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Scaling of causal neural avalanches in a neutral model
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Neural avalanches are collective firings of neurons that exhibit emergent scale-free behavior. Understanding
the nature and distribution of these avalanches is an important element in understanding how the brain functions.
We study a model of neural avalanches for which the dynamics are governed by neutral theory. The neural
avalanches are defined using causal connections between the firing neurons. We analyze the scaling of causal
neural avalanches as the critical point is approached from the absorbing phase. By using cluster analysis tools
from percolation theory, we characterize the critical properties of the neural avalanches. We identify the tuning
parameters consistent with experiments. The scaling hypothesis provides a unified explanation of the power
laws which characterize the critical point. The critical exponents characterizing the avalanche distributions and
divergence of the response functions are consistent with the predictions of the scaling hypothesis. We use a
universal scaling function for the avalanche profile to find that the firing rates for avalanches of different durations
show data collapse after appropriate rescaling. We also find data collapse for the avalanche distribution functions,
which is stronger evidence of criticality than just the existence of power laws. Critical slowing-down and power-
law relaxation of avalanches is observed as the system is tuned to its critical point. We discuss how our results
motivate future empirical studies of criticality in the brain.
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I. INTRODUCTION

Systems with many interacting units can exhibit phenom-
ena at macroscopic scales which cannot be elucidated from
their microscopic behavior [1,2]. For a system at its critical
point, emergent phenomena occur at all length scales and
can be understood using concepts such as scaling and uni-
versality [1,3,4]. There is a growing interest in the question
of whether certain biological systems operate near a critical
point [5–9]. One question that has received much attention
is the question of whether the brain operates near a critical
point [5,10–20], commonly referred to as the criticality hy-
pothesis [5]. Experiments have shown that neural avalanches
in vivo and in vitro can exhibit scale-free behavior similar to
thermal systems near the critical point [21–26]. The interest
in the criticality hypothesis has been amplified by arguments
that criticality in the brain may benefit memory storage and
information processing [5,27–36].

The temporal-proximity binning method of defining neu-
ral avalanches [22–26,37,38] can show discrepancies from
the true behavior of avalanches, especially when multiple
avalanches propagate through the system [39,40]. Martinello
et al. [39] partly addressed this issue by defining avalanches
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using causal-connections between firing neurons. Addition-
ally, Martinello et al. [39], studied a minimal model of neural
avalanches, which is the contact process [41] where multiple
neutral causally connected avalanches can propagate concur-
rently. We also study this neutral contact process here. The
avalanche distributions in the active phase of the neutral con-
tact process were studied in Ref. [39]. In this paper we study
the scaling of causal neural avalanches as the the critical
point is approached from the absorbing phase. Our analysis
reveals the relevant scaling fields or tuning parameters in the
absorbing phase. We show that the causal neural avalanches in
the absorbing phase are consistent with the scaling hypothesis.
Additionally, we discuss how our analysis can motivate future
experiments.

The remainder of the paper is structured as follows. In
Sec. II, we outline the neutral contact process and discuss
the connections to experimental studies of criticality in neu-
ral systems. We provide a brief pedagogical introduction to
cluster scaling methods in Sec. III. In Sec. IV, we measure
the critical exponents τ and σ , which characterize the scale-
free causal avalanche distributions at the critical point. We
approach the critical point from the absorbing phase. We also
find data collapse of the distributions of avalanche size and
duration near the critical point. In Sec. V, we study how
the response function diverges as a power law as the critical
point is approached. We show that our measured critical ex-
ponents are consistent with the scaling hypothesis in Sec. VI.
We find that the relevant scaling field in the neutral contact
process are consistent with the different tuning parameters
in experiments [22,23,42,43]. In Sec.VII, we analyze the
scaling relation between the avalanche size and duration. In
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Sec. VIII, we use scaling arguments to derive the universal
avalanche profile and show data collapse for the firing rates
for avalanches of different durations. Critical slowing down
is analyzed in Sec. IX. In Sec. X, we analyze the universal
relaxation dynamics in the neutral contact process near the
critical point. Lastly, in Sec. XI we discuss our results, which
indicate that the neutral contact process is consistent with the
predictions of the scaling hypothesis. Additionally, we discuss
how our results may inform future empirical studies of neural
systems.

II. MODEL

The brain is a complex system consisting of many inter-
acting neurons. In the resting state, neurons have intrinsic
voltages which fluctuate around some residual value. A neu-
ron, triggered by some stimuli (endogenous or external), sends
its action potential or spikes to its connected neighbors. A
recipient neuron may also fire and send its spike to the con-
nected neighbors, thereby resulting in an avalanche. The firing
neurons in this avalanche are causally connected. Martinello
et al. [39] defined neural avalanches in the neutral contact pro-
cess using causal connections and showed that this definition
of neural avalanches does not suffer the ambiguities com-
monly found in the temporal-proximity binning method [40].
Multiple neural avalanches can propagate concurrently in the
neutral contact process because of the causally connected
definition. The avalanches are neutral [39,44,45] or symmetric
because the rates that describe the dynamics of the avalanches
are the same for all labels, which distinguish the different
avalanches.

The neutral contact process consists of N neurons which
are fully connected. Every neuron interacts with every other
neuron. A neuron is either inactive, I , or active, Ak , where
the index k denotes the avalanche label. In Fig. 1, different
colors correspond to different causal neural avalanches. The
stochastic dynamics of the avalanches are described by rate
equations. A new avalanche with a new label is triggered
at the driving rate ε. An avalanche increases in size at the
propagation rate λ as inactive neurons are triggered by active
neurons. Active neurons become inactive at the decay rate μ.
The rate equations describing the neutral contact process [39]
are

I
ε−→ Amax[k]+1, (1)

I + Ak
λ−→ Ak + Ak, (2)

Ak
μ−→ I, (3)

An avalanche ends when all neurons with a given label k
become inactive. The size S of the causal neural avalanche
is the number of activations, and the avalanche duration D is
the time between the activation of the first neuron with label
k to when all neurons with index k become inactive, as shown
in Fig. 1.

The neutral contact process captures many of the salient
biological mechanisms relevant to neural avalanches. In
neural systems, the ratio of inhibitory to excitatory neu-
rons [22,42,43] and the spontaneous triggering rate [23,46]
affect the statistics of neural avalanches. In the neutral contact

FIG. 1. Neutral theory describes the dynamics of causal neural
avalanches. The boxes correspond to neurons, and each column to the
right is the system at a later time step. Different colors correspond to
different causal avalanches. The rates for the dynamics are identical
for all avalanches. A new avalanche is triggered at the driving rate ε

and is marked with a star. An active neuron can trigger an inactive
neuron anywhere in the system at the propagation rate λ. Both neu-
rons share the same label, as they are causally connected. An active
neuron becomes inactive at the decay rate μ. For the neural avalanche
labeled by black, the size S = 2 is the total number of activated
neurons, and the duration D = 2 is the time elapsed between the first
activation until all the black neurons become inactive.

process, we can tune the propagation rate, λ, and the decay
rate, μ, to achieve an analogous result to varying the ratio of
inhibitory and excitatory neurons in experiments. In addition,
the driving rate ε in the neutral contact process is analogous
to the spontaneous triggering of neurons [23,47]. For these
reasons, we can explore the criticality of neural avalanches
in the neutral contact process in a way that is comparable to
experiments.

In this paper, we only study causal neural avalanches in the
absorbing phase of the neutral contact process, where μ � λ

and ε � 0. We simulate the model using a discrete-time asyn-
chronous random update [41,48]. We discuss how the code
is implemented. A neuron is randomly chosen at each time
step. If the neuron is inactive, then a new causal avalanche
is triggered with probability ε. If the neuron is active, then
it becomes inactive with probability μ, otherwise another
inactive site becomes part of the same causal avalanche. All
our simulations are run at N = 104, similar to Ref. [39]. The
simulations were repeated for different systems sizes up to
N = 105 to ensure that the measured values had converged.
Additionally, we confirmed that the system is effectively
ergodic using the Thrimulai-Mountain metric [49–51]. We
collected data on time scales much larger than the mixing time
(the time needed for the system to reach effective ergodicity).

III. THEORY

Different physical systems exhibit universal properties near
the critical point [3]. We can understand the nature of a critical
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point by analyzing the statistical properties of fluctuations or
clusters in the system [1,52,53]. By using real-space renor-
malization group techniques [4,54], we can map domains in
magnetic systems undergoing a thermodynamic phase transi-
tion to clusters in percolation models undergoing a geometric
phase transition. Cluster analysis methods from percolation
theory have even been used to study nonequilibrium phase
transitions in integrate-and-fire systems [55]. Reference [56]
provides a summary of scaling in percolation theory. We will
use similar cluster analysis methods to study the scaling of
causal avalanches in the absorbing phase of the neutral contact
process.

We can obtain thermodynamic quantities from the the
avalanche number density, nS (S), which characterizes the
probability of an avalanche of size S. Near the critical point,
the number density for S � 1 is

nS ∼ S−τ G

(
S

Sc

)
. (4)

The τ exponent characterizes the power law distribution at
the critical point. The characteristic size Sc diverges as the
system approaches the critical point, and the avalanche num-
ber density becomes a power law, nS ∼ S−τ . The Fisher
ansatz [57,58] assumes that the scaling function G(x) is given
by G(x) = exp(−x). Equation (4) and the Fisher ansatz has
been applied to many systems [53,55], and we will show that
it is consistent with the neutral contact process.

A system is said to be scale-free when the avalanche distri-
bution follows a true power law, nS ∼ s−τ . In the scale-free
case, we can plot nS = N0s−τ on a log-log plot to find a
straight line with slope −τ . Deviations from the power law
occur when the system is not at the critical point. The expo-
nential cutoff corresponds to G(x) and appears as a “knee”
in the log-log plot [55]. Distributions with a cut-off at some
characteristic scale are not scale-free. The finite lattice size in
simulations also sets a cut-off.

The scaling hypothesis was originally introduced to ex-
plain the universal behavior across disparate thermodynamic
systems [1]. According to the scaling hypothesis, the asymp-
totic behavior of various thermodynamic functions follow
power laws characterized by critical exponents. The power
laws are interconnected because they are caused by the same
underlying mechanism. The predictions of the scaling hypoth-
esis have been verified in both experiments and numerical
models [1]. Later, renormalization group methods have been
used to justify the scaling hypothesis [3].

We review the scaling of thermodynamic quantities and
introduce critical exponents from statistical mechanics. Re-
sponse functions quantify the change in macroscopic behavior
caused by changes in intensive parameters [1]. Our definition
of the response function χ is the same as in percolation the-
ory [52,56,59], namely

χ =
∑

S S2 nS∑
S S nS

. (5)

The response function χ is analogous to the magnetic sus-
ceptibility in the Ising model [1]. The response function
diverges [1] as

χ ∼ h−γ , as h → 0, (6)

where h is the difference between the tuning parameter and its
critical value. Divergent response functions are hallmarks of a
system near its critical point [1]. The characteristic avalanche
size Sc scales [1,52] as

Sc ∼ h−1/σ . (7)

We use scaling arguments to relate the asymptotic behavior
of thermodynamic quantities near a critical point. The scal-
ing of the characteristic avalanche size Sc as a function the
correlation length serves as a good pedagogical example. The
correlation length ξ scales as

ξ ∼ h−ν ⇒ ξ−1/ν ∼ h. (8)

The characteristic avalanche size scales as

Sc ∼ h−1/σ ∼ [ξ−1/ν]−1/σ ∼ ξ 1/σν. (9)

We will show that similar scaling arguments hold for the
causal avalanches in the neutral contact process.

IV. SCALE-FREE AVALANCHE DISTRIBUTION

In this section, we study the causal avalanche size and
duration distributions in the absorbing phase of the neutral
contact process where μ � λ and ε � 0.

One of the challenges of the criticality hypothesis is that
the tuning parameters in real neural systems are not known.
Different experiments have suggested different tuning param-
eters [23,42,43]. In Ref. [23], the experiments in vitro and in
vivo show that the spontaneous triggering rate of neurons may
be interpreted as a tuning parameter. This parameter corre-
sponds to ε in the neutral contact process. The experiments
reported in Refs. [22,42,43] use pharmacological means to
alter the excitation-inhibition ratio, to alter the proximity to
the critical point. We can achieve similar results by varying
the rates λ and μ. Our analysis shows that the relevant scal-
ing fields for the neutral contact process depends on ε and
propensity 
 = μ − λ, which are consistent with the different
experimental results [22,23,42,43]. We find that the critical
point for the neutral contact process is 
 = μ − λ = 0 and
ε = 0. We find that the distributions of avalanche sizes and
durations follows power laws for 
 = 0 and ε = 0. Larger
avalanches are suppressed for ε > 0 and 
 > 0.

In Fig. 2 we observe that the distribution of the avalanche
sizes nS and duration nD satisfy power law at the critical
point with the exponents τ and τD. As we tune the system
away from the critical point by increasing the driving ε or the
propensity 
, we find exponential suppression of the large
avalanches characterized by the exponents σ and σD for the
size and duration, respectively. The distribution functions for
the avalanche size and duration are

nS ∼ S−τ exp

[
− S

Sc

]
, (10)

nD ∼ D−τD exp

[
− D

Dc

]
, (11)

where Sc is the characteristic avalanche size and Dc is the
characteristic duration size [52,56,57]. For critical propensity

 = 0, the characteristic avalanche size scales as Sc ∼ ε−1/σ

013107-3



SAKIB MATIN, THOMAS TENZIN, AND W. KLEIN PHYSICAL REVIEW RESEARCH 3, 013107 (2021)

FIG. 2. The distribution of avalanche sizes and durations follows a power law at the critical point, 
 = 0 and ε = 0. There is exponential
suppression of large avalanches for 
 > 0 and ε > 0. The various exponents are the same for both tuning parameters. The inset shows data
collapse for the causal avalanche distributions. In the top row, 
 = 0 and ε is varied. (a) The exponents for the avalanche size distribution
τ = 1.53 ± 0.05. (b) The avalanche duration distribution is characterized by τD = 1.92 ± 0.11. In the bottom row, 
 is varied for ε = 0.
(c) The corresponding exponent τ = 1.51 ± 0.05. (d) τD = 1.93 ± 0.11 is the critical exponent for the avalanche duration distribution.

and the characteristic duration scales as Dc ∼ ε−1/σD . When
ε = 0, the scaling is Sc ∼ 
−1/σ and Dc ∼ 
−1/σD .

Our measured values of τ and τD in Fig. 2 are consistent
with the theoretical mean field values, τMF = 1.5 and τMF

D =
2 [5], and experimentally reported values [23]. In Fig. 3 we fit
the exponents, σ and σD, which characterize the exponential
suppression of large avalanches. The critical exponents σ and
σD for neural systems have not been reported in experiments.

A remarkable consequence of the scaling hypothesis is the
existence of universal scaling functions, which are usually
obtained via data collapse [1,3,60], where results for differ-
ent values of the control parameters collapse on to a single
curve after appropriate rescaling. In Fig. 2, the insets show
data collapse for the distributions of the causal avalanches. In
Fig. 2(a), the causal avalanche size distribution for different
values of ε is plotted. The scaling form is

nS ∼ S−τ exp

(
− S

Sc

)
∼ S−τ exp(−Sε1/σ ). (12)

We multiply both sides by ε−τ/σ ,

nSε
−τ/σ ∼ ε−τ/σ S−τ exp(−Sε1/σ ), (13)

nSε
−τ/σ ∼ (Sε1/σ )−τ exp(−Sε1/σ ). (14)

In the inset of Fig. 2(a), we plot nSε
−τ/σ as a function of the

rescaled avalanche size Sε1/σ to find data collapse. The exact
same scaling arguments be used to derive the rescaled scaled
variables in Figs. 2(b)–2(d), which are as follows

nDε−τD/σD ∼ (Dε1/σD )−τD exp(−Dε1/σD ), (15)

nS

−τ/σ ∼ (S
1/σ )−τ exp(−S
1/σ ), (16)

nD
−τD/σD ∼ (D
1/σD )−τD exp(−D
1/σD ). (17)

The data collapse of the causal avalanche distributions in the
insets of Fig. 2 is compelling evidence relevant scaling fields
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(a) (b)

(c) (d)

FIG. 3. The characteristic avalanche size Sc and duration Dc diverge as the critical point is approached. For each value of 
 or ε, we fit
the avalanche size and duration distributions to Eq. (10) and Eq. (11) to obtain Sc and Dc, respectively. In the top row, ε is varied at fixed

 = 0. (a) The characteristic avalanche size Sc diverges with critical exponent σ = 0.54 ± 0.07. (b) The characteristic duration Dc diverges
with critical exponent σD = 0.95 ± 0.06. In the bottom row, 
 is varied at fixed ε = 0. (c) The measured exponent for Sc is σ = 0.52 ± 0.08.
(d) The characteristic duration diverges with the exponent σD = 1.02 ± 0.09.

or tuning parameters in the absorbing phase depend on ε

and 
.

V. DIVERGENT RESPONSE FUNCTION

Divergent response functions are hallmarks of critical
points [1]. We consider response function χ , which is from
percolation theory, that is given by [55,56]

χ =
∑

S S2 nS∑
S S nS

. (18)

In Fig. 4, the exponent γ is found to be the same whether
the critical point is approached by decreasing 
 at ε = 0, or
by decreasing ε at 
 = 0. When we vary 
, we measured
γ = 2.00 ± 0.02, and when we vary ε the exponent is γ =
1.97 ± 0.04.

Our results indicate that the response function in the neutral
contact process diverges as we vary ε or 
 in the absorbing
phase.

VI. SCALING RELATIONS

The scale-free behavior at critical points can be at-
tributed to underlying singularities in theromodynamic func-
tions [1,57]. We use scaling theory to relate the different
critical exponents in the neutral contact process.

According to the scaling hypothesis, the response functions
can be described by generalized homogeneous functions near
the critical point [1]. We can write χ in Eq. (18) as

χ =
∑

S S2nS∑
S SnS

, (19)

=
∫ ∞

1 S2−τ G(S/Sc) dS∫ ∞
1 S1−τ G(S/Sc) dS

. (20)

We make change of variables u = S/Sc to find

χ =
S3−τ

c

∫ ∞
1/Sc

u2−τ G(u) du

S2−τ
c

∫ ∞
1/Sc

u1−τ G(u) du
, (21)
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(a) (b)

FIG. 4. The response function χ diverges as the system approaches the critical point. The exponent γ characterizes the divergence, and
is the same when the critical point is approached at constant driving ε = 0 or 
 = 0. (a) For ε = 0, when 
 is varied the exponent is
γ = 2.00 ± 0.02. (b) Varying the driving rate ε, the exponent is γ = 1.97 ± 0.04 for 
 = 0.

and set G(u) = exp(−u) [57] to express χ as

χ = Sc
�(3 − τ )

�(2 − τ )
, (22)

where � is the gamma function.
Near the critical point, we find that the response function

scales as χ ∼ Sc, where the characteristic size Sc scales as
ε−1/σ . The scaling relation between the critical exponents are

ε−1/σ ∼ ε−γ ⇒ γ = 1/σ. (23)

Our measured exponents in Figs. 3 and 4 are consistent
with Eq. (23). The results are the same when we vary 
 at
ε = 0. Our derivation is similar to scaling arguments used in
percolation theory [56], except that the denominator of the
response function also contributes to the divergence.

VII. SIZE-DURATION SCALING OF AVALANCHES

We can relate the size of the causal avalanches to their
duration using scaling arguments similar to Ref. [60]. The
critical point is approached by varying ε for 
 = 0. The
average avalanche size follows the same scaling as the charac-
teristic avalanche size, 〈S(D)〉 ∼ ε−1/σ . The correlation length
scales as ξ ∼ ε−ν . The dynamic critical exponent z relates the
duration D to ξ [61,62]. The scaling of D is

D ∼ ξ z ∼ ε−νz, (24)

D−1/νz ∼ ε. (25)

Now we can relate the average size 〈S(D)〉 to the duration as

〈S(D)〉 ∼ ε−1/σ ∼ [D−1/νz]−1/σ , (26)

∼ D1/(σνz). (27)

The same scaling arguments can be used when 
 is varied for
ε = 0.

The critical exponents for the distribution of avalanche
size and duration can be related to the exponent σνz, by the
identity [60]

τD − 1

τ − 1
= 1

σνz
. (28)

We measure the exponents on the left and right side of Eq. (28)
independently. From Fig. 5 the measured value of 1/(σνz) =
1.96 ± 0.03 is consistent with the measured values of (τD −
1)/(τ − 1) in Fig. 2. The scaling relation between the size
and duration of neural avalanches have been verified exper-
imentally [24,25]. The predictions of the scaling hypothesis
provide stricter criteria for criticality than just the existence of
power law distributions.

VIII. UNIVERSAL AVALANCHE PROFILE

The avalanche profile, which describes the firing rate as
a function of time, can be described by a universal scaling

FIG. 5. The scaling of the average avalanche size as a function of
the duration at the critical point is consistent with the scaling laws.
At the critical point the scaling is 〈S(D)〉 ∼ D1/σνz. The numerical
estimate of 1

σνz = 1.96 ± 0.03 is consistent with Eq. (28).
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FIG. 6. Neural avalanches have a universal avalanche profile at
the critical point. The firing rate scaled by D1−1/(σνz) as a function of
the rescaled time t/D shows data collapse for avalanches of different
durations.

function near the critical point. The firing rate corresponds
to the number of activations per unit time. From the scaling
hypothesis, we assume the average firing rate is described by
a generalized homogeneous function, which can be written
as fR(t, D) = Db fR(t/D) [1,60,63,64]. We compute exponent
the exponent b,

〈S(D)〉 =
∫

fR(t, D)dt =
∫

Db fR(t/D)dt ∼ Db+1. (29)

By using the scaling identity 〈S(D)〉 ∼ D1/(σνz), we find b =
1/(σνz) − 1. Figure 6 shows the data collapse for avalanches
of different durations, when we scale the firing rate by
D1−1/(σνz) and plot it as a function of the rescaled time t/D.
Our derivation follows Ref. [60].

Data collapse is an impressive example of universality in
neural avalanches. Universal scaling functions can be used
as strict criteria for criticality, because the data collapse is
observed only sufficiently close to the critical point. Under
certain circumstances, data collapse for the avalanche profile
has been reported for in vitro experiments [24,25,65], where
the avalanches are defined using the temporal proximity bin-
ning method. Our result shows that causal avalanches in the
absorbing phase of the neutral contact process follow similar
scaling behavior.

IX. CRITICAL SLOWING DOWN

A well-known consequence of criticality is a time scale that
diverges as the critical point is approached [66]. This is known
as critical slowing down. Here, we analyze how the time to
reach a stationary state diverges as the system is tuned to the
critical point.

We study the equilibration time for neutral contact process
after initializing with a single active neuron. We analyze the
dynamics of U (t ), which is the number of unique causal
avalanches at time t . U (t ) is a population level quantity

FIG. 7. The equilibration time TE diverges as the system ap-
proaches the critical point ε → 0 with 
 = 0. TE is the the time for
U (t ) to reach a steady-state value when the neutral contact process
is initiated with a single active neuron. We find TE ∼ ε−νz. The mea-
sured value, νz = 0.95 ± 0.04, is consistent with scaling arguments.

because it is computed using information from the whole
system at a particular instance in time. We determine that
the system has reached a stationary state when U (t ) reaches
a constant rolling time average. In Fig. 7 we plot the time
for U (t ) to reach a steady state TE as a function of the
driving rate ε at 
 = 0. We can use scaling arguments to
relate the dynamic exponent z to the other critical exponents;
the correlation length and time scale as ξ ∼ ε−ν and t ∼ ξ z,
respectively. In Fig. 7 the system approaches the critical point,
TE diverges as

TE ∼ ξ z ∼ ε−νz. (30)

Our measured dynamic critical exponent νz = 0.95 ± 0.04
is consistent with Eq. (28) and 1/(σνz), where σ is deter-
mined in Fig. 3. The measured exponent remains the same
when we repeat the analysis using the total activity, ρ, instead
of U . Hence, the neutral contact process exhibits a divergent
time scale characteristic of critical systems, and is consistent
with the scaling hypothesis.

X. RELAXATION DYNAMICS

Power law temporal relaxation is a hallmark of critical sys-
tems [66]. We initialize the neutral contact process, with every
neuron active and belonging to a unique causal avalanche,
and analyze the relaxation to either a fluctuating state or
to an absorbing (inactive) state. In Fig. 8(a), we vary ε for

 = 0 and analyze how the system decays to a fluctuating
state. In Fig. 8(b) the system decays to an absorbing state, as
we have set the driving rate ε = 0. We find that the number
of unique avalanches, U (t ), decays as a power law for the
critical value 
 = 0, and exponentially for 
 > 0. The crit-
ical exponent α characterizes the power law relaxation. Our
measured value is α = 0.99 ± 0.04 in Fig. 8 and is consistent
with the mean-field value αMF = 1 [41]. Inset plots in Fig. 8
show data collapse for the relaxation of U (t ) by plotting the
rescaled variables U → Utα as a function of t → (t |ε|)νz
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FIG. 8. The number of unique causal neural avalanches U (t ) decays as a power law, U (t ) ∼ t−α , at the critical point. The measured critical
exponent α = 0.99 ± 0.04 matches mean-field value αMF = 1. (a) For ε > 0 and critical propensity 
 = 0, U (t ) reaches a fluctuating state.
(b) For subcritical propensity 
 > 0 and ε = 0, U (t ) decays exponentially to the absorbing state. Inset plots show data collapse for the rescaled
variables.

and t → (t |
|)νz, respectively in Figs. 8(a) and 8(b). This
technique has been used in the study of directed percolation,
which exhibits a nonequilibrium phase transition [41,48]. The
data was averaged over 106 iterations.

Our analysis of other dynamical properties in the neutral
contact process also supports criticality. For finite values of
the driving rate ε, the system evolves to a stationary state.
The time-averaged value of the number of unique clusters
scales as 〈U 〉 ∼ ελ, where λ = 0.80 ± 0.02. The divergence
in the time scale to reach the stationary state was analyzed in
Sec IX.

By studying the dynamics of population level quantities,
we have found characteristic power laws at the critical point.
Furthermore, the data collapse for the decay of U (t ) highlights
the universal dynamics in the neutral contact process near the
critical point.

XI. DISCUSSION

Scale-free neural avalanches in vivo and in vitro are a
remarkable emergent phenomena which have intrigued physi-
cists [5] and neuroscientists [67–69]. The theory of critical
phenomena is a promising explanation of the scale-free behav-
ior [24,25,70], and is further motivated by the arguments that
criticality in the brain may have functional advantages [69].

We have analyzed the scaling of causal neural avalanches
in the absorbing phase of the neutral contact process. As
we allow the different parameters to approach their critical
values, the response functions exhibit a power law divergence,
similar to thermal systems [1]. Additionally, the causal neural
avalanches show scale-free distributions for 
 = 0 and ε = 0.
Large causal neural avalanches are exponentially suppressed
when ε > 0 and 
 > 0. The values of the critical exponents
τ and τD in Ref. [39] are consistent with our measured val-
ues. We used cluster analysis techniques to study the causal
avalanches and measure critical exponents, σ , σD, γ and νz.
Our measured exponents obey scaling laws in Eq. (23). We

use scaling arguments to relate the average avalanche size to
the duration and numerically verify the result.

We construct a strict criteria for criticality in the neutral
contact process using the scaling hypothesis. A striking pre-
diction of the scaling hypothesis is the existence of universal
scaling functions. In the neutral contact process, the avalanche
profile shows data collapse after appropriate rescaling, and
has been observed in experiments [24]. We also find data
collapse for the avalanche size and duration distribution. We
showed that the dynamics of population level observables in
the neutral contact process are also consistent with criticality.
When we initialize the system with a single active neuron,
the steady state is reached over some characteristic time. As
the critical point is approached, we find there is a divergent
time scale. The dynamic critical exponent is consistent with
scaling arguments. We analyze how the system relaxes from
a maximally diverse state. We find deviations from power law
decay depend on the distance from the critical point. By using
scaling arguments, we find data collapse for the relaxation
dynamics.

Our analysis of the neutral contact process shows that
the relevant scaling field in the absorbing phase depends
on ε and 
. The results of Ref. [39] suggest that relevant
scaling field depends only on ε in the active phase of the
neutral contact process, where 
 < 0. An important question
is about the correspondence between the tuning parameters
in experiments and those in the neutral contact process. The
experiments in Ref. [23] imply that the control parameter
may be the spontaneous triggering rate, which corresponds
to the driving rate ε in the neutral contact process. In sep-
arate experiments [22,42,43], the excitation-inhibition ratio
was varied to tune the system toward criticality, which we
achieved by varying the propensity, 
, in the neutral con-
tact process. However, in experiments the neural avalanches
are defined using temporal proximity binning method, which
can be different from the causal avalanche definition used
by us and Ref. [39]. Our results emphasize the need to
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incorporate causal connections in future experiments, study-
ing neural avalanches as pointed out by Ref. [39]. Inferring
causal information in real neural systems remains an open
problem. References [71,72] provide promising steps to to
address this issue. Additionally, Ref. [73] has studied how
coalescence in the microscopic dynamics can affect the
macroscopic observeables in the branching process.

Our results may motivate future experimental studies of
neural avalanches. The divergence of the response function
can be used to identify the critical point in real neural
systems. We outline a possible way to experimentally ver-
ify the scaling relation γ = 1/σ . In an experiment, neural
avalanches are recorded for different values of the tuning
parameter f . The avalanche distribution function can be fit
to nS ∼ S−τ exp [−S/Sc( f )], where Sc( f ) is the characteris-
tic avalanche size for a given value of f . Additionally, the
response function χ ( f ) can also be computed. We rescale
the tuning parameter f → f such that the log-log scaled
plot of Sc against f gives a straight line. Similarly, we can
plot the response function χ against f on a log-log scaled
plot. The measured slopes for the two graphs will be the
same if the γ = 1/σ scaling law is obeyed. We would find
better data collapse for firing rates from data sets where
Sc and χ are large, as the data collapse indicates that the
experimental system is near the critical point. Some of pre-
dictions of our scaling may even be verified using existing
neural data, as the effects of coalescence is expected to
be small near the critical point. Experiments in Ref. [24]
reported data collapse for the avalanche profile in certain
samples.

Numerous studies [5,22,27,28,35] have discussed the pos-
sible functional benefits of criticality in the brain. Ref. [22]
showed that information transmission is maximized for criti-
cal neural avalanches. Our results raise the important question
of if there are similar benefits associated with causal neu-
ral avalanches near the critical point. Spike-timing-dependent
plasticity(STDP) is a biological learning mechanism which
uses causal information about firing neurons [39,74] to up-
date synaptic weights between neurons. STDP has been
shown to be responsible for maintaining stable retrievable
firing patterns [74]. We have shown that the causal neu-
ral avalanches of all scales occur at the critical point. We
plan to address the question of whether criticality enhances
the number or stability of STDP firing patterns by study-
ing causal neural avalanches in integrate-and-fire models of
neurons.

Our work sheds new light on the scaling of causal neural
avalanches. Our results indicate that the relevant scaling field
in the absorbing phase of the neutral contact process is consis-
tent with experiments [22,23]. Our results motivate questions
for future studies and provide a promising path to a unified
theory of neural avalanches.
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