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Dynamical control of the conductivity of an atomic Josephson junction
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We propose to dynamically control the conductivity of a Josephson junction composed of two weakly coupled
one-dimensional condensates of ultracold atoms. A current is induced by a periodically modulated potential
difference between the condensates, giving access to the conductivity of the junction. By using parametric driving
of the tunneling energy, we demonstrate that the low-frequency conductivity of the junction can be enhanced or
suppressed, depending on the choice of the driving frequency. The experimental realization of this proposal
provides a quantum simulation of optically enhanced superconductivity in pump-probe experiments of high-
temperature superconductors.
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I. INTRODUCTION

Recently, light-induced or enhanced superconductivity
has been discovered in superconducting materials such as
YBa2Cu3O6+x [1–5] or K3C60 [6,7] using pump-probe tech-
niques with midinfrared lasers. This has triggered theoretical
investigations of the origin and mechanism of optical control
of superconductivity. Based on microscopic models, various
mechanisms have been proposed such as enhancement of
electron-phonon coupling [8–12], control of competing or-
der [13–18], photoinduced η-pairing [19–21], and cooling
in multiband systems [22,23]. Meanwhile, phenomenological
approaches have been used to understand the effect of su-
perconducting fluctuations in photoexcited systems [24–32].
In Refs. [25–27], we proposed a mechanism based on para-
metrically driven Josephson junctions for light-enhanced
superconductivity. This mechanism is also reflected in a redis-
tribution of current fluctuations, such that the low-frequency
part of the system is effectively cooled down, leading to an
enhancement of the interlayer tunneling energy, see Ref. [25].

Given the complexities of light-induced dynamics in
strongly correlated solids, it is conceptually instructive to
explore proposed mechanisms in a well-defined physical sys-
tem, which isolates specific features of the solid-state system.
In particular, cold atom systems are highly tunable model
systems that provide toy models for more complex systems,
in the spirit of quantum simulation. In this paper we will
utilize the ability of cold atom technology to design and
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control Josephson junction systems. Atomic Josephson junc-
tions [33–40] have been realized experimentally to study
coherent transport [41,42], atomic conductivity [43], and the
dynamics of Josephson junctions of two-dimensional cold
atomic gases [44,45]. This provides an ideal platform to
simulate the dynamics of a parametrically driven Josephson
junction.

In this paper we propose to perform dynamical control
of the conductivity of a Josephson junction composed of
two weakly coupled one-dimensional (1D) condensates, see
Fig. 1(a). This proposal is motivated by the mechanism of
parametrically enhanced conductivity, which we established
in Refs. [26,27]. For that purpose, two dynamical processes
have to be introduced in the system of coupled condensates:
One is the analog of the probing process, and the second one
is the analog of the pumping process or optical driving. As
shown in Fig. 1(b), we implement driving and probing via pe-
riodical modulation of the tunneling energy and the potential
difference between the condensates, respectively. The probe
induces a current, allowing us to determine the conductivity
σ n(ω) of the junction of neutral atoms. To serve as a quan-
tum simulation for a Josephson junction of charged particles,
we will determine the relation of σ n(ω) to the conductivity
σ c(ω) of a junction of charged particles below, where we
demonstrate that σ n(ω) is inversely proportional to σ c(ω).
This interpretation derives from the difference of a U(1)
symmetry of a system of neutral particles and a U(1) gauge
symmetry of a system of charged particles. Using classical
field simulations, we show that the density imbalance be-
tween the condensates is suppressed at low probe frequencies
when the parametric driving frequency is above the Josephson
plasma frequency and enhanced below the plasma frequency,
which constitutes dynamical control of conductivity. Based on
a two-site Bose-Hubbard (BH) model, we derive analytical
expressions for 1/σ n(ω) for an undriven and a driven sys-
tem. The comparison between the analytical estimates and the
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FIG. 1. (a) A Josephson junction composed of two weakly coupled 1D condensates in a double-well potential. (b) Illustration of the
driving and the probing processes, implemented via periodic modulation of the barrier height and the potential difference between the two
potential minima, with driving (probing) frequency ωd (ωp). (c) We depict the imaginary part of the inverse of the conductivity of the atomic
Josephson junction, Im[1/σ n(ω)], obtained from our numerical classical field simulations. It displays a 1/ω divergence, reminiscent of the
conductivity of a junction of charged particles. For parametric driving with a blue-detuned driving frequency of ωd/ωJp = 1.053, the prefactor
of the divergence is enhanced by ∼104%. For red-detuned driving at ωd/ωJp = 0.921, the prefactor is reduced by ∼21%. This demonstrates
dynamical control of the conductivity of an atomic junction, based on the mechanism put forth in Ref. [26].

simulations shows good agreement. We note that while the
key physics occurs in the motion of the relative phase between
the condensates, the 1D geometry of the two subsystems of
the junction serves as an entropy bath, which slows down the
heating of the system. This reduced heating rate of the system
allows for a long probing time used in this proposal. Finally,
we relate the dynamical renormalization of the conductivity of
the atomic junction to a resistively and capacitively shunted
junction (RCSJ) model, utilized in the description of elec-
tronic circuits. This can be visualized as a dynamically driven
washboard potential. We note that similar models have been
studied in Refs. [46–52]. Here we present how parametric
driving of the junction near its resonance frequency affects its
conductivity, which constitutes the key insight of our study.

This paper is organized as follows. In Sec. II we describe
the numerical simulation method for the system and show the
numerical results for the time evolution of the density imbal-
ance between the two condensates for an undriven system and
a driven system, which demonstrate that parametric driving
affects the response at low probing frequencies. In Sec. III
we derive an analytical estimate of the conductivity σ n(ω) of
neutral particles using a two-site BH model. We also derive
the conductivity σ c(ω) of a junction of charged particles and
discuss the relation of σ n(ω) and σ c(ω). In Sec. IV we show
the numerical results that demonstrate dynamical control of
the conductivity of a junction composed of two coupled 1D
condensates. In Sec. V we expand on the analytical approach
of Sec. III and derive how parametric driving renormalizes
the conductivity σ n(ω) of a junction of neutral particles.
Furthermore, we compare this analytical prediction with our
numerical results. In Sec. VI we relate the analytical result for
a junction of neutral particles, derived in Sec. V, to a para-
metrically driven junction of charged particles. We conclude
in Sec. VII.

II. SIMULATION METHOD

We consider a Josephson junction composed of two 1D
condensates, as shown in Fig. 1(a). We numerically simulate

the dynamics of this system using the classical field method
of Ref. [53]. This numerical simulation method is valid in the
weak-interaction limit, where the quantum depletion is small,
and in the regime where the thermal depletion dominates over
the quantum depletion. For the numerical implementation, we
represent the system of two coupled condensates as a lattice
model, which takes the form of a BH Hamiltonian:

Ĥ0 = −
∑
〈α,β〉

Jαβ b̂†
α b̂β + U

2

∑
α

n̂α (n̂α − 1). (1)

b̂†
α (b̂α ) is the bosonic creation (annihilation) operator at site

α, and 〈α, β〉 denotes nearest-neighbor sites α and β. The
lattice dimensions are Nx × Nz, where we choose Nx = 50 and
Nz = 2. Each site index α = (i, j) encodes two coordinates i
and j, with i ∈ [1, 50] and j = 1, 2. n̂α = b̂†

α b̂α is the num-
ber operator at site α. Along the z direction, the tunneling
energy Jαβ is given by Jz, which is the tunneling energy of the
double-well potential. In the undriven system, this tunneling
energy is a constant, Jz = J0. We will use J0 as the energy
scale throughout this paper. To capture the continuous 1D
condensates numerically, we discretize the motion along the
x direction with a discretization length lx. This results in an
effective tunneling energy Jx = h̄2/(2ml2

x ), where m is the
atomic mass and h̄ is the reduced Planck constant [54]. In this
discretized representation, the on-site repulsive interaction is
determined by U = g1D/lx, where g1D = 2h̄2as/(mayaz ). as

is the s-wave scattering length and ay (az ) is the oscillator
length due to the trap confinement along y (z) direction. In the
following, we set h̄ = 1. We use U = 0.15J0 throughout this
paper, which ensures that the system is in the weak-interaction
limit. In our classical field representation, we replace the op-
erators in Hamiltonian (1) and its corresponding equations of
motion by complex numbers. We sample initial states from
a grand-canonical ensemble with chemical potential μ and
temperature T . We choose Jx = 3.3J0 so that the discretized
system simulates the dynamics along the tube direction in
the continuum limit. We choose T = 0.2J0/kB, kB being the
Boltzmann constant, and adjust μ such that the density per
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FIG. 2. Density imbalance �n(t ) as a function of time t . The system is subjected to the probing term of Eq. (2) with an amplitude
V0 = 0.01J0 and a frequency ωp = 2π × 0.002J0. Time t is displayed in units of the probing period Tp = 500J−1

0 . The dashed lines in (a)-(c) are
�n(t ), averaged over 500 realizations. The continuous lines are the low-frequency filtered �n(t ), where we use a Gaussian filter with a
timescale of 0.1Tp, see text. The low-frequency filtered �n(t ) of (a)-(c) is displayed in (d) as well, for comparison. The probing frequency
is significantly smaller than the resonance frequency of the junction, which is ωJp = 2.28J0. In (a) we display �n(t ) of the undriven system.
In (b) and (c) we drive the system parametrically, see Eq. (4). In (b) the driving frequency is ωd/ωJp = 1.053, and therefore blue-detuned, in
(c) it is ωd/ωJp = 0.921, and therefore red-detuned. The comparison in (d) demonstrates dynamical control of the low-frequency response of
the junction.

site is n0 = 2. For the probe, we add the following term:

Ĥpr = V (t )�N̂, (2)

where the number imbalance �N̂ is

�N̂ = 1

2

∑
i

(n̂(i,1) − n̂(i,2)), (3)

with V (t ) = V0 cos(ωpt ). V0 is the probe amplitude and ωp

the probe frequency. The oscillating potential induces an os-
cillating current and density motion between the condensates,
which we use to determine the conductivity, as we describe
below. To simulate parametric driving, we modulate the tun-
neling energy Jz as

Jz(t ) = J0[1 + A cos(ωdt )], (4)

where A is the driving amplitude and ωd the driving frequency.
As a key quantity to determine the conductivity σ n(ω), we
calculate the density imbalance, averaged over each 1D con-
densate,

�n(t ) ≡ 〈�N̂ (t )〉
Nx

= 2n0

N
〈�N̂ (t )〉, (5)

where 〈...〉 denotes the average over the thermal ensemble and
N is the total particle number in the system.

In Fig. 2 we present an example that demonstrates the
main physical effect that we propose to realize experimen-
tally. We show the time evolution of the density imbalance
�n(t ), averaged over 500 trajectories, as a function of time.
The system of coupled condensates is subjected to a prob-
ing term with V0 = 0.01J0 and a small probing frequency of

ωp = 2π/Tp = 2π × 0.002J0. The small probing amplitude
ensures that the perturbation is weak. The probing period Tp

is used as a timescale in Fig. 2. In Fig. 2(a) we show �n(t ) for
an undriven system, which displays high-frequency fluctua-
tions due to thermal noise. We filter these fluctuations using
a filter function with Gaussian kernel g(t ) = exp(−t2/σ 2

t ).
We choose the timescale σt = Tp/10. The low-frequency part
of the motion of the density imbalance displays a periodic
motion at the probing frequency ωp. It is depicted in Fig. 2(a),
in addition to the unfiltered data, and also in Fig. 2(d), to be
compared to the density motion of a parametrically driven
system, as we describe below.

We now calculate �n(t ) for a driven junction. We drive
the tunneling energy between the condensates as described by
Eq. (4). We use the driving amplitude A = 0.4. In Figs. 2(b)
and 2(c), we show �n(t ) for a blue-detuned (ωd/ωJp = 1.053)
and a red-detuned (ωd/ωJp = 0.921) driving frequency, re-
spectively. ωJp is the Josephson plasma frequency, which we
estimate as ωJp = √

4J0(J0 + Un0), as we describe below. For
the parameter choice of this example, we have ωJp = 2.28J0,
which we use as a frequency scale for the driving frequency.
We note that this choice of the driving amplitude and driving
frequency is outside of the parametric heating regime, which
allows for a long driving time.

As depicted in Figs. 2(b) and 2(c), we also determine the
low-frequency filtered density imbalance, which we calculate
via Gaussian filtering as described above. We compare these
averaged values in Fig. 2(d). The amplitude of the oscillation
of the density imbalance is increased due to parametric driv-
ing with a red-detuned driving frequency and decreased due
to driving with a blue-detuned frequency. This observation
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exemplifies the main point of parametric control of conductiv-
ity for an atomic Josephson junction. For red-detuned driving,
the low-frequency limit of the response to a potential differ-
ence between the two condensates is increased. To achieve
the same response statically, a larger tunneling energy would
be required. This dynamically induced behavior is therefore
parametrically enhanced superfluidity. For blue-detuned driv-
ing, the amplitude of the oscillation of the density imbalance
is reduced, which indicates a reduction of superfluidity. This
constitutes the essence of control of conductivity via para-
metric driving. We elaborate on this observation below and
relate it to the conductivity of a parametrically driven junc-
tion of charged particles. As we demonstrate, the frequency
dependence is inverted: for blue-detuned parametric driving
the superconducting response is enhanced, for red-detuned
driving the response is reduced.

III. CONDUCTIVITY

In this section we derive the conductivity of a Josephson
junction of neutral particles and of charged particles, at linear
order. The resulting expressions are proportional to the inverse
of each other, as we discuss below.

To provide an estimate for the conductivity of an atomic
junction, we consider a two-site BH model in the phase-
density representation, in linearized form:

H2 =
( J0

n0
+ U

)
�n2 + J0n0θ

2 + V (t )�n. (6)

θ is the phase difference of the two condensates. �n = (n1 −
n2)/2 is the density imbalance. The equations of motion are

�ṅ = 2J0n0θ, (7)

θ̇ = −2
( J0

n0
+ U

)
�n − V (t ). (8)

Eliminating �n, we obtain an equation of motion for θ ,

θ̈ + γ θ̇ + ω2
Jpθ = −V̇ (t ), (9)

where γ is included phenomenologically to describe damping.
ωJp = √

4J0(J0 + Un0) is the Josephson plasma frequency, as
stated in Sec. II. The Fourier transform of Eq. (9) can be
written as

θ (ω) = −iωV (ω)

ω2 − ω2
Jp + iγω

, (10)

which relates the phase to the external probing potential. The
particle current is determined by j = −�ṅ. The minus sign is
explicitly included to specify that a positive j refers to a cur-
rent flowing from condensate 1 to condensate 2 and a negative
j to the opposite direction. The conductivity of a junction of
neutral particles is defined as σ n(ω) ≡ j(ω)/V (ω). Combin-
ing Eqs. (7) and (10), we obtain

σ n(ω) = 2J0n0
iω

ω2 − ω2
Jp + iγω

. (11)

FIG. 3. Numerical simulation results for ωpIm[1/σ n(ωp)] of
the undriven system (grey circles), for red-detuned driving (purple
circles) with ωd/ωJp = 0.921, and for blue-detuned driving with
ωd/ωJp = 1.053 and driving amplitudes A = 0.2 (diamonds) and
A = 0.4 (triangles).

So the conductivity of an atomic junction is a Lorentzian, with
its maximum at the resonance frequency ωJp, multiplied by the
frequency ω.

To develop the relation between the transport across an
atomic junction and a junction of charged particles, we de-
rive the conductivity of the RCSJ model of a junction. The
linearized equation of motion for the phase difference of a
Josephson junction is [26]

φ̈ + γcφ̇ + ω2
Jp,cφ = Ĩ, (12)

where Ĩ ≡ ω2
Jp,cI/Jc

0 , with I being the external current. ωJp,c =
(2e/h̄)2Jc

0/C is the Josephson plasma frequency, where Jc
0 is

the bare Josephson coupling energy and C is the capacitance
determined by the geometry of the junction. The conductivity
is defined as σ c(ω) ≡ Id/Vc, where d is the distance between
the superconductors. The voltage difference across the junc-
tion is given by the Josephson relation, Vc = h̄

2e φ̇, where e is
the charge of an electron. We then obtain

σ c(ω) = h̄

2e

Cd

iω

(
ω2 − ω2

Jp,c + iγcω
)
. (13)

Comparing Eqs. (11) and (13), we observe that the con-
ductivities σ n(ω) and σ c(ω) are proportional to each other’s
inverse, i.e.,

1/σ n(ω) ∼ σ c(ω). (14)

This relation motivates us to display 1/σ n(ω) throughout this
paper, for example, in Figs. 1(c) and 4. This quantity features
a 1/ω divergence in its imaginary part and a zero crossing at
the resonance frequency, and therefore directly resembles the
conductivity of a junction of charged particles.

The origin of this relation derives from a comparison of
Eqs. (9) and (12). In both cases the equations have the form
of a driven oscillator. This results in a linear relation between
the current and the potential, when expressed in the frequency
space. The phase of the atomic junction relates to the current,
at linear order, and is therefore the quantity that responds to
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FIG. 4. Im[1/σ n(ωp)] as a function of the probing frequency
ωp for an undriven system, obtained from the numerical simulation
(circles) and analytical prediction of Eq. (15). The probing amplitude
is V0 = 0.01J0. We obtain the fitting parameters for the density n0 =
1.8779, for the damping γ = 0.05J0 and for the Josephson plasma
frequency ωJp = 2.2939J0. Inset: zoom-in near ωJp. The green ver-
tical line indicates the analytical estimate of the Josephson plasma
frequency of ωJp = 2.28J0.

the external perturbation −V̇ (t ) in Eq. (9). However, for the
electronic junction the phase is related to the external potential
due to the gauge theoretical relation of phase and vector field,
whereas the inhomogeneous term in Eq. (12) is the current.
Therefore the roles of the current and the external potential
are reversed between Eqs. (9) and (12), resulting in the inverse
response function.

IV. NUMERICAL RESULTS

We present how the inverse of the conductivity 1/σ n(ω)
is affected by parametric driving at a blue-detuned driv-
ing frequency of ωd/ωJp = 1.053 and a red-detuned driv-
ing frequency of ωd/ωJp = 0.921. In Fig. 3 we show
ωpIm[1/σ n(ωp)] in the low-probing-frequency regime. For
each ωp, we determine the time evolution of �n(t ) over
a time duration of 10Tp and extract the Fourier compo-
nent �n(ωp). For the undriven system, ωpIm[1/σ n(ωp)]
approaches a constant value of ∼ω2

Jp/(2J0n0) in the limit
of ωp → 0. In the presence of parametric driving, the low-
frequency response is modified. When the driving frequency
is larger than the Josephson plasma frequency, i.e., ωd >

ωJp, the quantity ωpIm[1/σ n(ωp)] is enhanced for ωp <

ωd − ωJp, indicating a reduced effective tunneling energy
across the junction. The magnitude of enhancement de-
pends on the driving amplitude, as shown in Fig. 3. For
larger driving amplitude A, ωpIm[1/σ n(ωp)] shows a larger
enhancement. Above the frequency difference, i.e., ωp >

ωd − ωJp, the quantity ωpIm[1/σ n(ωp)] is reduced. This

observation that the enhancement of ωpIm[1/σ n(ωp)] at the
low-probing-frequency limit is accompanied by the reduc-
tion of ωpIm[1/σ n(ωp)] above the frequency difference, i.e.,
ωp > ωd − ωJp, is reminiscent of the redistribution of phase
fluctuations described in [25]. On the other hand, for a red-
detuned driving frequency, i.e., ωd < ωJp, ωpIm[1/σ n(ωp)] is
reduced for ωp < ωd − ωJp while increased for ωp > ωd −
ωJp. We note that the enhancement and suppression effect
is most pronounced for ωd close to ωJp. For ωd far away
from ωJp, the effect of enhancement and suppression is
diminished.

V. PARAMETRIC CONTROL OF CONDUCTIVITY

Based on the analytical estimate of the conductivity that we
presented in Sec. III, the inverse of the conductivity is

1/σ n(ω) = 1

2J0n0

1

iω

(
ω2 − ω2

Jp + iγω
)
. (15)

In Fig. 4 we show the numerical results for Im[1/σ n(ωp)].
It displays a 1/ω divergence in the low-frequency regime,
which is associated with the low-frequency behavior of
the conductivity of a superconductor. We fit the numeri-
cal data with formula (15), which gives for the condensate
density n0 = 1.8779, for the damping γ = 0.05J0, and for
the plasma frequency ωJp = 2.2939J0. We note that the
value of n0 is close to the value of the numerical sim-
ulations, and the value of ωJp is close to the analytical
estimate ωJp ≡ √

4J0(J0 + Un0) ≈ 2.28J0. The zero crossing
of Im[1/σ n(ωp)] signifies the Josephson plasma frequency.
Again, we find that the analytical estimate is close to the
numerical finding. To indicate the magnitude of the deviation
from the linearized estimate, we display Im[1/σ n(ωp)] in the
vicinity of the resonance in the inset. Small deviations are
visible around the resonance where nonlinear contributions
are noticeable due to the large amplitudes of the motion near
resonance.

We now determine how the conductivity σ n(ω) is modified
by parametric driving. This analysis is closely related to the
analysis presented in Ref. [26]. We replace J0 by J (t ) in
Eq. (6). The equation of motion for �n(t ) is

�n̈ = 2J̇ (t )n0θ + 2J (t )n0θ̇ − γ�ṅ, (16)

where we include the damping term phenomenologically with
a damping parameter γ . We note that the time dependence
of J (t ) contributes an additional term on the right-hand side,
compared to Ref. [26]. This term is of the form of a damp-
ing term as well, in which the damping rate is modulated
in time. The oscillatory time dependence of J (t ) couples
the mode �n(ωp) at the probing frequency to the modes
�n(ωp ± mωd ), where m ∈ Z. Using a three-mode expan-
sion, we write �n(t ) = ∑

j �n(ω j ) exp(iω jt ), where ω j =
ωp + jωd with j = 0,±1. The full expression for 1/σ n(ω)
is given in Eq. (A3). In the limit of ωp → 0, we obtain

lim
ωp→0

Im[ωp/σ
n(ωp)] = 1

2J0n0

A2
(
4J2

0 + ω2
Jp

)(
ω2

d − ω2
Jp

)(
4J2

0 − ω2
d + ω2

Jp

) − 2ω2
Jp

[
γ 2ω2

d + (
ω2

d − ω2
Jp

)2]

A2
(
ω2

d − ω2
Jp

)(
4J2

0 − ω2
d + ω2

Jp

) − 2γ 2ω2
d − 2

(
ω2

d − ω2
Jp

)2 . (17)
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FIG. 5. Comparison of the numerical simulations (circles, di-
amonds, triangles) with the three-mode expansion (purple dashed
lines) of Eq. (A3) and the numerical solution (purple continuous
lines) of Eqs. (7) and (8) with the parameters n0 = 1.84 and γ =
0.06J0. The probe amplitude is V0 = 0.01J0. Driving amplitude is
A = 0.1 and the driving frequency is ωd/ωJp = 1.053 for blue-
detuned driving, and ωd/ωJp = 0.921 for red-detuned driving.

This modified expression depends on the driving amplitude
and the driving frequency, and the damping parameter γ . We
note that A appears in the denominator as well. This is due
to the θ̇ term that couples the probe to J (t ), which in turn
leads to a probe input of three modes at frequencies ωp, ωp +
ωd , ωp − ωd . Using an expansion with more and more modes,
we expect that the contribution of A to the denominator to play
a lesser role.

In Fig. 5 we compare the analytical result based on the
three-mode expansion, Eq. (A3), the numerical result based
on Eqs. (7) and (8), and the numerical simulation results of the
two coupled condensates. We show the case of blue-detuned
driving, ωd/ωJp = 1.053, and the case of red-detuned driving,
ωd/ωJp = 0.921, both with A = 0.1. We use the parameters
n0 = 1.84 and γ = 0.06J0 for the three-mode expansion and
the numerical result based on Eqs. (7) and (8). The numerical
result of Eqs. (7) and (8) matches the numerical simulation
result well. The three-mode expansion gives a qualitative es-
timate of enhancement and reduction of 1/σ n(ω). The overall
shape of the response is that of a resonance pole located

near ωd − ωJp ≈ 0.12J0, broadened by the damping param-
eter γ , which depends on the temperature and nonlinear
terms.

VI. MECHANISM

To describe the physical origin of the dynamical control
effect that we present in this paper, we consider the equation
of motion

φ̈ + γ φ̇ + ω2
Jp[1 + A cos(ωdt )] sin φ = I (t ). (18)

This is the RCSJ model of a Josephson junction of charged
particles, see Eq. (12), with an additional parametric mod-
ulation of the Josephson energy, see Ref. [26]. Due to the
similarity to an atomic Josephson junction [see, e.g., Eqs. (9)
and (16)], this discussion provides an intuition for atomic
junctions as well, with the reinterpretation of terms, discussed
in Sec. III.

Interpreted as a mechanical model, this equation de-
scribes a particle moving in a cosine potential, as depicted
in Fig. 6. This is the tilted-washboard potential representa-
tion of the RCSJ model [55] with V (φ) = −I (t )φ − ω2

Jp[1 +
A cos(ωdt )] cos φ. The probe current I (t ) plays the role of
tilting the potential upward and downward. If the external
potential oscillates in time, the washboard potential is modu-
lated with a linear gradient, oscillating in time. The Josephson
plasma frequency ωJp is the frequency of a particle oscillating
around a minimum. The parametric driving term, given by
A cos(ωdt ), corresponds to a modulation of the height of the
potential in time, as shown in Fig. 6(b).

To describe the origin of the renormalization of the low-
frequency response and its sign change for driving frequencies
above and below the resonance frequency we present a per-
turbative argument. This approach provides an estimate of the
conductivity that corresponds to the result of the three-mode
expansion, expanded to second order. We expand φ = φ(0) +
Aφ(1) + A2φ(2) + · · · by treating the driving amplitude A as
the expansion parameter. Assuming small amplitudes of the
phase oscillation, we linearize sin φ. Inserting the expansion
series into Eq. (18), we obtain the equations

φ̈(0) + γ φ̇(0) + ω2
Jpφ

(0) = I (t ), (19)

φ̈(n) + γ φ̇(n) + ω2
Jpφ

(n) = −ω2
JpA cos(ωdt )φ(n−1), (20)

in zeroth and nth order in A, respectively. We note that the
nth-order solution is multiplied with cos(ωdt ) to provide
the source term for the (n + 1)th order. With a monochro-
matic probe current I (t ) = I0e−iωpt , the solutions to Eqs. (19)
and (20), up to second-order contributions, are

φ(0) = I0e−iωpt

ω2
Jp − ω2

p − iγωp
, (21)

φ(1) = −ω2
Jp(A/2)φ(0)e−iωd t

ω2
Jp − (ωp + ωd )2 − iγ (ωp + ωd )

, (22)

φ(2) = −ω2
Jp(A/2)φ(1)eiωd t

ω2
Jp − ω2

p − iγωp
. (23)
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FIG. 6. In (a) and (b) we depict the washboard potential repre-
sentation of junction dynamics. In (a) we show the influence of an
external current, in (b) we show the influence of parametric modula-
tion of the junction energy. In (c), we show the response of the phase
of the probe, and indicate the first- and second-order contributions to
the modified response at ωp.

Each solution is the solution of a driven harmonic oscillator
responding to an external driving term. φ(0) oscillates at fre-
quency ωp, determined by the probe current I (t ), as indicated
in Eq. (19). In the solution for φ(1), −ω2

JpA cos(ωdt )φ(0) is the
source term and determines that φ(1) oscillates at frequency
ωd + ωp. If ωd is close to the resonance frequency ωJp, the
amplitude of the response is large. As indicated in Fig. 6(c),
the motion of φ(1) will pick up an additional phase of π when
the driving frequency is above the resonance frequency. The
second-order correction φ(2) oscillates at low frequency due to
the oscillatory factor eiωd t . Therefore φ(2) is the lowest-order
contribution to the motion at the probing frequency. The sign
change at the resonance translates into φ(2) having a positive
or negative sign. Inserting Eqs. (21) and (22) into Eq. (23), in
the limit of ωp → 0 we obtain

Re[φ(2)] = A2

4

ω2
Jp − ω2

d(
ω2

d − ω2
Jp

)2 + γ 2ω2
d

. (24)

Therefore when the system is subjected to a blue-detuned
driving, i.e., ωd > ωJp, the combined terms φ(0)(ωp) +
φ(2)(ωp) have a reduced magnitude, resulting in a stabilization
of the phase. Similarly, for red-detuned driving, φ(2)(ωp) has
the same sign as φ(0)(ωp), therefore the response of the phase
is increased. For σ c(ωp) this implies that the conductivity
is enhanced for blue-detuned driving and reduced for red-
detuned driving, because the phase is proportional to electric
field while the current is held fixed. A reduction of the motion
of the phase implies that the same current is induced with a
smaller electric field, indicating an enhanced conductivity. For
the conductivity of an atomic junction, the phase is propor-
tional to the current, at linear order. So a reduction of the phase
motion implies a reduction of the conductivity, which occurs
at blue-detuned driving, while an increased current occurs
at red-detuned driving, resulting in parametrically enhanced
conductivity.

VII. CONCLUSIONS

We have demonstrated parametric enhancement and sup-
pression of the conductivity of an atomic Josephson junction,
composed of two weakly coupled 1D condensates. This is
motivated by our proposed mechanism of parametric enhance-
ment of the conductivity of light-driven superconductors [26],
which, in its simplest form, manifests itself in a single,
parametrically driven Josephson junction. To demonstrate the
analogous mechanism in a cold atom system, such as in
Refs. [40,44], we discuss the relation between the conductiv-
ity of a junction of neutral particles and a junction of charged
particles. We demonstrate that these are proportional to the
inverse of each other. Based on this analogy, we propose to
control the inverse of the conductivity of an atomic junction.
We implement parametric control of the junction by periodic
driving of the magnitude of the tunneling energy. We show
numerically and analytically that the low-frequency limit of
the inverse conductivity is enhanced for parametric driving
with a frequency that is blue-detuned with regard to the res-
onance frequency of the junction. Similarly, the inverse of
the conductivity is suppressed for parametric driving with a
red-detuned frequency. This effect constitutes the central point
of parametric enhancement of conductivity, which we propose
to implement and verify in an ultracold atom system, which
serves as a well-defined toy model, in the spirit of quantum
simulation.
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APPENDIX: THREE-MODE EXPANSION SOLUTION

To solve Eq. (16), we first substitute θ and θ̇ using Eqs. (7) and (8). A three-mode expansion allows us to write

�n(t ) = �n(ωp)e−iωpt + �n(ωp + ωd )e−iωpt−iωd t + �n(ωp − ωd )e−iωpt+iωd t . (A1)

Now Eq. (16) can be written in matrix form as
⎡
⎢⎢⎣

ω2
Jp − iγ�−d − �2

−d 2AJ2
0 + ω2

JpA/2 0

2AJ2
0 + (ω2

Jp − ω2
d )A/2 ω2

Jp − iγωp − ω2
p 2AJ2

0 + (ω2
Jp − ω2

d )A/2

0 2AJ2
0 + ω2

JpA/2 ω2
Jp − iγ�+d − �2

+d

⎤
⎥⎥⎦

⎡
⎣

�n(ωp − ωd )
�n(ωp)

�n(ωp + ωd )

⎤
⎦ = J0n0V0

⎡
⎣

−A/2
1

−A/2

⎤
⎦, (A2)

where we keep terms in A up to first order. �+d = ωp + ωd is the sum of the probing frequency ωp and the driving frequency
ωd . �−d = ωp − ωd is the difference frequency. With the solution of �n(ωp), we obtain the expression for the conductivity:

1/σ n(ωp) = 2
{
A2

(
4J2

0 + ω2
Jp)Bfac/2 + [

ω2
Jp + iωp(γ + iωp)

]
CfacDfac

}

J0n0(A2Bfac − 2CfacDfac)
, (A3)

where Bfac = (−iγωp + ω2
d − ω2

Jp + ω2
p)(4J2

0 + ω2
Jp − ω2

d ), Cfac = ω2
Jp + iγ�−d − �2

−d , and Dfac = ω2
Jp + iγ�+d − �2

+d .
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