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An array of ultracold neutral atoms held in optical microtraps is a promising platform for quantum compu-
tation. One of the major bottlenecks of this platform is the weak coupling strength between adjacent atoms,
which limits the speed of two-qubit gates. Here, we present a method to perform a fast universal v/ SWAP gate
with fermionic atoms that interact through a short-range potential. The basic idea of the gate is to release the
atoms into a harmonic potential positioned in between the two atoms. By properly tailoring the interaction
parameter, the collision process between the atoms generates entanglement and yields the desired gate. We
prove analytically that in the limit of broad atomic wave packets, the fidelity of the gate approaches unity.
We demonstrate numerically that with typical experimental parameters, our gate can operate on a microsecond
timescale and achieves a fidelity higher than 0.998. Moreover, the gate duration is independent of the initial
distance between the atoms. A gate with such features is an important milestone towards all-to-all connectivity
and fault tolerance in quantum computation with neutral atoms.
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I. INTRODUCTION

Quantum mechanics poses a computational challenge: The
dimension of the Hilbert space grows exponentially with the
system size. As a result, a classical simulation of a many-body
quantum system quickly becomes intractable as the number
of particles increases. The solution to this problem, as first
pointed out by Feynman [1], is to use a quantum computa-
tional machine (“quantum computer”) instead of a classical
one [2]. In addition to efficient simulation of quantum sys-
tems, a quantum computer will allow polynomial solutions
to complex mathematical problems such as factoring and
searching [3,4]. The effort to build a quantum computer has
been ongoing for more than 25 years [5]. Many physical
systems have been suggested as carriers of quantum informa-
tion, including superconducting circuits [6—10], trapped ions
[11-18], ultracold atoms [19-23], photons [24-27], defects
in solids [28-30], and quantum dots [31-34]. The prevalent
paradigm for quantum computation starts with initialization
of the quantum bits (“qubits”), application of a series of one-
and two-qubit gates from a small set of universal gates, and
finally, a measurement of the qubits’ final state [35]. It is
essential that the fidelity of the gates is high enough to achieve
fault tolerance through quantum error correction [3]. There
are advantages and disadvantages to each platform in different
aspects, but at this point of time, none is fully scalable.

A promising approach to employing ultracold neutral
atoms for quantum computation is based on holding them
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one by one in far-off-resonance optical microtraps (“opti-
cal tweezers”) [36-51]. These experiments are performed in
ultra-high-vacuum chambers, where the atoms can be very ef-
ficiently isolated from the environment. The optical tweezers’
parameters, such as position, width, and depth, can be dynam-
ically modified by controlling the electro-optical devices that
generate the beams. Quantum information is usually encoded
in internal states of the atoms. Two-qubit gates exploit the in-
teraction between the atoms, whose range can be very short, in
the case of van der Waals interaction, or considerably longer,
in the case of dipole-dipole interaction. The strength of the
interaction can be tuned via a Feshbach resonance [52], in the
former case, or by controlling the angle or distance between
the atoms, in the latter case [53,54]. A large dipole moment
exists for specific ground-state atoms [53], molecules [55],
and atoms excited to a large principal quantum number (Ry-
dberg atoms) [20,54,56-61]. The current maximum fidelity
of a two-qubit gate with Rydberg atoms is around 0.97 [50].
However, Rydberg atoms have a relatively short lifetime, and
they are sensitive to stray electric fields.

An alternative approach is to work with ground-state
atoms, prepared in the lowest vibrational state of the tweezers
[40,62]. Entanglement between the atoms can be generated
and translated into quantum logic through cold controlled col-
lisions [63—-68]. In particular, a universal two-qubit ~/SWAP
gate can be implemented by allowing the atoms to tunnel
between the two traps and exploiting the short-range interac-
tion [69,70]. The operation of this gate is based on exchange
blockade manifested through the symmetry of the two parti-
cles’ wave function and the on-site interaction. The duration
of the gate depends on the tunneling rate, which in turn is set
by the distance between the tweezers. By moving the traps
closer or farther away, it is possible to effectively switch “on”
or “off” the tunneling. To maintain high fidelity for the gate,
this movement should not excite the atoms. Most naturally,
this is accomplished by following an adiabatic motion [69].
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However, this implies a relatively slow gate, which eventually
compromises the overall fidelity of the whole calculation.

Here, we present a different approach to perform a fast and
robust universal +SWAP gate with ground-state fermionic
atoms that interact through a tunable contactlike potential.
The basic idea of our gate is to turn off the tweezers and
turn on an auxiliary harmonic potential centered midway
between the two atoms. In this potential, the atomic wave
packets can be described as squeezed coherent states. By
tailoring the s-wave scattering length, the scattering pro-
cess between the atoms gives rise to the desired relative
phase shift between the even and odd components compos-
ing the two-particle wave function. The gate duration is set
by the harmonic trap period. In principle, it can be as short
as the experimental resources allow. We demonstrate numer-
ically that using realistic parameters, a gate operating at a
fidelity of 0.998 can be achieved in approximately 20 us. In
fact, the gate duration can be further reduced, limited only
by the available optical power in the beam that generates the
central harmonic potential. We also show that using a shortcut
to adiabaticity driving, it is possible to reach the same level
of performance with a time-dependent harmonic potential.
Our approach is general and can easily be applied in current
experiments. Importantly, it allows for more than 10° gate op-
erations during an experimentally achievable coherence time
of atoms in a tweezers array [71].

The structure of this paper is as follows: In Sec. IT we define
the model and provide a general solution for the adiabatic
gate. This solution establishes the linear scaling between the
tunneling time and the adiabatic gate duration. In Sec. III we
analyze the new gate. We solve analytically the two-particle
dynamics and prove that the fidelity of the gate approaches
unity as the squeezing parameter of the atomic wave pack-
ets in the central harmonic trap increases. In Sec. IV we
demonstrate numerically the operation of the gate with re-
alistic experimental parameters. In Sec. V we introduce a
scale-invariant driving of the harmonic trap to achieve two
goals: (1) allow for a continuous initiation and termination
of the harmonic trap, and (2) further improve the fidelity by
increasing the squeezing parameter. We conclude in Sec. VI.

II. AN ADIABATIC +SWAP GATE

Before explaining the fast +/SWAP gate, it is instructive
to examine first the adiabatic one. We consider two tightly
focused Gaussian optical traps whose parameters, such as
position or trap depth, can be dynamically controlled. A single
fermionic atom is prepared in the ground vibrational state
of each trap. There are several internal states to each atom,
but we restrict ourselves here to two that constitute the qubit
states, denoted by || ) and [1). The distance between the traps
isd.

In the adiabatic gate, the tweezers are always present.
Hence we employ a tight-binding appr0x1mat10n and write
the Hamiltonian as H = J(u iy + u2u1 —|—d d2 —|—d dl) +
U(th' ﬁld;rdl + 2u2u2d2 dz), where J is the tunneling energy,
U is the on-site particle-particle interaction energy, and L}j
(c?f) is the fermionic creation operator for a particle in trap

i at a state |1) (]})). The vV/SWAP gate unitary operator is

diagonal in the basis of the singlet, L(ﬁTaAf T uzd 17)|vac), and
+ ajd] )|vac) ala|vac), di d]|vac)},
and 1, respectlvely. For a given tunnel-

triplet states, {%(ﬁ;ﬁ;

with eigenvalues e"/2

ing rate, J = J,, a proper choice of the interaction U, = 7§Jg
yields the required gate after a time fgye = %EEJ . !. Owing to

symmetry, only the singlet state evolves under A into a state
with double occupancy in each of the traps, which acquires
due to the on-site interaction term an additional phase relative
to the triplet states.

In the adiabatic gate, the traps are initially far apart such
that J is essentially zero, then are slowly brought closer to
initiate the tunneling, and finally are separated again to stop
the gate. We simulated numerically such a motion with two
fermionic °Li atoms (see also Sec. IV). We use realistic

experimental parameters: The two Gaussian optical poten-
22

tials, —Vpe™ +2, have a waist 0 = 700 nm and a depth of
Vo = 20.38 uK x kg, where kp is the Boltzmann constant.
The traps are initially separated by d(r = 0) = 2.329 um,
a distance at which the tunneling is completely negligible.
Using a smooth cosine curve for d(t), we find that in order
to achieve a fidelity higher than 0.99, the duration of the
gate should be longer than ~320 us. This result is consis-
tent with fgye = %ghfg_ 1'=284.9 us, which we calculate
using the stationary solution given above and using the time-
averaged value along the motion J, = tg“‘e.l t"dr'.

we show below, this adiabatic time is more than an order of
magnitude larger than what can be achieved using our fast
gate.

III. FAST «/SWAP GATE

In Fig. 1 we plot the atomic wave packets’ probability
distributions during our fast gate. To shorten the gate time, we
forgo the requirement that each atom will be localized in one
of the traps during the operation of the gate. Our gate starts
at t = 0 by switching off the two microtraps and concurrently
switching on a harmonic trap centered midway between the
traps. After half the harmonic trap period, 7 /w, the gate
ends by switching off the harmonic trap and turning on the
two microtraps at their original location. Without interactions
between the atoms, this realizes a SWAP gate, which by itself
is a useful building block in a quantum computation platform.
With interactions, however, the two atoms scatter on each
other as they collide in the harmonic trap. With a proper
choice of the interaction strength, a /2 phase shift devel-
ops between the even and odd components of the two-body
wave function. This transforms the gate into an entangling

SWAP gate. Notice that unlike Ref. [65], we assume that all
external potentials are independent of the atomic spin. This
is important for two reasons. First, a protocol which involves
spin-dependent spatial separation of the atomic wave packets
is substantially more susceptible to decoherence. In our gate,
the internal spin only affects the accumulated phase, which
is crucial to reach very high fidelity. Second, spin-dependent
potentials are harder to implement experimentally without
introducing larger heating.
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FIG. 1. Fast +/SWAP two-qubit gate. Ats < 0, two atoms start at
two separate optical microtraps. Here, we consider the case where the
particles have opposite spins, 1 (blue) and J (red), initially centered
around x = —5 = —1.165 umand x = 5 = 1.165 um, respectively.
We depict the single-particle probability distributions of each atom,
each time tracing over the other atom. Atz = 0 the two microtraps
are shut off, and an auxiliary harmonic trap is turned on (black
line). The atomic wave packets start to expand and move towards
each other because of the harmonic restoring force. They collide
around f,,./2 near the center of the trap. The interaction between
them during this collision entangles them. The gate ends after half
of the harmonic trap period fgye = 7 /@y, which is 21.84 s in this
calculation. Then, the harmonic trap shuts off, and the microtraps are
turned on. At that time, there is a probability of 0.5 to find each spin
in any of the two traps, as expected in a +/SWAP gate.

Leaving the tight-binding approximation, the two-particle
system is described by the Hamiltonian [72]

H(t) = Z /dX (X)|:__V2 + Vexe(X, t)i|as(x)
se{t,d}

+ f / dxdx' Vi (x — )2} (0)a] (x)a; (x)ay (%),
(D

where the index s € {1, |} denotes the spin state and the
operators & and &, are creation and annihilation oper-
ators, satisfying the fermionic anticommutation relations
{a,(x), &l (x)} = 8 8(x — x'), with 8¢ and 8(x) being the
Kronecker and Dirac delta functions, respectively. The single-
body external potential, Ve (X, t), is initially composed of the
two Gaussian optical traps, but at# = 0 they are replaced with
the harmonic potential %k0x2. The short-range contact interac-
tion can be approximated as Viy (X — X') = F (B)3.ee(Ix — X']),
where §y., is a regularized delta-like potential [72]. The cou-
pling constant F(B) can be tuned via the magnetic field B
near an s-wave Feshbach resonance [52]. At low temperatures,
scattering to higher partial waves is negligible. Moreover, due
to the fermionic symmetry, only atoms with opposite spins
interact through the s-wave scattering process.

The two-particle wave function can be written as

WOl = Y [ dxidsapiotn s nal e i),

s.s'e{t, 1}
@)

where |vac) is the vacuum state with no atoms. The dynamics
is given by the two-particle Schrodinger equation

L OV n? 1
zha—: :[ 5 —(Vi +V.)+ Eko(xl2 + x%)
+(1 = 87 )F (B)Sreg (x: —m} Ve )

Changing coordinates to X = )&[5‘2 and x = “22 [73], this
equation becomes

. awﬂ' h2 2 2 2 2
h—" =|——(Vi +V k X
ih— [ 2m( + )+ X? +x)
+(1 - 5§’)V5reg(x)i| %su (4)
with y = JLEF(B).

The initial condition of the gate is one atom in each
Gaussian trap. If the traps are far enough, the initial state is
approximately a product state of the form Y.y (xl,xg, 0) =
o1 — o + %), where ¢(x) = ZL— exp (—35;). This
initial condition remains a product state also in the x, X
coordinates: ¥ ¢(x, X,0) = p(x — d/ﬂ)(p(X). Since the
Hamiltonian is a sum of two commuting operators, op-
erating separately on x and X, the solution at all times
remains separable in the coordinates x, X, i.e., Y, ¢ (x, X, 1) =
Yo(X, )1 (x, t). The solution is determined by the equations

ih W(X z‘)—_ 2V2~|—1kX2 I//(X t) (5)
and

9 R’ 1
jh— 1) = | ——V? 4+ —kox?
ih=- ¥ (x, 1) [ o Va T Skox

+(1- 8;/)V5reg(x):|1//1(x,l). (6)

The decomposition of the solution to two independent
equations in lower dimensions greatly simplifies the anal-
ysis of the gate. Furthermore, at the end of the gate, at

toate = T /wo With wg = /-2, the wave function ¥o(X, tga)
is identical to ¥o(X, t = 0) up to a global phase, independent
of the atomic spins. Thus the key to achieve a +/SWAP gate
is that ¥y (x,0) = A Y (x, tgale) with ¢¢¢ +r7/2= ¢TT =
¢, namely, that the wave function yr; will return to itself at
the end of the gate, up to a constant global phase, plus a phase
of /2 in the case of opposite spins. As we show below, this
can done with a proper choice of F'(B).

For y = 0, the solutions of Eq. (6) are displaced squeezed
coherent states [74-78]:

1/2
A(t ; _ et
Q) e EG)(I)e w(t)?

N

p+(x,1) = < EPOX/R 7y
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with

A(t)

V Jcosh(2r) + smh(2r) coswot )’

1+ tanh(r)e’z"““’
w(tY = — —
mwy | 1 — tanh(r)e—%@ot

o100 _ 1 + tanh(r)et2ieot /2e_lw0t
1 + tanh(r)e—2iwo! ’
(1) d cos(wot)
Xe = 7= wol ),
N
. mwod .
Pe(t) = mx.(t) = — ﬁ sin(wot ). ®)

The squeezing parameter r is determined by the initial condi-
tion w(0) = wy,

g}
= In .

\/E h / mawo
Similarly, the solution of (X, ?) is a squeezed wave packet
starting at the origin with no initial momentum, satisfying
x.(t) =0and p.(t) = 0.

The challenge now is to solve for ¥ (x, t) in the interacting
case, y (t) # 0. The displaced squeezed wave packets ¢ (x, t)
collide with a delta potential at the origin. Thus the solution
to Eq. (6) can be written as a scattering wave function,

@i (x, 1)+ Rp_(x,t) for x >0

v 1) = {T<p+(x, 1) for x < 0. (19)

The coefficients R and T are found by imposing the necessary
boundary conditions at x = 0:
(1) Continuity

#4+(0,7) + Rp_(0,7) = T (0,1). (11)
(2) Momentum conservation

oy, |

“om ax & =y @O0, 1). 12)

x=0"

From the continuity condition and using Eq. (7), we obtain
1 + R = T. To realize a +/SWAP gate, we require R/T = =i,
which yields 7 = \/Li exp(=£in /4). Using Eq. (7), we find the
x derivative of the solution,

D petet) = [£ipry =22 EXD o . a3
ax(pi xa - hpé w(t)2 (pi ‘x’ N
Finally, we use Eq. (12) to find y (),

(t) = ih_z[i (1) — 2x‘_(t)i|
Vi = lm hpc w(t)?
a)ofld

=7 7 [sin(a)ol)—iCOS(wof)

" — tanh(r)e 0!

el tanh(r)e=ioot |’
(14)

Since y(r) must be a real number, it follows that we

must choose a squeezing parameter such that tanh(r) = 1.
Equation (14) then reads

v (1) = Fv2wohd sin(wot ). (15)

We therefore reach the conclusion that for tanh(r) = 1, tun-
ing the interactions according to Eq. (15) (i.e., by changing
the applied magnetic field) yields a +/SWAP gate with a
perfect fidelity. However, tanh(r) = 1 is nonphysical, since
it requires an initial Gaussian wave packet with an infinite
width. Nonetheless, as shown below, the fidelity increases
rapidly towards unity as tanh(r) increases towards 1. Since the
squeezing parameter is set by the ratio of the initial width of
the Gaussian wave packet to the oscillator length [see Eq. (9)],
increasing the trapping frequency of the harmonic potential
both shortens the gate duration and increases its fidelity.
Several pragmatic comments are in place at this point.
First, a true harmonic trap is unbounded and therefore non-
physical. However, in experiments it can be approximated by
a Gaussian potential, —Voe’zxz/ "2, where near its minimum,

the effective harmonic frequency is given by wy = ,/ % [79].

To be a good approximation, we have to require that this
Gaussian potential will be broader than the distance between
the traps, preferably satisfying o > d. To achieve the highest
fidelity, we want to increase wo and therefore deepen the
Gaussian trap. Hence the physical resources (i.e., available
laser power) set a limit for the gate fidelity.

Second, the gate time is determined by the period of the
harmonic trap and is independent of the interaction. This
simplifies considerably the optimization of the gate. A scan of
a single parameter, the prefactor in Eq. (15), is enough to opti-
mize the gate with a finite r. Moreover, the significant part of
the collision between the atomic wave packets happens over a

wltgae/2) _  2JR 1 —tanh(r)
Xe(tgae/2) dm'/2w3/2 I+tanh(r) "

Since the value of y (¢) is most important during this interval,
we find numerically that the gate fidelities achieved with a
constant interaction parameter are only slightly smaller than
those obtained with a time-dependent one.

short time interval of the order

IV. NUMERICAL SIMULATIONS

To demonstrate our gate and study its performance in re-
alistic conditions, we solve numerically the time-dependent
two-particle Schrodinger equation (3) using the beam propa-
gation method (BPM) [80]. The BPM is an efficient numerical
method that utilizes an operator splitting; at each time step
the evolution of the wave function due to the kinetic term is
computed in Fourier space, and then the evolution due to the
time-dependent potential term is computed in real space. The
simulations were done on a square grid of size 4.8 x 4.8 um,
with 576 divisions in each direction. With this choice, the
two-particle wave function practically vanishes outside the
grid, and the numerical accuracy is approximately 2 x 1073.

The simulations are done with the same initial con-
ditions as in the adiabatic case (see Sec. II), namely,
d(t =0)=2.329 um, and the waist and depth of the
tweezers are 700 nm and 20.38 uK x kg, respectively.
The Gaussian potential that approximates the central har-
monic trap has a waist of o = 11.857 um, consider-
ably larger than the distance between the atomic wave
packets. Its depth is chosen to be U/kg ~ 525 uK,
such that the harmonic oscillation frequency near the center
of the Gaussian potential is wy = 2w x 22 898 Hz. This yields
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FIG. 2. Numerical simulation of a fast v/ SWAP gate between two atoms with opposite spins. (a)—(g) depict the two-particle probability
distribution, [y} (X1, X2, 1)|?, for different times during the operation of the gate, with x; and x, being the horizontal and vertical axes,
respectively. The gate duration is #g. = 21.84 us. (a) Initially, the two-particle wave function is the product of the two atoms’ ground-state
solutions (one centered around x; = —1.1645 um and the other centered at x, = 1.1645 um). (b) As time progresses, the distribution initially
broadens and shifts towards the center—a direct manifestation of the displaced squeezed wave-packet dynamics given in Eq. (7). (c) and
(d) The fringes that gradually develop are the result of the interference between the incident and reflected wave packets of Eq. (10). The
symmetry of the interference pattern reflects the fact that the scattering from the delta-like potential occurs only in the x = *22 coordinate;
see Eq. (6). (f) Towards the end of the gate, the wave packets return to their initial size and location. (g) The two-particle distribution at the
final time is clearly entangled. (h) The phase of the wave function at #g, with color bar in units of 7 radians. The relative 7 /2 phase between

the two wave packets shows that indeed it is a /SWAP gate.

a gate time of gy A 21.84 us, which is a factor of 15 faster
than the adiabatic gate with the same initial conditions. The
gate time can be further reduced if U is increased, limited
only by the available laser power. All the parameters used
in the simulations are attainable in the current generation of
experiments. Loading of the trap can be done directly from
a magneto-optical trap or a degenerate quantum gas. Work-
ing with fermions, it is possible to prepare a single atom
at the ground state by starting with a deep microtrap and
then reducing its depth until it supports only a single state
[40,42,81]. Alternatively, all atoms but one can be removed by
light-assisted collisions [82,83], followed by Raman sideband
cooling [62]. Submicrometer traps are realized with a high-
numerical-aperture objective. The position of the trap can be
accurately controlled using an acousto-optical deflector or a
spatial light modulator. To generate larger beams (e.g., for the
auxiliary trap), the diameter of the beam entering the objective
can be reduced.

The result of a simulation starting with two atoms with
opposite spins is shown in Fig. 2. Figures 2(a)-2(g) de-
pict the two-particle wave-function probability distribution,
[y (x1, X2, t)|?, for different times during the gate’s opera-
tion, with x; and x, being the horizontal and vertical axes,
respectively. Initially, the two-particle wave function is the
product of the two atoms’ ground-state solutions (one cen-
tered around x; = —1.1645 pum and the other centered at x, =
1.1645 pum). In Fig. 2(b), which corresponds to fge/4, the
distribution shifts towards the center of the large Gaussian po-

tential and broadens—a direct manifestation of the displaced
squeezed wave-packet dynamics given in Eq. (7). Figure 2(c)
already shows a clear sign of the delta-potential scattering
process, as described by Eq. (10). The fringes are the result
of the interference between the incident and reflected wave
packets. The transmitted wave packets do not exhibit similar
interference patterns, as can be seen in Figs. 2(d) and 2(e). The
symmetry of the interference pattern is well understood since
the scattering event affects only the antisymmetric coordinate
X = *‘% In the last stage of the gate, in Figs. 2(f) and 2(g),
the wave packets return to their initial size and location. The
two-particle distribution at the final time is clearly nonsep-
arable. To completely characterize the quantum state at the
end of the gate, we plot in Fig. 2(h) the phase of the wave
function. As expected for a /SWAP gate, there is a relative
phase of 7 /2 between the two wave packets located at x; =
—1.1645 um and x, = 1.1645 um and at x; = 1.1645 um
and x, = —1.1645 um.

To quantify the performance of the gate, we compute the
lower bound on the gate fidelity over all possible initial spin
superpositions. Mathematically, the operation we actually do
is denoted by the propagator U (fga, 0), and the fidelity is then

defined as F = minygepy,y |(§0ss’|Uj/mU (tgater 0o
where @y is the initial state of the two atoms in the tweez-
ers and U /gyzp is the propagator of an ideal vSWAP gate.
With this definition, we obtain a gate fidelity of 7 = 0.9979.
This fidelity is obtained when the spin states are pointing in
opposite directions (i.e., s # s"). For parallel spins, the fidelity
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tanh(r)
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FIG. 3. The improvement in the fidelity as the squeezing pa-
rameter, tanh(r), increases. The squeezing parameter is varied by
changing the initial width of the atomic wave packets, in accordance
with Eq. (9). The central harmonic potential is unchanged in these
calculations. As tanh(r) increases, the fidelity converges rapidly to-
wards unity. The dashed line marks the working conditions of the
calculation shown in Fig. 2.

is even higher. To test the sensitivity of the gate working
point, we run the simulation with parameters slightly modified
relative to the values found during optimization. We find that
changes of £2% in the interaction parameter, the trap depth,
and the distance between the traps reduce the fidelity by less
than 2 x 107*, 2 x 1073, and 0.5 x 107>, respectively. This
attests to the robustness of our gate scheme. Deviations of 1%
in the gate duration reduce the fidelity by less than 8 x 1073,
However, the experimental accuracy in this parameter is ex-
pected to be much better than that.

We now investigate numerically the convergence of the
fidelity to unity as tanh(r) — 1. To this end, we repeat the
simulations and vary the initial width of the atomic wave
packets—taking as initial conditions Gaussian wave packets
with increased (or lowered) widths matching increased (or
lowered) squeezing parameters tanh(r). According to Eq. (9),
this corresponds to changing the squeezing parameters. In
each calculation, we optimize the interaction to yield the high-
est fidelity; namely, we scan the prefactor of the sine function
in Eq. (15). The fidelity versus tanh(#) is shown in Fig. 3.
Its improvement as tanh(r) increases is very rapid. We also
mark the conditions of the calculation done in Fig. 2 as a
dashed line. Note that as tanh(r) increases, the width of the
wave packets at the collision time becomes smaller. In order
to achieve the required numerical accuracy, it is necessary to
increase substantially the number of spatial divisions. This
limits the maximal value of tanh(r) we can simulate to around
—0.3, where the fidelity reaches F ~ 0.998.

V. A FAST GATE WITH SCALE-INVARIANT DRIVING

In this section, we generalize our fast-gate scheme to
include a time-varying harmonic trap. There are two main
advantages to this extension: Firstly, it allows continuous
time-dependent control for the harmonic trap, as required in
every realistic implementation. Secondly, the gradual increase
of harmonic trap depth improves the fidelity of the gate since
initially it widens the atoms’ wave packets, hence effectively
increasing the squeezing parameter.

Since our ultimate goal is to complete the gate in a short
duration, there is a risk that fast nonadiabatic changes in the
harmonic confinement will lead to unwanted excitations that
will eventually harm the gate fidelity. To avoid this prob-
lem, we adopt a scale-invariant driving strategy, which is a
well-known technique in the field of shortcuts to adiabaticity
(STAs) [84-88].

Lewis and Riesenfeld noted that the solutions of the
Schrodinger equation for a time-dependent Hamiltonian can
be written as superpositions of eigenstates of a dynamical
invariant [84]. Dhara and Lawande [86], and Lewis and Leach
[85], showed that Hamiltonians of the form

2
H(@t) = —;—mVQ + %w(t)zxz +0@)"VO@) k], (16)

where 0(¢) is a time-dependent scaling factor and V (x) is an
arbitrary potential, have a quadratic-in-momentum invariant,

2
L) = 1 i00)Y — mb)x]?
2m

1 2 -2 —1

for some constant value ko, provided that w(¢)? and 0(¢) sat-
isfy the Ermakov condition,

ko
mo()’
Any wave function ¥ (¢) which solves the Schrodinger equa-

tion with H(¢) can be written in terms of eigenvectors ¥, of
the invariant (17),

6(1) + w(1)*0(t) =

(18)

Y0 =Y e OP,(x, 1), (19)
where ¢, are constant coefficients and &, are
the Lewis-Riesenfeld phases, given by §,(¢) =

Ly dt' (W ())ind — H(t)|W,(t) [84]. Importantly, (1)
have the form [86]

Ua(x.1) = 50 0()PPh 100Xl (20)

where D is the spatial dimension and ¢, is the solution of the
stationary Schrodinger equation at ¢+ = 0 with an eigenvalue
E,. The Lewis-Riesenfeld phases are then calculated to be
Eu(t) = =L [] ﬁds.

It follows that for every solution ¢ (x, t) of the Schrédinger
equation with the stationary Hamiltonian

n? 92
" 2mox?
we can find a solution ¥ (x, t) for the time-dependent Hamil-
tonian (16) that has the form

1
Hy = + 5kox2 + V), (1)

0(1)x2
2h60(t)

1 , _
Vx, 1) = Wexp <1m )¢[9(r) X, ()], (22)

with t(¢) = fot Flv)zds. We see, therefore, that the solutions
with a scale-invariant driving are related to the solutions of
the stationary Hamiltonian by a rescaling of the time, an ad-

ditional position-dependent phase, and a normalization factor.
Note that in the stationary limit, 6(¢) = 1, the rescaled time
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is identical to the regular time, t(¢#) = ¢, and the solution of
Eq. (22) reduces to the solution of the stationary Hamiltonian.

We now apply these results to our case. As explained
before, the problem naturally decomposes into single-particle
equations for the coordinates x and X, given in Egs. (5)
and (6). We consider first the noninteracting case (y = 0),
in which case the dynamics for both coordinates is the same.
For our gate, we only need the central harmonic confinement;
hence we set V = 0. Combining the results of Egs. (7) and
(22), we obtain the solution to the one-dimensional time-
dependent Schrodinger equation with the Hamiltonian H(r) =

— LV 4 2o()x,
L i (A[r(r)])”2

P+(x,1) =

0(1)'/? Jr
—jerwl, oot DT OI0@) 3/
X e 2 wle P pe (23)

Notice that while 6(¢) does not appear explicitly in the Hamil-
tonian, it is related to w(#) through the Ermakov equation (18).
Importantly, since the solution of Eq. (23) has to identify with
the ground state of the tweezers at the beginning and ending of
the gate, the position-dependent phase has to be zero at these
times. This requires 6(0) = 6 (tgae) = 0. In addition, without
interactions the gate should swap the positions of the atoms;
hence we require x.[7 (fgae)] = —% = f(;g‘““ 7 (1)2 ds = wlo

Next, we include the interaction between the atoms, which
affects the x coordinate. The Hamiltonian reads

2 a2

2m ax2
Similar to what we have done in Sec. III, we treat the problem
as a scattering process of @ (x, ) from a delta potential lo-
cated at x = 0, with transmission and reflection coefficients, T’
and R. We impose the same boundary conditions of Egs. (11)
and (12) and demand R/T = =i to realize a perfect v/ SWAP.
This yields

H({)=— + = w(t)2x2~|—y(t)8(x) (24)

. o ? i mwod
y() = Fi0@) m{ v sin[wot (1)]
mag [ 1 — tanh(r)e 2t 7 4
" [1 +tanh(r)e—2iw0f(’)i|ﬁCos[wor(t )]}’
(25)
which becomes, in the limit tanh(r) — 1,
7(t) = F/20(t) " wohd sin[wot (1)]. (26)

This result is a generalization of Eq. (15) and reduces to it in
the stationary case.

To realize the STA driving, the trajectory of the rescaling
parameter 6(¢) has to be smooth and satisfy several condi-
tions: _

(1) 6(0) =0(tgare) =0. This
dependent phase in Eq. (23).

(2) w(0)> = a)(z‘gm)2 = 0. The harmonic trap vanishes at
the beginning and ending of the gate.

3) wy folg“‘e 5 (1)2 ds = 7. This ensures the SWAP condition
with no interactions.

(4) w(@)* > 0. This condition is required from a practical
perspective, to avoid the need to change from attractive to

cancels the position-

1.15

1.1F

o

1.051

%100

0 2 4 6 8 10 12 14 16 18 20
t[10°s)
FIG. 4. The rescaling function 6(¢) and the harmonic potential
(t)?. The STA driving protocol of () is defined in Eq. (27), with
B1 =2.548, B, = 6.227,a, = 1.684, b, = —1.808, and b, = 0.199,

and fgye = 21.84 pus. The Ermakov equation (18) gives w(z), with

_ 2 . . .. Toate 1 _
ko = mwyj that is set by the third condition, wy fog o ds=rm.

repulsive harmonic potential. A repulsive potential can be
generated using an optical trap at a blue-detuned wavelength
[79]. Having both repulsive and attractive potentials during
the gate’s operation requires changing the wavelength of the
optical trap, which is better to avoid. Therefore we seek a
driving that keeps the harmonic trap purely attractive. Note
that this condition translates into a condition on 6(¢) through
the Ermakov relation, w(f)? = 9(,)(m9 o é(t)).

There are infinitely many choices of driving that will
satisfy the conditions above. We adopt the following
parametrization:

O@F) = 1 + ari* + bii?' + byi?, (27)
with 7 = |2l —|. Conditions (1-2) and condition (3) yield
linear and non]mear relations, respectively, on the five pa-
rameters 1, B2, az, by, and b,. Condition (4) is an inequality
condition, and a)(t)2 is continuous if we choose 1, 8, > 2.

We employ a numerical optimization code to find pa-
rameters that satisfy these conditions and yield optimal
performance for the gate. In Fig. 4 we plot an example of
such a driving protocol, with 8; = 2.548, B, = 6.227, a, =
1.684, by = —1.808, and b, = 0.199, which were found for
the same parameters as those used in the stationary gate
of Fig. 1, namely, fze ~ 21.84 us, a central Gaussian po-
tential, which approximates the harmonic one, with a waist
of 0 = 11.857 um. In this example, the maximum depth is
max[U (¢)] = 694 uK x kg, only moderately higher than the
value used in the stationary gate with the same duration.
With these parameters, the fidelity of the scaled invariant gate
is f =0.9988. For comparison, an equivalent gate with a
constant Gaussian potential depth equal to max[U (¢)] gives
a gate time of 18.993 us and a fidelity f = 0.9979. The dif-

013113-7



JONATHAN NEMIROVSKY AND YOAV SAGI

PHYSICAL REVIEW RESEARCH 3, 013113 (2021)

ferences between these numbers are not significant given our
numerical accuracy.

VI. DISCUSSION

In this paper, we have presented a new concept for a
universal +/SWAP gate performed on two fermionic atoms
trapped in optical tweezers. The gate is based on releasing
the two atoms in a central harmonic trap and exploiting the
phase accumulated during the scattering process. The big ad-
vantage of this scheme is that the gate duration is set by the
harmonic trap period and thus can be very short—on the order
of 20 us. Moreover, the gate duration is independent of the
initial distance between the atoms. Tuning the gate for optimal
performance is simple and done by tuning the interaction
strength between the atoms (e.g., working near a Feshbach
resonance). We have studied numerically the performance
of the gate at experimentally realistic parameters and have
shown that the gate is robust and achieves very high fidelity
above 0.998.

We have also given a generalized version of the gate
when the harmonic confinement is time dependent. Us-
ing scale-invariant driving, we have derived a general form
for the harmonic frequency w(#) which ensures that the
fidelity of the gate is not compromised due to the nonadia-
batic changes. In fact, this time-dependent scheme improves
the fidelity as it leads to larger squeezing of the colliding
atomic wave packets. It also allows for a gradual turning
on and off of the harmonic potential—a plausible practical
advantage.

The gate operation is based on a scattering process in
one dimension, which can be implemented experimentally
as follows. In order for the scattering to be effectively one
dimensional, excitations in the two transverse dimensions
have to be eliminated. Let us consider a three-dimensional
generalization of the one-dimensional harmonic potential with
(1), wy(t), w(t), where w,(t) is w(t) of Eq. (24). To prevent
scattering into the y and z directions, the trap needs to have
E/h < wy, w,, where E is the typical energy of the atoms
at the collision time. Taking E ~ hwy, we get the condition
wy K Wy, ;.

We also have to consider the three-dimensional structure
of the tweezers. For single-beam tweezers, @, > @,, where @,
and @, are the effective radial and axial trapping frequencies
of the tweezers. Since the atoms are prepared in the ground
state of the tweezers, their wave-function size is related to the
radial frequency by &, = miwé In order to have a high gate

fidelity, Eq. (9) and Fig. 3 require that we maintain @, < wy.
Combined with the previous condition, we get that during the
collision, &, < w, and &, < w;. If the harmonic trap would
be switched on at once to these values, the mismatch between
the transverse frequencies would cause substantial heating.
Instead, the initial transverse frequencies of the harmonic trap
should match the frequencies of the tweezers: wy(0) = @,
,(0) = &;,. Then, they should be rapidly increased to values
where the collision is effectively one dimensional. After the
collision takes place, they should be rapidly ramped down to
their initial values. To avoid unwanted excitations, w,(#) and
w,(t) should follow an STA-like trajectory, similar to what
has been discussed in Sec. V [87,89,90]. An independent real-
time control of the harmonic frequencies can be achieved, for
example, by generating the harmonic potential as an intersec-
tion of two, two-dimensional, sheetlike beams and controlling
independently their intensity.

We expect that the ability to implement a robust and
high-fidelity universal gate at such short timescales will push
forward the field of neutral atoms in optical tweezers. This
platform offers huge advantages in terms of scalability and
controllability but historically suffered from the relatively
slow speed and low fidelity of the two-qubit gates. Our ap-
proach accelerates dramatically the attainable rate of quantum
computation in this platform and also adds the flexibility to
perform two-qubit gates between qubits at different distances.
Thus all-to-all connectivity, which greatly strengthens the
computational power of a given number of qubits, can be
achieved.
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