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Adiabatic landscape and optimal paths in ergodic systems
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Whether one is interested in quantum state preparation or in the design of efficient heat engines, adiabatic
(reversible) transformations play a pivotal role in minimizing computational complexity and energy losses.
Understanding the structure of these transformations and identifying the systems for which such transformations
can be performed efficiently and quickly is therefore of primary importance. In this paper we focus on finding
optimal paths in the space of couplings controlling the system’s Hamiltonian. More specifically, starting from a
local Hamiltonian we analyze directions in the space of couplings along which adiabatic transformations can be
accurately generated by local operators, which are both realizable in experiments and easy to simulate numeri-
cally. We consider a nonintegrable 1D Ising model parametrized by two independent couplings, corresponding
to longitudinal and transverse magnetic fields. We find regions in the space of couplings characterized by a very
strong anisotropy of the variational adiabatic gauge potential (AGP), generating the adiabatic transformations,
which allows us to define optimal adiabatic paths. We find that these paths generally terminate at singular points
characterized by extensive degeneracies in the energy spectrum, splitting the parameter space into adiabatically
disconnected regions. The anisotropy follows from singularities in the AGP, and we identify special robust
weakly thermalizing and nonabsorbing many-body “dark” states which are annihilated by the singular part of
the AGP and show that their existence extends deep into the ergodic regime.
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I. INTRODUCTION

With the rapid progress of quantum technologies, the de-
sign of efficient protocols to control and numerical methods
to describe quantum systems quickly moved to the forefront
of current research. To achieve a better performance, a crucial
element is the ability to perform adiabatic transformations,
i.e., transformations between states that are adiabatically con-
nected [1]. For example, quantum annealing and adiabatic
quantum computation are based on an adiabatic process trans-
forming a simple initial ground state into a final nontrivial
eigenstate, and were shown to be a universal tool for quantum
computation [2]. Likewise, any quantum gate operation can be
designed using an adiabatic protocol [3,4]. The experimental
preparation of equilibrium states in isolated or nearly isolated
systems such as cold atoms or NV centers is often achieved
by adiabatic transformations of the Hamiltonian, starting
from a simple initial state. In some cases, including Floquet-
engineered systems [5–7], such a procedure is not only
convenient but also is actually required, since these systems
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do not naturally thermalize by interacting with their environ-
ment. In the context of thermodynamics, adiabatic (reversible)
processes are also of crucial importance. They allow one to
minimize the dissipative losses associated with an increase of
entropy and achieve the maximal possible efficiency of energy
conversion, e.g., in heat engines and refrigerators [8,9]. On the
theoretical side, adiabatic transformations underly many con-
cepts including the Schrieffer-Wolff transformation [10–12],
and the dressing of quasiparticles by interactions underlying
e.g., Fermi liquid theory [13]. Such transformations not only
allow us to theoretically understand the properties of low-
energy Hamiltonians, but also provide a convenient tool to
greatly improve the efficiency of numerical methods, allowing
one to focus on particular subspaces of interest [12].

A standard limitation of our ability to use adiabatic trans-
formations is that they, almost by definition, have to be
extremely slow. In many-body interacting systems, unless we
are interested in the ground state of a gapped system, the
necessary timescales are exponentially large with the system
size [1,14]. A similar exponential slowing down is required
if we are interested in following a ground state which either
crosses a first-order phase transition [15,16], enters a quantum
glass regime [17,18], or follows from an annealing protocol
solving a hard computational problem [19].

From the computational point of view, strict upper bounds
on the rate of parameter change result in heavy numerical
costs. On the experimental side, they lead to a very slow state
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preparation and large energy processing times. Moreover, the
necessary long timescales are generally inaccessible in ex-
perimental setups. Systems cannot be perfectly isolated from
their environment, leading to decoherence and noise which
can destroy the state or erase the information that adiabaticity
is trying to preserve. Rather recently, it was realized that this
problem can be circumvented and adiabatic transformations
can be sped up, in principle arbitrarily, by adding an additional
term to the Hamiltonian, suppressing all dynamical/diabatic
transitions. Such ideas were first introduced in 2003 by
Demirplak and Rice [20] and independently in 2009 by Berry
[21] and were subsequently termed counterdiabatic (CD) or
transitionless driving. The topic of counterdiabatic driving and
the related field of shortcuts to adiabaticity has recently gained
tremendous attention in both experimental and theoretical lit-
erature [22–32].

In counterdiabatic protocols one applies an additional term
to the Hamiltonian, proportional to the generator of adia-
batic transformations, the so-called adiabatic gauge potential
(AGP). This extra term suppresses all diabatic(nonadiabatic)
excitations/losses. The main difficulty of this approach is
that the AGP is generally highly nonlocal. Furthermore, the
AGP is not only useful in counterdiabatic driving, but also
contains a wealth of information on the geometry of eigen-
states and diabatic response [1] and serves as a very sensitive
probe of quantum chaos [33]. The exact AGP is local only in
some special situations, including symmetry transformations
or transformations of the ground state of a gapped system
[34–36]. Fortunately, even if the exact AGP is generally out of
reach, it was recently realized that in some specific instances
we can find an approximate yet accurate local AGP using
a variational minimization [1,26,37,38]. The resulting local
AGP was shown to be highly efficient both in solving compu-
tationally difficult problems [39,40] and performing efficient
Schrieffer-Wolff transformations [12,41]. Still, several gen-
eral and unanswered questions remain: (i) When do such local
approximations apply? (ii) Which are the optimal protocols
for local adiabatic evolution? (iii) Can we learn which states
are most heavily affected by diabatic effects from these local
approximations and is it possible to identify the states for which
dissipation is minimal?

In this work, we first focus on finding an optimal path in
the space of system’s parameters to design local protocols
for adiabatic state preparation. Very often, physical systems
are controlled by multiple parameters, e.g., pressure, tem-
perature, chemical potential, external electric, and magnetic
fields in thermodynamics or single-spin controls and two-spin
interactions in quantum control. While the order in which
these parameters are changed will not matter if everything
happens perfectly adiabatically, the diabatic effects can vary
drastically depending on how these parameters are tuned. It
is then natural to ask for the optimal path in the space of
parameters, minimizing diabatic effects. This will be the focus
of this work.

For concreteness, we will consider protocols satisfying the
time-dependent Schrödinger equation (we set h̄ = 1 through-
out the text),

i
∂

∂t
|ψ (t )〉 = H (�λ(t ))|ψ (t )〉, (1)

where the Hamiltonian depends on a set of time-dependent
control parameters �λ(t ) and we initialize the system at t = 0 in
a stationary eigenstate of H (�λ(0)) (all our results immediately
extend to mixed initial states). The question is then how to
vary �λ(t ) such that the state remains close to an instantaneous
eigenstate of H ( �λ(t )). To answer this question, we analyze
the adiabatic landscape of a fairly generic nonintegrable 1D
Ising model characterized by two independent couplings [cf.
Eq. (3)]. Specifically, we show that the variational adiabatic
gauge potential (VAGP), which gives the best local approx-
imation to the exact AGP [see Eqs. (4) and (5)], forms a
2D vector space, and the directions where the norm of the
VAGP is minimal define the optimal paths minimizing dia-
batic effects. We mainly focus on infinite temperature states,
where the equilibrium properties of the system are completely
featureless. Nevertheless, the problem of adiabatic continu-
ation remains well defined and highly nontrivial. We find
that the evolution along the optimal direction is efficient;
that is, eigenstates which are drawn from the middle of the
spectrum remain close to the instantaneous eigenstates, main-
taining small energy variance. As we will show below (see
also Refs. [26,33]) the AGP can be expressed through the
long-time limit of nonequal time correlation functions of the
operators conjugate to the coupling. Therefore, they cannot be
analyzed by the methods of equilibrium statistical mechanics.
Our findings thus imply that temperature plays a much smaller
role in adiabatic transformations than in equilibrium settings.

Let us now introduce the Hamiltonian that we will analyze
in this work, describing the quantum Ising model in the pres-
ence of a longitudinal and transverse field, as

H = J
∑

i

σ z
i σ z

i+1 + h
∑

i

σ z
i + g

∑
i

σ x
i , (2)

and we introduce a shorthand notation that is convenient for
translationally invariant systems

H = JZZ + hZ + gX, (3)

with

ZZ ≡
L∑

i=1

σ z
i σ z

i+1, Z ≡
L∑

i=1

σ z
i , X ≡

L∑
i=1

σ x
i ,

and so on. Fixing the coupling in front of the Ising interaction
ZZ to be unity, J = 1, h and g will be taken as control pa-
rameters throughout this paper. The main results of our paper
are summarized in Fig. 1: each point represents a choice of
couplings defining a Hamiltonian, and the lines show the opti-
mal adiabatic directions presented as a flow diagram. As will
be discussed later, this diagram has a very rich structure and
is in many respects similar to the standard equilibrium phase
diagrams (except that, as already pointed out, it corresponds
to the equilibrium phase diagram an infinite temperature). Let
us now summarize the most essential findings reflected in this
figure, which will be explained in detail in the paper.

(1) Along the h-axis the flow diagram contains singu-
larities, corresponding to Hamiltonians with exponentially
large degeneracies in the energy spectrum, which we
call macroscopic degeneracies. These singularities serve as
sources/sinks of adiabatic flows and play a similar role to
critical points in equilibrium phase diagrams.
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FIG. 1. Flow diagram indicating the optimal path for quantum
control using a three-body (purple) and five-body ansatz (red) for
a 2D parameter space (h, g). The horizontal and vertical axes are
h and g, respectively, with the two poles of the sphere given by
(h, g) = (0, 0) [(a)] and (∞,∞) [(d)]. Source flows can be observed
at (h, g) = (0, 0) [(a)] and (2,0) [(c)], where the optimal direction
is approximately the radial one. The norm of the variational gauge
potential is highly anisotropic: near the source flows the norm is
small and nearly system-size independent along the optimal direc-
tions, while increasing drastically in the orthogonal direction and
diverging exactly at the points (a) and (c). For the five-body ansatz
an additional singular point appears at (h, g) = (1, 0) [(b)], strongly
disrupting the optimal directions in its vicinity.

(2) Close to these singularities, the VAGP becomes in-
finitely anisotropic as a function of the direction, with highly
anisotropic regions extending far away from the singularities.
This high anisotropy implies that optimal directions, along
which local adiabatic transformations are highly efficient, re-
main well defined. Such optimal directions define paths with
minimal dissipation and maximum fidelity for state prepara-
tion.

(3) Near the singular points, there are special many-body
“dark” states annihilated by the diverging part of the VAGP.
These states exist throughout the entire energy spectrum;
similar to the anisotropic regions these are highly robust and
extend deep into the ergodic regimes, bearing many parallels
with the recently discovered quantum scars and the eigenstates
of constraint models [42–50]. While these states form an ex-
ponentially small fraction of the total Hilbert space, their total
number can still be exponentially large; as they are immune
to the usual dissipation they can be efficiently prepared both
numerically and experimentally.

(4) The optimal adiabatic directions allow us to define
adiabatic flows similar to the renormalization group flows, as
shown in the figure, and these flows in turn define adiabat-
ically connected families of Hamiltonians. The norm of the
exact AGP is equivalent to the Fubini-Study metric defining
the distance between eigenstates of adiabatically connected
Hamiltonians [1]. Therefore, these flows can be interpreted
as lines approximately minimizing the local distance between
eigenstates (or more accurately between energy shells) of
different Hamiltonians. Along these flows, both states and

operators can be dressed to a very good accuracy under the
unitary transformations generated by the local VAGP. In par-
ticular, such directions are characterized by the existence of
nearly conserved operators, which are locally dressed opera-
tors conjugate to the coupling along these directions.

(5) Near the singular points, the VAGP diverges in all
directions except for the optimal one. However, the divergent
part of the VAGP is a well-defined local operator, implying
that a local dressing can be used to efficiently perform adi-
abatic rotations near these singularities. Combined with the
fact that all adiabatic flows terminate at one of such singular-
ities, we arrive at the interesting conclusion that any optimal
adiabatic path between two generic points goes through one
of these singularities. In other words, the system first has to
be brought to the singular point, then a local rotation needs to
be performed, before going to the target point along a different
flow line. Importantly, such a path can be always found locally
by following the optimal direction of the adiabatic flow.

(6) The optimal directions generally depend on the
support/size of the variational ansatz (see the top and bottom
halves in Fig. 1), i.e., the support of the operator generating
approximate adiabatic transformations. New singularities ap-
pear in the higher-order variational ansatz with an increased
local support, reflecting higher-order divergences in the per-
turbative expansion of the AGP. These singularities arise from
the degeneracies associated with higher-order interactions and
appear at rational couplings, bearing many similarities to the
divergences appearing in both KAM theory [51] and locator
expansions [52]. The emergence of higher-order singularities
indicates that it is not possible to improve local dressing, by
either adding additional local terms to the CD protocol or by
slowing down the ramping rate in the absence of CD driving,
without abruptly altering the path near these new singularities.

(7) The adiabatic flow diagram remains well defined even
at infinite temperature, where no structure exists in the equi-
librium state according to statistical mechanics. Interestingly,
many of its features persist at all temperatures, all the way
down to the ground state at zero temperature.

We confirm these general findings with numerical simu-
lations for the nonintegrable 1D Ising model described by
the Hamiltonian (3). Our results can have a broad range of
applications in various problems, beyond simply finding op-
timal paths for annealing or state preparation. In particular,
they can be used to find efficient local conservation laws
and corresponding “most-integrable” directions, to find the
nearest integrable (simple) points that are locally connected
to a Hamiltonian of interest, to define most efficient ways of
obtaining effective low-energy theories starting from a nonin-
teracting model, and so on.

This paper is organized as follows: In Sec. II we introduce
the VAGP and define the optimal adiabatic directions. Appli-
cations to approximate CD driving and slowest operators are
also explained there. Section III is the highlight of this paper,
where we obtain the flow diagram that defines the optimal
directions at each point of the coupling space. We demon-
strate that both for conventional adiabatic driving and for the
approximate CD protocols state preparation along the optimal
paths shows a much better performance than along the orthog-
onal directions. We explain that the flows terminate/start at
special sources/sinks, where the VAGP develops divergencies

013102-3



SHO SUGIURA et al. PHYSICAL REVIEW RESEARCH 3, 013102 (2021)

in the orthogonal directions, becoming infinitely anisotropic,
and show how these singularities arise from the perturbative
expansion of the exact AGP. We then explain the emergence
of special dark states unaffected by the singular part of
the VAGP. In Sec. IV we study how the VAGP depends on
the size of the variational ansatz and explain the emergence
of new singularities near rational values of h. We then use the
VAGP to construct approximate local conserved operators and
analyze their lifetimes in Sec. V. Details of the perturbative
expansion are given in Sec. VI, and Sec. VII is reserved for
conclusions.

II. VARIATIONAL ADIABATIC GAUGE POTENTIAL

In this section we will give a brief introduction to the
concept of the (variational) adiabatic gauge potential, em-
phasizing its structure as a vector in a system with multiple
controls (tunable parameters). Much of this discussion can
be found in earlier papers [1,26,37], but is included here in
order to be self-contained and to make an explicit connection
of VAGP with slow operators [53,54], operator spreading
[55–61], and emergent conservation laws [62], which will be
relevant for the presented flow diagram.

A. Theoretical background

Let us consider a family of Hamiltonians H (�λ), where �λ
specifies the space of available couplings or controls. Any
protocol corresponds to a time-dependent choice of �λ(t ),
with an adiabatic protocol corresponding to a vanishing time

derivative |�̇λ(t )|.
The effects of time-dependent couplings are most clearly

illustrated in the instantaneous (co-moving) eigenstates of the
Hamiltonian |n(�λ)〉, satisfying

H (�λ)|n(�λ)〉 = εn(�λ)|n(�λ)〉. (4)

Any change in the control parameters corresponds to a change
in the eigenstates, and one can formally define the adiabatic
gauge potential (AGP) as the Hermitian operator �A(�λ) gener-
ating these basis changes [1]:

i∂ j |n(�λ)〉 = A j (�λ)|n(�λ)〉, (5)

in which ∂ j is the partial derivative w.r.t. λ j . Note that, since
eigenstates are defined only up to a phase (or more general
rotations in the presence of degeneracies), the AGP is not
uniquely defined and supports a gauge freedom.

We will be interested in finding the time evolution (1) of
an initial pure state |ψ (t = 0)〉 under time evolution governed
by a time-dependent Hamiltonian H (�λ(t )), where the only
explicit time dependence is through the control parameters.1

Expanding this state in the co-moving basis

|ψ (t )〉 =
∑

n

an(t )|n(�λ(t ))〉, (6)

1Our discussion equally applies to the evolution of mixed states.

it is easy to check that the time evolution in this new basis is
governed by the moving Hamiltonian

Hm(t ) = H (�λ(t )) −
∑

j

λ̇ jA j (�λ(t )),

= H (�λ(t )) − �̇λ(t ) · �A(�λ(t )). (7)

Specifically,

iȧn(t ) =
∑

l

Hnl
m (t ) al (t ),

Hnl
m (t ) = 〈n(�λ(t ))|Hm(t )|l (�λ(t ))〉, (8)

which takes the form of a regular matrix representation of the
Schrödinger equation, but with time-dependent basis states,
which are accounted for by the second term in Eq. (7). In the

limit �̇λ → 0 this additional term vanishes such that there are
no transitions between instantaneous eigenstates of H (�λ). At

nonvanishing |�̇λ| the extra term in the moving Hamiltonian,
proportional to the AGP, cannot be neglected. Since H (�λ) is
by construction diagonal in the co-moving frame, all diabatic
excitations/losses are generated by the off-diagonal elements
of the AGP.

Following Ref. [1], Eq. (5) can be recast as an operator
equation

[H, Gj] = 0, (9)

in which

Gj ≡ ∂ jH + i[A j, H]. (10)

The matrix Gj is diagonal in the eigenbasis of H and its
diagonal matrix elements are given by ∂ jεn(�λ), the generalized
forces conjugate to λ j . In other words, one can view any
infinitesimal deformation of the Hamiltonian along the λ j

direction ∂ jH as consisting of a spectrum change encoded in
Gj and an eigenbasis rotation encoded in A j .

Equation (9) remains well defined in both the classical
and thermodynamic limits. However, with the exception of
symmetry transformations/integrable systems, the solutions
to this equation are generally unstable to infinitesimal per-
turbations and might not even exist in either of these limits
[1,14,33]. Therefore, finding approximate local gauge poten-
tials is essential to circumvent this problem. One goal of this
paper is to convey that, even though the exact AGP might be
ill-defined, such local approximations can be well defined and
meaningful.

A particularly powerful approach to finding approximate
solutions is the variational method. It is based on the ob-
servation that Eq. (9) can be interpreted as the minimization
condition for the auxiliary action S [37]

δS

δA j
= 0, with S ≡ Tr[G†

jG j]. (11)

Approximate solutions of Eq. (9) can be found by choosing a
specific subset of operators as an ansatz for the AGP and find-
ing the minimum of the action. We call the resulting solution
the (local) variational adiabatic gauge potential (VAGP). Also
note that the action for the VAGP in Eq. (11) can be interpreted
as the action at infinite temperature. In principle, it can be
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extended to finite temperatures through the introduction of a
thermal state exp [−βH] in S (see Ref. [37]), although this
strongly complicates the resulting minimization. In this paper
we focus on variational manifolds consisting of all local oper-
ators with a given support (see Sec. II B for details). One can
develop a similar expansion based on nested commutators of
∂ jH and H [26]. We checked that this second expansion leads
to very similar conclusions. Despite being an approximate
solution, as we discuss below, the local VAGP can be used
to determine highly nontrivial properties of the system. Let us
mention a few of them.

1. Approximate counterdiabatic driving

The notion of counterdiabatic (CD) driving immediately
follows from this derivation, since the exact solution of �A can
be used to completely suppress energy dissipation by evolving
a system with the CD Hamiltonian including an additional

term �̇λ · �A(�λ),

HCD(t ) = H (�λ(t )) + �̇λ(t ) · �A(�λ(t )). (12)

Representing the evolution in the co-moving frame of
H (�λ(t )), the additional counterdiabatic term cancels, such that
the moving frame Hamiltonian is exactly given by H (�λ(t )),
which is diagonal and hence does not lead to any excitations
or dissipation. Namely, starting from any energy eigenstate
|ψ (t = 0)〉 = |n(�λ(0))〉 the state at later times remains an
instantaneous eigenstate |n(�λ(t ))〉. In the limit of an infinitely

fast rate of change |�̇λ| → ∞, the AGP dominates, and the
resulting evolution can be seen as a pure dressing of the initial
state by the AGP. We will refer to a protocol corresponding
to H (�λ(t )), where no CD term is present, as the unassisted
protocol.

While the exact AGP generally cannot be realized in
many-body systems, the use of local approximations from
the variational minimization has already been shown to lead
to a significant suppression of transitions [26,37,39,40,63].
As such, the availability of an accurate local VAGP can also
be used to reduce dissipation and design efficient annealing
protocols.

2. Approximate state dressing

Starting from an initial eigenstate of the instantaneous
Hamiltonian, counterdiabatic driving can be interpreted as in-

terpolating between two limits: �̇λ → 0 returns adiabatic state

preparation, whereas �̇λ → ∞ dresses the initial state with
the (approximate) gauge potential. Namely, in this limit the
Schrödinger equation reduces to

i∂t |ψ (t )〉 = �̇λ(t ) · �A(�λ(t ))|ψ (t )〉. (13)

For an exact AGP, |ψ (t )〉 = |ψ (�λ(t ))〉 and this equation re-
duces to

i∂�λ|ψ (�λ)〉 = �A(�λ)|ψ (�λ)〉. (14)

This corresponds to a (quasi-)adiabatic dressing of the ini-
tial state [12,34,36,41]. The possibility of such dressing
with a (quasi-)local A is a crucial ingredient in classifying

topological phases, where all ground states within a given
phase can be adiabatically connected using a local dressing.

3. Operator spreading

A formal solution to Eq. (9) can be found using the
Lehmann’s representation as

A j = − lim
ε→0+

1

2

∫ ∞

−∞
dt sgn(t ) e−ε|t |(∂ jH )(t ), (15)

where

(∂ jH )(t ) ≡ eiHt (∂ jH )e−iHt (16)

is the operator conjugate to the parameter λ j , ∂ jH , in the
Heisenberg representation w.r.t. the instantaneous Hamilto-
nian H . For classical Hamiltonian systems, this representation
is also discussed [14,64]. As mentioned before, the exact
solution is highly sensitive to the choice of ∂ jH and the limit
ε → 0 will generally diverge in chaotic systems. Keeping ε

finite then corresponds to finding an approximate AGP, which
will be local for a local ∂ jH due to the finite support of
(∂ jH )(t ) at finite times, following recent results on operator
spreading (e.g., Ref. [59]) and Lieb-Robinson bounds [65].
This representation has also been combined with the varia-
tional principle to find an efficient variational ansatz in chaotic
many-body systems [26].

4. Conservation laws and slowest operators

A local AGP immediately implies an additional local con-
servation law, since Gj by definition commutes with the
Hamiltonian. Minimizing the action then corresponds to ob-
taining a “slowest operator” [53], minimizing the commutator
with the Hamiltonian (setting the timescale for thermaliza-
tion), which then becomes an exact conserved quantity if
the local VAGP becomes an exact AGP. Interestingly, if we
consider the representation of the AGP through Eq. (15)
with finite ε, the corresponding Gj exactly coincides with
the approximately conserved operator obtained by the time-
averaging of (∂ jH )(t ) introduced in Ref. [62]. In particular,
using Eq. (15) it is easy to check that

Gj = (∂ jH ) ≡ ε

2

∫ ∞

−∞
dt e−ε|t |(∂ jH )(t ), (17)

namely, it is the part of ∂ jH that is conserved and does not
decay with time.

B. Optimal adiabatic directions

From Eq. (7) it can be seen that all diabatic transitions are
induced by the AGP. For a time-dependent change along a
certain direction

�̇λ = |λ̇| �nλ, (18)

for a fixed rate of change |λ̇| along a direction set by a unit
vector �nλ, these transitions can be expected to be maximally
suppressed along directions where the norm of Aλ = �nλ · �A
is minimal. In the same way that the gap between the ground
state and the first excited state sets the timescale for quantum
annealing, the norm of the AGP along a certain direction sets
the scale for the rate of change of the control parameter |λ̇|:
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for small ||Aλ|| the control parameter can be changed rather
fast without inducing large diabatic effects, whereas for large
||Aλ|| even slow deformations of the Hamiltonian immedi-
ately lead to diabatic transitions. While the local VAGP is not
exact, it contains information about transitions through local
interactions, which are often the most damaging because they
can lead to a large energy transfer. We will demonstrate below
that this is indeed the case.

Given a multidimensional space of control parameters,
one can thus set the optimal direction as the direction for
which the norm of the VAGP is minimal. In principle, one
can define different norms, so the minimization procedure is
not unique. For example, one could choose norms tailored
for particular states, e.g., the ground state. In this work we
will use the Fröbenius (L2) trace-norm, equivalent to the
common infinite-temperature norm. These norms have the
advantage that they can be easily calculated in large systems
(including the thermodynamic limit) without any need to di-
agonalize the Hamiltonian. As such, the actual minimization
is particularly straightforward. Remarkably, it was observed
in Refs. [26,37,39,40] that this infinite-temperature norm still
provides excellent results even considering, e.g., only dissipa-
tion from the ground state. Colloquially, using the Fröbenius
norm to find the VAGP is similar to optimizing an ice cream
recipe inside a very hot oven and then applying this recipe in-
side a freezer to efficiently prepare the ice cream. Remarkably,
this procedure works amazingly well in various systems.

Rather than keeping the discussion maximally general, we
will focus on a 2D parameter space with controls set by g and
h [see Eq. (3)], such that �λ = (g, h) and analyze infinitesimal
deformations (h + δ cos ϕ, g + δ sin ϕ) with an infinitesimal
δ, such that �nλ = (cos ϕ, sin ϕ). The generalization of this
methodology to more parameters is straightforward. Cru-
cially, the action S defined in Eq. (11) is quadratic in the
variational parameters, such that the minimization will give
rise to a set of linear equations and the VAGP in an arbitrary
direction will be a linear combination of the solutions corre-
sponding to δh (ϕ = 0) and to δg (ϕ = π/2). We can write

Aλ(ϕ) ≡ �nλ · �A(λ) = Ah cos ϕ + Ag sin ϕ, (19)

in which Ah and Ag minimize the action Sh and Sg respec-
tively. The Hamiltonian is set by the parameters �λ, as denoted
in the subscript (where we dropped the vector notation), while
the argument denotes the direction in which this Hamiltonian
is varied. Defining

tan 2α = Tr[A†
hAg] + Tr[AhA†

g]

Tr[A†
hAh] − Tr[A†

gAg]
, (20)

it can easily be checked that the norm of the VAGP is
minimal for ϕ = α ± π/2, α ∈ [−π/4, π/4], and maximal
in the orthogonal directions ϕ = α and α + π if ||Ag|| >

||Ah||, while in the other case the extrema are exchanged (see
also Appendix B). We will call these directions optimal and
orthogonal respectively. In the following sections, we will
analyze the geometric structure of these directions and the
resulting anisotropy as a function of (g, h). Note that this
also highlights that the directions set by ϕ and ϕ + π are
equivalent since they correspond to the same perturbation,

only with a different sign (which does not influence the norm
of the VAGP).

For translationally invariant spin-1/2 systems of size L
with periodic boundary conditions, like those described by
the Hamiltonian (3), we define the k-body operator space Hk ,
k < L, as the zero-momentum space of all operators having
support of up to k sites, where we will choose strings of Pauli
matrices as basis operators: Hk = span(Sk ), with

Sk =
{

On

∣∣∣∣ On =
L∑

p=1

σ s1
p σ

s2
p+1 · · · σ sk

p+k−1

}
, (21)

where the index n stands for the set {s1, . . . , sk} and σ s
i is one

of the Pauli operators {σ x, σ y, σ z, 1} acting on the site i. To
avoid double-counting the identity operator is excluded from
the right boundary, i.e., sk 	= 1. We will use a local variational
ansatz with a fixed support:

Aλ(ϕ) =
∑

On∈Sk

cn(�λ, ϕ)On. (22)

We call this the k-body ansatz of the variational calculation
and solve Eq. (11) with the ansatz (22). Since all operators On

are traceless and orthogonal, satisfying Tr(OnOm)/L = Dδnm,
where D = 2L is the Hilbert space dimension, the minimiza-
tion problem is straightforward and the solution is obtained
by solving simultaneous linear equations. See Appendix A for
the explicit solution of our variational calculation.

In the limit where this operator basis is complete (k = L)
we can consider, e.g., projectors on eigenstates as basis oper-
ators, which returns the formal solution

Aλ(ϕ) = i
∑
m 	=n

|m〉 〈m|�nλ · ∂�λH |n〉
εn − εm

〈n|, (23)

which can be checked to be equivalent to Eq. (15).

III. ADIABATIC FLOW DIAGRAM OF THE QUANTUM
ISING MODEL WITH LOCAL VAGP

In this section we will discuss in detail the flow diagram
and the emerging physical implications for a particular, but
fairly generic, quantum Ising model, which we introduced
earlier in Eq. (3). We will first analyze this diagram using the
VAGP obtained within the lowest-order approximation, which
already yields nontrivial results. Namely, we will consider
a variational manifold with support up to three sites for the
VAGP. The motivation for this ansatz is that, as we discuss
below, it reproduces the leading-order behavior and the most
important singularities of the exact AGP near the strongest
macroscopic degeneracy points. These singularities underly
several key properties of the adiabatic flows and allow us to
reveal the origin of special dark weakly thermalizing states
similar to those found in, e.g., Ref. [41]. In the next section,
we will then show how the results of this section are affected
by adding terms with a larger support into the variational
manifold. Before discussing our findings, let us mention a few
properties of the Ising model that will be relevant later in the
paper.

(1) There are two integrable lines corresponding to (i) g =
0: the so-called classical Ising model with strictly local inte-
grals of motion (z-magnetization for each spin) and (ii) h = 0:
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the transverse field Ising model, which maps to free fermions
through the Jordan-Wigner transformation and which has
quasi-local integrals of motion constructed from fermion bi-
linears [66,67]. There is an additional trivially integrable point
corresponding to

√
h2 + g2 → ∞, which describes noninter-

acting spins. Away from these points the model is believed to
be chaotic, satisfying the eigenstate thermalization hypothesis
(ETH) [68].

(2) The ground state of the Ising model undergoes a quan-
tum phase transition from an antiferromagnet corresponding
to small magnetic field to a paramagnet at large magnetic field
[69]. On the integrable lines, the critical line separating the
two phases terminates at the points (h, g) = (2, 0) and (0,1).
We note that changing the sign of the ZZ coupling moves
this phase transition line from the ground state to the most
excited state. Therefore, this sign does not affect our “infinite
temperature” flow diagram.

(3) The “classical Ising” line g = 0 additionally contains
macroscopic (exponential) degeneracies of the spectrum at
any rational value of the longitudinal field h. In particular, at
h = 0 and H = ZZ , any configuration with the same number
of domain walls has the same energy, e.g., | . . . ↑↑↓ . . . 〉 and
| . . . ↑↓↓ . . . 〉. At h = 2 and H = ZZ + 2Z , any local spin
flip from a local “down” to “up” state that creates two do-
main walls does not change the energy of the system, e.g.,
| . . . ↓↓↓ . . . 〉 and | . . . ↓↑↓ . . . 〉 are degenerate. In a similar
way, at other rational points of h one can always find many
combinations of spin flips leaving the energy of the system
invariant. Finally, the h → ∞ point is also macroscopically
degenerate: the energy does not change under arbitrary spin
flips preserving total magnetization.

A. Flow diagram for the three-body variational ansatz

As mentioned in Sec. II, one can systematically define
the adiabatic flow diagram by following the directions of the
minimal norm of the VAGP. The resulting diagram with re-
spect to the couplings (h, g) as obtained within the three-body
variational ansatz for the VAGP is shown in the bottom half
of Fig. 1 as well as in Fig. 2. Note that, on the one hand, the
representation of the diagram on a sphere is more natural since
all the Hamiltonians with large magnetic field are equivalent
to each other up to trivial spin rotation and correspond to
the same point in Fig. 1. On the other hand, the “Cartesian”
representation shown in Fig. 2 is easier to visualize in the most
interesting regime where neither h nor g are too large.

One can observe that the optimal flows form radial patterns
centered around singularities at (h, g) = (0, 0) and at (2,0) (as
well as near

√
h2 + g2 → ∞ in the spherical representation).

Interestingly, these singularities lie at the endpoints of any
adiabatic flow: if we start at any generic point (h, g) and
follow the optimal adiabatic direction, we will end up in one
of these singularities. Likewise, these singular points are good
starting points for quantum state preparation in, e.g., quantum
annealing protocols, because any point of the control space
(h, g) can be reached by starting at either of these singulari-
ties. At first sight this result seems surprising: these singular
points are clearly the points corresponding to large macro-
scopic degeneracies, where adiabatic transformations are
ill-defined. Indeed, our common understanding of adiabatic

0.0 0.5 1.0 1.5 2.0 2.5 3.0

h

0.0

0.5

1.0

1.5

2.0

g

0.0

0.1

0.2

FIG. 2. The flow diagram indicating the optimal direction at each
point for the three-body variational ansatz. Each point in this diagram
corresponds to a Hamiltonian set by (h, g) and the arrows denote
the optimal direction for deformations (δh, δg). Colors represent the
norm of the VAGP along these optimal directions. Source flows are
clearly visible at (h, g) = (0, 0) and (2,0).

transformations suggests that one should avoid situations with
closing gaps between eigenstates. Thus, naively, one should
generally avoid such singular points. As we will show, this
reasoning applies only to the orthogonal azimuthal directions,
where the norm of the VAGP becomes divergent and strong
diabatic effects come into play. However, such divergences
remain suppressed in the radial directions. Let us also point
out that at the singular points the Hamiltonian splits into a
sum of mutually commuting terms, such that its eigenstates
are factorable and thus easy to prepare.

The radial flow near h = 0 implies that the optimal defor-
mation of the Hamiltonian is along the instantaneous magnetic
field, (δh, δg) ∝ (h, g). Intuitively, one can understand this
result using the domain wall picture: at small magnetic fields
one can think about the Ising model as a weakly interact-
ing gas of domain walls separating regions of positive and
negative magnetization. The number of the domain walls is
conserved by the ZZ-interaction. In this manifold of states the
Z-magnetic field plays the role of an effective linear potential
and the X -magnetic field plays the role of the domain-wall
hopping amplitude. The two terms can be combined into an
effective noninteracting Hamiltonian describing these domain
walls. The radial deformation of h and g then amounts to a
simultaneous rescaling of these two parameters of the effec-
tive Hamiltonian, which does not induce diabatic transitions
between the eigenstates. Similar considerations apply to the
other singularity at (2,0), where the effective Hamiltonian
becomes the PXP model [44] with h − 2 playing the role of
the potential and g playing the role of the magnetic field. At
the third degenerate point, at infinite magnetic field, the radial
deformation is trivially the most adiabatic direction, since it
simply amounts to rescaling the full Hamiltonian. We em-
phasize that, while this intuition can generally be justified by
considering low-energy effective Hamiltonians, the optimal
directions remain well defined for all eigenstates. We justify
this conclusion below by analytically constructing the VAGP
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near these points, where the radial directions are explicitly
shown to be nonsingular.

B. State preparation along the optimal flow directions

Before discussing the emergent features of the flow
diagram in more detail, let us immediately analyze its im-
plications for quantum state preparation. All calculations and
presented diagrams hold at the operator level, so it is natural to
first ask if the (operator) flows for the VAGP are representative
of similar flows in the context of quantum state preparation,
where only a single eigenstate is relevant. Second, if such state
preparation is assisted with local counterdiabatic driving using
the VAGP, a follow-up question is if the optimal directions
using the VAGP are also the ones where the approximate
counterdiabatic driving is maximally effective. Here, we will
present numerical evidence that suggests a positive answer to
these two questions.

Since we are not necessarily interested in the ground state
and will consider excited states, a good measure for the
proximity of any prepared state |ψ〉 to an eigenstate of the
instantaneous Hamiltonian is the energy variance δE :

δE2 = 〈ψ |H (�λ)2|ψ〉 − 〈ψ |H (�λ)|ψ〉2, (24)

where |ψ〉 is the state prepared according to a protocol follow-
ing a particular, e.g., optimal, path. If the system is prepared
in an exact eigenstate of H (�λ), this energy variance clearly re-
duces to zero, whereas a nonzero value indicates how strongly
this state has mixed with different-energy eigenstates. We will
consider unassisted state preparation protocols and approxi-
mate CD protocols, where the adiabatic evolution is assisted
by the strictly local VAGP. In both cases we will compare
different paths in control space. For the CD protocols we
numerically solve the Schrödinger equation using the Hamil-
tonian (12) along a given path �λ(t ) with �A(�λ) replaced by
its variationally obtained approximation. The initial state is
chosen to be one of the eigenstates of the initial Hamiltonian
H drawn randomly near the middle of the spectrum, and
we then compute the energy variance at the final value of �λ
according to Eq. (24). While the results are presented for a
single (generic) eigenstate, we checked that these are repre-
sentative for most eigenstates (exceptions will be discussed in
Sec. III D).

In Fig. 3 we present the resulting energy variance of the fi-
nal state for different preparation protocols with the same final
Hamiltonian but different initial Hamiltonians, corresponding
to different directions of state preparation. For the optimal
protocol, the initial point is chosen as (h, g) = (0 + ε, 0 + ε),
with a small ε = 0.01 lifting the degeneracies of the eigen-
states, which is then linearly evolved along the radial direction
to the final point (h, g) = (0.5, 0.5) (green line in the inset of
Fig. 3). This can be contrasted with the state preparation pro-
tocol along the orthogonal direction, taking as initial control
parameters (1 − ε, ε) (cf. red line) or (ε, 1 − ε) (cf. blue line)
and again linearly deforming the Hamiltonian to the same final
point (0.5, 0.5).

All protocols are characterized by the total time duration T ,
where the limit of large T corresponds to adiabatic evolution,
while the limit of small T corresponds to the instantaneous
quench for the unassisted protocol and to a dressing of the

FIG. 3. Final energy variance of a generic initial eigenstate as
function of protocol rate for unassisted adiabatic state preparation.
The end point is given by (0.5,0.5) and initial points are given by
(ε, ε) (optimal), (1 − ε, ε) and (ε, ε − 1) (both orthogonal) with ε =
10−2, as shown in the inset. System size is L = 12. The optimal path
always outperforms the orthogonal ones.

initial state with the VAGP for the CD protocol. In order to
compare the unassisted protocols, we consider a linear ramp
λ̇ = 1/T and present the final energy variance for different
ramp rates along different directions in Fig. 3. It is clear
that the protocol along the optimal direction generally has an
energy variance that is orders of magnitude smaller than the
energy variance along the orthogonal direction. Even more,
when increasing T (nearing adiabaticity), the energy variance
for the optimal path decreases much faster, as indicated by
the steeper slope in the log-log scale. Interestingly, for evo-
lution along the suboptimal direction starting at (1 − ε, ε),
the energy variance does not decrease in the interval 0.01 �
1/T � 0.1, indicating a complicated landscape of energy
level crossings. A similar situation occurs, for example, in
Floquet systems [70]. Still, we checked that eventually the
energy variance starts decreasing again for 1/T � 0.005.

Using the calculated VAGP for approximate local CD driv-
ing [see Eq. (12)] to improve on the unassisted protocol,
Figs. 4(a) and 4(c) show the energy variance for the CD
protocols along the optimal direction with either finite dura-
tion T = 2 (a) or infinitely fast T → 0 (c), which effectively
corresponds to dressing the initial state with the VAGP. Dif-
ferent colors correspond to a different size of the variational
ansatz for the VAGP, with the unassisted protocol included as
reference. Figures 4(b) and 4(d) show related results for state
preparation along the orthogonal direction. Here we choose
a smooth protocol to help eliminate diabatic effects at the
protocol boundaries [1]

λ(t ) = sin2

[
π

2
sin2

(
πt

2T

)]
, t ∈ [0, T ], (25)

interpolating from λ(0) = 0 to λ(T ) = 1, and take
(h(t ), g(t )) = (h(0), g(0)) + λ(t )(h(T ), g(T )). However,
we checked that all the presented results remain qualitatively
similar for other time dependences. Again, it is clear from
the plot that the energy variance is generally smaller for
state preparation along the optimal direction. Even more,
including (approximate) local counterdiabatic terms can be
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FIG. 4. Energy variance of a generic initial eigenstate evolved along the optimal direction with finite λ̇ [top row (a, b)] and with infinite λ̇

[bottom row (c, d)] along either the optimal direction [left column (a, c)] or the orthogonal one [right column (b, d)]. Full lines show the energy
variance during the protocol as function of λ(t ), where the blue lines represent the unassisted protocol (k = 0) and the other lines represent
CD driving with k-body VAGPs (12). Since one-body VAGP is exactly zero along the optimal direction, the lines for k = 0 and 1 completely
overlap each other. The inset details the energy variance at the end of the protocol as a function of k. The end points for both protocols are given
by (h, g) = (0.5, 0.5), with the optimal protocol starting from (ε, ε) and the orthogonal one from (1 − ε, ε) (see also inset of Fig. 3). System
size is L = 12. In the unassisted protocol, the energy variance is already much smaller along the optimal directions than along the orthogonal
directions. Applying local two-body CD driving, the energy variance drastically reduces even more along the optimal direction, while it only
gradually decreases in the orthogonal direction. At infinite λ̇ the state along the optimal direction can similarly be accurately approximated by
a two-body dressing of the initial state, whereas the accuracy along the orthogonal direction only gradually increases.

used to drastically reduce the energy variance along the
optimal direction. We note that along the optimal direction
the VAGP for one-body ansatz is found to be exactly zero;
therefore the results for k = 0 and 1 completely overlap each
other. While including the approximate counterdiabatic term
along the orthogonal direction also systematically reduces the
energy variance with increasing ansatz size, its effect is not as
pronounced as along the optimal direction. We checked that
starting from another point along the orthogonal direction,
namely, (ε, 1 − ε), leads to similar results in Appendix D.

C. Asymptotic behavior of the VAGP near singular points

From the structure of adiabatic flows shown in Figs. 1
and 2, it is clear that the points (0, 0) and (2, 0) play a spe-
cial role, serving as sources/sinks of these flows. As already
mentioned, these points also correspond to Hamiltonians with
macroscopic (exponential) degeneracies in their energy spec-
trum. As will be discussed in this section, these points control
many important properties of the AGP, including the large
anisotropy between optimal and orthogonal directions and the
existence of special dark/nonthermal states far from the edges
of the spectrum.

In order to understand these properties, we consider per-
turbative expansions of the exact AGP near these two singular
points. The full formalism will be developed in Sec. VI, and

here we will focus on the leading-order terms only. Near
(h, g) = (0, 0), the dominant term in the perturbative expan-
sion is given by

Aλ(ϕ) ≈ 1

r

sin ϕ cos θ − cos ϕ sin θ

4 cos2 θ
(Y − ZY Z ) + · · · (26)

with r = |�λ| =
√

g2 + h2. Here the angle θ characterizes the
magnetic field in the Hamiltonian H (h, g) through (h, g) =
(r cos θ, r sin θ ), whereas the angle ϕ characterizes the di-
rection in which this magnetic field is perturbed (δh, δg) ∝
(cos ϕ, sin ϕ).

From Eq. (26) it is clear that the AGP diverges at (0,0) for
a general ϕ. However, along the radial direction ϕ = θ the
singular term exactly vanishes, indicating that the radial di-
rection is the optimal one. It is also evident that the anisotropy
between the optimal and orthogonal directions diverges near
this singularity. This perturbative expansion also highlights
that the variational ansatz for the VAGP minimally requires
three-body terms in order to correctly capture the singularity
and the corresponding anisotropy. The increasing anisotropy
as the magnetic field goes to zero is clearly visible in the
three-body VAGP, as illustrated in Fig. 5. In this plot we
show the norm of the three-body VAGP along the optimal
and orthogonal directions as a function of r at a fixed angle
θ = arctan(0.2), such that g = 0.2 h. The lines are the fits
to the constant (optimal) and 1/r (orthogonal) asymptotes
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FIG. 5. The norm of the VAGP for the three-body ansatz with
different h and g. The vertical axis is the norm and the horizontal
axis is r = √

h2 + g2. The ratio between h and g is fixed to satisfy
g = 0.2 h. The norm in the optimal direction (blue) is nearly constant
for small r. By contrast, the norm along the orthogonal direction (red)
diverges as O(1/r) as r approaches zero.

expected from perturbation theory. Interestingly, the pertur-
bative scaling of the norm of VAGP extends up to a relatively
large value of the coupling r = 0.4, such that the effects from
the singular point can remain important deep into the ergodic
regime of the flow diagram. In Appendix C the individual
weights of the terms in the expansion are compared with the
scalings from perturbation theory, and it is confirmed that the
dominant terms are of the form (26).

The operator divergence can immediately be connected
to the eigenstate structure of the Hamiltonian at (0,0). As
already noted, the energy of the model depends only on the
number of domain walls, leading to macroscopic degeneracies
in the eigenspectrum. The operator Y − ZY Z can be seen as a
“dressed” version of the spin flip operator Y , which, however,
creates a spin flip only if it does not change the number
of domain walls, connecting the degenerate eigenstates. This
macroscopic degeneracies in H and their splitting by the per-
turbation effectively dominate the perturbative AGP and lead
to well-defined local terms.

A very similar structure emerges near the second singular-
ity (2,0), where the perturbative expansion of the exact AGP
yields (see again Sec. VI)

Aλ(ϕ) ≈ sin ϕ cos θ − cos ϕ sin θ

8r cos2 θ
PY P + · · ·, (27)

where now r =
√

(h − 2)2 + g2 and ϕ is again the angle char-
acterizing the deformation �δλ. We introduced the notation
P for the projector on the down state of the spin along the
z-direction. In the extended notation, the PY P term reads

PY P = 1

4

∑
j

(
1 − σ z

j−1

)
σ

y
j

(
1 − σ z

j+1

)
. (28)

Same as near the (0,0)-singularity, the AGP diverges as r → 0
except in the radial direction φ = θ . Therefore the AGP again
becomes infinitely anisotropic in the limit r → 0. This singu-
larity is precisely reflected in the flow diagram indicating that
the optimal directions are radial.

Interestingly, and not accidentally, the leading-order singu-
larity of the AGP is nothing but the generator of spin rotations
of the effective low-energy PXP model emerging near the

(2,0) point [44]. This model was already shown to satisfy
highly unusual properties, including the existence of weakly
thermalizing quantum scar states [44] and the existence of
nearby integrable deformations of the Hamiltonian [47]. In
the next section, we will show that some (and probably all)
unusual properties of this model are encoded in the exact AGP
and can be observed in its local variational approximation.

Since it was recently noted that the AGP generates the
effective Schrieffer-Wolff Hamiltonian, it is also worthwhile
to note that the effective PXP Hamiltonian can be obtained
by performing the Schrieffer-Wolff transformation using the
VAGP [12].

D. Many-body dark states

The local structure of singularities of the AGP near the
macroscopically degenerate points allows for the identifica-
tion of special states that are simultaneously eigenstates of
the Hamiltonian and are annihilated by (or are possibly other
eigenstates of) the leading divergent part of the AGP. From
Eq. (7) it is clear that such states should be largely immune
to any time-dependent protocols �λ(t ). They are thus approxi-
mately dark states.

Let us start by analyzing such states near the singularity at
(2,0). From Eq. (26) it follows that the divergent part of the
AGP in any direction except the radial one scales as

As ∝ 1

r
PY P.

We can readily see that As has many zero eigenstates that are
simultaneous eigenstates of H at r = 0. An example of such a
state is

|ψ1〉 = |↑↑↓↓↑↑↓↓↑↑↓↓〉 . (29)

There are (exponentially) many other such dark states, which
can, e.g., be obtained by increasing the length of the domains
of |↑〉 spins. From Eqs. (7) and (8), the time evolution of
such a |ψ1〉 in the co-moving basis under an arbitrary time-
dependent protocol is given by

i
∂

∂t
|ψ1〉 = (H − λ̇An)|ψ1〉, (30)

where An is the remaining nondivergent part of the AGP as

Aλ|ψ1〉 = (As + An)|ψ1〉 = An|ψ1〉 . (31)

We see that the state |ψ1〉 is unaffected by the term As, the
main source of diabatic excitations in general states, and is
thus only weakly excited. Because this statement is general
and is not tuned to the details of the protocol �λ(t ), this
state approximately behaves as a many-body dark state. The
remaining nondivergent terms An entering Eq. (30) can be
further suppressed by means of local CD driving. As we show
in Sec. VI, An has a well-defined expansion in terms of local
operators and thus the dark states acquire local dressing only
near singularities and remain highly nonthermal (with, e.g.,
low entanglement entropy) even far from the singularity, in
the ergodic regime.

To demonstrate the advantage of the many-body dark state
in the context of quantum state preparation, we consider a
CD protocol with the VAGP, starting at the singular point
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FIG. 6. Energy variance of a dark (a) and a bright (b) eigenstate as function of λ. Blue lines represent the unassisted protocol (k = 0) and
the other lines represent CD driving with a k-body VAGP using a sin-square ramp (25). Inset details the final energy variance as function of
k. Note the different vertical scales in both figures. The starting point of the protocol is (h, g) = (2, 0) and the final point is (h, g) = (2, 0.5).
System size is L = 12. Initial states are the “dark state” |ψ1〉 = |↑↑↓↓↑↑↓↓↑↑↓↓〉 (a) and the Néel state |ψ2〉 = |↑↓↑↓↑↓↑↓↑↓↑↓〉 (b).
Even for the unassisted protocol, the final energy variance is much smaller for |ψ1〉 than for |ψ2〉. Introducing a local counterdiabatic term
rapidly decreases the final energy variance in the dark states, whereas the energy variance remains largely unchanged in the Néel state (see
insets).

(2, 0) and subsequently increasing the transverse magnetic
field up to the point (2, 0.5). We consider two scenarios,
starting with two different initial states, a dark state |ψ1〉 and
a bright (nondark) Néel state that is not annihilated by the
singular part of the AGP:

|ψ2〉 = |↑↓↑↓↑↓↑↓↑↓↑↓〉 . (32)

We choose the protocol given by Eq. (25) with protocol dura-
tion T = 1. The results of the simulations are shown in Fig. 6.
In Appendix E, we analyze the dressing of less symmetric
dark and bright initial states, and show that they exhibit a very
similar qualitative behavior.

Even for the unassisted protocol (blue lines), we can al-
ready see in the figure that the energy variance of the dressed
dark state is a factor of 20 smaller than that of the bright
state. This ratio quickly increases if we increase the protocol
duration. The difference between the dark and bright states
becomes even more pronounced in the presence of the local
CD term. We see that the energy variance of the bright Néel
state |ψ2〉 is almost unaffected by the counterdiabatic term,
only decreasing from 1.496 to 1.468 as we go from the unas-
sisted protocol to CD driving with the three-body ansatz. On
the other hand, the energy variance of the prepared dark state
reduces from 0.085 (unassisted) in the unassisted protocol
to 0.001 (three-body CD driving) for the dark state. Such a
small energy variance implies that the prepared state is very
close to an eigenstate of the system. The fact that this state is
prepared in a short time T = 1 using a local CD Hamiltonian
also implies that this state is nonthermal, e.g., it exhibits area
law entanglement.

It is easy to check that the dark states, i.e., the zero-energy
eigenstates of the PY P Hamiltonian, are simultaneously the
zero-energy eigenstates of the low-energy effective PXP
Hamiltonian. Interestingly, the AGP allows us to find these
special states without prior knowledge of the effective Hamil-
tonian.

One can similarly analyze the structure of the AGP and the
resulting dark states near the other singularity at (0,0). From
Eq. (26) it follows that the divergent part of the AGP is given
by

As ∝ Y − ZY Z.

This operator clearly annihilates two pairs of states: (1) fully
polarized states

|ψ3〉 = |↑↑↑ . . . ↑↑↑〉 , (33)

|ψ4〉 = |↓↓↓ . . . ↓↓↓〉 , (34)

and (2) the two Néel states |↑↓↑↓ . . . ↑↓〉 and |↓↑↓↑ . . . ↓↑〉.
The two Néel states are clearly the degenerate ground states,
such that it is not surprising that these can be efficiently
dressed locally for a finite nonzero magnetic field. The two
ferromagnetic states are the most excited states, i.e., the states
with maximal energy. As we increase the Z-magnetic field,
|ψ3〉 remains the most excited state—it is again not surpris-
ing that this state can be locally dressed. However, the |ψ4〉
quickly enters the energy continuum and yet, because it is
annihilated by As, it only weakly hybridizes with other states
and remains highly nonthermal. This dark state was recently
identified in Ref. [41] (cf. Fig. 4 there) as a state with anoma-
lously low entanglement. Interestingly, in this case the ground
and most excited states can be immediately determined as the
zero states of the AGP, without any need to diagonalize the
full Hamiltonian.

In Fig. 7 we numerically show that the dark state at (0, 0)
gains an extremely small energy variance and thus remains
nonthermal even deep in the energy spectrum. We consider
the two fully polarized states and a representative bright state

|ψ5〉 = |↑↑↑↓↓↓↓↓↓↑↑↑〉, (35)

for a protocol starting at (0, 0), increasing the magnetic field
up to (0.4λ, 0.4λ) with λ̇ = 0.0625. All states are evolved us-
ing both an unassisted protocol (circles) and CD driving with
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FIG. 7. Logarithmic plot of energy variance of dark (blue and
red) and bright (yellow) eigenstates for state preparation starting
from (h, g) = (0, 0) as function of λ. λ controls the parameters such
that (h, g) = (0.4λ, 0.4λ) with a fixed velocity λ̇ = 0.0625, and both
unassisted (k = 0, circles) and CD driving with a three-body VAGP
(k = 3, crosses) are presented. In the fully polarized (dark) states the
energy variance remains small and can be reduced by CD driving,
whereas in the bright state the final energy variance is large and
almost unaffected by CD driving, representative of generic states.

the three-body VAGP. For the fully polarized states, the energy
variance in the unassisted protocol is extremely small and
even further reduced (by orders of magnitude) by introducing
local dressing through the three-body VAGP. Such a small
energy variance presents numerical evidence that these states
can be efficiently dressed locally. The energy variance of the
dark state |ψ4〉, not corresponding to either the ground state
or highest excited state, remains bounded up to λ � 0.7 in the
unassisted protocol and up to λ � 0.9 using the three-body
ansatz, at which point higher-order terms and hybridization
with other states becomes important. This can be contrasted
with the generic state |ψ5〉 (yellow lines), where the energy
variance systematically increases with λ, up to a large final
value of �7.8, and the counterdiabatic term has little effect.

All presented numerical results are for a system consisting
of 12 spins. We additionally verified that the energy variance
scales extensively with system size, such that the presented
results still hold in larger systems.

IV. FLOW DIAGRAM WITH THE HIGHER ORDER
VARIATIONAL ANSATZ

A. Scaling of the VAGP norm with the ansatz size

Having analyzed the emerging adiabatic flow diagram
within the three-body variational ansatz, we now consider
what happens when we increase the support of the VAGP
to more than three sites. First, we study how the norm of
the VAGP changes with the increasing ansatz size k. A slow
increase of ||Aλ|| with k indicates that increasing the support
of the ansatz has only a small effect on the VAGP, such that
its local approximation is stable and accurate. Conversely, a
fast increase of ||Aλ|| with ansatz size would indicate that the
exact AGP is highly nonlocal and the local variational ansatz
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FIG. 8. The norm of the VAGP for different ansatz sizes k. The
upper figure corresponds to (h, g) = (5/3, 1/10) and the lower figure
to (1/3, 1/3). The blue (red) points are the norms of the VAGP in
the optimal (orthogonal) direction. The VAGP shows a high degree
of anisotropy for k � 3. (Inset) Semilogarithmic plot of the norm of
the VAGP in the optimal direction. It is consistent with exponential
growth of the norm as a function of k, but the exponent is extremely
small.

is not very stable. In Fig. 8 we analyze the norms of the VAGP
in the optimal (blue) and orthogonal (red) directions at two
different sets of couplings: (5/3, 1/10) (top) and (1/3, 1/3)
(bottom). The first point is close to the g = 0 classical Ising
line and relatively far from the singular points, whose struc-
ture is explained below. The second point is dominated by its
proximity to the (0, 0) singularity, but it is not too close to it. In
both cases we observe a large anisotropy between the optimal
and orthogonal directions starting from k = 3. In particular,
we see that the norm of the VAGP in the orthogonal direction
rapidly increases to a large value as k reaches 3 and then re-
mains relatively flat for the first set of couplings, and increases
more gradually with k for the second set of couplings. In both
cases the AGP norm in the optimal direction increases slowly
with k. As we will show below, when we keep increasing
the ansatz size, new singularities affecting the VAGP start to
emerge. These singularities can discontinuously change the
optimal direction, at the same time drastically reducing the
anisotropy of the AGP.

B. Emergence of new singular points

In Sec. VI and Appendix G, where we discuss the per-
turbative expansion of the AGP for small values of g, we
show that new singularities emerge in correspondence with
the degenerate points along the line g = 0 when increasing the
support of the VAGP ansatz. For example, in the second-order
approximation a new singularity at h = 1 appears, in the third
order a singularity appears at h = 2/3, etc. These singularities
correspond to correlated rearrangements of spins leaving the
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energy of the unperturbed Hamiltonian invariant, which cor-
respondingly involve longer and longer strings of operators
in the AGP. In other words, distinguishing degenerate states
from each other through local operators requires operators
with increasing support, which will arise at higher orders in
the perturbative expansion. For example, the leading-order
singular term near (h, g) = (1, 0) reads (see Appendix G):

Aλ(ϕ) = sin θ

32 cos2 θ
(sin θ cos ϕ − 2 cos θ sin ϕ)

× P(XY + Y X )P + · · ·, (36)

where we now parametrize the magnetic field in the Hamil-
tonian as (h, g) = (1 + r cos θ, r sin θ ) and the direction in
which we perturb is again given by (δh, δg) ∝ (cos ϕ, sin ϕ).
One can readily see that this singularity is not radial and de-
velops only around θ = π/2. It is weaker than the previously
analyzed singularities at (0, 0) and (2, 0) due to the absence
of the 1/r divergent prefactor [cf. Eqs. (26) and (27)], so the
divergence is confined to a narrow angular region. The optimal
direction near θ = π/2 is again the one where the divergent
part of Aϕ vanishes, corresponding to 2 cot ϕ = 2 cot θ , which
implies that δϕ ≈ 2δθ , where δϕ = π/2 − ϕ, δθ = π/2 − θ .
Hence, the optimal direction is no longer radial, except exactly
at the singularity, where θ = π/2. Since the operator part of
the diverging contribution to the AGP contains four-body op-
erators, this singularity will manifest only in the VAGP if we
use a four-body ansatz or higher. This is exactly what is shown
in Fig. 1, where the flow diagram for the five-body ansatz
contains sources/sinks at both the three-body singularities (0,
0) and (2, 0) and the additional singularity (1, 0).

Increasing the support of the ansatz will lead to additional
singularities, which can be captured in higher-order terms in
the perturbative expansion. As such, higher-order singularities
will become even more suppressed in orders of r, such that
they will manifest themselves only some distance away from
the degenerate g = 0 line. In Fig. 9 we show the flow diagram
for the eight-body variational ansatz. The arrows again indi-
cate the optimal directions, and the color now represents the
anisotropy, i.e., the ratio of the VAGP norm along the optimal
and the orthogonal directions, with yellow indicating a higher
anisotropy. New singularities at h = 1 and h = 2/3 become
visible in this plot, accompanied by additional, nonradial,
structures around them.

Clearly, the leading-order singular term can be singled out
either perturbatively or variationally. As argued above, the
corresponding operators should connect states that are exactly
degenerate at the corresponding singular point. In Table I we
summarize these leading-order operators and illustrate how
they connect degenerate states through correlated spin flips,
inducing both the macroscopic degeneracies in the eigenspec-
trum and the divergences in the VAGP.

We note an interesting feature following from Fig. 9: as we
increase the size of the variational ansatz, in some regions the
optimal direction can switch. This is most clearly visible near
the point h = 1 and small g. Within the three-body ansatz,
the optimal direction is nearly horizontal (cf. Fig. 2), while
in the higher-body ansatz (k > 4) the optimal direction is
nearly vertical (cf. Fig. 9). This discontinuity indicates that
it is impossible to improve the accuracy of the VAGP in the
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FIG. 9. The flow diagram indicating the optimal direction at
each point for the eight-body ansatz. Each point in this diagram
corresponds to a Hamiltonian set by (h, g) and the arrows denote the
optimal direction for deformations (δh, δg). The color now represents
the logarithm of the ratio of the norm in the optimal direction over
that in the orthogonal direction, ranging from blue (nearly anistropic)
to yellow (highly isotropic). Source flows are clearly visible not just
at (h, g) = (0, 0) and (2,0), but also at (1,0) and (2/3, 0).

horizontal direction by increasing the support of the varia-
tional ansatz: the new singularity prevents us from doing so.
The only way to continue improving local state preparation is
to change the direction. It is clear that such a sudden change
should introduce some ambiguity in finding the optimal path
in the space of couplings in the vicinity of the singularity.
Indeed, we see that regions of small anisotropy surround the
singularity at (1,0); in such regions the difference between the
optimal and the orthogonal directions is less pronounced.

V. VAGP AND APPROXIMATELY CONSERVED
OPERATORS

As we discussed above, the VAGP for deformations along
the direction λ j is found by minimizing the norm of the
operator Gj [cf. Eqs. (10) and (11)]. If the VAGP is exact,
then Gj is a conserved operator conjugate to the direction
λ j . However, for an approximate VAGP, Gj is only approx-
imately conserved because it has a nonzero commutator with
the Hamiltonian. It is clear that the norm of the commutator

TABLE I. Singular contribution to the VAGP at different singular
points (h, 0) and corresponding spin flips conserving the energy. Op-
erators with increasing support lead to weaker divergences appearing
in higher-order perturbative terms at rational values of h.

h Operator Degenerate states

0 Y − ZY Z |· · · ↑↑↓ · · · 〉 ↔ |· · · ↑↓↓ · · · 〉
2 PY P |· · · ↓↑↓ · · · 〉 ↔ |· · · ↓↓↓ · · · 〉
1 P(XY + Y X )P |· · · ↓↑↑↓ · · · 〉 ↔ |· · · ↓↓↓↓ · · · 〉
2
3 P(Y XX + XY X |· · · ↓↑↑↑↓ · · · 〉 ↔ |· · · ↓↓↓↓↓ · · · 〉

+XXY − YYY )P
...

...
...
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FIG. 10. Inverse lifetime � j for nearly conserved operators constructed using the VAGP along the optimal directions for k = 3, 5, 7.
Increasing the support of the VAGP increases the lifetime. The maxima are observed near the quantum critical point (0,1) and singular point
(2,0), which indicates that the infinite temperature VAGP is still “aware” of the zero temperature quantum critical behavior. Inverse lifetime
along (a) a line with fixed g, (b) a line with fixed h, and (c) the line g = h.

[Gj, H] is a measure for the accuracy of this approximate
conservation law: the smaller the norm, the better the conser-
vation law. In some sense, this norm serves as a proxy to the
magnitude of the difference between the exact and the local
variational AGP. If this difference is small, we can simulta-
neously implement accurate local counterdiabatic driving and
construct a local nearly conserved operator. These qualitative
considerations are indeed correct, as we show below by ana-
lyzing the accuracy of such conservation laws in the optimal
directions at different couplings and different ansatz sizes.

A more convenient and physical measure characterizing
the accuracy of the conservation law is the lifetime of Gj mea-
sured in an eigenstate |n〉 of the Hamiltonian. The latter can
be computed from the short-time expansion of the connected
nonequal time correlation function [53]:

1

2
〈n|Gj (t )Gj (0) + Gj (0)Gj (t )|n〉c

= 〈n|G2
j (0)|n〉c − t2

2
|〈n|[H, Gj]

2|n〉c| + O(t4). (37)

From this expansion one can define a state-averaged normal-
ized decay rate (inverse lifetime) for the operator Gj as

�2
j = |Tr[[H, Gj]2]|

Tr
[
G2

j

] = ||[H, Gj]||2
||Gj ||2 . (38)

A small decay rate indicates that the operator Gj is nearly
conserved, at least up to times of the order 1/� j . For the exact
AGP, obviously, � j = 0.

In Fig. 10 we show the lifetimes of the operators Gj com-
puted in the optimal direction, i.e., the direction shown by
arrows in Fig. 9, as a function of (1) h at fixed g = 0.2 (panel
a), (2) as a function of g at fixed h = 0.15, and (3) as a function
of the total magnetic field along the diagonal direction h = g.
Different lines on each panel refer to different ansatz sizes. In
all the cases we chose the direction λ j to be the optimal one
for the corresponding ansatz size. In Fig. 10(a), showing � j

as a function of h at a fixed small value of g, we see several
characteristic features. First of all, it is clear that increasing
the ansatz size increases the lifetime of the nearly conserved

operators. Furthermore, the decay rate exhibits nonmonotonic
peaks at the singular points of the AGP. As we increase the
ansatz size � j becomes more sensitive to the higher-order
singularities. Thus the effect of the singularity near h = 2 is
very strong at k = 3, i.e., at the three-body ansatz level but
becomes very small for larger k. This picture is consistent
with our previous analysis, suggesting that the divergent con-
tributions to the VAGP, corresponding to leading singularities,
are local and as such can be eliminated by the local VAGP.
Higher-order singularities then require a VAGP with increas-
ing support. Another very interesting feature emerges if we
analyze the dependence of � j on g at fixed small h = 0.15
[Fig. 10(b)]. Namely, the decay rate exhibits a clear maximum
near g = 1, corresponding to the quantum critical point at zero
temperature [69]. Interestingly, the maximum in � is clearly
pronounced despite the fact that we analyze the operator life-
times at infinite temperature, where static observables do not
exhibit any signatures associated with criticality, consistent
with recent results from Ref. [41]. At h = 0, i.e., in the limit of
the integrable transverse field Ising model, this result is known
from prior work [1,16]. The plot shown in Fig. 10 suggests
that, even if the integrability is broken, the maximum of � j

remains well defined and again highlights how temperature
plays a much less important role when we define quantum
criticality through the diabatic response encoded in the AGP.

VI. PERTURBATIVE EXPANSION

In this final section we present a derivation of the diver-
gences appearing in the VAGP by developing a perturbative
expansion of the exact AGP in small g near g = 0, i.e., near
the classical Ising limit, using the integral representation of
the AGP given by Eq. (15). We will outline only a sketch
of the derivation here and provide some key results, further
details of all calculations can be found in Appendix G.

We will denote the Hamiltonian at the solvable point g = 0
as H0 = ZZ + hZ and find a perturbative expansion for Aλ at
H = H0 + gX in powers of g for general ∂λH ,

Aλ = A(0)
λ + gA(1)

λ + O(g2). (39)
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The first-order contribution can be found by setting g = 0 in
Eq. (15),

A(0)
λ = −1

2
lim

ε→0+

∫ ∞

−∞
dt sgn(t ) e−ε|t |(∂λH (0) )(t ), (40)

where any time dependence is taken to be in the interaction
picture, (∂λH (0) )(t ) ≡ eiH0t (∂λH )e−iH0t . The next order can be
found by taking the derivative w.r.t. g in Eq. (15),

A(1)
λ = − i

2
lim

ε→0+

∫ ∞

−∞
dt sgn(t ) e−ε|t |[χ (t ), (∂λH (0) )(t )],

(41)

where

χ (t ) =
∫ t

0
dτ X (τ ), X (t ) = eiH0t Xe−iH0t . (42)

In order to simplify the notations we use X (t ) instead of
X (0)(t ). Higher-order terms can be found by taking higher-
order derivatives of Eq. (15), leading to an iterative evaluation
scheme. We will analyze only the first two orders here.

We will separately calculate the dominant terms for ∂λH =
X and ∂λH = Z , yielding Ag and Ah correspondingly. Given
a general perturbation (δh, δg) ∝ (cos ϕ, sin ϕ), we can write
Aλ(ϕ) = cos ϕAh + sin ϕAg.

Given that H0 = ZZ + hZ , in the interaction picture
Z (0)(t ) = Z is time independent, and hence A(0)

h = 0. For Ag,
we need to first evaluate X (t ), which can be done analytically
[see Eq. (G2) and Appendix G]. It represents a sum of eight
different independent operators with support up to k = 3 with
time-dependent coefficients. For h 	= 0, 2 the integral of X (t )
is well behaved in the limit ε → 0 and we can find

A(0)
g = 1

2h

2 − h2

4 − h2
Y + 1

2(4 − h2)
(Y Z + ZY )

− 1

h(4 − h2)
ZY Z. (43)

This expression clearly diverges at h = 0 and h = 2. Collect-
ing the diverging terms near these singularities, we recover
the expressions quoted earlier [Eqs. (26) and (27)] in the limit
ϕ → π/2 and θ → 0.

Exactly at the singular points the divergent terms com-
mutes with the Hamiltonian H0 and can be subtracted from
the AGP. This sudden discontinuity is not accidental, since
the direction along g becomes exactly radial at the singular
points, which is optimal. The cancellation of divergences also
follows from Eq. (G2) and arises from the fact that the limits
ε → 0 and h → 0, 2 do not commute. An explicit evaluation
of Eq. (40) at h = 0 returns

A(0)
g = 1

8 (Y Z + ZY ). (44)

Similarly at h = 2 we find

A(0)
g = 5

32Y + 1
32 (Y Z + ZY ) − 3

32 ZY Z. (45)

The first nonvanishing contribution to Ah is A(1)
h , which

can be immediately obtained from Eq. (41) (see again
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FIG. 11. Flow diagram of the first-order perturbative calculation
as given by Eq. (48). Two sources/sinks of the flows are observed at
(h, g) = (0, 0) and (2,0), reproducing the results shown in Fig. 2.

Appendix G for details):

A(1)
h = − 1

(h2 − 4)2

[
h4 − 2h2 + 8

2h2
Y

+ 3h2 − 4

h2
ZY Z − h(ZY + Y Z )

]
. (46)

In a similar fashion, one can compute an exact analytic expres-
sion for A(1)

g , showing the emergence of the new singularity at
h = 1. This expression is rather long, so it is explicitly given
only in Appendix G.

Interestingly, while formally A(1)
h is obtained as a higher-

order term than A(0)
g , it contains the same type of singularities

at h = 0 and h = 2. Moreover, it also only contains terms with
support of up to three sites: both these terms will appear in,
e.g., the three-body variational ansatz. Physically, A(1)

h plays
the same role as A(0)

g because both appear as the leading
nonvanishing contributions to the AGP in the perturbative
expansion. For this reason it suffices to analyze the following
“leading order” perturbative AGP:

Aλ(ϕ) ≈ cos ϕ A(1)
h + sin ϕ A(0)

g . (47)

As we will show next, the AGP in this form allows us to under-
stand key features of the adiabatic flows near the singularities
at (0,0) and (2,0). Using Eqs. (43) and (46), we can minimize
the norm of the perturbative AGP (47) with respect to ϕ and
find the optimal direction as

tan(2ϕ) = 2g(h6 + 24h2 − 32)

h(h2 − 4)(h4 − 2h2 + 8)
+ O(g2). (48)

The corresponding perturbative flow diagram is shown in
Fig. 11. It is clearly highly similar to the variational flow
diagram obtained for the three-body variational ansatz (cf.
Fig. 2), confirming how the (numerically straightforward)
variational approach is able to identify the most important
local contributions to the AGP. It is easy to check that from
Eq. (47) we can recover the asymptotic behavior of the AGP
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close to the singularities at (0,0) and (2,0) [cf. Eqs. (26) and
(27)].

VII. CONCLUSIONS

We developed a general approach for analyzing the
adiabatic landscape in systems described by a family of
Hamiltonians characterized by several controls (couplings).
This approach is based on minimizing the norm of the local
variational adiabatic gauge potential, which serves as the local
generator of adiabatic transformations.

We applied this method to a 1D Ising model in the pres-
ence of both transverse and longitudinal fields. In this model
we determined the optimal directions as those where the
norm of the adiabatic gauge potential is minimal, which
can be used to immediately define continuous paths along
which diabatic effects are suppressed (cf. Fig. 1). Along these
optimal paths one can design highly efficient local and ex-
perimentally feasible counterdiabatic driving protocols. These
paths are also useful for various other applications, including
finding local nearly conserved operators, dressed elementary
excitations such as quasiparticles or domain walls (see also
Refs. [12,41]), constructing effective Hamiltonians via the
Schrieffer-Wolff transformation, numerically computing ap-
proximate eigenstates using efficient numerical methods such
as the DMRG-X algorithm [71], designing optimal paths for
quantum annealing protocols, suppressing dissipative losses
in thermal machines and more. Interestingly, finding these
optimal paths does not require diagonalizing the Hamiltonian
of the system either exactly or approximately and can be done
even in the thermodynamic limit.

We found that these optimal paths always start/terminate
at the points corresponding to Hamiltonians exhibiting macro-
scopic degeneracies of the spectrum, which play a role similar
to the role of quantum critical points in equilibrium phase
diagrams. As we approach these singularities, the anisotropy
between the optimal and the orthogonal directions diverges.
The most divergent contributions to the adiabatic gauge po-
tential are local and can be singled out either perturbatively or
variationally. Increasing the support of the variational gauge
potential, additional (weaker) divergences start to emerge,
strongly affecting the flow diagram in their vicinity. Close
to these singularities we can identify special dark states:
mutual eigenstates of the Hamiltonian at the singular point
and the divergent part of the adiabatic gauge potential. These
dark states are highly robust against various time-dependent
perturbations and can be efficiently locally dressed by the non-
divergent part of the VAGP. They persist deep in the ergodic
regime extending far away from the singularities. Physically,
these dressed dark states correspond to spin configurations
that can remain nonthermal for extremely long times. Our
method provides a general prescription of finding such non-
thermal states in interacting systems.

Finally, we showed that the optimal directions are associ-
ated with the existence of local nearly conserved operators.
Thus there is an interesting and direct connection between
our ability to perform efficient local adiabatic transformations
along particular directions and the existence of long-lived
operators, which are locally dressed deformations of the
Hamiltonian along these optimal directions.
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APPENDIX A: DERIVATION OF THE
VARIATIONAL EQUATION

Here we derive the solution of the variational equation (11)
with the k-body ansatz (22). Substituting Eq. (22) into the
action S, we obtain

S =
∑

n,m∈Sk

Tr[{∂ jH + icnadH On}{∂ jH − ic∗
madH Om}], (A1)

where adH is a super operator s.t. adH On = [H, On]. For the
variational equation Eq. (11), an infinitesimal change of A in
the direction of On is given by

∂S

∂cn
= Tr[−iG adH On + c.c.] (A2)

= 0. (A3)

Let us expand operators in Eq. (A2) in the basis of On ∈ Sk:

∂ jH =
∑

n

dnOn, (A4)

adH On = i
∑

m

hnmOm. (A5)

Notice that they are known coefficients. Using them, We solve
(A3) in terms of cn.∑

m∈SL

dmhmn =
∑

m∈Sk ,k,l∈SL

cmhmkhnlTr[OkO†
l ] (A6)

=
∑

m∈Sk ,k∈SL

cmhmkhnk, (A7)

Since it should be satisfied for all On, Eq. (A7) constitutes a
simultaneous linear equation. We can rewrite Eq. (A7) in the
operator form

iPkadH∂ jH = −Pkad2
H PkA, (A8)

where Pk is a projection onto Sk . Therefore the solution is
formally given by

A = −i
(
Pkad2

H Pk
)−1

PkadH∂ jH. (A9)

Since the inverse of a projection operator does not exist,
(Pkad2

H Pk )
−1

is the pseudo-inverse.
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FIG. 12. Scaling with r of each term in the VAGP along the orthogonal (a) and optimal (b) direction. All the norms of the nonvanishing
terms in the three-body ansatz are shown. The horizontal axis is r = √

h2 + g2 and the vertical one is the norm of each term |cn|2 (markers). In
the orthogonal direction, the dominant term O(1/r) is given by Y − ZY Z , whereas the dominant term along the optimal direction is O(1) and
given by Y Z + ZY . All other terms exhibit higher-order scaling, where selected fits (full lines) are included as a guide to the eye.

APPENDIX B: DERIVATION OF THE OPTIMAL
DIRECTION

Following the notation of the main text, the derivative
of the Hamiltonian with respect to the magnetic field �λ =
(h, g) ≡ λ(cos ϕ, sin ϕ) is ∂λH = cos ϕZ + sin ϕX . Denoting
Ah and Ag as the adiabatic gauge potentials at ϕ = 0 and
ϕ = π/2, respectively, and using the linearity of the full AGP
we can write Aϕ = cos ϕAh + sin ϕAg. The squared norm of
the AGP is given by

Tr[A†
ϕAϕ] = Tr[A†

hAh] cos2 ϕ + Tr[A†
gAg] sin2 ϕ

+ (Tr[A†
gAh] + Tr[A†

hAg]) cos ϕ sin ϕ, (B1)

which can be simplified to

Tr[A†
ϕAϕ] = Tr[A†

hAh]
1 + cos 2ϕ

2
+ Tr[A†

gAg]
1 − cos 2ϕ

2

+ (Tr[A†
gAh] + Tr[A†

hAg])
sin 2ϕ

2
. (B2)

Differentiating this expression w.r.t. ϕ and demanding this
derivative to vanish then returns

tan(2ϕ) = Tr[A†
gAh] + Tr[A†

hAg]

Tr[A†
hAh] − Tr[A†

gAg]
. (B3)

This equation has two nonequivalent solutions (note
that ϕ and ϕ + π are equivalent) corresponding to the
minimum/maximum of the AGP norm. It is easy to see that
for Tr[A†

hAh] > Tr[A†
gAg] the minimum of the norm defin-

ing the optimal direction corresponds to the solution with
ϕ ∈ [π

4 , 3π
4 ] and the maximum to the solution in the interval

ϕ ∈ [−π
4 , π

4 ]. For Tr[A†
hAh] > Tr[A†

gAg] the minimum and
the maximum norm solutions are reversed.

APPENDIX C: SCALING OF INDIVIDUAL TERMS
IN THE VAGP

In this Appendix, we analyze the scaling of different op-
erators appearing in the VAGP and compare those with the
scaling predicted by the perturbative expansion. In Fig. 12
we show the norms of the coefficients cn of the operator
expansion of the VAGP [cf. Eq. (22)] within the three-body
variational ansatz near (h, g) = (0, 0). One can clearly ob-
serve the different power-law scalings of these coefficients
with r =

√
h2 + g2 and g/h = 10. Along the orthogonal di-

rection [Fig. 12(a)] the Y − ZY Z contribution diverges as 1/r
for r → 0, as expected from perturbation theory [cf. Eq. (26)].
The r-independent terms XY and Y Z also agree with the
perturbative calculations, and all remaining terms vanish at
r → 0 as various integer powers of r. In the optimal direction
the divergent term is clearly absent and the remaining terms
are similar to those in the orthogonal direction.

APPENDIX D: STATE PREPARATION IN AN
ORTHOGONAL DIRECTION

In this Appendix we show the performance of the state
preparation for the second orthogonal direction missing in
Fig. 4 (cf. Fig. 3), for a path from (ε, 1 − ε) to (0.5,0.5).
The protocols are identical to those discussed in the main
text. In the left panel of Fig. 13 we show the results for the
unassisted protocol and the CD driving, and in the right panel
we show the results for the infinitely fast (VAGP-only) proto-
col. In both cases the performance of the protocol is similar
to that in the other orthogonal direction shown in Figs. 4(b)
and 4(d).
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FIG. 13. Same as Fig. 4 for a path from (ε, 1 − ε) to (0.5,0.5). Panel (a) corresponds to a finite protocol duration T = 2 and (b) corresponds
to infinitely fast state preparation/dressing with T = 0.

APPENDIX E: NONSYMMETRIC DARK/BRIGHT STATE
PREPARATION

In Fig. 6 we already compared the energy variance follow-
ing a state preparation for particular symmetric dark/bright
states using an unassisted protocol or by including a local
variational CD term. As a reminder, the dark states are defined
as the eigenstates of the Hamiltonian that are annihilated by
the divergent part of the AGP, which near the (2,0) singularity
is proportional to PY P. It is easy to see that the dark states
are those where |↓〉 spins or pairs of such spins |↓↓〉 are
separated from each other by at least two |↑〉 spins next to each
other. The bright states are those that violate this constraint.
In Fig. 14 we compare the performance of a randomly chosen
nonsymmetric dark [Fig. 14(a)] and bright [Fig. 14(b)] states
(see caption for details). The protocol is the same as in Fig. 6.
It is clear that the results are similar to those shown in the main
text for the symmetric dark/bright states.

APPENDIX F: SINGULARITIES OF THE AGP THROUGH
DEGENERATE PERTURBATION THEORY

In this Appendix we present a short argument for why
the radial direction is generally the optimal one near singular
points. Let us assume that the Hamiltonian of the system can
be written as

H = H0 + εV, (F1)

where H0 is a Hamiltonian describing a macroscopically de-
generate point and V is some generic perturbation. The exact
AGP can be represented in the degenerate eigenbasis of the
instantaneous Hamiltonian as [1]

Aλ = i
∑
n 	=m

|m〉 〈m|∂λH |n〉
εn − εm,

〈n| , (F2)

where H |n〉 = εn|n〉. It is clear from this expression that
the AGP generally diverges in the limit ε → 0 as 1/ε,
since in first-order perturbation theory εn − εm ≈ 〈n|V |n〉 −
〈m|V |m〉. Note that in the proper eigenstates the matrix V is
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100

FIG. 14. Same as Fig. 6 with nonsymmetric initial states. Panel (a) corresponds to a dark state |↓↑↑↓↑↑↑↓↑↑↑↑〉, whereas panel
(b) represents a random bright product state = |↓↑↑↓↑↓↓↑↑↓↓↓〉. Note again the different vertical scales in the two figures. Even for
the unassisted protocol (blue lines), the energy variance is much smaller for the dark state compared to the bright state. Including local
counterdiabatic terms further decreases the energy variance of the dark state and has only minimal effects on the bright state.
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approximately diagonal within each degenerate manifold.
This divergence is, however, canceled if the deformation ∂λH
is diagonal (to the first order) in ε in this basis. In particular,

this is the case when λ = ε, which precisely corresponds
to radial deformations defining the optimal directions (cf.
Sec. III C).

APPENDIX G: DETAILS OF THE DERIVATION OF THE PERTURBATIVE AGP

In Eq. (42) we defined the X -magnetization operator in the interaction picture as X (t ) = eiH0t Xe−iH0t with H0 = ZZ + hZ ,
through which one can express the expansion of the AGP in powers of the transverse field g. This operator satisfies the following
equation of motion:

∂

∂t
X (t ) = i[H0, X ], X (0) = X. (G1)

It is easy to verify that there is a closed-form solution to this equation, reading:

X (t ) = X

4
[cos(2(h + 2)t ) + 2 cos(2ht ) + cos(2(h − 2)t )] − Y

4
[sin(2(h + 2)t ) + 2 sin(2ht ) + sin(2(h − 2)t)

¯
]

+ XZ + ZX

4
[cos(2(h + 2)t ) − cos(2(h − 2)t )] + ZXZ

4
[cos(2(h + 2)t ) − 2 cos(2ht ) + cos(2(h − 2)t )]

− Y Z + ZY

4
[sin(2(h + 2)t ) − sin(2(h − 2)t )] − ZY Z

4
[sin(2(h + 2)t ) − 2 sin(2ht ) + sin(2(h − 2)t )]. (G2)

For the second-order contribution to the AGP we also need to compute χ (t ) = ∫ t
0 dτX (τ ) [cf. Eq. (42)], which can be readily

done as

χ (t ) =
∫ t

0
dτX (τ )

= X

8

[
sin(2(h + 2)t )

h + 2
+ 2 sin(2ht )

h
+ sin(2(h − 2)t )

h − 2

]
+ XZ + ZX

8

[
sin(2(h + 2)t )

h + 2
− sin(2(h − 2)t )

h − 2

]

+ ZXZ

8

[
sin(2(h + 2)t )

h + 2
− 2 sin(2ht )

h
+ sin(2(h − 2)t )

h − 2

]

− Y

8

[
1 − cos(2(h + 2)t )

h + 2
+ 2(1 − cos(2ht ))

h
+ 1 − cos(2(h − 2)t )

h − 2

]

− Y Z + ZY

8

[
1 − cos(2(h + 2)t )

h + 2
− 1 − cos(2(h − 2)t )

h − 2

]

− ZY Z

8

[
1 − cos(2(h + 2)t )

h + 2
− 2(1 − cos(2ht ))

h
+ 1 − cos(2(h − 2)t )

h − 2

]
. (G3)

Its commutators with X (t ) and Z follow as

i[χ (t ), X (t )]

= 1

4
(XY + Y X )

[
4 sin(4ht )

h2 − 4
+ sin(2(h − 2)t )

h + 2
− sin(2(h + 2)t )

h − 2

]

− 1

4
(Y XZ + ZY X )

[
2 sin(4t )

h2 − 4
+ sin(4(h + 1)t )

h(h + 2)
− sin(4(h − 1)t )

h(h − 2)

]

+ 1

4
(XY Z + ZY X )

[
2h sin(2ht ) − 2 sin(4t )

h2 − 4
+ sin(4(1 + h)t )

h(h + 2)
− sin(4(h − 1)t )

h(h − 2)
− sin(2(2 + h)t )

h
− sin(2(h − 2)t )

h

]

− 1

4
(ZXY Z + ZY XZ )

[
2 sin(2ht ) + 2 sin(4ht )

h2 − 4
− sin(4(h − 1)t )

h(h − 2)
− sin(4(h + 1)t )

h(h + 2)
− sin(2(h − 2)t )

h(h + 2)
− sin(2(h + 2)t )

h(h − 2)

]

+ [even terms in Y ], (G4)

and

i[χ (t ), Z] = 1

4
Y

[
sin(2(h + 2)t )

h + 2
+ 2 sin(2ht )

h
+ sin(2(h − 2)t )

h − 2

]
+ 1

4
(Y Z + ZY )

[
sin(2(h + 2)t )

h + 2
− sin(2(h − 2)t )

h − 2

]

+ 1

4
ZY Z

[
sin(2(h + 2)t )

h + 2
− 2 sin(2ht )

h
+ sin(2(h − 2)t )

h − 2

]
+ [even terms in Y ].
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Note that the even terms in Y do not contribute to the AGP: as follows from, e.g., Eq. (F2) the AGP is explicitly imaginary for a
real Hamiltonian (see also Ref. [37]). These terms, however, will contribute to higher order corrections to the AGP.

Using these expressions together with Eqs. (40) we can immediately recover the leading-order contributions to the AGP
shown in Sec. VI. Likewise, using (41) we can find the first subleading corrections, which we will show below for different
values of h:

h 	= 0, 1, 2

A(1)
g = 1

4h(4 − h2)
(XY + Y X ) − 1

8(1 − h2)
(Y XZ + ZXY − XY Z − ZY X )

+ 3

8h(1 − h2)(4 − h2)
(ZXY Z + ZY XZ ), (G5)

A(1)
h = − h4 − 2h2 + 8

2h2(h2 − 4)2
Y + h

(h2 − 4)2
(Y Z + ZY ) − 3h2 − 4

h2(h2 − 4)2
ZY Z; (G6)

h = 0

A(1)
g = 1

8
(XY Z + ZY X − Y XZ − ZXY ), (G7)

A(1)
h = − 1

4h2
(Y − ZY Z ); (G8)

h = 1

A(1)
g = 1

12 (XY + Y X ) − 1
32 (Y XZ + ZXY ) − 5

96 (XY Z + ZY X ) − 5
96 (ZXY Z + ZY XZ ), (G9)

A(1)
h = − 7

18Y + 1
9 (Y Z + ZY ) + 1

9 ZY Z; (G10)

h = 2

A(1)
g = 1

8
(XY + Y X ) + 1

24
(Y XZ + ZXY ) − 1

96
(XY Z + ZY X ) − 1

12
(ZXY Z + ZY XZ ), (G11)

A(1)
h = − 1

8(h − 2)2
(Y − ZY − Y Z + ZY Z ) = − 1

8(h − 2)2
PY P. (G12)

From the expansion (G6) we recover both the singularities close h = 0 and h = 2, as discussed in the main text, as well as the
emergence of a new singularity close to h = 1, which one can check is proportional to P(XY + Y X )P. One can further check
that a similarly divergent term, also proportional to P(XY + Y X )P, appears in the second order correction to Ah, which we show
only for completeness away from singularities, i.e., h 	= 0, 1, 2:

A(2)
h = 10h6 − 5h4 − 35h2 + 12

16h2(h2 − 1)2(h2 − 4)2
(XY + Y X ) − h6 + 12h4 − 30h2 + 8

8h(h2 − 1)2(h2 − 4)2
(XY Z + ZY X )

+ h

8(h2 − 1)2
(Y XZ + ZXY ) + 23h4 − 61h2 + 20

16h2(h2 − 1)2(h2 − 4)2
(ZXY Z + ZY XZ ).

(G13)

Collecting the terms that will be singular at h = 1 appearing in the expressions for A(1)
g and A(2)

h , we can obtain Eq. (36).
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