive and repulsive
interactions. By completely mapping out the phase diagram,
we expect to significantly ease the future search for Majorana
fermions in number-conserving systems.

We want to highlight two significant points of our work.
The former is that the study of paired phases is particularly
interesting also because the transition from a standard Lut-
tinger liquid requires a nontrivial bosonisation description [9].
Indeed, together with standard Luttinger liquid, one speaks
of pair cluster Luttinger liquids (CLL), with gapped single-
particle excitations and gapless pair degrees of freedom. Our
numerical simulations access the transition without using per-
turbative arguments and reproduce some expected results,
such as the low-energy effective theory at the transition, which
is a conformal field theory with central charge c = 1 + 1

2 . This
point is discussed in the main text.

The latter is that the scope of the article goes beyond the
search for Majorana fermions in electronic systems. Thanks to
the Jordan-Wigner mapping, our results can be easily recast in
spin language and provide insights into the physics of arrays
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of Rydberg atoms. Recent experiments have shown that it
is now possible to organize individual atoms according to
periodic arrays of microscopic dipole traps separated by few
micrometers [31–39]. The excitation of such trapped atoms
to a Rydberg state [40,41] characterized by a strong elec-
tronic dipole ensures that atoms interact notwithstanding their
distances, and this has produced a setup which is an almost
paradigmatic realization of a quantum simulator for quantum
spin models [42–45]. In some special regimes, the realized
model is an instance of our Hamiltonian.

The paper is organized as follows. In Sec. II we present the
explicit form of the model Hamiltonian both in the fermionic
and in the spin formulation, we indicate the parameters cho-
sen for the numerical density-matrix renormalization group
(DMRG) investigations and the physical observables em-
ployed throughout the article. Section III is fully devoted to
the analysis of the phase diagram at density n < 1

3 , where
the most interesting finding is a pair CLL in the attractive
part of the phase diagram. The work continues in Sec. IV
with the characterization of a charge-density wave (CDW) in
the strong-coupling repulsive regime of the model at density
n = 1

3 . The content of Sec. V is devoted to the density regime
1
3 < n < 1

2 . We focus both on the robustness of the pair CLL
phase observed at lower density and on the observation of a
novel CLL phase in the repulsive regime. As a last step, we
provide in Sec. VI the main features of the phase diagram
structure at density n = 1

2 , where commensurability effects
are responsible for the disappearance of the liquid behav-
ior observed at lower densities in favor of insulating CDW
phases.

II. MODEL, METHODS, AND OVERVIEW
OF THE PHASE DIAGRAMS

A. Hamiltonian

The Hamiltonian that we are going to characterize is
defined on a lattice of L sites and admits two equivalent
formulations in terms of fermionic or spin degrees of freedom.
The fermionic model reads

H =
L∑

j=1

[−t (ĉ†
j ĉ j+1 + H.c.) + U1n̂ j n̂ j+1 + U2n̂ j n̂ j+2

]
, (1)

where ĉ j, ĉ†
j are fermionic creation and annihilation operators

satisfying the canonical anticommutation relations {ĉi, ĉ j} =
0 and {ĉi, ĉ†

j } = δi, j , n̂ j = ĉ†
j ĉ j is the number operator at site j,

t denotes the hopping amplitude (we set t = 1 in the rest of the
paper) and U1,U2 represent, respectively, the strength of the
nearest-neighbor (NN) and NNN density-density interactions.
In the fermionic formulation Eq. (1), which we are going to
refer to in the rest of the work, the model Hamiltonian that
we consider describes fermions on a 1D lattice interacting
via a soft-shoulder potential with interaction range rc = 2.
In what follows, we study the zero-temperature properties of
Eq. (1) for real U1 and positive U2 � 0 at a given density
n = 1

L

∑
j〈n̂ j〉 = N/L with N the fixed total number of par-

ticles.

To switch from the fermionic to the spin Hamiltonian, we
use the Jordan-Wigner transformation{

ĉ j = ∏ j−1
l=1 e−iπ(Ŝz

l + 1
2 )Ŝ−

j ,

ĉ†
j ĉ j = Ŝz

j + 1
2 ,

(2)

where Ŝk
j with k ∈ {x, y, z} are spin 1/2 operators, leading to

the following spin Hamiltonian:

H =
∑

j

[−2t
(
Ŝ+

j Ŝ−
j+1 + H.c.

) + U1Ŝz
j Ŝ

z
j+1 + U2Ŝz

j Ŝ
z
j+2

]
,

(3)
where we have dropped constant terms and terms propor-
tional to the full magnetization, which commutes with the
Hamiltonian. It thus corresponds to the well-known XXZ spin
chain model with an extra antiferromagnetic NNN Ising term.
Such Hamiltonian could be realized in quantum simulators
gathering a collection of interacting two-level systems, such
as Rydberg simulators [45].

B. Particle-hole symmetry

Thanks to particle-hole transformation ĉ j → ĉ†
j , we can

restrict our study to densities in the interval 0 � n � 1/2. In-
deed, it translates to n → 1 − n, under which the Hamiltonian
transforms as

H (t,U1,U2) → H (−t,U1,U2) + (U1 + U2)(L − 2N ). (4)

By further noticing that one can remove the minus sign in
front of the hopping parameter by means of the unitary trans-
formation ĉ j → −ĉ j on even sites j, one can readily prove
that the behavior of the holes in the n > 1

2 regime coincides
with that of the particles at density n′ = 1 − n with the same
interaction parameters.

C. Numerical details and numerically computed quantities

Complementary to analytical tools, we carry out numeri-
cal simulations using the DMRG algorithm, a state-of-the-art
method to tackle 1D systems with short range interactions
[29,46,47]. We use two implementations: a traditional one and
one based on matrix product states using the ITensor library
[48]. We use both periodic boundary conditions (PBC) and
open boundary conditions (OBC), working with lattice sizes
up to L = 80 (respectively, L = 140), while keeping up to
m = 2800 states per block. For observables that depend on the
particle statistics, we specify that all simulations are carried
out on the fermionic model Eq. (1). Last, notice that sys-
tems with OBC may not exactly match the density definition
n = N/L because adding extra particles that fit to the edges
is preferable to stabilize the expected density in the bulk and
prevents the system from forming a defect in the bulk. Such a
choice depends on the region of the phase diagram and on the
nature of the underlying leading order.

1. The phase diagrams

We compute several quantities to map out the phase dia-
grams. First, the gapped nature of the low-energy excitations
is inferred from the single-particle gap �1, while pairing
occurs when the two-particle gap �2 vanishes. Numerically,
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finite-size gaps derived from ground-state energies E0(N, L)
differences following

�p(L) = E0(N + p, L) + E0(N − p, L) − 2E0(N, L) (5)

are extrapolated with system size L for p = 1, 2.
Another indication of the critical behavior of the system

emerges when computing the ground-state energy density cur-
vature ∂2

s εGS. The latter quantity is defined as the directional
second derivative of the ground-state energy density εGS =
E0(N,L)

L along a curve γ : R → R2, γ (s) = (U1(s),U2(s)) in
the U1-U2 parameter space:

∂2
s εGS = d2

ds2
εGS(γ (s)). (6)

Indeed, its nonanalyticities should signal zero-temperature
quantum phase transitions.

A third probe to monitor critical phases and their central
charge is the bipartite von Neumann entanglement entropy
[49,50]:

SA = −Tr[ρA log ρA], (7)

where ρA is the reduced density matrix of subsystem A with
respect to the whole system. The central charge c is estimated
by fitting the finite-size profile using the Cardy-Calabrese
formula:

SL(l ) = c

α
log

[
βL

π
sin

(
π

l

L

)]
+ C, (8)

where l is the size of the left block A length, C represents
a nonuniversal constant, and we have α = 3, β = 1 for PBC.
Additional oscillations in SL(l ) are taken into account from
the local kinetic energy profile [51–54] by adding to Eq. (8) a
term of the form B〈c†

l cl+1 + H.c.〉, where B is to be treated as
a fitting parameter.

For each considered density n, we find particularly useful
to present a sketch of the phase diagrams by plotting the
bipartite entanglement entropy SL(L/2), whose peaks are an
effective guide to the eye for phase transitions. Each phase
diagram is analyzed with steps of �Ui = 0.125; black lines
are the phase transitions in the classical limit t = 0 and red
lines are lines for which we present additional numerical data.

2. Observables

To elucidate the nature of the CLL phases and their irre-
ducibility to a standard LL phase, we introduce the Fourier
transform δn(k) of the density fluctuations 〈δn̂ j〉 = 〈n̂ j − n〉,
and the structure factor S(k):

δn(k) =
L∑

j=1

〈δn̂ j〉e−i ( j−1)k
L , (9)

S(k) =
L∑

j=1

[〈n̂1n̂ j〉 − 〈n̂1〉〈n̂ j〉]e−i ( j−1)k
L . (10)

These observables are typically extracted from PBC simula-
tions to minimize boundary effects.

Additionally, we compute the decay of the single-particle
correlation function and of the pair correlation functions

G(r) = 〈ĉ†
j ĉ j+r〉, P(r) = 〈ĉ†

j ĉ
†
j+1ĉ j+r ĉ j+r+1〉; (11)

FIG. 1. Phase diagram for n = 1
5 . Color map for the background

displays the entanglement entropy on L = 70 chain with PBC. Black
lines are classical transition lines obtained neglecting quantum fluc-
tuation. Additional numerical simulations are presented for the points
lying on the red lines. Blue lines are a guide to the eye for the main
phase boundaries.

the formulas reported here assume translational invariance of
the problem (PBC). To generically evaluate the enhancement
of pairing fluctuations, we compute the so-called average pair
kinetic energy:

KP = 1

L

∑
j

〈ĉ†
j ĉ

†
j+1ĉ j+2ĉ j+3 + H.c.〉, (12)

quantifying the magnitude of the NN pair hopping processes.
The phase diagram at n = 1

2 requires some further theoret-
ical tools. The BO phase is identified via the BO parameter:

OBO = 1

L

L∑
j=1

(−1) j〈c†
j ĉ j+1 + H.c.〉, (13)

and we characterize the U2-induced CDW order by computing
the following CDW order parameter:

OCDW
j = 〈n̂ j+2〉 − 〈n̂ j〉, (14)

in the bulk of the system, so that the unavoidable boundary
effects are controlled as much as possible.

D. Summary of results

The aim of the present work consists in giving a compre-
hensive view of the zero-temperature ground-state properties
of the model in Eq. (1), thereby highlighting the wealth of ex-
otic collective behaviours achievable by varying interactions
and density. Our main results are summarized in Figs. 1, 6,
9, and 16, where we present the phase diagrams for n = 1

5 ,
n = 1

3 , n = 2
5 , and n = 1

2 , respectively.
We start in Sec. III with the analysis of the low den-

sity regime, n = 1
5 , whose global features are expected to be
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simpler than at higher densities due to the absence of com-
mensurability and frustration effects. The standard LL phase
occupies the whole NN repulsive part of the phase diagram,
U1 > 0 (see Fig. 1). The attractive part U1 < 0, instead, com-
prises three different phases: LL, PS, and CLL. LL appears
for weak NN interaction, U1 ∼ 0, whereas PS appears in the
limit of dominant U1 < 0 term.

The CLL phase is interpreted as a phase of pairs where
pairing effects dominate. The transition between the CLL
and the LL phases is clearly signaled by its entanglement
properties, and in particular by a central charge c = 3/2. This
supports the interpretation of the quantum phase transition in
terms of an emerging Ising degree of freedom [8,9,21–23],
i.e., the critical behavior of the system along the transition
belongs to the 2D Ising universality class. This exotic liquid is
further probed through its low-energy spectral properties: the
single-particle gap is nonzero, whereas the pair gap vanishes.
In the strong-coupling regime t � U1,U2, the CLL phase is
continuously connected to the classical limit description of
the corresponding region of the phase diagram [the impossi-
bility of a direct connection with the weakly interacting LL is
demonstrated by observables such as δn(k) and S(k)].

The discussion continues in Sec. IV with the case n = 1
3

[25] where the phase diagram is presented in Fig. 6. The study
of the classical limit t = 0 proposes that the attractive regime
of the phase diagram U1 < 0 coincides with that character-
ized at n = 1

5 . The numerical analysis mainly confirms this
expectation, apart from a highly correlated phase at U1 ∼ 0.
However, the classical analysis shows a modification in the
repulsive side U1 > 0 and explains the onset of a CDW order
with one particle each three sites. The emergence of this CDW
is captured by the opening of the single-particle gap across the
transition, as well as by the onset of exponentially decaying
single-particle and pair correlators. The analysis of density
fluctuations δn(k) corroborates this interpretation.

Section V focuses on a typical density lying in the interval
1/3 < n < 1/2, with the case n = 2

5 [21,22]. We first confirm
the persistence of the CLL phase established at density n = 1

5
for U1 < 0 using an analysis analogous to that of Sec. II;
qualitatively, for U1 < 0 the phase diagram (see Fig. 9) co-
incides with that obtained at n = 1

3 . The repulsive regime
U1 > 0 is particularly rich. We demonstrate that the standard
LL phase survives in the region U2 < U1

2 by providing the
scaling of observables such as the central charge and the
single-particle gap. For U2 > U1

2 , we identify a transition from
the LL phase to frustration-induced CLL phase. After com-
menting on its analogy with its attractive regime counterpart,
we relate the position of the peaks in the density profile
Fourier transform and structure factor to the classical limit
cluster structure of the ground state of the system, while it is
incompatible with both the LL phase and the attractive CLL
expectations.

Section VI is devoted to the description of the phase dia-
gram at half filling (see Fig. 16) with n = 1

2 [24]. We discuss
how the combination of commensurable effects and interac-
tions favors gapped phases, in addition to the other phases
found at lower densities. In particular, we develop a weak
coupling bosonization treatment of the model explaining the
qualitative properties of the gapped phases. By means of suit-

able order parameters, we distinguish a CDW phase induced
by U1 > 0 from a BO phase induced by U2 > 0. We conclude
the treatment of the half-filled case by discriminating the BO
phase from the repulsive NNN-induced CDW phase using a
finite-size scaling analysis of the order parameters of each
phase. This shows that the BO phase acts as an intermediate
coupling precursor of the CDW phase. Close to phase separa-
tion, and similarly to lower fillings, we show an enhancement
of the pairing fluctuations as well as a divergence of the
Luttinger parameter reminiscent of the CLL regime.

We show four phase diagrams for each typical density
through the manuscript. The goal is to provide an overview
of our current understanding of the relevant phases occurring
when one varies the two interaction terms. We do not have a
full description of the thermodynamic limit for all transitions
lines. For the most important transitions, we have carried
out a detailed analysis along a few cuts (in dashed red on
the diagrams). The strong-coupling limit also provides a few
reference lines (in dashed black on the diagrams). Some tran-
sitions, such as phase separation and the LL to CLL transition
do not show strong finite-size effects, while for others (of
the Kosterlitz-Thouless type for instance), finite-size effects
are stronger. For each diagram, we chose to plot as a back-
ground the bulk entropy on a finite-size system, with yellow
corresponding to high values and dark blue to small values,
close to zero. Its magnitude has no particular meaning but
we found that its variation across the diagram nicely pictured
the different phases and transitions lines, in particular for the
LL to CLL we are interested in. For other boundaries, we use
results from the literature when it exists, or propose lines that
are guide to the eyes (in blue on the diagrams). We believe
such diagrams, although not complete, are helpful for any
further studies on the model, having in mind that each already
represents 10 000 runs of DMRG.

III. PHASE DIAGRAM FOR n = 1
5

The main result discussed in this section is the emergence
of an exotic CLL phase whose fundamental gapless degrees
of freedom are tightly bound pairs. This result is completely
intuitive, given that it appears for strong and attractive U1; yet,
its extension in the phase diagram and the nature of the transi-
tion to the weak-interacting LL phase are nontrivial and need
an accurate characterization. The phase diagram obtained by
considerations based on the entanglement entropy is reported
in Fig. 1.

A. Classical limit and Luttinger liquid approach

We start with the description of the U2 = 0, along which
the system reduces to the XXZ model, see Eq. (3). Phase
separation (that is a ferromagnetic behavior in spin language)
occurs when U1 < −2, while a LL phase covers the U1 > 0
regime. To stabilize pairs, one intuitively requires the pres-
ence of a strong and attractive NN interaction, but have just
observed that alone it yields to phase separation. Therefore, a
repulsive U2 is necessary to prevent the pairs from collapsing
close to each other. The low filling value is expected to avoid
the emergence of commensurability effects and to enhance a
dilute liquid of pairs.
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Before turning our attention to the numerical data, we first
obtain a qualitative understanding of the possible scenarios
by studying the classical limit t = 0 and applying strong-
coupling arguments both for U1 < 0 and U1 > 0.

When U1 > 0 and t = 0, the two competing ground-state
configurations are (i) the phase-separated one, which is a
product state of N occupied sites surrounded by empty sites,
and (ii) the configurations with pairs separated by at least two
empty sites. The latter is formally described by all possible
permutations of blocks of type A (• • ◦◦) and blocks B (◦),
where black circles refer to occupied sites and white circles
represent empty sites. The numbers NA (respectively, NB) of
block A (respectively, B) are solely determined by the total
number of fermions and the size of the system since{

2NA = N,

4NA + NB = L,
(15)

so that NA = N/2 and NB = L − 2N . The degeneracy of the
paired configuration is given by d = (NA+NB )!

NA!NB! , whose scaling
is exponential in L.

The energy of a paired configuration equals U1, and given
that there are NA pairs, the ground-state energy density is
U1

NA
L = U1

2 n. The phase-separated configuration, instead, has
energy density (U1 + U2)n. As a result, the ground-state en-
ergy density of the phase-separated configuration is optimal
when U2 < −U1

2 . This is the asymptotic classical limit separa-
tion line between the PS and CLL phases, and it is plotted in
black in Fig. 1. When U2 > −U1

2 , we expect the highly degen-
erate subspace of paired state to evolve into a liquid of tightly
bound pairs once quantum fluctuations are reintroduced for
t 
= 0.

This result is further supported by a strong-coupling argu-
ment. Assuming that, in this limit, the relevant dynamics takes
place in the degenerate subspace of paired states described by
A and B blocks only, we map the system onto an effective
spin model of magnetization M = NA − NB by associating
each block A (respectively, B) with a spin-up (respectively,
spin-down). Then, standard degenerate perturbation theory
[21,22,55] yields the following effective Hamiltonian:

H = −J

2

∑
j

[
Ŝ+

j Ŝ−
j+1 + H.c.

] + J�
∑

j

Ŝz
j Ŝz

j+1, (16)

in which the Sα are effective spin operators for the blocks
and we drop the constant terms. This XXZ model has effec-
tive couplings J = 2t2

U2+|U1| ,� = U2
2U2+|U1| with an anisotropy

parameter � ∈ (0, 1). In such regime, the effective XXZ chain
is in the gapless LL regime, described by a c = 1 confor-
mal field theory. Consequently, the qualitative picture for the
strong-coupling regime of the CLL phase is a Luttinger liquid
of pairs that map hard-core bosons living on bonds.

Turning our attention to the purely repulsive interaction
regime (U1 > 0,U2 > 0), the degenerate ground-state sub-
space in the classical limit is the subspace generated by the
basis states described as a sequence of blocks C (• ◦ ◦) and
blocks B. The line U1 = 0 thus constitutes another classical
phase-transition line, and it is plotted in black in Fig. 1.

It is easy to see that the system size and filling constraints
impose NB = L − 3N, NC = N , whereas, by performing a
similar mapping to an effective spin model, the resulting ef-

fective Hamiltonian reads

H � −t
∑

j

[
Ŝ†

j Ŝ−
j+1 + H.c.

]
. (17)

Again, this XX model is described at low energies by a c = 1
conformal field theory. As the fundamental granularity of
the classical configurations comprises single particles, the
strong-coupling limit is expected to be effectively adiabat-
ically connected to the weak-coupling LL regime. At low
densities, such short range interactions, will never be able to
drive the system to an instability toward nontrivial phases in-
duced by frustration or commensurability effects. This claim
that the LL phases extends over the whole repulsive region
will be supported by numerical calculations.

Last, we recall the usual LL treatment of the weak-
coupling regime stemming from the noninteracting point
U1 = U2 = 0. Bosonization maps the lattice operators to
long-wavelength field operators ψR(x), ψL(x) through c j ∼√

a[ψR( ja)eikF ja + ψL( ja)e−ikF ja] (a being the lattice spac-
ing and kF = πn

a being the Fermi wave-vector) and then
re-expresses the latter as a function of two canonically conju-
gate bosonic fields φ(x), ∂xθ (x) satisfying [φ(x), ∂x′θ (x′)] =
iδ(x − x′). The resulting effective Hamiltonian capturing the
low-energy properties of the system is the celebrated LL
Hamiltonian [28]:

H = v

2π

∫
dx

[
1

K
(∂xφ)2 + K (π∂xθ )2

]
, (18)

where K denotes the Luttinger parameter and v is the sound
velocity of the gapless, linearly dispersing, collective density
excitation modes. Such theory develops algebraic correlations
parameterized by the K parameter that, from pertubative cal-
culations, reads

K (U1,U2; n) = 1√
1 + U1[1−cos(2πn)]+U2[1−4 cos(4πn)]

π sin(πn)

. (19)

B. Numerical results in the attractive regime

To highlight the appearance of a transition to a different
phase of matter, we focus on the line U2 = −U1, which is plot-
ted in red in Fig. 1. In Fig. 2(a), we present the profile of the
second derivative of the ground-state energy density along this
path. Despite the fact that it is an intensive quantity, it shows
a nonanalytical behavior that we interpret as an indication of
the presence of the critical point, bearing in mind the fact that
the numerical data alone do not allow to discriminate between
a cusp and a genuine divergence.

The existence of a transition is further supported by the
plot of the central charge along the very same line, as shown
in Fig. 2(b), where a c = 3/2 peak separating the two c = 1
phases seems to emerge [56]. Such a peak suggests an emer-
gent Ising behavior at the transition, as the 2D Ising model
at criticality carries an additional contribution c = 1

2 on top
of the background c = 1 bosonic LL theory. Such conclusion
is in-line with an effective field theory based on a two-fluid
description valid in the CLL phase (called the strong paired
phase in Ref. [9] near by the transition where some pairs start
dissociating. Such effective low-energy field theory has been
shown to support an Ising phase transition with c = 1

2 [9].
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FIG. 2. DMRG results for n = 1
5 along the U = U2 = −U1 line

of Fig. 1. (a) Ground-state energy density curvature Eq. (6) for
various sizes. The apparent nonanalytic behavior suggests a critical
point located in the range 3.1 � U � 3.2. (b) Extrapolated central
charge from Eq. (8). The numerics are compatible with a critical
point with c = 3/2 surrounded by the two c = 1 LL and CLL phases.

It is worth remarking that the numerical results are affected
by a lack of convergence of the DMRG algorithm both at
strong coupling and at the critical point. Thus, more accurate
simulations with up to 2800 kept states are actually necessary
to show a proper scaling of the fitted value of the central
charge compatible with a c = 3

2 critical point and to provide
clear evidence of a c = 1 phase on the strong-coupling side of
the transition.

To probe the transition to a liquid phase whose physical
behavior is exhaustively captured by pairing signatures, we
investigate the spectral properties of the system by computing
the single-particle gap and the pair-gap across the critical
point. We observe in Fig. 3 the opening of a finite single-
particle gap accompanied with a vanishing pairing gap, which
in turn confirms the gapless nature of the c = 1 CLL phase
beyond the critical point. Notice that the opening of the single-
particle gap agrees well with a linear behavior expected for the
Ising universality class.

To fully characterize such a novel state of matter, we in-
vestigate the behavior of the Fourier transform of the density

FIG. 3. Single-particle gap �1(∞) obtained by extrapolating
finite-size gaps Eq. (5) with L = 20, 40, 60, 80 on the same line as
in Fig. 2.

FIG. 4. (a) Density fluctuations Fourier transform Eq. (9) and
density structure factor Eq. (10). (b) on the same line as in Fig. 2
for L = 40. U = 1 for the LL phase and U = 5 for the CLL phase.

profile δn(k) and of the density structure factor S(k). The rea-
son for such a choice lies in the bosonization prediction that
the expectation value of the aforementioned observables is
given by an expansion whose lowest order harmonics oscillate
with wave vector k = 2πρ, ρ being the mean density of the
microscopic granularity of the Luttinger liquid phase. More
explicitly, the lowest order contributions to the density-density
correlations read [28]

〈ρ(x)ρ(0)〉 = A

x2
+ B

cos (2πρx)

x2K
, (20)

where A and B are nonuniversal amplitudes. For the LL phase,
we have ρ = n while for the CLL phase, we expect ρ = n/2.
The two phases are thus signaled by their corresponding peaks
in both δn(k) and S(k) at wave vectors k = 2πρ. As shown in
Figs. 4(a) and 4(b), we do observe a shift in the momentum
peak from k = 2π 1

5 to k = 2π 1
10 , indicating the emergence of

pairs as the elementary constituent of the CLL phase.

C. Repulsive regime

From the study of the classical limit, the system is ex-
pected to behave as a regular LL for repulsive interactions,
without exhibiting any transition to some alternative phases.
To support such a claim, we show in Fig. 5(a) the finite-size
scaling for single-particle gap, which manifestly scales to zero
as a function of the inverse system size L−1 over the whole
sampled region up to comparatively large interaction strength.
Furthermore, the finite-size entropy in Fig. 1 does not show
any harbingers of phase transitions for the whole repulsive
region. Looking at the extrapolated central charge for a wide
range of values along the line U2 = U1 shows deviation from
c = 1 value below 2.3%, which may be ascribed to the effect
of interactions in a finite size and perfectly compatible with a
repulsive LL. As a conclusive remark, the finite-size scaling
of the BO parameter is presented in Fig. 5, where it is shown
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FIG. 5. DMRG results for n = 1
5 along the U = U2 = U1 line.

(a) Finite-size scaling of the single-particle gaps Eq. (5). (b) Finite-
size scaling of the BO parameter Eq. (13) using a power law
a0 + a1L−a2 . Inset: extrapolated central charge from systems with
L = 60, 80, 100, 120, 140.

to extrapolate to zero in the infinite-size limit over the whole
range of sampled values.

IV. PHASE DIAGRAM FOR n = 1
3

The phase diagram depicted in Fig. 6 for n = 1
3 is qualita-

tively very similar to that in Fig. 1 for n = 1
5 in what concerns

the LL, CLL and PS phases. The main differences are (i)
the appearance of a highly entropic phase for |U1| � 1 and
U2 � 1; and (ii) the emergence of a gapped insulating phase
that appears exclusively for n = 1

3 . This section is mainly
devoted to the characterization of this latter phase, which
displays CDW order with one particle every three sites, named
CDW3. It emerges at strong-coupling in the purely repulsive
regime, as a result of the commensurability effect arising from
the interplay between the density and the interaction range.

FIG. 6. Phase diagram for n = 1
3 . Color map for the background

displays the entanglement entropy on a L = 42 chain with PBC.
Black lines are classical transition lines obtained neglecting quantum
fluctuation. Additional numerical simulations are presented for the
points lying on the red lines. Blue lines are a guide to the eye for the
main phase boundaries.

FIG. 7. DMRG results for n = 1
3 along the U = U2 = U1 line.

(a) Extrapolated central charge from L = 61, 82, 100, 121, 142.
(b) Extrapolated single-particle gap from sizes L = 73, 97, 121
showing its opening around the critical point.

The discussion of the nature of the large U2 highly entropic
phase highlighted above is postponed to Sec. V, where we
will provide an analytical treatment of the latter showing
that it appears for 1

3 � n < 1
2 and agreement with the related

numerical data.

A. Classical limit

For n = 1
3 , the qualitative features of the classical-limit

configurations remain essentially unchanged for U1 < 0.
However, the classical configurations in the U1 > 0 regime
are obtained from the periodic repetition of a block C with
unit cell (• ◦ ◦), since it realizes the lowest classical energy
density εGS = 0. Such a result is consistent with the general
statement that a fermionic system with repulsive soft-shoulder
interactions of range R stabilizes, in the classical limit and at
filling n = 1

R+1 , a periodic arrangement of period R + 1 with
one particle each R + 1 sites [25]. This periodic arrangement
is optimal in the classical limit independently of the ratio U2

U1
and the quantum phase expected to naturally arise at suffi-
ciently strong coupling is then the CDW3. Then, a critical
line must exist in the phase diagram of Fig. 6 separating the
weak-coupling LL regime from this CDW3 phase.

B. The CDW3 insulator

To study the onset of the CDW3 phase along the line
U2 = U1, we compute the single-particle gap �1, the central
charge c, the behavior of single-particle and pair correlation
functions, and the Fourier spectrum of the density profiles. In
Fig. 7(a), the extrapolated central charge, obtained from fitting
the entanglement profile and then extrapolating the finite-size
results with some polynomial fit, nicely displays a step from
1 to 0 as expected when entering a gapped phase. At the
same time, the opening of the single-particle gap is shown in
Fig. 7(b) after extrapolating the finite-size gaps with a polyno-
mial law. The qualitative features of Fig. 6 support the fact that
the critical line should reach U2 = 0 when U1/t → ∞, since
any finite U2 should stabilize a weak CDW3 and similarly
along the U2 > 0 axis. When U1 = 0, creating pairs does not
cost anything so other classical configurations compete with
the CDW3 one.
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FIG. 8. DMRG results for 1
3 along the U = U2 = U1 line. (a) De-

cay of the single-particle and pair correlators G(r) and P(r) as a
function of separation for L = 121 and U = 5, deep in the CDW
phase. (b) Density profile Fourier spectrum n(k) = δn(k) + nδk,0 for
U = 3 (LL phase) and U = 5 (CDW3 phase).

Since the finite energy gap in the excitation spectrum is
naturally accompanied with the emergence of a finite corre-
lation length, we monitor in Fig. 8(a) the decay law of the
single-particle and pair correlators deep in the massive CDW3

phase. The outcome of the numerical simulations confirms an
exponential decay, in agreement with the phenomenology of
gapped insulating phases.

Finally, the Fourier spectrum of the density profile is dis-
played in Fig. 8(b), so that the enhancement of the Fourier
component associated to the quasi-momentum k = 2π 1

3 of
the underlying crystal-like arrangement of the particles is
observed. The height of the related peak, being of the same
order of magnitude as the extensive zero mode, strongly sug-
gests the onset of long-range crystalline order, as opposed to
what is observed in the LL phase. We expect the transition
between the LL regime and the CDW3 region to be of the
Berezinsky-Kosterlitz-Thouless type [28], with an expected
critical Luttinger exponent of Kc = 2/9 at the transition line.
Interestingly, although the density correlations may not de-
cay slow enough in our case, we notice that our model, or
deformation of it, may be suitable for stabilizing an incom-
mensurate floating phase [57] in the vicinity of the CDW3

phase. It would be a region were the LL phase has density-
correlations decaying so slow that the structure factor diverges
at some incommensurate wave-vectors. Recent intensive nu-
merical works on qualitatively related models have shown the
possible realization of such unusual behavior [58,59].

V. PHASE DIAGRAM FOR n = 2
5

The two goals of the present section consist in showing
that in the range of densities 1

3 < n < 1
2 (i) the pair CLL

phase in the attractive regime survives, and (ii) in the repulsive
region a novel and frustration-induced CLL phase appears.
The two paired phases have incompatible signatures; whereas
the former result points out the robustness of the qualitative
features of the phase diagram for U1 < 0, the second results
shows that the region U1 > 0 has a complete restructure in
this density regime. Our study focuses on n = 2

5 and a phase
diagram drawn from entropic considerations is in Fig. 9.

FIG. 9. Phase diagram for n = 2
5 . Colormap for the background

display the entanglement entropy on a system with L = 30 and PBC.
Black lines are classical transition lines obtained neglecting quantum
fluctuation. Additional numerical simulations are presented for the
points lying on the red lines. Blue lines are a guide to the eye for the
main phase boundaries.

A. Classical limit

The study of the region U1 < 0 of the phase diagram in the
classical limit t = 0 outcomes the same features obtained for
lower densities, name a critical line at U2 = −U1/2 separating
PS from CLL.

Instead, the classical-limit analysis of the phase diagram
is richer in the repulsive region U1 > 0, and depends on
the value of the ratio U2/U1. Whenever U2/U1 < 1/2, the
generic classical ground-state configuration is given by any
permutation of blocks C with blocks D (•◦) satisfying NC =
L − 2N, ND = 3N − L. Since the elementary degrees of free-
dom in classical limit are single fermions and the effective
strong-coupling description of the system is given once again
by Eq. (17), a naive hypothesis for the collective behavior of
the system is the survival at all couplings of a standard LL
phase [21,22].

Conversely, if U2/U1 > 1/2, the resulting classical ground
states are generated by all possible permutations of blocks
C with blocks A, under the constraints NC = L − 2N , NA =
(3N − L)/2. The strong-coupling dynamics turns out to be
described again by a XX-Hamiltonian. This demonstrates that
any strong-coupling phase is adiabatically connected to a
c = 1 conformal gapless phase. However, in contrast to the
classical ground-state structure below the critical line, the
fundamental blocks in the present case realize a nontrivial mi-
croscopic structure consisting of a mixture of single particles
and frustration-induced pairs. The latter is to be interpreted as
an ideal classical platform for the emergence of exotic CLL
phases in the t 
= 0 regime [21,22]. Indeed, the fundamental
granularity of the expected liquid behavior will differ from
the bare fermionic particles in terms of which the model is
defined, giving rise to characteristic signatures that will be
illustrated with numerical results.

As a last step, the classical limit of the system along the
U1 = 0 axis deserves a special treatment. In such a case,

013114-8



PAIRING IN SPINLESS FERMIONS AND SPIN CHAINS … PHYSICAL REVIEW RESEARCH 3, 013114 (2021)

the fundamental blocks whose permutations generate the
whole degenerate ground-state manifold are the blocks of type
A (• • ◦◦), B (◦), C (• ◦ ◦). Thus, the ground-state manifold
includes, among others, the degenerate classical ground states
presented for the attractive and repulsive regimes. This opens
new scenarios for the physics of the system. Imposing the
standard filling constraints,{

2NA + NC = N,

4NA + 3NC + NB = L,
(21)

one obtains, in the representative case n = 2
5 , the expres-

sions NA = L
10 + NB

2 , NC = L
5 − NB, i.e., the generators of the

ground-state subspace are parameterized by the value of NB,
which is a free parameter interpolating between the attrac-
tive regime ground-state manifold (NB = L

5 ) and its repulsive
regime counterpart (NB = 0).

To shed light on the phase emerging from the above
classical limit once quantum fluctuations are introduced, we
compute the strong-coupling effective Hamiltonian to first
order:

H ≈ −t
∑

j

(
M̂†

j M̂ j+1 + H.c.
)
, (22)

where M̂ j = |B〉 j〈C| j . Thus, from the physical point of view,
the blocks B and C obey an effective spin- 1

2 XX dynamics,
whereas blocks A are completely immobile within the first
order approximation.

Let us now discuss the density dependence of the collective
behavior of the system in such limit. First, we observe that the
spin- 1

2 XX Hamiltonian governing the dynamics of blocks B
and C favors energetically states exhibiting hybridization be-
tween blocks B and C. Hence, to increase their kinetic energy,
the ground state of the system tends to minimize NA. There
are then two situations. If n < 1

3 , then one can set NA = 0 in
Eqs. (21), leading to NB = L − 3NC and NC = N and a regular
LL phase as observed in Fig. 1.

When 1
3 � n < 1

2 , one must have NA 
= 0. For blocks B
and C, as the ground state of the spin- 1

2 XX Hamiltonian is
in the zero magnetization sector, we assume that the optimal
condition is NB = NC . Specializing to the case n = 2

5 , we get
NB = NC = L

10 and NA = 3
20 L. As a consequence, we conjec-

ture that the system enters a new regime of phase separation,
where the CDW2 phase coexists with a LL region at effective
density NC

3NC+NB
= 1

4 . Our claim is supported by the results
of Figs. 6 and 9, where the emergence of a phase separated
region in the limit U2

|U1| � 1 is manifested by a larger entropy.
This observation stems from the presence of the LL phase in
the middle of the chain, as discussed in Sec. V D.

B. Numerics: Attractive regime

1. Characterization of the transition

Keeping in mind the classical limit picture of the system
for n = 2

5 and U2 > −U1/2 in the attractive region, we expect
a transition from the weak-coupling LL phase to an uncon-
ventional CLL phase with pairing. Thus, we investigate the
characteristic signatures of the critical point separating the
two phases by computing relevant observables along the cut
U = U2 = −U1. The first quantity we monitor is the second

FIG. 10. DMRG results for n = 2
5 along the U = U2 = −U1 line

for L = 40 and PBC. (a) Ground-state energy density curvature
Eq. (6). The shape of the profile is likely to be a nonanalytic function
of the control parameter U , locating the critical point within −2.5 �
U1 � −2.4. (b) Extrapolated central charge from Eq. (8). Data once
again support a c = 3

2 critical point, where an additional Ising de-
gree of freedom emerges on top of the bosonic c = 1 contribution,
suggesting the universality class of the 2D Ising model.

derivative of the ground-state energy density, whose charac-
teristic nonanalyticity presented in Fig. 10(a) is analogous to
that of Fig. 2(a) for n = 1

5 , which points toward the presence
of a critical point. In addition, the second quantity of interest is
the central charge c obtained by fitting the entropy profiles to
Eq. (8). The result, shown in Fig. 10(b) is compatible with the
presence of two c = 1 phases separated by an exotic critical
point with central charge c = 3/2, suggesting the emergence
of a critical Ising degree of freedom at the transition.

We now turn our attention to the low-energy excitations of
the model in the two phases. The results obtained by means of
numerical simulations demonstrate clearly the opening of the
single-particle gap at the transition, as shown in Fig. 11, where
the extrapolated value of the single-particle gap is plotted as a
function of U = U2 = −U1: a finite gap �1(∞) opens at the
transition from the LL phase to the CLL phase. Furthermore,
its dependence is shown to be linear with the distance from
the critical point, supporting consequently a critical behavior
in agreement with the 2D Ising universality class. However,
we present in Fig. 11 the pair-gap �2 in both the LL and CLL
phases. We observe a scaling to zero in both phases when L →
∞, which rules out the hypothesis of CDW formation or other
possible gapped phases by asserting the gapless nature of pair
degrees of freedom.

2. Characterization of the CLL phase

Inspired by the procedure followed in the case n = 1
5 , we

proceed with the analysis of the Fourier spectrum of density
profiles and density structure factors. We therefore consider
first the density profile in Fourier space on Fig. 12(a): While
the leading peak is located at k = 2π 2

5 inside the LL phase
region, the picture changes dramatically when considering
the CLL phase, with a peak located at k = 2π 1

5 , which is
consistent with the above discussion and in striking disagree-
ment with the conventional LL paradigm.

Similarly, the pronounced peak at the very same wave-
vector observed in the static structure factor of the CLL
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FIG. 11. DMRG results for n = 2
5 along the U = U2 = −U1.

Extrapolations of the single-particle gap �1(N, L) across the transi-
tion between the two liquid phases. Finite-size results are computed
according from Eq. (5) for L = 20, 40, 60 and fitted to a linear
model in L−1. The orange line is a linear fit of the opening of the
gap, consistent with the 2D Ising universality class. Inset: Finite-size
scaling of the pair gap �2(N, L) from Eq. (5), both in the LL phase
(U = 1.5) and in the CLL phase (U = 3.5). They both scale to zero.

ground state presented in Fig. 12 is a further indication of the
fundamentally different nature of the CLL phase, pointing de-
cisively toward the effective deformation of the Bose surface
that is not captured by LL theory.

FIG. 12. DMRG results for n = 2
5 along the U = U2 = −U1 line

for L = 40 and PBC. (a) Density fluctuations Fourier spectrum
Eq. (9) and (b) density structure factor Eq. (10) both in the LL
(U = 1.5) and CLL phase (U = 3.5). The momentum peak shift
at value k = 2π 1

5 is incompatible with a standard LL theory and
supports that the physics of the CLL phase in the attractive regime is
ruled by pair degrees of freedom.

C. Numerics: Repulsive regime

1. Characterization of the transition for U2 > U1/2

At density n = 2
5 , the nontrivial structure of the classical

limit in the repulsive region for U2 > U1/2 gives the op-
portunity of observing an exotic liquid phase. Indeed, the
main result of Refs. [21,22] in the present setting is based
on the observation that the fitted central charge profile along
the line U1 = U2 points toward the presence of a c = 3/2
critical point, thus suggesting the same phenomenology as
the one encountered in the attractive region. Furthermore, the
behavior of the single-particle and pair gaps has been shown in
Refs. [21,22] to coincide with the ones shown in the case of
the negative U1 CLL phase, suggesting that the related phase
is of the same nature of the one discussed above. Conversely,
its specificity with respect to the latter, whose origin may
be traced back to its unique cluster structure, emerges when
considering the spectral properties, as thoroughly discussed
below.

2. Characterization of the CLL phase for U2 > U1/2

To highlight the unconventional nature of the strong-
coupling c = 1 phase, we naturally investigate once more the
spectral structure of the density profile and of the density-
density correlation functions. We start by noticing that the
classical limit ground-state cluster density is given by (1−n)/
2 = 3

10 , as one infers from the types of fundamental blocks rel-
evant for the classical limit. This offers a way to discriminate
between the attractive CLL phase and the repulsive one by
looking at the density dependence of the leading wavelength
of the density fluctuations.

Our expectations are validated by the density profile spec-
trum exhibited in Figs. 13(a) and 13(b), where it appears
manifestly that the density fluctuations are governed by the
wave-vector k = 2π 3

10 above the transition point, consis-
tently with the aforesaid classical limit argument and as
opposed to the standard LL theory predictions. Analogous
peaks appear in the static structure factor shown in Fig. 13,
certifying thereby the irreducibility of the phase under inves-
tigation to the LL phase and the CLL phase of the attractive
region.

3. LL behavior for U2 < U1/2

We now consider the repulsive region defined by the con-
dition U2 < U1/2. We aim at verifying the conjecture of the
survival of the weak-coupling LL phase in the whole region
under consideration from numerical data obtained along the
line U2 = U1/4. We first consider the central charge, for which
the results are collected in the inset of Fig. 14(b) and do not
hint toward a transition from the LL phase to any different
phase. Indeed, the extrapolated central charge deviates by at
most 1% from c = 1.

Another conclusive evidence of the LL nature of this phase
emerges from its spectral properties, as the single-particle gap
displayed in Fig. 14(a) scales to zero as the inverse system
size for a wide range of values from weak to strong coupling,
consistently with an adiabatic extension of the weak-coupling
LL phase toward the strong-coupling regime. Finally, a finite-
size scaling analysis of the bound order parameter gives the
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FIG. 13. DMRG results for n = 2
5 along the U = U2 = U1 line

for L = 40 and PBC. (a) Density fluctuations Fourier spectrum
Eq. (9) and (b) density structure factor Eq. (10) both in the LL
(U = 1) and the CLL (U = 7) phases. The momentum peak shift to
the value k = 2π 3

10 is incompatible with a standard LL and supports
that the physics of the CLL phase in the repulsive regime is ruled
by the composite cluster degrees of freedom stemming from the
classical limit analysis.

results displayed in Fig. 14(b), where the extrapolated values
go to zero on the scale of the finite-size sampled values, as
expected to occur in a genuine LL phase.

FIG. 14. DMRG results for n = 2
5 along the U = U2 = U1/4

line. (a) Finite-size scaling of the single-particle gap �1(N, L)
computed according to Eq. (5). A linear fit points toward zero
extrapolated values (three orders of magnitude smaller than the cor-
responding finite-size values). Such evidence of the gapless nature
of single-particle excitations suggests the survival of the LL phase
for a wide range of interactions. (b) Finite-size scaling of the BO
parameter Eq. (13). Power law fits of the form a0 + a1L−a2 are used
and results in extrapolated values at least one order of magnitude
smaller than the finite-size values. Such behavior further supports
the LL picture. Inset: Extrapolated central charge. The values deviate
roughly at most 1.0% from the c = 1 value predicted for the LL
phase.

.

.

.

.

.
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.

FIG. 15. DMRG results for n = 2
5 along the U1 = 0 line for U2 =

20, L = 60 and PBC. (a) Density profile. (b) Entanglement entropy
profile SL ( j).

D. Phase separation along the U1 = 0 axis

To give numerical evidence for the theoretical strong-
coupling prediction along the U1 = 0 axis, we provide the
ground-state expectation values of several observables at a
point in parameter space where we expect the emergence of
the corresponding phase. First, the density profile of Fig. 15(a)
shows signatures of a phase separation with a region of perfect
CDW2 order and a confined liquid-like phase with strong
residual oscillations in the density pattern typical of this large
U2 limit.

Additionally, to confirm the strong-coupling analysis, we
remark that both the number of pairs in the CDW2 region
agrees with the prediction for NA at density n = 2

5 and the
average density in the LL domain of the system, estimated
as 1

2 (〈n̂ L
2 −1〉 + 〈n̂ L

2
〉), coincides with its analytical estimate

neff = 1
4 apart from corrections of order 10−3 due to local

quantum fluctuations.
As last indicator is the entanglement entropy profile is

depicted in Fig. 15(b), where the CDW2 domains feature
negligible entropy, while the low density liquidlike region
displays a finite entanglement.

VI. PHASE DIAGRAM FOR n = 1
2

The following Section is devoted to the treatment of the
n = 1

2 case, for which the interplay between NN and NNN
interaction terms and commensurability effects favor alterna-
tive orders such as two CDW orders and a BO phase (see
Ref. [24] for a thorough numerical characterization of the
repulsive regime of model Eq. (1) at half-filling). The global
picture of the phase diagram of Fig. 16 is finally completed
by characterizing the signatures of the transition to phase
separation in the attractive NN interaction regime and the
possibility to stabilize the CLL phase.
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FIG. 16. Phase diagram for n = 1
2 . Color map for the background

display the entanglement entropy on a L = 28 chain with PBC.
Black lines are classical transition lines obtained neglecting quantum
fluctuation. Additional numerical simulations are presented for the
points lying on the red lines. Blue lines are a guide to the eye for the
main phase boundaries.

A. Classical limit

At half-filling, such a high density value favors formation
of CDW states with no residual degeneracy, contrary to the
configurations spaces at lower fillings. To rigorously derive
such a result, we notice first of all that, while the phase
separation limit remains, in strong coupling, in the region
U2 < −U1/2, the classical limit configurations giving rise to
the CLL phases and comprised in between the lines U2 =
−U1/2 and U2 = U1/2 simply turn into the periodic CDW2

arrangement with unit cell (• • ◦◦). Indeed, the filling con-
dition implies NA = L/4 and NB = 0, respectively, NC = 0.
In the same way, when U2 < U1/2, the conditions ND = L/2
and NC = 0 indicate the appearance of the repulsive-NN-
interaction-induced CDW configuration with unit cell (•◦).
This suggests therefore the survival of such a CDW1 phase,
known to arise on the XXZ line, as far as the condition
U2/U1 < 1/2 is fulfilled.

B. Bosonization treatment

We complete the analysis of the strong-coupling limit of
the n = 1

2 phase diagram with a weak coupling bosonization
treatment of the Hamiltonian Eq. (1). The approach is indeed
relevant mostly for n = 1

2 , where commensurability effects al-
low for the emergence of an Umklapp-induced term which in
bosonization language reads as Hg = g

∫
dx cos [4φ(x)], with

the effective coupling g ∝ U2 − U1. The effective field theory
of the low-energy sector then takes the form of a sine-Gordon
theory. At first order, the renormalization group (RG) flow
equation that governs the evolution of the coupling g reads
as [28]

dg

dl
= (2 − 4K )g, (23)

which implies that, when K < 1/2, the interaction term drives
the system toward a nonliquid behavior.

The latter instability is classified by introducing two order
parameters, namely, the local density fluctuations

δnj =
〈
n̂ j − 1

2

〉
∼

〈
1

π
∂xφ + (−1)

x
a

πa
cos [2φ(x)]

〉
, (24)

pointing toward CDW formation, and the local BO parameter

Bj = (−1) j〈ĉ†
j ĉ j+1 + H.c.〉 ∼

〈
cos

[
2φ(x) − π

2

]〉
, (25)

associated with the emergence of dimerization. While the
local density remains uniform, the local kinetic energy breaks
translational invariance with alternating strong and weak
bonds. When Hg is a relevant perturbation, the qualitative
features of the resulting collective behavior of the system is
inferred by considering the limit |g| → ∞, where the cosine
term strongly locks the field φ(x) into the value that minimizes
the interaction term.

If U1 > U2, then g < 0 and the field φ gets pinned at
φn = nπ/2 with some integer n. As a result, Bj ≈ 0 and
δn j ∝ (−1) j , thus capturing the emergence of the gapped
CDW1 phase with unit cell (•◦) that corresponds to the U2 = 0
antiferromagnetic phase of the XXZ model.

If U1 < U2, then one has g > 0 and the field φ gets pinned
around the value φn = π

4 + π
2 n for some integer n. Conse-

quently, Bj 
= 0 and δn j ≈ 0, hence providing evidence for
a gapped dimerized phase with uniform density profile called
BO phase, which is interpreted as the weak coupling precursor
of the CDW2 phase that has the unit cell (• • ◦◦) and whose
emergence has been predicted at strong coupling in the limit
of dominant NNN interactions.

C. BO and CDW-II

To benchmark the reliability of the weak-coupling
bosonization predictions, we follow the BO parameter and
the CDW-II order parameter along the U1 = 0 axis. Our naive
expectation consists in the observation of a first transition to
a BO phase, in which the charge is localized on the bond
connecting two neighboring sites, followed by a successive
transition to a CDW2 with unit cell (• • ◦◦), as predicted by
the classical limit analysis carried out at n = 1

2 .
The transition to the BO phase is probed by performing

a finite-size scaling analysis on the BO parameter as shown
in Fig. 17(a). The result confirms the sudden appearance of
a nonzero value of the BO order parameter, supporting the
analytical predictions. Furthermore, the BO phase is discrim-
inated from the CDW2 phase by means of the CDW2 order
parameter, which acquires a finite value in the thermodynamic
limit for U2 greater than the BO phase critical point, as demon-
strated in Fig. 17(b). It is worth noticing that, even though in
the classical limit of the CDW2 phase the BO parameter is
expected to vanish, the latter still survives close to the BO-to-
CDW phase transition due to residual kinetic fluctuations.

In the end, we are naturally lead to argue that, along all
directions in between the lines U2 = −U1/2 and U2 = U1/2
(having the CDW2 configuration as the classical limit), an
intermediate, stripe-shaped BO phase region intervenes be-
tween the LL phase and the CDW2 phase. It has a width which
decreases as the abrupt classical limit transition between the
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FIG. 17. DMRG results for n = 1
2 along the U1 = 0 line.

(a) Finite-size scaling of the BO parameter (13). A power law fit
of the form a0 + a1L−a2 is used. The results show the onset of the
BO regime, given that for U2 = 2.2 the BO parameter extrapolates
to a finite nonzero value of an order of magnitude larger than the ex-
trapolated values for smaller U2. (b) Finite-size scaling of the CDW
order parameter Eq. (14). The result demonstrates that the CDW
order parameter scales to zero for U2 < 2.6 but acquires a finite value
for U2 > 2.6. Thus, there exists an intervening BO phase.

CDW2 and the other classical limit configurations (CDW1 and
phase separation) is approached.

D. Phase separation

Last, we focus for n = 1
2 on the vicinity of the phase

separation transition line because we expect it to favor pairing
fluctuations in the LL regime. First, as we have seen, phase
separation occurs whatever the density for U1 = −2.0 on the
U2 = 0 XXZ line. By adding a positive U2, we expect that the
transition line is shifted to a more negative U1 as the repulsive
NNN interaction term increases. Indeed, its effect will con-
sist in the destabilization of the phase-separated macroscopic
cluster by means of an additional O(N ) contribution to its
mean energy.

A first indication of the correctness of our interpretation of
the behavior of the critical line separating the LL phase from
the phase-separated one is obtained by looking at the behavior
of the Luttinger parameter K . As known from the Bethe ansatz
solution of the XXZ model, K diverges close to the isotropic

Heisenberg point according to the following equation [60]:

K = π

2(π − arccos �)
, (26)

where � is the anisotropy parameter of the XXZ chain. Hence,
we decide to fit the Luttinger parameter from the pair corre-
lator decay in the region of interest, expecting its divergent
behavior to mark the approximate location of the transition.
The result is presented in Fig. 18(a), where the largest K
values are achieved approximately in correspondence of the
entropy peak.

Indeed, monitoring the bulk entropy magnitude as shown in
Fig. 18(b) nicely shows the limits of the LL regime between
the low-entropy gapped phases and phase-separated phase. It
is clearly bending toward smaller U1 values as U2 increases,
is signaled by a bump in the bulk entropy value, consistently
with the behavior of the entanglement entropy in Heisenberg-
like models predicted in Ref. [61].

Since a large value of the Luttinger parameter is associated
to an enhancement of pairing fluctuations, we finally present
in Fig. 18(c) the pair kinetic energy, which gets significantly
larger when approaching the transition to phase separation,
consistently with the previous findings.

VII. CONCLUSIONS

The present work proposes a comprehensive description
of the ground-state phase diagram of Hamiltonian Eq. (1)
as a function of the density, highlighting the emergence of
exotic phases departing from the LL paradigm. By means of
entropic, spectral, and correlation properties, their most no-
table signatures have been unveiled and benchmarked against
the results of a classical-limit analysis and of effective field-
theory treatments.

The topology of the phase diagram in the attractive U1 < 0
region is observed to exhibit a strong robustness against the
variation of density for n < 1

2 . It features phase separation
and, more importantly, a CLL of pairs, separated from the
LL phase by a c = 3

2 critical point and characterized in a
phenomenological way (i) by the opening of a gap in the
single-particle excitations and (ii) by anomalous peaks in the
Fourier spectrum of various observables.

FIG. 18. DMRG results for n = 1
2 for attractive U1. (a) Luttinger parameter K obtained from fitting the pair correlation functions to a

power law. It displays large values close to the PS phase, as it is known on the XXZ line showing that pair correlations are favored. [values
inside the phase-separated region are meaningless and shown to visually identify the transition line]. (b) Entanglement entropy (7) of half the
system displaying the emergence of a characteristic peak separating the LL phase from phase separation and the appearance of the classical
line U2 = −U1/2 as the threshold above which phase separation turns into the (• • ◦◦) CDW2 configuration in the infinite coupling limit.
(c) Pair kinetic energy providing evidence for the enhancement of pairing fluctuations close to the transition line between the LL phase and
phase separation, as expected from the divergent behavior of the Luttinger parameter in the corresponding phase diagram region.
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The phenomenology in the repulsive U1 > 0 regime has
been shown to exhibit a much richer behavior. First, as shown
by finite-size scaling analyses on the central charge and on
the BO parameter Eq. (13), the LL phase appears to be the
only zero-temperature phase of the model when the density
satisfies n < 1

3 . However, for n = 1
3 , the interplay between

the interaction range and the density induces a transition
from the LL phase to a gapped, strong-coupling CDW phase
whose classical limit configuration exhibits one particle every
three sites. For this phase, we have presented the standard
characteristic signatures of a gapped crystalline phase. In the
density range n ∈ ( 1

3 , 1
2 ), the fine-tuning of the density which

gives rise to the CDW phase is removed and one observes a
transition to a frustration-induced CLL phase. We have dis-
criminated the latter from its attractive regime counterpart by
means of the peak location in the density-fluctuation Fourier
series and in the structure factor, which in turn we have related
to the structure of the corresponding classical-limit ground
state. On top of the above considerations, we have predicted
and characterized the phase-separated regime emerging at
large U2 and small U1 in the density range [ 1

3 , 1
2 ), thereby

theoretically justifying the numerically probed coexistence
of liquid and CDW2 orders in the two macroscopic phase
domains of the system.

As expected, when the model is studied at half-filling,
both attractive and repulsive sides of the phase diagram are

significantly modified. In particular, at strong coupling, the
aforementioned liquid phases are replaced by CDW phases
whose structure is dictated by the dominant interaction term
inducing them. Additionally, we predicted by means of
bosonization calculations and confirmed numerically the ap-
pearance of a BO phase at intermediate coupling, featuring
localization of the fermionic particles on the bond connecting
neighboring sites rather than on a single site, as in the case of
the strong-coupling CDW counterparts.

Put in a broader perspective, we expect this work to guide
the search for Majorana fermions in inhomogenous fermionic
systems composed of paired and normal fluids. Additionally,
it could help revealing paired phases in upcoming experiments
with Rydberg atoms, where long-range interactions cannot be
neglected. The large tunability in terms of excitation densities
and interaction strength of those setups makes it reasonable
that several regimes of the model studied in this article could
be experimentally accessed.
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