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Engineering entanglement Hamiltonians with strongly interacting cold atoms in optical traps
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We present a proposal for the realization of entanglement Hamiltonians in one-dimensional critical spin
systems with strongly interacting cold atoms. Our approach is based on the notion that the entanglement spectrum
of such systems can be realized with a physical Hamiltonian containing a set of position-dependent couplings. We
focus on reproducing the universal ratios of the entanglement spectrum for systems in two different geometries:
a harmonic trap, which corresponds to a partition embedded in an infinite system, and a linear potential,
which reproduces the properties of a half partition with open boundary conditions. Our results demonstrate
the possibility of measuring the entanglement spectra of the Heisenberg and XX models in a realistic cold-atom
experimental setting by simply using gravity and standard trapping techniques.
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I. INTRODUCTION

The study of entanglement in quantum many-body systems
[1,2] has become one of the major efforts in the physics
community, not only because it is a central feature of quantum
theories, but also due to its potential for describing quantum
phases of matter and topological order [3–9]. Directly mea-
suring entanglement, on the other hand, has proven to be a
challenging task. This is due, in particular, to the difficulty
of obtaining the full-state tomography [10] of many-body
systems. Nevertheless, outstanding progress has been recently
made with respect to the extraction of the entanglement prop-
erties of quantum systems, both in terms of theory [11–18]
and experiments [19–22]. In common, these works feature
indirect measurement protocols, either through the probing of
correlations or by interference of identical copies of a system.

It is thus desirable to have at hand alternative proposals
[23] for the measurement of entanglement that are at the
same time direct—addressing quantities which are ordinarily
accessible in experiments—and scalable. A significant step in
this direction has been taken recently [24–27], with works
showing that the entanglement spectrum [28,29] of lattice
Hamiltonians can be reproduced by obtaining the physical
spectrum of a Hamiltonian with the same general properties
but with a set of spatially varying coupling parameters. This
notion is based on the Bisognano-Wichmann (BW) theorem,
which originally describes entanglement Hamiltonians for
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continuous systems in quantum field theory [30,31]. Later
developments have shown [32] that features of the original
model, such as boundary conditions, have a direct effect on
the form of the couplings in the physical Hamiltonian. Such
a relation hints at the prospect of reproducing the entangle-
ment of discrete systems with Hamiltonians with specifically
designed nonhomogeneous couplings.

In this context, an immediate possibility is the simulation
of entanglement Hamiltonians with trapped systems of cold
atoms [33], where optical confinement, atomic interactions,
and internal states can be manipulated with remarkable preci-
sion [34–37]. On the theoretical side, it has been demonstrated
that if the interactions between atoms are strong enough,
the system can be mapped from the continuum to a spin
chain, where the coupling coefficients are determined by the
trapping geometry [38–41]. Experimentally, the strongly cor-
related regime is accessible with cold atoms both in fermionic
[42–46] and bosonic [47–51] gases. The validity of the the-
oretical approach described above has also been verified in
recent experiments [52].

Inspired by this perspective, in this article we show how to
engineer the entanglement Hamiltonians of spin systems, such
as the Heisenberg (XXX) and XX models, by considering a
strongly interacting two-component system of cold atoms in
effectively one-dimensional optical traps. Our first application
is the case of harmonically trapped atoms giving rise to a spin
chain where the couplings follow a parabolic distribution. As
we will show, this remarkably ordinary assumption is enough
to reproduce the universal ratios of the entanglement spectrum
of a partition embedded in an infinite system with periodic
boundary conditions. The second application assumes the
presence of a linear potential, which in turn results in a set
of linearly increasing couplings for the spin chain. In this
regime, the physical Hamiltonian can reproduce the ratios of
the entanglement spectrum of a half partition of a spin system
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with open boundary conditions. The simple linear form of
the potential additionally poses the intriguing possibility of
using gravity as a tool for probing entanglement. To account
for other experimental-related aspects, we also include den-
sity matrix renormalization group (DMRG) simulations of the
continuum away from the strongly interacting limit, as well
as the expected effect of finite temperatures on measurable
quantities such as the dynamical structure factor.

II. SYSTEM DESCRIPTION

We calculate the entanglement properties of one-
dimensional spin chains such as the Heisenberg model, HS =
J

∑N−1
i=1 σ i · σ i+1, and the XX model, HS = J

∑N−1
i=1 σ x

i σ x
i+1 +

σ
y
i σ

y
i+1, where σ denotes the Pauli vector and J is a homoge-

neous coupling. In the following, L denotes the total size of
these homogeneous systems. After finding the ground-state
solution |�〉 for one of these models, the reduced density
matrix for a subsystem A can be calculated by tracing over
the remaining subsystem B with ρA = TrB|�〉〈�| = e−HA/ZA,
where HA is called the entanglement Hamiltonian and ZA

is a normalization constant. The entanglement spectrum for
partition A is then obtained as the set of eigenvalues {εn} =
− ln{εA

n }, where εA
n denotes the eigenvalues of the reduced

density matrix.
The BW theorem for discrete systems [25] states that the

entanglement Hamiltonian HA can be equivalently calculated
as HA ∝ ∑

i Jiσ i · σ i+1, where Ji is a set of position-dependent
couplings. Remarkably, results from conformal field theory
predict [32,53] that these couplings should be given by

Ji ∝ i(N − i)

N
and Ji ∝ i (1)

for entanglement Hamiltonians corresponding to partitions
embedded in an infinite system with periodic boundary con-
ditions (which we label T1) and half partitions in systems with
open boundary conditions (T2), respectively (see Fig. 1). More
rigorously, for finite T2 partitions, we have Ji ∝ sin ( π i

2L ); in
Appendix B we investigate the role of finite-size effects in
the results for systems with open boundary conditions (these
are expected to scale to zero in the lower part of the energy
spectrum as L → ∞ [32]).

The results in Eq. (1) indicate that the entanglement
Hamiltonians of spin systems can be simulated by con-
structing a physical Hamiltonian with a set of properly
engineered couplings. A suitable platform for such an en-
deavor is an effectively one-dimensional cold atomic gas with
a Hamiltonian described by HC = ∑N

i=1 (− 1
2

∂2

∂x2
i

+ V (x)) +
g
∑N↑

i

∑N↓
j δ(xi,↑ − x j,↓), where the first term on the right-

hand side includes the presence of a trapping potential V (x)
and the second term accounts for atomic contact interactions
(we assume a two-component gas where the internal states are
labeled as ↑,↓). The strength of the interactions is set by the
parameter g (in units of h̄2/ml where l is the characteristic
length of the system), and we initially consider the fermionic
case where interactions between atoms in the same internal
state are forbidden by the Pauli principle.

In the strongly repulsive limit (g 	 1), the wave function
of the system described above is given by � = ∑

k akPk	0,

FIG. 1. (a) The entanglement spectrum of a partition embedded
in an infinite spin system with periodic boundary conditions (T1),
which can be simulated with (b) a strongly interacting (g 	 1) two-
component system of cold atoms in a harmonic trap. We model this
system as a spin chain where the exchange coefficients αi follow
the distribution of an inverted parabola. The entanglement spectrum
of (c), a half partition of a finite spin chain with open boundary
conditions (T2) is reproduced with (d) a system of cold atoms in a
linear potential, which can be realized by gravity. This system is
mapped into a spin chain where the coefficients increase linearly with
the position. The distribution of the coefficients can be very well
approximated with the functions in Eq. (1). The antiferromagnetic
order displayed in (b) and (d) corresponds to the ground state of
Eq. (2) and is used for illustration purposes.

where 	0 = 	0(x↑1, ..., x↑N↑ , x↓1, ..., x↓N↓ ) is the wave func-
tion in the limit of infinite repulsion and each term of the
sum includes a permutation Pk (with amplitude ak) of the
coordinates. By employing the Hellmann-Feynman theorem
along with boundary conditions for the contact interactions,
Hc can be mapped into the following spin chain [39,54,55]
(see Appendix A for details):

H = E0 − 1

2

N−1∑
i=1

αi

g
(1 − σ i · σ i+1), (2)

where E0 denotes the energy of the system at the fermion-
ization limit where g = ∞. This mapping can be interpreted
as a perturbation near the limit of infinite repulsion. (We can
rewrite Eq. (2) in terms of the permutation operator �i,i+1 =
1
2 (1 + σ i · σ i+1) [39]). By diagonalizing this Hamiltonian we
find the amplitudes ak for the wave function � and the en-
ergy spectrum in the limit of strong interactions. Another
fundamental aspect of the approach described above is that,
in Eq. (2), the position-dependent exchange coefficients αi

are obtained from the properties of the spatial wave function

	0 with αi = ∫
x1<···<xN −1 dx1 ... dxN−1| ∂	0

∂xN
|
2

xN =xi
, which is in-

dependent of spin. The many-body wave function described
by 	0 is constructed as the Slater determinant of the N lowest
single-particle states in the trapping potential V (x). In Eq. (2),
the energy E0 is simply given by the sum of the energies
of each of these single-particle states. It is therefore clear
that once we determine the geometry of the trap V (x), we
can obtain the exchange coefficients in Eq. (2). Calculating
these integrals can be cumbersome for large N , but efficient
methods which exploit the determinant properties of 	0 are
available [56,57]. In Fig. 1 we show a sketch of the protocol
adopted throughout this work.
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We have thus established our proposal for simulating the
entanglement spectrum of a spin chain with a two-component
atomic system where the energy levels can be obtained by
standard spectroscopy techniques [58]. The presence of strong
interactions and trapping potentials not only allows for bench-
marking the results against the limit of infinite repulsion, but
also automatically generates the couplings needed for en-
gineering entanglement Hamiltonians. The relation between
entanglement and inhomogeneities in the underlying geom-
etry of the system has been also explored, particularly for
single-component systems, in Refs. [59–63].

III. RESULTS

To calculate the entanglement properties of the atomic
systems described above, we start with the numerical values
of the exchange coefficients αi for a given trapping potential.
We assume the cases of (a) a harmonic trap V (x) = x2/2 and
(b) a system confined by hard walls at x = 0 and x = l and ex-
posed to a linear potential V (x) = V0(l − x). The distribution
of the coefficients in the harmonic trap is symmetric across
the origin and has the shape of an inverted parabola [64,65].
For the tilted potential, we find that the coefficients increase
linearly and are given by αi = V0i (see sketch in Fig. 1). In
Appendix B we show a comparison with these results with a
fit of the functions in Eq. (1).

We can now compare the entanglement spectrum of a
physical Hamiltonian with spatially varying couplings and
the exact results for different partitions. For the Heisenberg
model, the physical Hamiltonian is given by Eq. (2). The XX
model can analogously by reproduced by initially considering
a bosonic system in the continuum, where interaction between
atoms in the same internal states are allowed. This results in an
additional term in Eq. (2) given by − 1

2

∑N−1
i=1

αi
g′ (1 + σ z

i σ z
i+1),

where g′ denotes the interspecies interactions [54]. Our focus
is on obtaining universal ratios for the entanglement spectrum,

defined as κn = | εn−ε1
εr−ε1

|, where n denotes the energy level, ε1

is the ground-state energy, and εr is a reference level (unless
stated otherwise, we fix r = 3—the second excited state).
We point out that the specific magnetic correlations of each
state, including the ground state of a particular model, are not
relevant for this calculation.

In Figs. 2(a) and 2(d) we show the results for this quantity
obtained by exact diagonalization. The physical spectrum of
the harmonically trapped, strongly interacting Hamiltonian is
compared to a partition embedded in a system with periodic
boundary conditions, while the case of a linear potential is
compared to a half partition of the same size in a system
with open boundary conditions. Additionally, we include the
results for an “ideal” physical Hamiltonian with a set of
couplings provided by Eq. (1). The agreement between the
results obtained with three different approaches is particularly
remarkable for small values of n, corresponding to the low-
energy part of the entanglement spectrum. The discrepancy
with the exact results obtained from the reduced density ma-
trix (black solid curves) at higher energies stems mainly from
finite-size effects.

In Figs. 2(e) and 2(f), we include also results obtained
with DMRG, where we see that the agreement between

FIG. 2. Comparison of the universal ratios κn for the (a), (b)
Heisenberg and (c), (d) XX models with N = 5. The left column
show the results for partitions T1 (black solid lines, total size of
the system L = 12), compared to the case of harmonically trapped
atoms (red circles). The right column show the analog results for
partitions T2 (total size of the system L = 10) and atoms in a linear
potential. In the first four panels we additionally include the results
for a Hamiltonian with N = 5 and a set of ideal couplings given
by Eq. (1) (blue dashed lines). In (e), (f) we present the results for
the Heisenberg model with larger size (N = 10). The results for
the partitions are obtained with DMRG for systems of total size
(e) L = 80 and L = 20, respectively. The interaction strength for the
trapped atoms is set as g = 20 (in units of h̄2/ml). In all plots, the
insets show the absolute numerical difference between the red circles
and the black lines.

the entanglement spectrum of homogeneous partitions of
the Heisenberg model and the physical spectrum of trapped
fermions also holds for larger systems.

IV. EXPERIMENTAL DETAILS

Effectively one-dimensional systems of cold atoms are cur-
rently realized in the laboratory by loading the atoms into
tight optical waveguides, where the confinement along the
transverse direction is much larger than the longitudinal one.
These waveguides can be provided by optical lattices, where
the transverse confinement could easily reach values on the
order of ω⊥ = 2π50 kHz, with h̄ω⊥ much larger than temper-
ature and atomic chemical potential.

Different spin states can be simulated by exploring the
internal degrees of freedom of particular atomic species. Usu-
ally, these are hyperfine states in alkali elements (such as
fermionic 6Li and bosonic 87Rb), but nuclear-spin states in
alkaline-earth elements like 173Yb or 87Sr can also be used.
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FIG. 3. (a) Comparison of the universal ratios of the Heisenberg
model with the ideal coefficients in Eq. (1) (gray dashed curves)
to DMRG simulations of the continuum for fermions in a har-
monic trap. Blue, yellow, and red circles correspond to interaction
strength g = 5, 10, and 15 (in units of h̄2/ml), respectively. The
universal ratios κn are calculated having as a reference state r = 2.
(b) Temperature-dependent dynamical structure factor (summed over
q) for harmonically trapped fermions [Eq. (2)] with g = 25. Blue,
yellow, and red curves correspond kBT ≈ 0.008εF , 0.2εF , and 0.8εF ,
respectively, where εF is the Fermi energy of a system of spinless
fermions with the same number of particles. The vertical gray dashed
lines denote the position of the energy gaps corresponding to the
universal ratios obtained for the Heisenberg model with couplings
given by Eq. (1). The reference state for these calculations is r = 4,
and the frequency ω0 is analogously defined as ω0 = (ε4 − ε0 )/h̄.
In both panels, we assume N = 7 in a sector of fixed magnetization
+1/2.

These last cases also provide the opportunity of exploring
additional internal states with SU(N ) symmetry [45,66].

With state-of-the-art atom trapping techniques there are
ample possibilities of controlling the potential parameters to
engineer the required exchange coupling αi. Typical axial har-
monic trapping frequencies for the scenario shown in Fig. 1(b)
lie in the range ωT = 2π (10–103) Hz. The protocol shown in
Fig. 1(d) can be realized either by means of magnetic and/or
optical gradients or by exploiting the effect of gravity, where
the linear potential could be tuned by changing the tilting
angle of the tubes. An additional focused laser beam (or other
spatial-light-modulator-based techniques) is required to create
hard walls at the bottom of the tubes for keeping the atoms
confined.

We also address here experimental aspects which can
be relevant in the detection of the physical spectrum of
trapped systems: finiteness of interactions and temperature.
To investigate the first, we realize simulations of the
continuum with the Hubbard model in an underlying
harmonic trap. In Fig. 3(a) we show a comparison of
the universal ratios obtained with this approach to the
expected results for a Heisenberg model with a set of
coefficients given by Eq. (1). We find that even at a moderate
interaction regime (well within the experimental capabilities)
the measured spectrum agrees with the entanglement
spectrum of the target model (especially at small n).
This calculation also provides an independent check of
the validity of the spin-mapping approach described in
the main part of this paper. In experiments, interactions
between atoms can be manipulated by means of Feshbach
[67] or confinement induced resonances [68]. In the strongly
interacting regime, such systems may suffer from losses due
to three-body recombination; however, in the fermionic

case this effect is suppressed by the Pauli exclusion
principle, which increases the lifetime of the experiment.
The effect of temperature is now quantified by calculating the
temperature-dependent dynamical structure factor [69–71]
S(q, ω) = Z (T )−1 ∑

i, j e(−Ei/kBT )|〈i|Sz
q| j〉|2δ[ω − (Ei − Ej )],

where Z (T ) = Tr(e−H/kBT ) is the canonical partition function,
kB is the Boltzmann constant, and |i〉 and | j〉 denote the
eigenstates; Sz

q = ∑
i

√
(2) sin(qi)Sz

i /
√

(N + 1) is the Fourier
transform of the operator Sz

i = σ z
i /2 and q = nπ/(N + 1).

In Fig. 3(b) we compare the excitation spectrum of the
dynamical structure factor (at values of kBT corresponding to
different fractions of the Fermi energy for a system of spinless
fermions, denoted by εF ) to the position of the energy gaps
corresponding to the universal ratios. Particularly, at lower
temperatures we find pronounced peaks located precisely at
the energy values predicted with κn that are clearly visible
for experimentally achievable temperatures kBT ≈ 0.2εF

(note the vertical logarithmic scale). As expected, for larger
temperatures such results are washed out by the contribution
of several additional frequencies.

In these calculations, we have assumed that the system has
a fixed total magnetization; to obtain results such as the ones
shown in Fig. 2 in an experiment, a number of measurements
would be performed, each in different magnetization sectors
(from the fully polarized to the completely balanced spin
combinations). Measurements of the structure factor could
be carried out by performing Bragg spectroscopy. We find
that the frequencies shown in Fig. 3 are well within reach of
the typical lifetimes of experiments with cold fermions. As a
matter of fact, for realistic trapping frequencies of the order
of ω = 2π × 200 Hz, the energy scale of the resonances in
Fig. 3(b) is ω0 ∼ 80 Hz. In experiments with two-component
1D fermions, in the strongly repulsive regime lifetimes on the
order of τ ∼ 1 s have already been measured [72], enabling
a Fourier-limited frequency resolution on the order of τ−1 ∼
1 Hz, which is one order of magnitude better than the features
of the spectrum we are interested to resolve.

V. CONCLUSIONS

We have presented a theoretical proposal for the realiza-
tion of entanglement Hamiltonians with strongly interacting
cold atoms in effectively one-dimensional optical traps. A
key feature of these models is the possibility of mapping the
Hamiltonian into a spin chain with a set of couplings that
depend on the underlying geometry. By simply assuming a
harmonic confinement, we have shown that the universal ra-
tios of the entanglement for a partition embedded in an infinite
system can be reproduced. Analogously, a linear potential can
produce the results expected for a half partition in a finite
system. The energy spectrum of these systems can be obtained
by standard spectroscopy of cold atoms in elongated harmonic
traps or boxlike traps under the effect of gravity. We have
benchmarked our predictions against important experimental
effects such as finite interaction strength and temperature,
evidencing the experimental feasibility of our proposal. Such
a protocol can be extended to the study of various spin Hamil-
tonians, like systems with higher internal symmetries [73]; in
such cases, the particular details (e.g., interactions and internal
states) of a given atomic model will determine the structure of
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the spin chain [74,75]. Nevertheless, the relation between the
couplings and the geometry of the external trap remains valid
in the limit of strong interactions.
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APPENDIX A: MAPPING A STRONGLY INTERACTING
ATOMIC SYSTEM TO A SPIN CHAIN

The general procedure described in this section has been
developed and extensively detailed in different works, such as
Refs. [38–40]. Further discussions and applications to differ-
ent atomic models can be found, for instance, in Refs. [41,74].
Below we reproduce the essential steps required to obtain
the spin chain models considered in the main text. We start
by considering a one-dimensional two-component fermionic

system with contact interactions, described by

H =
N∑

i=1

H0(xi ) + g
N↑∑
i=1

N↓∑
j=1

δ(x↑i − x↓ j ), (A1)

where N = N↑ + N↓. In the limit of infinite repulsion (g →
∞), we can write the complete many-body wave function as

� =
L(N↑,N↓ )∑

k=1

akPk	0({x↑i, x↓ j}), (A2)

where Pk is the permutation operator, and the sum is carried

over a total number of L(N↑, N↓) = (
N↑ + N↓

N↑
) permutations.

In this context 	0 is the wave function in the limit of infinite
repulsion where {x↑i, x↓ j} denotes a given ordering of the
particles.

For strong finite interactions, the Hellmann-Feynman the-
orem can be employed to write

∂E

∂g
=

N↑∑
i=1

N↓∑
j=1

〈�|δ(x↑i − x↓ j )|�〉. (A3)

Additionally, we write the expression for the derivative condi-
tion at the contact point between particles as

(
∂�

∂x↑i
− ∂�

∂x↓ j

)∣∣∣∣∣
x↑i−x↓ j=0+

x↑i−x↓ j=0−
= 2g�(x↑i = x↓ j ), (A4)

which follows the standard procedure of the coordinate Bethe
ansatz approach [77]. Plugging Eq. (A4) into Eq. (A3) and
integrating with respect to g, we find

E = E0 −
∑N↑,N↓

i=1, j=1

∫
dx↑1, . . . , dx↑N↑

∫
dx↓1, . . . , dx↓N↓

∣∣( ∂�
∂x↑i

− ∂�
∂x↓ j

)∣∣x↑i−x↓ j=0+

x↑i−x↓ j=0−
∣∣2

δ(x↑i − x↓ j )

4g
∫

dx↑1, . . . , dx↑N↑
∫

dx↓1, . . . , dx↓N↓ |�|2 , (A5)

where we discard terms of order O(1/g2) and higher. In this
expression, E0 denotes the energy of a system of spinless
fermions (which is the same energy expected in the regime
of infinite repulsion). By inserting (A2) in this equation, we
find

E = E0 −
∑N−1

i=1
αi
g

∑L(N↑−1,N↓−1)
k=1 (aik − a′

ik )2∑L(N↑,N↓ )
k=1 a2

k

, (A6)

where aik denotes the wave-function coefficient where neigh-
boring ↑ and ↓ fermions are found in positions i and i + 1,
while a′

ik is the coefficient for the wave function where the
particle positions are i + 1 and i. In this expression, we have

αi =
∫

x1<x2···<xN −1 dx1...dxN−1

∣∣ ∂	0(x1,...,xi,...,xN )
∂xN

∣∣2

xN =xi∫
x1<x2···<xN −1 dx1 . . . dxN |	0(x1, . . . , xi, . . . , xN )|2 ,

(A7)

which is not spin dependent. Thus 	0 can now be treated as
the wave function for a system of spinless fermions.

We now take under consideration a spin Hamiltonian given
by

H = E0 −
N−1∑
i=1

Ji�i,i+1, (A8)

where �i,i+1
↑↓ = 1

2 (1 − σ i · σ i+1) is the permutation operator.
A general wave function for this Hamiltonian can be written
as

|χ〉 =
L(N↑,N↓ )∑

k=1

akPk|↑1 · · · ↑N↑↓1 · · · ↓N↓〉, (A9)

in analogy with Eq. (A2). Using this wave function, we calcu-
late 〈χ |H |χ〉 as

〈χ |H |χ〉 = E0 −
∑N−1

i=1 Ji
∑L(N↑−1,N↓−1)

k=1 (aik − a′
ik )2∑L(N↑,N↓ )

k=1 a2
k

, (A10)

where aik and a′
ik are as described for Eq. (A6). This means

that expressions (A6) and (A10) are equivalent provided that
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FIG. 4. (a), (b) Spatial distributions for N = 10 spinless fermions in the cases of (a) the harmonic trap and (b) a finite system of length l
with a linear potential. The total density in each case is normalized to the total number of particles N . (c), (d) Numerical values of the exchange
coefficients for the (a) harmonic trap and (b) the linear trap. The red dots indicate the results for N = 10, while the blue circles show results
for N = 5. The black and gray dashed curves display results for the fits obtained with Eq. (1) of the main text.

Ji = αi/g. We can now rewrite Eq. (A8) as

H = E0 − 1

2

N−1∑
i=1

αi

g
(1 − σ i · σ i+1), (A11)

which is the Hamiltonian given in Eq. (2).

APPENDIX B: ADDITIONAL RESULTS AND DETAILS
ON THE SIMULATIONS

1. Particle densities and exchange coefficients

In the main text, we employ the exchange coefficients of a
spin chain describing a system of strongly interacting trapped

atoms to calculate the entanglement spectrum of homoge-
neous spin partitions. Below we present the results for the
spatial distributions of the atoms in the trap and the values
of the coefficients. The densities are calculated with the fol-
lowing expression:

ρ i(x) =
∫

�

dx1...dxN δ(xi − x)|	0(x1, ..., xi, ..., xN )|2, (B1)

where the integration is restricted to the sector � = x1 <

x2 < · · · < xN . For larger systems, it is convenient to explore
the determinant properties of the wave function 	0 [78] and
write

ρ i(x) = ∂

∂x

(
N−1∑
j=0

(−1)N−1(N − j − 1)!

(i − 1)!(N − j − i)! j!

∂ j

∂λ j
det [B(x) − 1λ]|λ=0

)
, (B2)

where the elements of the matrix B(x) are written as bmn(x) =∫ x
−∞ dy ϕm(y)ϕn(y), and ϕ(x) denotes the single-particle states

in a corresponding trapping potential. For the simple case of
the harmonic trap, these can be obtained exactly; for the linear
potential, we obtain the single-particle solutions by numerical
diagonalization, using as a basis 50 eigenstates of the box
potential. The characteristic length l in the harmonic trap
is related to the trapping frequency ω by l = √

h̄/mω (we
assume ω = 1 in our calculations). In Figs. 4(a) and 4(b),

we show the spatial densities of N = 10 spinless fermions
obtained with Eq. (B2) for the harmonic trap an the linear
potential, respectively. Due to the Bose-Fermi mapping the-
orem, these distributions are identical to those of a infinitely
repulsive bosonic system, namely, the Tonks-Girardeau gas,
in the same trapping potential [79]. In Figs. 4(c) and 4(d), we
show the results for the exchange coefficients in each trapping
potential. By comparing with (a) and (b), it becomes clear that
the particle overlaps to determine the numerical values of the

013112-6
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FIG. 5. Comparison of the results of the entanglement spectrum for (a) the Heisenberg and (b) XX models in partitions T2 (black curves)
with strongly interacting fermions in a linear potential (red circles) and Hamiltonians with the exact set of couplings for finite systems given
by Eq. (B3) (blue dashed curves). The parameters assumed are the same as in Figs. 2(b) and 2(d) of the main text. The insets show the absolute
numerical difference between the red circles and the black lines.

exchange coefficients αi. In (c) and (d), we additionally show
a comparison with the results obtained by fitting the functions
in Eq. (1), which displays excellent agreement. We also show
results for a system with N = 5 fermions. In these cases the
coefficients can be calculated with the integrals provided in
the main text. For larger systems we use the open-source
program CONAN [56].

2. Entanglement spectrum

In Fig. 2 of the main text, the results for partitions of type
T2 are compared to the spectrum of a physical Hamiltonian
where the coefficients follow the distribution given in Eq. (1),
that is, Ji ∝ i. However, strictly speaking, the coefficients for a
half partition in a finite system with open boundary conditions
have been shown to obey [32])

Ji = 2L

π
sin

(
π i

2L

)
. (B3)

In Fig. 5 we show the results for the Heisenberg and
XX models, where the results for a Hamiltonian with ideal

couplings (blue dashed lines) are obtained with the exact
results for finite systems. As expected, these show a slight
discrepancy with respect to the results of atoms in a linear
potential, especially at higher energies. Such discrepancies,
however, should vanish as L → ∞.

In Figs. 2(e) and 2(f) of the main text, we showed the
comparison between the universal ratios obtained with ED for
trapped atoms and DMRG for partitions embedded in larger
systems, focusing on the Heisenberg model. Here we present
in Fig. 6 also the case of the XX model, where the size of the
system is the same as considered in the main text. The results
corresponding to the XX model are obtained by assuming a
bosonic strongly interacting system with g′ = 2g being the
intraspecies interaction parameter.

3. DMRG details

In Figs. 2(e) and 2(f) of the main text and in Fig. 6 of this
section, the black curves are calculated with DMRG simula-
tions of the Heisenberg model [76], with a total of six sweeps
and a maximum bond dimension of 600. In Fig. 4 of the

FIG. 6. Comparison of the universal ratios in the XX model for systems with N = 10 in the case of (a) the harmonic trap and (b) the linear
potential. The results for the partitions with (a) periodic boundary conditions and (b) open boundary conditions (black curves) are obtained
with DMRG for systems of total size L = 80 and L = 20, respectively. The interaction parameters for the trapped atomic system are set as
g = 20 and g′ = 2g (see main text). The insets show the absolute numerical difference between the results.
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FIG. 7. Temperature-dependent dynamical structure factor for harmonically trapped fermions with g = 25 in the cases of (a) q = π/8,
(b) q = 3π/8, (c) 5π/8, and (d) 7π/8. Blue, yellow, and red curves correspond kBT ≈ 0.008εF , 0.2εF , and 0.8εF , respectively, where εF

is the Fermi energy of a system of spinless fermions with the same number of particles. The vertical gray dashed lines denote the position
of the energy gaps corresponding to the universal ratios obtained for the Heisenberg model with couplings given by Eq. (1). The reference
states for these calculations is r = 4, and the frequency ω0 is analogously defined as ω0 = (ε4 − ε0)/h̄. We assume N = 7 in a sector of fixed
magnetization +1/2.

main text, we calculate the universal ratios for a system of
N = 7 trapped fermions with DMRG by approximating the
continuum with the Hubbard model,

H = −t
∑
j,σ

(c†
j+1,σ c j,σ + H.c.) + U

∑
j

n j,↑n j,↓ +
∑
j,σ

Vjn j,σ ,

(B4)

where the last term denotes the underlying harmonic trap
potential. The simulation of the continuum is performed with
a total of Ns = 200 Hubbard sites. By fixing a length λ we
define the lattice spacing as a = λ/Ns. The hopping parameter
is then related to the kinetic term in the continuum as t =
1/(2a2) (assuming m = 1), while the interaction parameters
are related by U = g/a [80]. In these simulations we perform
a total of 40 DMRG sweeps, with a maximum bond dimension
of 106. The maximum truncation error at the final sweep is
∼10−11.

4. Temperature-dependent dynamical structure factor

In the results contained in the main text for the
temperature-dependent dynamical structure factor, we ap-

proximate the delta function δ[ω − (Ei − Ej )] with a
Lorentzian given by

f (ω) = 1

π

η2

η2 + ω2
, (B5)

where η = 0.002. In Fig. 4(b) we summed over all values
of momentum q. In Fig. 7 we also show the separate re-
sults for this quantity at particular momentum values. In all
the results obtained for the structure factor, the frequencies
are normalized by ω0 = (ε4 − ε0)/h̄, where ε0 and ε4 are
the ground state and fourth excited-state energies, respec-
tively. It is worth estimating how the frequencies shown in
Figs. 4(b) and 7 compare to the typical lifetimes of experi-
ments with cold atoms. For fermions, these lifetimes can be
of the order of a second, which allows for an experimental
resolution of around 1 Hz. If we assume a harmonic trap
with a realistic frequency of ∼200 Hz, we find a frequency
gap of ω0 ≈ 80 Hz, which is well within the reach of current
experiments.
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