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Split-ring polariton condensates as macroscopic two-level quantum systems
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Superposition states of circular currents of exciton-polaritons mimic the superconducting flux qubits. The
phase of a polariton fluid must change by an integer number of 2π when going around the ring. If one introduces
a π -phase delay line in the ring, the fluid is obliged to propagate a clockwise or anticlockwise circular current to
reduce the total phase gained over one round trip to zero or to build it up to 2π . We show that such a π -delay line
can be provided by a dark soliton pinned to a potential well created by a C-shape nonresonant pump spot. The
resulting split-ring polariton condensates exhibit pronounced coherent oscillations passing periodically through
clockwise and anticlockwise current states. These oscillations may persist far beyond the coherence time of
polariton condensates. The qubits based on split-ring polariton condensates are expected to possess very high
figures of merit that makes them a valuable alternative to superconducting qubits. The use of the dipole-polarized
polaritons allows one to control coherently the state of the qubit with the external electric field. This is shown
to be one of the tools for realization of single-qubit logic operations. We propose the design of an iSWAP gate
based on a pair of coupled polariton qubits. To demonstrate the capacity of the polariton platform for quantum
computations, we propose a protocol for the realization of Deutsch’s algorithm with polariton qubit networks.

DOI: 10.1103/PhysRevResearch.3.013099

I. INTRODUCTION

While tremendous progress in the development of quantum
technologies is apparent, it is still unclear which material plat-
form is the most suitable for the realization of future quantum
computers and simulators [1]. Among the leaders of the quest
are superconducting circuits with Josephson junctions [2–7],
cold atoms in optical traps [8–10], ions [11–13], and purely
photonic systems [14], which already provide computing fa-
cilities on the border of the capabilities of classical computing
devices. The semiconductor platform lags slightly behind so
far, while remarkable progress has been recently achieved
[15] with spin-based quantum computing in semiconductor
nanostructures [16,17] as well as in the creation of single-
photon sources based on quantum dots [18]. Recently, a series
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of papers demonstrated a high potentiality of semiconductor
microcavities in the strong light-matter coupling regime for
hosting ensembles of phase-locked bosonic condensates of
half-light–half-matter quasiparticles: exciton polaritons (here-
after referred to as polaritons for brevity) [19,20]. It has been
argued that the phase-locking process in an array of polariton
condensates may be used for the minimization of a classi-
cal many-body XY Hamiltonian [20]. Polariton condensates
may be formed at elevated temperatures, optically controlled
and mutually phase locked on a picosecond timescale. These
features constitute their main potential advantages over other
material platforms for realization of quantum simulators. On
the other hand, a polariton qubit has never been convinc-
ingly demonstrated till now, and it has been argued that
the dissipative nature of exciton polaritons characterized by
ultrashort radiative lifetimes would prevent their use for im-
plementations of quantum algorithms [21]. Quite recently,
an interesting proposal [22] to build the qubit on quantized
fluctuations of the resonantly driven polariton condensate in
the cylinder microcavities was made.

Here we propose a quite different approach. In particular,
we argue that a strong fundamental similarity of superfluid
polariton flows [23] and superconducting electric currents
may be exploited to build a polariton analog of the super-
conducting flux qubit. Superconducting flux qubits are based
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FIG. 1. Comparison of a superconducting flux qubit and a split-
ring polariton condensate qubit. (a) Sketch of a flux qubit consisted
of a superconductor circuit interrupted by a Josephson junction.
The persistent currents generated inside the loop tend either to
compensate an external magnetic flux or build it up to the value
corresponding to the full magnetic flux quantum �0 (| �〉 and | �〉
current states, respectively). (b) Energy levels of a flux qubit. The
qubit basis is formed by symmetric and antisymmetric superpositions
of the persistent current states. (c) Loop of a polariton superfluid
with an embedded defect. (d) Energy diagram of the states of the
superfluid circle with different topological charges l in the pres-
ence of the effective magnetic field. The energy of the state, El =
E1(θ = 0)[l − θ/2π ]2, is measured in units of E1(θ = 0).

on superpositions of clockwise and anticlockwise currents
formed by millions of Cooper pairs [24–26]; see Figs. 1(a)
and 1(b). In order to excite the system in a superposition state,
the half-quantum flux of magnetic field is passed through the
superconducting circuit containing one or several Josephson
junctions. The system is forced to generate a circular current
to either reduce the magnetic flux to zero or to build it up to a
full-quantum flux.

While electrically neutral polaritons are much less sensi-
tive to the external magnetic field [27] than Cooper pairs,
the circular currents of superfluid polaritons [28] can be ef-
ficiently controlled by introducing a potential defect (a phase
delay line) in a polariton ring. The defect couples counter-
propagating polariton currents. This results in a formation of
a two-level quantum system based on a split-ring polariton
condensate. One of the efficient methods for the realization of
such a defect implies pinning a dark soliton [29,30], which is
characterized by a π -jump of phase of a superfluid, to the slot
in the polariton ring. The π -phase delay line embedded in a
circle forces the superfluid to flow clockwise or anticlockwise
in order to either build up the phase variation along the loop
to 2π or to reduce it to zero. We run numerical experiments
showing the spontaneous excitation of robust oscillations of
the resulting polariton qubit state on the Bloch sphere; see
Sec. II C. These oscillations are caused by the continuous

phase change between the qubit basis states. They are in-
dicative of the formation of the macroscopic superposition
of the qubit basis states corresponding to the symmetric and
antisymmetric combinations of polariton circular currents.

Interestingly, the predicted dephasing time of the os-
cillations in such a system nonresonantly pumped by a
continuous-wave (CW) laser source appears to be orders of
magnitude longer than the characteristic oscillation period
(about 125 ps). This may result in very high figures of merit
of qubits based on split-ring polariton condensates. This is
because the phase gradient that governs the current states
of polariton condensates is insensitive to the overall time-
dependent phase characterizing the condensate as a whole
object. Since the condensate state is continuously sustained
by the external pumping, the system reaches the regime of
dynamic equilibrium, which is manifested by the dynamical
balance between gain and dissipation. Therefore, the circular
polariton currents are expected to survive as long as the pump-
ing is switched on [31].

As a first step towards realization of polariton quantum
networks, we propose a design of the gates performing the
Pauli rotation operations which allows for the manipulation
of the state of an individual qubit. The proposed solution
implies the use of the gauge field capable of lifting the degen-
eracy between the opposite persistent currents by additionally
breaking the time-reversal symmetry. For this purpose, we
propose to employ a synthetic gauge field arising from the
coupling between the motion of dipole-polarized excitons and
the magnetic field [32]. This approach allows for the realiza-
tion of a coherent control between the qubit basis states.

For realization of a multiqubit quantum processing, we
design the iSWAP gate based on two coupled split-ring polari-
ton condensates. In order to demonstrate a high potentiality
of semiconductor microcavities for designing of the quantum
information devices, we test the system for implementability
of the practical quantum protocols. As a benchmark test, we
simulate Deutsch’s algorithm, whose realization is typically
recognized as a necessary step for demonstration of the fea-
sibility of the quantum information processing on a given
material platform. This was the case of the early experiments
with nuclear magnetic resonance systems [33,34] as well as
with the advanced platforms, such as trapped ions [35], su-
perconducting circuits [36], and photonic systems [37,38].
Implementation of Deutsch’s algorithm requires the realiza-
tion of both single- and two-qubit gates. The demonstration
of this algorithm then turns to a proof-of-concept test of
the ensamble of required tools for further scaling quantum
information processing systems since an arbitrary quantum
algorithm can be decomposed in a sequence of single- and
two-qubit gates.

II. RESULTS

A. The origin of the two-level quantum system

Let us consider a close circuit filled with a coherent quan-
tum fluid. The phase of the many-body wave function ψ (t, s)
of the fluid ϕ must obey the equality

∮
D ∂sϕ ds = 2π�, which

is the quantization condition for the topological invariant � ∈
Z also known as the winding number [39,40]. Here s is the
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FIG. 2. The model system. (a) The semiconductor microcavity
excited by a nonresonant pump beam having the C-shape profile.
Here wr = 6 μm and wR = 20 μm. The width of the slot is wd =
2 μm. (b)–(d) Properties of the basis states of the qubit formed in
a polariton superfluid ring, as predicted by the 1D model. (b) The
pump distribution contains a slot which is able to pin a dark soliton
manifesting itself in the density dip and the π phase jump (d). (c) The
densities and (d) the phases of the basis states |0〉 and |1〉. (c), (d) The
solutions of the 1D problem obtained with a pump distribution shown
in (b). The pump amplitude is 3.5 × Pth.

coordinate along the circuit of a total length D. If the fluid
is subjected to the gauge field, characterized by the vector
potential A, the quantization condition becomes

∮
D ∂sϕ ds −

θ = 2π�. The phase delay θ = 	�/h̄ induced by the vector
field is determined by its flux � and the constant 	 which de-
fines the pulse rescaling rule, p̂ → p̂ − 	A. The effective flux
governs the energy spectrum of a two-level system based on
counterpropagating currents with opposite winding numbers,
as Fig. 1(d) shows. At the particular value θ = π , the states
with � = 0 and � = 1 are degenerate in energy similar to the
case of the superconducting flux qubit. These states, however,
are different in the phase increment

∮
D ∂sϕ ds, which equals

π for the state with zero topological charge � = 0 and −π for
the state with � = 1.

The energy gap between the � = 0 and � = 1 states appears
in the presence of a defect embedded in a circuit; see Figs. 1(c)
and 1(d). The defect causes back-scattering of the currents and
mixes them. The eigenstates of this system mimic the linear
superposition states realized in a superconducting flux qubit.

For electrically neutral particles the phase delay θ can be
engineered either by the circular motion of the defect [41] or
by exploiting the spin-orbit coupling in the presence of exter-
nal magnetic fields [27]. However, the specific case of θ = π

can be realized in a much simpler way. All one has to do is
to embed at some point a dark soliton state characterized by a
π -jump of the phase. This can be done, e.g., by pinning it with
a potential defect required for localization and stabilization of
the soliton state [42,43]. In the presence of a dark soliton, the
current states with the phase changing by π and −π over the
remaining part of the circuit form two superposition states |0〉
and |1〉, which constitute a two-level quantum system or qubit.

B. The model

We consider the system shown schematically in
Fig. 2(a). A semiconductor microcavity formed by a

couple of Bragg mirrors contains an ensemble of embedded
quantum wells. The strong coupling of cavity photons and
quantum-well excitons results in the appearance of new
eigenmodes of the structure, the exciton polaritons [44]. We
assume that the polaritons are created by the nonresonant CW
optical pump of a C-shape, which is schematically illustrated
in Fig. 2(a). Obeying the bosonic statistics, polaritons form a
Bose-Einstein condensate which remains localized under the
pump spot due to the finite polariton lifetime.

The dynamics of a 2D split-ring polariton condensate
in a semiconductor microcavity obeys the driven-dissipative
Gross-Pitaevskii equation coupled with the rate equation for
the density of the exciton reservoir:

dψ (r) =
{

ih̄

2m∗ ∇2 − i

h̄
[gc|ψ (r)|2 + grnR(r) + V (r)]

+ 1

2
[RnR(r) − γc]

}
ψ (r)dt + dW,

∂nR(r)

∂t
= P(r) − [γR + R|ψ (r)|2]nR(r), (1)

where ψ (r) is a polariton condensate order parameter, nR(r)
is the exciton reservoir density, m∗ = 10−4me is the effective
mass of polaritons on the lower branch (me is the free electron
mass), and γc = 1/6 ps−1 and γR = 2γc are the polariton and
the reservoir decay rates, respectively. R = 0.01 ps−1μm2 is
the rate of the stimulated scattering from the exciton reservoir
to the polariton condensate. gc = 6 μeV μm2 and gr = 2gc

describe the interaction of polaritons between themselves and
with the reservoir excitons, respectively. V (r) is the external
potential. The chosen values of the parameters of the model
are relevant to the experimental data [45].

While the classical fluctuations are taken into account in
the initial polariton field, the effect of quantum fluctuations
is included by adding a complex stochastic term within the
truncated Wigner approximation [46]

〈dW (r, t )dW (r′, t )〉 = 0, 〈dW (r, t )dW (r, t ′)〉 = 0,

〈dW (r, t )dW ∗(r′, t ′)〉 = dt

2dxdy
(RnR + γc)δr,r′δt,t ′ . (2)

The CW nonresonant pump P(r) of a C-shape, as shown
in Fig. 2(a), is characterized by the spatial distribution of the
intensity given by

P(r) =
⎧⎨
⎩

P0
[
1 − e−( r

wr
)n] [

1 − e−( 2y
wd

)n]
e−( r

wR
)n

, x > 0,

(P0 − P1)
[
1 − e−( r

wr
)n]

e−( r
wR

)n

, x � 0,

(3)

where the pump power variation factor P1 quantifies the
depth of the step in the pump beam intensity as shown in
Fig. 2(a). By additionally breaking the rotation symmetry,
this step allows for manipulation of the quantum properties
of the two-level system, in particular, for switching between
the superposition and the pole states, as will be demonstrated
hereafter. The steepness parameter is taken as n = 20. The
required profile of the pump beam can be realized using spa-
tial light modulator [19,28] or by pattering the microcavity
surface with an opaque mask intended to prevent excitation of
polaritons beneath it.
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The key ingredient of the pump is a radial slot of the width
wd where no polaritons are excited. Its function is to mix
the opposite polariton currents giving rise to the energy split-
ting between the basis states. As well, it favors formation of
the soliton-like topological defect in the polariton condensate
accompanied by the π jump of the phase in the azimuthal
direction. In particular, due to the local absence of the gain,
the polariton density is typically depleted at the position of
the slot. It naturally triggers formation of the dark soliton
provided that the polariton-polariton interactions are strong
enough to sustain it [42]. Besides, the reservoir density also
appears to be depleted under the slot. Since excitons repel
each other, the slot is responsible for the formation of the
potential well for the condensate, which serves for pinning
and stabilization of the soliton state.

In the presence of the slot, in addition to the persistent
current states with nonzero average momenta [47], the couple
of energy nondegenerate states with zero average currents ap-
pears. These are symmetric and antisymmetric states similar
to those presented in Fig. 1(d). The typical angular dependen-
cies of the magnitudes and the phases of the corresponding
wave functions are shown in Figs. 2(c) and 2(d). The prop-
erties of these states can be conveniently analyzed in the
limit where the pump profile is a thin ring of a large radius;
see Appendix B. The basis states behave differently in the
vicinity of the defect, which causes splitting in their energies.
Therefore, the value of the energy gap between these states
can be controlled by both shape and intensity of the pump as
is discussed in Appendix B.

C. The dynamics of a split-ring condensate

In what follows, we shall focus on the oscillatory regime
of a 2D split-ring condensate. In this regime, the condensate
is initially formed in a superposition of |0〉 and |1〉 eigenstates
[48,49]. The system exhibits long-living quantum beats whose
frequency is governed by the energy splitting of |0〉 and |1〉
states. The split-ring condensate passes periodically through
clockwise and anticlockwise current states. Its dynamics can
be conveniently mapped to a Bloch sphere. At this stage we
neglect by the quantum fluctuations of the condensate order
parameter focusing on its coherent dynamics.

Figure 3 shows the oscillatory regime of the split-ring
polariton condensate predicted by the numerical modeling
of Eqs. (1). We characterize nonstationary circular cur-
rent states of the condensate by the normalized average
angular momentum m(t ) = h̄−1Lz(t )/N (t ), where Lz(t ) =
(−ih̄)

∫
ψ∗(r, t )[x∂y − y∂x]ψ (r, t ) dr is the actual average

angular momentum and N (t ) = ∫ |ψ (r, t )|2 dr is the number
of polaritons in the condensate. In contrast to the winding
number �, the average angular momentum m(t ) continuously
varies in the course of the evolution of the condensate and can
have arbitrary real value. The oscillations of the polariton state
in Fig. 3(a) occur between the states with the average angular
momenta of m 	 0.4 and m 	 −0.4. Figures 3(b) and 3(d)
show the intensity distribution (left), the phase distribution in
the cavity plane (middle), and the angular phase distribution
(right) of the polariton states with m 	 0.4 and m 	 −0.4,
respectively. Figure 3(c) illustrates the intermediate state of
m = 0 visited by the system in the course of the oscillations.

FIG. 3. The temporal evolution of the split-ring polariton con-
densate nonresonantly pumped with the C-shape CW laser beam
switched on at time zero. (a) The temporal evolution of the mean
angular momentum m of the condensate. (b)–(d) The density (left
column) and the phase (middle column) profiles are shown in (b)–
(d) for the states with the maximum, zero, and minimum values of the
angular momentum, respectively. The pump shape is indicated with a
white contour in panel (b). The phase of the condensate as a function
of the polar angle at the fixed radius r is shown in the right column.
Here r = 8 μm, 13 μm, and 18 μm for blue, orange, and green
curves, respectively. The parameters of the pump beam used for this
calculation are P0 = 1.8 × Pth and P1 = 0.1 × P0, Pth = γcγR/R.

The full dynamics of the oscillations illustrated by Fig. 3 is
summarized in the Supplemental Movie [50].

The harmonic oscillations of the angular momentum of the
condensate can be considered as a fingerprint of a many-body
two-level quantum system. The spectral analysis of the oscil-
latory dynamics of the system reveals two sharp resonances
appearing, which are split in energy by about 32 μeV (see
Appendix D and Fig. 12), which corresponds to the period of
the oscillations seen in Fig. 3(a).

Figure 4 shows the trajectory of the quantum state of the
split-ring polariton condensate on the surface of the Bloch
sphere based on |0〉 and |1〉 eigenstates (see details of the map-
ping in Appendix A). Retaining only the classical fluctuations
of the initial polariton field and neglecting the stochastic pro-
cesses [Figs. 3 and 4(a)], we obtain the stable oscillations that
persist during over 10 ns (truncation time of this numerical
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FIG. 4. The evolution of the quantum state of the split-ring po-
lariton condensate on the surface of the Bloch sphere. Four periods of
oscillations are shown. (a) Computed neglecting and (b) accounting
for the quantum fluctuations introduced by Eq. (2). (c) First-order
coherence g(1) as a function of time delay τ corresponding to the
dynamics shown in panel (b). The decay of the envelope is caused
by the presence of fluctuations. The parameters are the same as in
Fig. 3.

simulation) and correspond to a circular trajectory close to
the equator of the Bloch sphere. When including the quantum
fluctuations described by Eq. (2), we find that the uncertainty
in the mapping procedure to the Bloch sphere becomes larger
and the trajectory of our system on the surface of the Bloch
sphere looks noisy. Remarkably, the noise does not affect the
stability of oscillations that persist over the whole calculation
period showing no apparent decay. This is because the oscil-
lating state is continuously sustained by the pump. It can be
characterized as a regime of the dynamical equilibrium where
the losses are exactly compensated by the time averaged gain.
We conclude that the harmonic oscillations in a two-level
quantum system formed by a split-ring polariton condensate
may persist as long as the pumping is on.

The reason for the surprising stability of oscillations is in
the topological protection of circular current states in split-
ring condensates. The superfluid currents are governed by
the spatial distribution of the phase of the condensate. The
localization radius of the condensate (20 μm in our case) is
much smaller than the coherence length in the system (over
100 μm) [51], which is why the coherence of superfluid po-
lariton condensate is preserved. The coherence time of the
condensate as a whole which characterizes the time depen-
dence of the overall phase of the ring condensate does not
impose limitations on the lifetime of polariton currents. Note
that persistent circular currents in polariton superfluids have
been experimentally observed recently [51–53].

The stable persistent oscillations of the polariton quantum
system in the vicinity of the equator of the Bloch sphere are

FIG. 5. The oscillations of the quantum state of the split-ring
condensate. The decay that is controlled by P1: P1 = 0.1 × P0 while
t < 3 ns and P1 = 0.09 × P0 while t > 3 ns. (a) The trajectory of
the quantum system on the Bloch sphere shown from point A on the
time axis onward; (b) the dynamics of the angular momentum of the
condensate. The switch of P1 occurs at t = 3 ns (vertical dashed line).

observed if the parameter P1 characterizing the step in the
pump power distribution [see Eq. (3)] is chosen in the range of
[0.1, 0.3] × P0. With the decrease of P1 down to 0.09 × P0, the
stability of the oscillations is broken and the system exhibits
a fast decay. Figure 5 shows the variation of the dynamics
of the system resulting from the variation of the value of P1:
while t is shorter than 3 ns, the system exhibits the same stable
oscillations as those shown in Figs. 3 and 4. Next, as a result of
the decrease of P1 from 0.1 × P0 to 0.09 × P0 at t = 3 ns, the
fast decay of the oscillations is observed, so that, eventually,
the system relaxes to one of the eigenstates, specifically, to
the state |0〉 shown in Fig. 6(a). We emphasize that the decay
time of oscillations is still independent of the coherence time
of the condensate in this regime. It is fully governed by P1

parameter that controls the magnitude of the step potential.
The trajectory of the system on the Bloch sphere that describes
the decay of the oscillations has been smoothed with use of the
Bezier function [54] for clarity.

One can see in Fig. 6(a) that the wave function of the
split-ring condensate is antisymmetric with respect to the
horizontal axis (y = 0), which passes through the center of
the slot. A π phase jump appears at y = 0. With the further
decrease of P1 down to 0.03 × P0, the system relaxes to the
basis state |1〉 shown in Fig. 6(b). It represents the symmetric
pattern with a pair of π phase jumps close to the horizontal
axis (y = 0). Note that both basis states are characterized
by zero average polariton flow, m = 0, and represent 2D
counterparts of the basis states shown in Figs. 2(c) and 2(d).
Also, they are nearly perfectly orthogonal. Their orthogonality
is essential for mapping the system to the Bloch sphere.

It is important to note that, in a general case, the ring
condensate is not expected to relax to the lowest energy state
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FIG. 6. Two basis states of the split-ring polariton qubit corre-
sponding to the two poles of the Bloch sphere: |0〉 and |1〉. (a) P1 =
0.09 × P0 and (b) P1 = 0.03 × P0. The density and phase profile in
the 2D case are shown in the left and middle panels, respectively;
the angular dependencies of the phase corresponding to different
fixed radii are shown with different colors in the right panels (r =
8 μm, 13 μm, and 18 μm are shown with blue, orange, and green,
respectively).

corresponding to the upper pole of the Bloch sphere. This is
a characteristic feature of polariton lasers: out of all quantum
states the system chooses one that maximizes the occupation
number of the condensate, but not necessarily one that is char-
acterized by the lowest energy [19,20]. This is why incoherent
processes of acoustic-phonon assistant energy relaxation are
not expected to affect the dynamics of qubits based on split-
ring polariton condensates.

D. C-shape potentials

Till now we were considering the polariton condensates
imprinted in a planar microcavity by means of the optical
pumping. Their spatial localization was imposed by the shape
of the nonresonant pump used for their excitation. An alterna-
tive way to realize split-ring polariton condensates is by using
laterally confined C-shape potentials produced by chemical
etching of planar cavities [55]. In this case, we expect a
stronger confinement of polaritons and more control tools
for shaping the condensates. The drawback of this system
as compared to fully optically induced split-ring condensates
is in its rigidity: each time, to change the geometry of an
array of polariton condensates one would need to grow a
new sample. We also consider the combined method of lateral
confinement by using the etched micropillars where ring con-
densates are formed due to the repulsion of polaritons from
the exciton reservoir formed in the center of the pillar by a
nonresonant optical pumping. Persistent superfluid currents of
exciton polaritons were recently observed in such structures
[52]. Shifting the pump spot from the center of the pillar
yields the formation of the split-ring condensate [53,56]. The
results of numerical simulations of the harmonic oscillations
in polariton condensates confined to C-shape potentials are
shown in Appendix C.

We note that a qualitatively similar phenomenology was re-
cently revealed in optical vortices and circular Bose-Einstein
condensates [57–59]. We are confident that the polariton plat-
form possesses a number of important advantages for the
realization of quantum networks as compared to the systems
studied in these works. One of the most important advantages
comes from the use of semiconductor structures for which
growth and fabrication technologies are already optimized. A
semiconductor platform allows for integration of quantum and
classical networks.

III. DISCUSSION

A. Figure of merit for split-ring polariton condensate qubits

The simulations described above demonstrate that at cer-
tain conditions split-ring polariton condensates behave as
two-level quantum systems demonstrating long-standing co-
herent oscillations, which are indicative of the continuous
relative phase change between the basis states. Considering
this system as a qubit, one should be able to estimate its figure
of merit given by the number of logic operations that can be
performed before the coherence between the two levels is lost
[17]. For any two-level system, the most important factors af-
fecting its figure of merit are the spontaneous relaxation of the
excited state and the pure dephasing. These processes can be
successfully accounted for with the use of the density matrix
approach. The master equation for density matrix ρ = |ψ〉〈ψ |
(see Appendix A for the definition of |ψ〉) of the two-level
system reads

ih̄
dρ

dt
= [Ĥ, ρ] + γrL[σ−]ρ + γdL[σz]ρ, (4)

where Ĥ is a split-ring qubit Hamiltonian whose eigenstates
are |0〉 and |1〉, L[Â]ρ = ÂρÂ† − 1

2 (Â†Âρ + ρÂ†Â) is a Lind-
blad superoperator and σ− = σx − iσy where σx,y,z are Pauli
matricies. While the first term in Eq. (4) governs the coher-
ent dynamics, the last two describe the interaction with the
environment. The second term stands for the excited state
relaxation corresponding to the spontaneous flip of the qubit
state from the upper to the lower energy level, which occurs
with the rate γr . For the regime of dynamical balance between
the gain from the CW pump and the single polariton dissipa-
tion rate, the relaxation of the upper state of the condensate
as a whole does not occur. Also, the current of polaritons
composed of electrically neutral excitons and photons is pro-
tected from coupling to the electromagnetic radiation, which
is resonant to the transition connecting the basis states. This
is also due to selection rules which forbid radiative transitions
between polaritons formed by the same exciton state. At the
same time, the relaxation assisted by the emission of acoustic
phonon, which appears to be efficient for quantum dot [60]
and superconducting qubits [61], is suppressed because of
the mismatch between the size of the condensate (tens μm)
and the acoustic phonon wave length in the frequency range
corresponding to the qubit energy gap (in the order of few μm
for the GaAs quantum well). Also, the phonon propagation
velocity is about several μm/ns, which makes the phonon
field effectively static with respect to the fast dynamics of the
condensate. Hence acoustic phonons cannot interact with the
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condensate state as a whole. Therefore, the effect of relaxation
of the condensate as a whole can be neglected.

The last term in Eq. (4) describes the effect of pure dephas-
ing for off-diagonal elements of the density matrix written in
the basis of |0〉 and |1〉 states. The dephasing typically has
two contributions, namely, from the relaxation of population
and from the phase relaxation. The latter effect arises from
stochastic fluctuations of the basis states energies character-
ized by the rate γd . For the case of no phase relaxation, the
off-diagonal elements ρ01 = 〈0|ρ|1〉 and ρ10 = 〈1|ρ|0〉 decay
on the dephasing time T2 = 2T1 [62] which is connected to
the population relaxation rate γr = T −1

1 . However, the contri-
bution from the pure dephasing is typically dominating. The
decoherence in polariton systems is caused primarily by the
combined effect of the polariton pair-scattering and quantum
fluctuations of the condensate density [63]. The latter are
accounted for by the noise term in Eq. (1), which originates
from the stimulated scattering of excitons from the reservoir
to the polariton condensate. From the simulations performed,
we extract the coherence time as a characteristic time of the
temporal decay of the first-order coherence function g(1) of
the condensate, shown in Fig. 4(c). For the set of parameters
used in our simulations that correspond to a conventional
GaAs-based microcavity, the superposition state retains its
coherence for a remarkably long time. Fitting the envelope
of the delay dependence of the first-order coherence func-
tion with the exponential function g(1)(τ ) = exp (−τ/τc), we
estimate the coherence time τc to be over 100 nanoseconds.
This is much beyond the single polariton lifetime (as short as
6 ps in our case) and even beyond the coherence time of the
condensate as a whole, which may reach a few nanoseconds
in optical traps [64]. With a further improvement of the mi-
crocavity samples quality and tuning the system parameters
one can expect an extension of the coherence times up to the
millisecond range [65].

Thus, estimating the single logic operation time by the
period of the oscillations on the Bloch sphere that is of the
order of 125 ps in our case, we end up with a figure of merit
of more than 103, that matches those of best superconducting
qubits [5].

This high figure of merit can be achieved in a split-ring
condensate because it is localized on a spot that is much
smaller than the coherence length in the polariton system and
because the overall phase of the condensate that is subject to a
fast decoherence is fully decoupled from the superfluid phase
current dynamics which defines the trajectory of the consid-
ered quantum system on a Bloch sphere. It is also important
that the oscillating regime is sustained by the dynamical bal-
ance between gain and losses. Therefore the energy relaxation
of the condensate as a whole does not occur.

One can see polariton split-ring condensates demonstrate
the properties of robust two-level systems and can be consid-
ered as qubits. In order to fully characterize the applicability
of polariton qubits for quantum information processing, one
should address the issues of setting the initial quantum state of
a polariton qubit, coupling between different qubits, elemen-
tary logic operations, and read-out of the information from a
set of polariton qubits. In the rest of the paper we develop
the concept of quantum information processing with use of
split-ring polariton qubits.

B. Qubit state initialization and single-qubit rotations

Setting a split-ring condensate into a given quantum state
can be achieved with use of a resonant short pump pulse
focused on a specific spot of the ring. A similar technique
has been employed for setting the phase of polariton Rabi
oscillations [66]. The state in which the qubit is excited can
be controlled by tuning the depth of the pump step, while the
overall phase of the condensate can be set with the use of a
weak coherent pumping by a resonant laser pulse [67].

A control of the nonresonant pump allows for implementa-
tion of single qubit properties. In particular, the total intensity
of the pump affects the value of the energy gap between the
basis states as is discussed in Appendix B. Tuning of the split-
ting in the two-level system is crucial for the implementation
of multiqubit operations as it allows addressing specific qubits
from the quantum register. Alternatively, the same goal can be
achieved by lifting the degeneracy between the states charac-
terized by the opposite angular momenta, which is equivalent
to the presence of the synthetic gauge field in accordance
with the energy diagram shown in Fig. 1(d). An existence of
the similar synthetic gauge field for exciton polaritons was
recently demonstrated by applying the crossed electric and
magnetic fields [32]. The static electric field polarizes excitons
while the magnetic field causes an energy shift of the mov-
ing dipole-polarized excitons due to the magneto-Stark effect
[68]. The value of the energy shift is proportional to the exci-
ton (polariton) momentum. Therefore, this scheme is capable
of synthesizing of the effective gauge potential for polaritons.
In Appendix F, we discuss the specific realization of such a
gauge field for a ring of dipole-polarized exciton polaritons
in the presence of the radial electric field and normal to the
cavity plane magnetic field. In particular, it is demonstrated
that a single-qubit dynamics is governed by the following
Hamiltonian written in the truncated two-level basis:

Ĥ = �0

2
σz + δω

2
σx, (5)

where �0 is the energy of the basis states splitting, and δω is
the bias parameter corresponding to the gauge field-induced
splitting between the circular polariton flows with opposite
momenta.

The presence of the synthetic gauge field is crucial for
implementing the quantum logic with split-ring qubits. Ma-
nipulation of the persistent current states’ splitting parameter
δω paves the way for realization of the most of the single-qubit
quantum gates. Here we demonstrate the performance of the
operations of elementary rotation of the qubit state vector, also
known as Pauli rotation gates.

As discussed in detail in Appendix F, we assume that the
gauge field responsible for this splitting is controlled by the
external voltage applied to the ring electrodes [Fig 7(a)]. Pauli
X and Y gates (in what follows denoted as Rx and Ry) require
a resonant periodic driving of the qubit. This is achievable
with the ac electric pulses, which generate a time-periodic
radial electric field polarizing excitons in the cavity plane.
The driving force applied resonantly to the qubit triggers the
periodic beats of population between the basis states |0〉 and
|1〉 that are similar to atomic Rabi oscillations. In the Bloch
sphere representation it corresponds to the rotation about the
axes lying in the equatorial plane. This important example
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FIG. 7. Two-qubit processing with split-ring polariton condensates. (a) Schematic showing a double cavity with two coaxial dipolariton
condensates. Different positions of stop bands of the two cavities allow for the selective nonresonant excitation and read-out of the qubits.
Being detuned from the point of view of the polariton energy, two qubits are matched from the point of view of their energy gaps. Using the
spatially indirect excitons formed in coupled quantum wells endows polaritons with the permanent dipole moment aligned perpendicular to the
cavity plane. A single inner (Vi) and a couple of outer (Vo1 and Vo2) electrodes generate the radial electric field, which in combination with the
perpendicular external magnetic field introduces an artificial gauge potential required for the selective tuning of the qubits’ energy gap. (b) A
three-step protocol for the implementation of the iSWAP two-qubit gate. The energy diagram illustrates the manipulations with the energy
gap of the first qubit. (c) The typical time dependence of the control electric field required for the realization of the iSWAP operation. (d) The
schematic visualization of the Bloch vector behavior during the implementation of the iSWAP gate protocol. Being out of the resonance, the
first qubit precesses about the effective magnetic field indicated be the gray arrow.

demonstrates that the radial electric field can serve as a versa-
tile tool for coherent control of the quantum two-level system
based on polariton split-ring condensate. As a drawback, a
coupling to electromagnetic field opens an additional channel
for the excited state relaxation via the radiative decay. How-
ever, in the regime of dynamic equilibrium, the upper state
population should be continuously replenished by the pump.

The Rx and Ry rotations are distinguishable by the choice
of the relative phase between the qubit and the driving force;
see Appendix G for details. Note that the ac driving of the
qubit provides a convenient tool for the coherent control be-
tween the basis states. This technique can be used for the
realization of Rabi or Ramsey interferometry experiments for
verification of the predicted long-lived coherence of split-ring
polariton qubits.

The Z-gate Rz(θ ) operation rotating the state vector by an
angle θ about the z axis can be efficiently replaced [69] with
the addition of the time delay h̄θ/�0 between two successive
single-qubit operations. Indeed, according to Hamiltonian (5)
written in the frame of reference of the unbiased qubit, at
δω = 0, the state rotates with the frequency �0/h̄ about the
polar axis of the Bloch sphere. Such an equivalent of the Pauli
Z-rotation operation should be properly addressed as a virtual
or efficient Z gate.

The Pauli rotations should be considered as the basis oper-
ations since their combinations can be used for the realization
of new gates. In Appendix G we demonstrate the synthesis of
two successive unitary rotations resulting in implementation
of the Hadamard gate, which allows for switching between
the superposition and the basis states.

C. Coupling between split-ring polariton qubits

The interaction between split-ring condensates is a key in-
gredient for the realization of a scalable material platform for
quantum computing. The efficient mechanism of the coherent
coupling between polariton condensates is their exchange by

polaritons propagating in the plane of a microcavity. This
simple coupling scheme proved efficient for pairing of nearest
neighbors in an array of polariton condensates employed in
XY simulators [20]. In order to achieve coupling of distant
condensates one can use 1D optical wave guides imprinted
lithographically in the microcavity plane [70].

Here we propose an alternative approach that allows for
fabrication of compact two-qubit gates. We demonstrate that
the coupling between split-ring qubits is possible due to the
magnetic field-mediated interaction between dipole-polarized
condensates. If polaritons are polarized in the direction nor-
mal to the cavity plane, their circular flow induces separated
counterpropagating electric currents comprising the carriers
of opposite signs. The magnetic field generated by these cur-
rents affects another condensate excited nearby, which picks
up the magnetic field in the same fashion as an inductive coil
in an electric transformer. The interaction between the qubits,
as expected, is maximized in the stacked geometry realized
with the double cavity [Fig. 7(a)] made with use of the diluted
magnetic semiconductors such as CdMnTe to increase the
magnetic susceptibility of the system.

With the truncation to the two-level basis, the Hamiltonian
of the magnetic field-mediated qubit-qubit interaction reads
(see Appendix E)

Ĥint = gσ (1)
x ⊗ σ (2)

x , (6)

where the Pauli x-operator σ (i)
x acts on ith qubit spinor ψ(i) =

(|0〉, |1〉)T ; g is the interaction strength associated with the
mutual inductance of the ring condensates of dipolar po-
laritons. Equation (6) resembles the Heisenberg Hamiltonian
describing the exchange interaction between two spins. The
interaction of this type is known for its efficiency for quantum
computing [71,72]. In particular, it is naturally suitable for the
state swapping operations as will be demonstrated in the next
subsection.

Another important advantage of the inductive coupling is
that its strength can be controlled by the external bias. This
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can be demonstrated recalling that in the diagonal basis the
state of the individual qubit precess about the z-axis according
to

Ĥ (i) = �iσ
(i)
z /2, (7)

where �i =
√

�2
0i + δω2

i is the ith qubit eigenenergy in the
presence of the bias. Therefore, in the rotating wave approxi-
mation, which implies neglecting the rapidly oscillating terms,
the interaction Hamiltonian reads

Hint = g(eiδt/h̄σ
(1)
+ ⊗ σ

(2)
− + e−iδt/h̄σ

(1)
− ⊗ σ

(2)
+ ), (8)

where σ± = σx ± iσy are the rising and the lowering operators
which switch the qubit state between two poles; δ = �1 − �2

is an energy detuning between the qubits. At resonance, �1 =
�2, the interaction (8) acts to exchange the quantum states
between the qubits. The two-qubit state then oscillates with
the frequency 2g/h̄ between the states |0〉 ⊗ |1〉 and i|1〉 ⊗ |0〉;
see Appendix H. On the other hand, out of resonance the
interaction appears to be effectively suppressed due to the time
averaging of the interaction Hamiltonian (8). This remarkable
effect can be exploited for the realization of the on-demand
switching of qubit-qubit interaction by tuning the correspond-
ing eigenfrequencies with the electric field

D. Realization of the iSWAP gate with coupled split-ring
polariton condensates

As a practically important example of application of the
inductive coupling of the split ring qubits, we propose the
protocol of implementation of the iSWAP two-qubit gate, as
Fig. 7 illustrates. The iSWAP operation is designed to per-
mute the states of the two qubits with the addition of π/2
phase difference. The protocol consists of three steps. In the
first step, two qubits are prepared in a state characterized
by the mismatch in their energy gaps. The energy mismatch
guarantees that the magnetic field-mediated interaction is sup-
pressed. Then we bring the qubits into resonance adiabatically
tuning the pump intensity or using the external electric field;
see Fig. 7(b). This triggers the recurring exchange of the states
between the qubits at the frequency 2g/h̄. The oscillations are
interrupted after the time period τ = h̄π/2g by detuning the
qubits out of resonance. This constitutes the third step of the
protocol. As a result of this gate operation, the condensates
exchange their quantum states with the acquisition of the
relative π/2 phase shift.

E. Qubit state read-out

Finally, the read-out of a quantum state of the qubit can
be done combining the time- and spatially resolved photolu-
minescence and interferometry measurements [56]. Note that
this is a “weak measurement” method that does not fully
destroy the measured quantum state, while it perturbs it to
some extent. Conceptually, in a similar way, a SQUID-based
read-out perturbs but does not fully destroy the quantum state
of a superconducting flux qubit [5,73]. The proposed optical
read-out technique is currently being used for studies of XY
simulators based on an array of exciton-polariton condensates
[20].

F. Implementation of Deutsch’s algorithm with coupled
split-ring polariton condensates

The use of an electric field for implementation of both
single- and two-qubit gate operations allows for concatenation
of these gates into the logic circuits suitable for realization of
practical quantum algorithms. As an illustrative example of
a high potentiality of the polariton split-ring qubit computa-
tional platform, we simulate here the implementation of the
quantum Deutsch’s algorithm [74].

Being one of the first oracle-based quantum protocols,
Deutsch’s algorithm was designed to demonstrate an advan-
tage of quantum computing in a task of determining whether
a coin is fair or fake. Clearly, in a classical domain, one
needs at least two queries to cope with this task. The quantum
Deutsch’s algorithm, in contract, requires one examination
step only.

The work of the algorithm can be illustrated using a set of
four functions fi, where i ∈ {1, 2, 3, 4}, which map the input
bit x (being either 0 or 1) onto the output bit y, i.e., y = fi(x) ∈
{0, 1}. The functions fi can be divided into two classes: the
constant functions

f1(x) = 0 and f2(x) = 1, (9a)

whose output does not depend on the input state, and the
balanced functions

f3(x) = x, and f4(x) = NOT(x), (9b)

where NOT is the classical bit-flip operation. It is assumed
that one gets some function fi with unknown uniformly
distributed random i ∈ {1, 2, 3, 4} as a black box. For clas-
sical bits, it is possible to characterize the given function
as constant or balanced by measuring its output twice: tack-
ing consequently 0 and 1 states as the input. The quantum
Deutsch’s algorithm copes with this problem within only one
query. It represents each of the functions fi by the correspond-
ing two-qubit quantum gate Ui (see Table I in Appendix I),
which plays the role of an oracle. Incorporating these gates
into the logical circuit shown in Fig. 8(a), one can determine
whether the function is balanced or constant by only a single
call of the oracle. The answer to the problem appears to be
encoded in the output state of the first qubit: The qubit is in
the state |1〉 for balanced functions and in the state |0〉 in the
opposite case.

The gates Ui required for realization of Deutsch’s algorithm
are represented by the identity and the bit-flip operations for
the constant functions (9a) and by the controlled NOT-gate
and the zero-controlled NOT-gate for balanced ones (9b). All
these functions can be synthesized from the single-qubit Pauli
rotations and the iSWAP gates; see Appendixes H and I for
the gate identities.

For the practical realization of Deutsch’s algorithm with
the split-ring condensates one needs to prepare two polariton
qubits designed with the mismatch of their energy gaps, say,
�2 > �1. The iSWAP-gate has to be implemented by apply-
ing the DC voltage pulse on the first electrode (see Fig. 7),
which governs the bias of the qubit no. 1. The pulse amplitude
is chosen such as to bring the first qubit into the resonance

with the second, max[δωiSWAP] =
√

�2
2 − �2

1. The Hadamard
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FIG. 8. Implementation of Deutsch’s algorithm. (a) The logical
circuit. H denotes the Hadamard transform. The output state of the
first qubit is measured to detect whether the coin (function) is fair
(balanced) or fake (constant). (b) The total fidelity of the algorithm
simulated at different levels of the control pulse amplitude δω0 =
max[δω1(t)] = max[δω2(t)]. Four realizations of the algorithm cor-
responding to the oracles U1, U2, U3, U4 are indicated by black,
orange, blue, and green, respectively. An example of the electric
pulse sequence required for implementation of the U3 gate is illus-
trated in Appendix I.

gates are realized with two AC pulses as is described in Ap-
pendix G.

Figure 8 illustrates the total fidelity of the algorithm
measured as F = |〈�|out,i UDi|�〉in|2, where |�〉 is a four-
component vector of the two-qubit system with |�〉in = |01〉
being the input state and |�〉out,i being the simulated output
of the total algorithm realized with the gate Ui; UDi denote the
transformation matrices of the ideal circuit with the gate Ui.
For the details of simulations see Appendix I. The main factor
reducing the algorithm fidelity is the magnitude of the control
pulse parametrized by the bias amplitude δω0 = max[δω(t )]
in Fig. 8(b). Indeed, the accuracy of the Pauli rotation opera-
tions (specifically, Rz) is limited by the validity of the rotating
wave approximation, which typically assumes that the driving
force is weak. For simple realizations such as those involving
constant gates U1 and U2, the fidelity precesses close to F = 1
as the ratio δω0/�2 grows. The sequence of local rotations
applied during the implementation of the more complicated
realization of the quantum algorithm results in the frequent
beating of the total fidelity; see the curves describing U3 and
U4 quantum gates in Fig. 8. Notably, the average error always
remains within a few percent. It justifies a high potential of
the developed microcavity platform for quantum computing.

IV. CONCLUSIONS

We have demonstrated that a coherent many-body quantum
system represented by a bosonic condensate of exciton-
polaritons placed in a split-ring geometry sustains stable and
long-living oscillations between two circular current states.
The polariton system qualitatively reproduces the behavior of

a superconducting flux qubit. In a remarkable similarity to
the flux qubit, in the considered split-ring polariton conden-
sate a two-level quantum system is formed by superposition
states of clockwise and anticlockwise circular currents. The
size of the system is much less than the coherence length
of a polariton condensate, which is why superfluid polariton
currents are well preserved. This ensures a high figure of
merit for qubits based on split-ring polariton condensates. We
propose a specific approach for implementation of single- and
two-qubit logic operations which implies application of the
external electric field for the coherent control of the qubit
state. Namely, we design an iSWAP two-qubit gate, which
is known for its capability of producing the entangling gates
required for a universal quantum computing. The present anal-
ysis paves the way to the realization of a new semiconductor
platform for quantum information processing. The evident
advantages of the considered quantum system are in its high
scalability, high operation temperature, ultrafast logic opera-
tions, and potential integrability with classical semiconductor
based nano-electronic devices.
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APPENDIX A: MAPPING THE DYNAMICS ON THE
BLOCH SPHERE AND CALCULATION OF THE MEAN

ANGULAR MOMENTUM

For a qubit based on a two-level system formed by the
states |0〉 and |1〉, any state |ψ〉 on the surface of the Bloch
sphere can be represented as a linear combination of two
basis states: |ψ〉 = α|0〉 + β|1〉, where the normalization con-
dition |α|2 + |β|2 = 1 is implied. The circular current states
can be represented as | �〉 = e−i π

4 (|0〉 + i|1〉)/
√

2, | �〉 =
ei π

4 (|0〉 − i|1〉)/
√

2. For simplicity, we associate |m 	 ±0.4〉
[points corresponding to Figs. 3(b) and 3(d)] with | �〉 and
| �〉 and choose these states as the basis for our numerical
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fitting procedure. In this way, we obtain

|ψ〉 = α0|m 	 0.4〉 + β0|m 	 −0.4〉. (A1)

The quantum state visited by the condensate can be char-
acterized by a pseudo-spin vector Ŝ = Sx êx + Syêy + Szêz

whose components are defined as Sx = 1
2 (αβ∗ + α∗β ), Sy =

i
2 (α∗β − αβ∗), Sz = 1

2 (|β|2 − |α|2). The mapping of the con-
densate dynamics to the Bloch sphere is realized using the
method of maximum inherit optimization.

We note that the current direction at the position of the slot
is different for the inner part (r < r0) and the outer part (r >

r0) of the polariton condensate, as shown in the right panels
of Figs. 3(b)–3(d) (r0 = 8 μm). Figure 3(a) shows the angular
momentum for the outer part of the polariton condensate that
manifests a pronounced superfluid phase current.

APPENDIX B: ENGINEERING ENERGY GAP
WITH THE C-SHAPE OPTICAL PUMP

Although the C-shape pump shown in Fig. 2 has a compli-
cated profile, it is the radial slot which plays the most essential
role. It governs the energy splitting of the basis states, which
is a key characteristic of the qubit. In this section we consider
how the incoherent pump can be used to control the value
of the energy gap. Properties of the basis states |0〉 and |1〉
are analyzed with the simplified 1D equivalent of the 2D
model (1). This assumption is relevant to the limit of a thin
ring with a large mean radius R0 [55]. The transformation
to the 1D model is performed with a substitution ψ (r, t ) =
�(ρ)ψ̄ (φ, t ) and nR(r, t ) = NR(ρ)n̄R(φ, t ), where �(ρ) and
NR(ρ) account for the radial distribution of the condensate
and the reservoir, respectively, ρ and φ are polar coordinates.
After integrating out the radial dependence and neglecting the
stochastic term, one reduces Eqs. (1) to the two coupled 1D
ordinary differential equations for ψ̄ (φ, t ) and n̄R(φ, t ) with
∇2 → R−2

0 ∂φφ .
Then tacking ∂ n̄R/∂t = 0 and ψ̄ (φ, t ) = ψ̄0(φ) exp(−iμt )

we solve the obtained stationary problem for ψ̄0(φ) and n̄R(φ)
iteratively using the Newton-Raphson algorithm. This method
yields the azimuthal dependence of the wave function and
the corresponding eigenenergy h̄μ simultaneously. The typ-
ical shapes of the basis state wave functions are displayed
in Figs. 2(c) and 2(d). Note that the solutions predicted with
the model of the reduced dimensionality demonstrate a good
agreement with those shown in Fig. 6, which were obtained
from the dynamical simulations performed using the full 2D
model. It justifies the validity of the used approach.

The dependencies of the energy splitting between the states
|0〉 and |1〉 on the pump parameters are shown in Fig. 9. We
focus on the impact of the slot width wd and the top-hat region
amplitude P0. For simplicity, we do not account for the pump
step, working with the pump profile illustrated in Fig. 2(b).
Note that the gap �0 demonstrates a nonmonotonic behavior
as a function of the total pump power; see Fig. 9(a). Although
the particular �0(P)-behavior essentially depends on the slot
width, the gap typically decreases close to the condensation
threshold Pth and saturates for the pump power about sev-
eral times the threshold. The complicated dependence of the
energy gap on the pump intensity indicates a significant role
of the polariton-polariton interactions, which are responsible

FIG. 9. Properties of the energy gap �0 between the qubit basis
states measured in the units of energy of the circular current with
a unit vorticity E1 = h̄2/2m∗R2

0. The mean radius of the pump ring
is R0 = 15 μm. Other parameters necessary for calculations are
inherited from the full model (1).

for the dependence of the energy of the condensate on its
population. The variation of the slot width allows for a fine
tuning of the energy gap as is demonstrated in Fig. 9(b). For
the considered parameters, the optimal value of the gap is
achieved with the slot width being about a few micrometers
and the pump power being not too far above the threshold.

Since the pump power strongly affects the energy splitting,
the pumping source should possess a high degree of the power
stability. The intensity noise causes stochastic fluctuations of
the qubit energy which imply effective dephasing and lead
to the reduction of the coherence time. Therefore, the pump
profile has to be designed tacking into account minimization
of the slope of the �0(P)-dependence. On the other hand, a
high sensitivity of the splitting upon the pump properties can
be employed for tuning the qubit energy dynamically during
realization of the single-qubit quantum operations. However,
in this case the manipulation speed appears to be limited
by the response time of a spatial light modulator used for
the pump shape sculpturing. An alternative approach which
implies the use of the synthetic gauge field, as discussed in
Appendix F, appears to be suitable for manipulating the qubit
basis states coherently. As well, this method is characterized
by a fast response, which is governed by the timescale of the
exciton dipole-polarization formation. Therefore, it is more
promising for quantum computing applications.

APPENDIX C: HALF-QUANTUM CURRENTS TRAPPED
IN C-SHAPE POTENTIALS

Circular superfluid currents with fractional angular mo-
menta demonstrating persistent coherent oscillations can also
be found in the case of a condensate confined to a C-shape
external potential created, e.g., by etching of a planar micro-
cavity sample. In order to describe the system in this case
we introduce the additional stationary potential V (r); see
Eq. (1). We consider the nonresonant excitation of the system
by a broad pump as illustrated in Fig. 10. The considered
potential contains a narrow barrier, which is different from
the optically induced potential distribution shown in Fig. 2.
In the main text, the slot in the pump-ring corresponds to
a potential well for the polariton condensate. Under the ex-
citation by a nonresonant broad pump with a relatively low
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FIG. 10. Circular superfluid currents confined to a narrow C-
shape external potential. (a) Pump profile with a flat top. (b) Narrow
C-shape potential well with the potential depth of 1 meV. (c) Time
evolution of the angular momentum of the condensate for different
pump intensities: P0 = 1.3 × Pth (blue line), P0 = 3.3 × Pth (orange
line), and P0 = 6.6 × Pth (green line). Density (middle row) and
phase (bottom row) distributions of the condensate at different pump
intensities: (d), (e) P0 = 1.3 × Pth, (f) P0 = 3.3 × Pth, and (g) P0 =
6.6 × Pth. Panels (d) and (e) correspond to the blue points in (c). Pth

is the condensation threshold. Here the parameters are γc = 0.3 ps−1,
m∗ = 2 × 10−5me, gc = 3 × 10−3 meV μm2.

intensity (P0 = 1.3 × Pth), an oscillating state with its angular
momentum varying between m 	 ±0.5 is obtained, as shown
in Figs. 10(c)–10(e).

The tunneling of polaritons through the narrow barrier
mimics the Josephson dynamics. It is important to underline
that Josephson oscillations between two condensates observed
in Ref. [75] decay on the timescale of the coherence time
of polariton condensates because of the decoherence between
two condensates. In contrast, in the ring geometry we work
with a single condensate. The fluctuations of its overall phase
do not affect the phase difference between its parts situated to
the right and left sides of the potential barrier, which is why
the oscillations persist on a much longer timescale in our case.
We estimate that the decoherence time in our system scales
exponentially with the ratio of the coherence length to the
diameter of the ring condensate. It may exceed several tens
of nanoseconds in realistic GaAs-based microcavities.

As the pump intensity increases, the system achieves a
steady-state regime where the normalized angular momentum
is fractional, as shown in Fig. 10(f). Note that this state is
different from those in Figs. 3(b) and 3(d), since there is no
clear π phase jump at the potential barrier here. Making the
pump intensity much stronger, one can see clearly the tunnel-
ing of polaritons under the potential barrier; see Fig. 10(g).
The tunneling ensures a smooth phase variation in this case,
so that the angular momentum of the condensate approaches
m = 1; see Fig. 10(c).

FIG. 11. Circular superfluid currents confined to a wide C-shape
external potential. (a) Time evolution of the angular momentum for
different pump intensities: P0 = 2 × Pth (blue) and P0 = 2.6 × Pth

(orange). The inset shows the broad C-shape potential well of the
depth of 1 meV. Density (right column) and phase (left column)
distributions of condensates at different pump intensities: (b) P0 =
2 × Pth and (c) P0 = 2.6 × Pth.

We note that the shape of the external potential strongly
influences the spatial distribution of the polariton density in
the condensate. If the potential width is increased [inset to
Fig. 11(a)], the same broad pump as in Fig. 10(a) can create
a C-shape solution with the angular momentum m 	 ±0.5
[Fig. 11(a)], and a clear π phase jump [43] is observed at the
potential barrier as shown in Fig. 11(b). This solution is very
similar to that of Fig. 3. As in the previous case, while the
pump intensity increases, the phase difference between both
sides of the potential barrier changes from π to 0, leading
to the formation of the current state with an integer angular
momentum; see Figs. 11(a) and 11(c).

APPENDIX D: SPECTRAL ANALYSIS OF THE
OSCILLATIONS IN A SPLIT-RING POLARITON

CONDENSATE

The strong evidence of the two-level nature of the os-
cillating split-ring polariton condensate is provided by its
energy spectrum. The Fourier spectrum of the dynam-
ics of the condensate wave function (see Fig. 3) S(ω) =
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FIG. 12. The energy spectrum of the split-ring condensate in the
oscillating regime corresponding to Fig. 3.

∫∫
ψ (t, r)e−iωt dt dr is shown in Fig. 12. Note that besides

the pair of peaks corresponding to the eigenstates of the sys-
tem |0〉 and |1〉 shown in Fig. 6, the comb of the side-band
peaks of attenuated intensities also appears in agreement with
recent predictions [76,77]. These satellites result from the
nonlinear processes in the driven-dissipative polariton system
and are indicative of the deviation of the considered split-ring
condensate from an ideal two-level linear quantum system.
The intensities of the side peaks increase as the pump power
increases and the interactions between counter-rotating polari-
ton currents become important.

APPENDIX E: MAGNETIC FIELD-ASSISTED COUPLING
BETWEEN CIRCULAR POLARITON CURRENTS

Polaritons are composed of the electrically neutral excitons
and photons. Therefore, in the first-order approximation over
the ratio on the exciton Bohr radius to the magnetic length
their motion is typically uncoupled from the magnetic field in
the sense that moving polaritons experience the same energy
shift from the magnetic field as the polaritons at rest. In par-
ticular, it is true for the polaritons formed by the ground-state
excitons, which possess no electric dipole moment. However,
it is not correct for those polaritons, which appear due to the
strong coupling between the light and the dipole-polarized
excitons. The stationary dipole moment is characteristic for
excitons excited, e.g., in coupled asymmetric quantum wells,
where the electron and the hole are localized in spatially
separated layers. This particular case is illustrated in Fig. 7.
Also, the exciton dipole moment can be induced and, what
is more important, controlled by applying an external electric
field. The latter case has a crucial importance for tuning the
qubit energy gap, as we show in the next section.

Now let us consider a ring-shaped condensate of dipole-
polarized polaritons. In what follows we address the prop-
erties of the excitonic component only and neglect the
spin-dependent effects. However, since the light-matter inter-
action in the strong coupling regime implies conservation of
momentum, the exciton and the polariton momenta are identi-
cal. Therefore, the coupling of the dipolar exciton motion with
the magnetic field is naturally imprinted on polariton prop-
erties with the scaling factor given by the squared excitonic
Hopfield coefficient Cx.

According to Ref. [78] the motion of the exciton center
of mass is coupled to its internal structure in the presence of

the external magnetic field B. This coupling is reflected in the
appearance of the extra term in the excitonic Hamiltonian:

Ĥex ∝ e[d × B]

Mex
(−ih̄∇), (E1)

where e is the elementary charge, and Mex is the exciton
effective mass associated with its motion as a whole particle.
The bold symbols are used for the vectorial variables. In
particular, h̄k = −ih̄∇ is the exciton momentum, and ed is
the electric dipole moment. The Hamiltonian (E1) implies that
the coupling is maximized provided that the electric dipole,
magnetic field, and exciton momentum are mutually orthogo-
nal. Therefore, for the polaritons polarized perpendicularly to
the microcavity plane, d = dz, and rotating about the z axis,
k = kϕ , it is the radial component Bρ of the magnetic field that
affects the polariton motion. Here z, ρ, and ϕ are the cylindri-
cal axes. In this particular configuration the radial magnetic
field modifies the exciton dispersion shifting its minimum out
of the zero-momentum state.

The effect, which is in some sense reciprocal to the one
described above, is the generation of the magnetic field by
a ring of rotating dipolar exciton polaritons. Indeed, the
motion of the exciton is equivalent to the two counterpropa-
gating currents of the oppositely charged electrons and holes.
Since the carriers are separated in space, the magnetic fields
they generate do not compensate each other. The resultant
field is maximized in the interlayer region where the radial
component Bρ is the dominating one. For the magnetic field
generated by the polariton fluid with the unit vorticity (whose
winding number is one), its out-of-plane radial component is

Bρ = μ0eh̄C2
x npol

2Mexρ2
d, (E2)

where npol is the polariton density, C2
x is the squared exciton

Hopfield coefficient that quantifies a contribution from the
excitonic fraction. Note that the expression (E2) is valid in
the region where ρ  h  d , where h is the distance from
the quantum well plane. The more general expression can be
found in Ref. [79].

According to the previous discussion, the field (E2) gener-
ates the polariton current in the coaxial polariton condensate
excited in the adjacent microcavity located at the distance h.
This effect can be taken into account in the driven-dissipative
Gross-Pitaevskii equation (1). The Hamiltonian (E1) yields
additional k-dependent terms in the relevant Schrödinger
equation for the exciton wave function. They can be accounted
for in Eq. (1) using the coupled oscillator model. Here we omit
the rigorous derivation of the relevant expression leaving it for
a more detailed study (see also Ref. [32]).

Also, for the sake of simplicity we consider the limiting
case of the homogeneous polariton density disregarding the
dark soliton perturbations in the vicinity of the defect. With
this approximation (1) for the wave function of the first con-
densate � (1) acquires an additional term which describes a
coupling with the second condensate associated with the wave
function � (2):

ih̄
∂� (1)

∂t
∝ μ0e2d2h̄

2M2
exR3

0

C2
x1C

2
x2n(2)

pol L̂z�
(1), (E3)
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where we used a nonstochastic form of Eq. (1) and skipped
all terms but one which arises from the Hamiltonian (E1)
with the use of (E2). The values Cx1 and Cx2 are assigned to
the excitonic Hopfield coefficients characterizing the first and
the second condensates, correspondingly. In Eq. (E3) we de-
fined the angular momentum operator as L̂z = −ih̄∂/∂ϕ. This
assumption is valid for the quasi-1D case, i.e., for the conden-
sate localized on a thin ring with the radius R0. Then, defining
the average angular momentum per unit area of the sec-
ond condensate as L(2)

z = S−1
∫

S (� (2) )∗L̂z�
(2)dr = h̄mn(2)

pol,
where m is a mean angular momentum defined in the main
text, we obtain

ih̄
∂� (1)

∂t
∝ gL(2)

z L̂z�
(1), (E4)

where g = μ0e2d2

2M2
exR3

0
C2

x1C
2
x2.

Associating the condensate angular momentum with the x
component of the pseudospin state ψ written in the basis of
the nonrotating states |0〉 and |1〉, we can write the truncated
Hamiltonian which is capable of describing the evolution of
the coupled split-ring qubits:

Ĥqq =
∑
i=1,2

�iσ
(i)
z /2 + gσ (1)

x ⊗ σ (2)
x , (E5)

where �i defines the energy gap between the basis states of
the ith qubit and the ⊗ sign emphasizes the tensor product.
Note that the coupling strength g can be associated with the
effective mutual inductance using the analogy with the super-
conducting flux qubit systems.

APPENDIX F: TUNING THE ENERGY GAP
WITH THE ARTIFICIAL GAUGE FIELD

Implementation of the most of the two-qubit quantum gates
implies a sequence of operations with the individual qubits.
In particular, for the realization of the iSWAP gate protocol
proposed in the main text, one needs a tool for tuning the
energy gap between the qubit basis states. In the case of su-
perconducting flux qubits, this is easily achievable by varying
the external magnetic flux [see Fig. 1(c)]. For the exciton
polaritons such a strategy is also possible. However, it requires
the synthetic gauge field which would act on the electrically
neutral polaritons. As was demonstrated in Ref. [32], such an
artificial field arises from the coupling between the motion of
a polarized exciton and the magnetic field given by Eq. (E1).
Here we explain how this approach can be used for tuning of
the energy gaps in the split-ring polariton condensates.

We consider the setup shown in Fig. 7(a). An external elec-
tric field E has a radial component which induces the exciton
polarization characterized by the dipole moment dρ = αEρ ,
where α is the exciton polarizability. The external magnetic
field is uniform, and it is directed perpendicularly to the mi-
crocavity plane, B = Bz. This configuration guarantees the
mutual orthogonality of the magnetic field, the dipole mo-
ment, and the azimuthal polariton momentum h̄kϕ . In this
case, the artificial gauge potential A, which defines the pulse
rescaling rule p̂ → p̂ − A, reads

A = Aϕ = e[dρ × Bz]C
2
x m∗/Mex, (F1)

where m∗ is the effective mass of polaritons on the lower
dispersion branch. In the uniform polariton density approxi-

mation that was assumed in the previous section and in the
defect-free case the splitting between the states whose wind-
ing numbers differ by 1 is

δω(Eρ ) = 2eh̄C2
x Bz

R0Mex
dρ (Eρ ). (F2)

Equation (F2) explicitly shows the electric field dependence
of the energy bias parameter δω.

Note that the action of the effective field is equivalent to
the condensate rotation about the z-axis. It lifts the energy de-
generacy between the clockwise and anticlockwise currents.
Therefore, in the truncated basis this rotation is equivalent
to the appearance of the additional term in the single-qubit
Hamiltonian:

Ĥq = �0

2
σz + δω

2
σx, (F3)

where �0 is the minimal value of splitting; see Fig. 7(b).
Diagonalization of this Hamiltonian yields the energy gap
between the qubit eigenstates:

� =
√

�2
0 + δω2. (F4)

Note that at δω �= 0 the qubit state precesses about the axis
tilted with respect to the main axis of the Bloch sphere; see
Fig. 7(d).

Expressions (F2) and (F4) quantify the relation between
the qubit splitting and the electric field paving the way for the
realization of single- and multi-qubit operations with split-
ring polariton condensates controlled by the time-dependent
external bias. The protocols for their implementation are de-
scribed in detail in Appendixes G and H.

APPENDIX G: SINGLE-QUBIT OPERATIONS

Let us assume that the split-ring qubit is affected by the AC
pulse of the radial electric field with the carrier frequency ωd .
It periodically perturbs the persistent currents states whose
energies are biased according to

δω(t ) = s(t ) cos(ωdt + φ), (G1)

where s(t ) accounts for the pulse envelope and φ stands for
the relative phase between the driving signal and the qubit.

The effect of the driving can be clearly seen in the
frame rotating with the qubit eigenfrequency. To transfer
to this frame, we perform the unitary transformation UR =
exp (−i�σzt/2h̄), which transforms the Hamiltonian (5) to
Ĥrf = URĤU †

R + iU̇RU †
R . After dropping the fast rotating

terms we are left with the following single-qubit Hamiltonian
written in the rotating wave approximation (RWA):

ĤRWA = s(t )

2

(
0 ei(ωd −�0/h̄)t+iφ

e−i(ωd −�0/h̄)t−iφ 0

)

= s(t )

2
{cos [(ωd − �0/h̄)t + φ]σx

− sin [(ωd − �0/h̄)t + φ]σy}. (G2)

At the resonance ωd = �0/h̄, the Rx- and Ry-rotations can be
distinguished by the appropriate choice of the relative phase φ.
In particular, at φ = 0 the qubit rotates about the x-axis, while
an out-of-phase pulse φ = π/2 corresponds to the rotation
about the y-axis. The rotation angle θ is determined by the
pulse envelope: θ = h̄−1

∫
s(t ) dt .
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FIG. 13. (a) Rabi oscillations of the qubit basis states populations
quantified as ρ11 = |〈1|ψ〉|2 and ρ00 = |〈0|ψ〉|2. (b) The relevant
dynamics on the Bloch sphere. (c) Realization of the Hadamard
gate composed of two successive Pauli rotations driven by the AC
electric pulses. The envelope functions are taken to be rectangular.
(d) Dynamics of the Bloch vector. The initial state taken as |ψ〉in =
(|0〉 + eiπ/3|1〉)/

√
2 is shown with the yellow arrow, while the output

state |ψ〉in corresponds to the red arrow.

It is instructive to consider a limiting case of a constant
amplitude s(t ) = s0 which corresponds to the Rabi problem of
a two-level system excited with the resonant periodic driving.
Tacking φ = 0 leaves us with ĤRWA = s0σx/2. Thus, the qubit
excited in the state |1〉 starts a coherent recurrent transfer of
populations between the upper and lower energy levels with
the frequency s0/h̄ once the external electric field is applied.
In the Bloch sphere representation, it corresponds to the peri-
odic rotation of the qubit state about the x-axis; see Figs. 13(a)
and 13(b).

In Sec. III B the Z-gate was shown to be equivalent
to the introduction of time delay between two successive
single-qubit operations. However, in practice, especially with
many-qubit protocols, this approach fails when one needs to
apply a local Rz-gate to the given qubit remaining the other
unaffected. The time interval between the local gates adds a
phase to all the qubits in the register, since the time is running
equally for all of them. The alternative approach is to shift
the phase of the given qubit with respect to the others by
manipulation of the energy gap of the target qubit. At finite
δω the precession axis of the qubit state tilts towards the
x axis while the frequency of precession increases to �/h̄
according to (F4). The qubit vector precesses faster and ac-
cumulates an additional phase shift. Therefore, applying the
DC electric pulse on the given qubit, one shifts its relative

phase on θ (t ) = h̄−1
∫ t ′

0+t
t ′
0

(
√

�2
0 + δω(t ′)2 − �0) dt ′, which

is equivalent to the additional z-rotation of the qubit state with
respect to the unbiased case.

As was mentioned in the main part of the text, the Pauli ro-
tations can be used for engineering other gates. The practically
important example of a gate synthesis is a Hadamard opera-
tion, which performs a π rotation about the axis diagonal in
the x-z-plane. In particular, it translates the superposition state

FIG. 14. Realization of the CNOT-gate with two iSWAPs and
several local gates.

(|0〉 + |1〉)/
√

2 to the pole of the Bloch sphere. The Hadamard
gate can be generated by the sequence of two unitary rotations,
namely, the π -rotation about the x-axis followed by the π/2
rotation about the y-axis.

The scenario of implementation of the Hadamard opera-
tion with the approach proposed in this section is shown in
Figs. 13(c) and 13(d). The shapes of electric pulses responsi-
ble for Rx and Ry rotations are shown on the left [Fig. 13(c)].
The Bloch vector dynamics is demonstrated in Fig. 13(d) with
the yellow line on the sphere surface. The weak oscillations of
the qubit trajectory appear due to the presence of the fast ro-
tating terms in the total Hamiltonian (5), which were omitted
in the rotating wave approximation (G2). The impact of this
terms grows as the electric field amplitude increases.

APPENDIX H: THE iSWAP GATE

The iSWAP gate acts to swap the states between the qubits
with the addition of π/2 phase difference. Typically, this gate
requires the presence of the XY qubit-qubit interactions [72].
Fortunately, this is the kind of coupling which is realized in the
double-cavity system shown in Fig. 7; see Hamiltonian (E5).
Indeed, in the rotating wave approximation, the evolution
operator corresponding to the coupling term reads [80]

Uint = e−i g
2h̄ (σxσx+σyσy )

=

⎛
⎜⎜⎝

1 0 0 0
0 cos

( g
h̄ t

) −i sin
( g

h̄ t
)

0
0 −i sin

( g
h̄ t

)
cos

( g
h̄ t

)
0

0 0 0 1

⎞
⎟⎟⎠, (H1)

where we assumed that the qubits are in resonance, �1 = �2.
As is evident from (H1), at t = h̄π/2g the evolution matrix is
identical to the iSWAP operation, namely:

UiSWAP =

⎛
⎜⎝

1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1

⎞
⎟⎠. (H2)

Another important example of the two-qubit operation
is a CNOT-gate, which flips the state of the target qubit
conditioned on the control qubit being in state |1〉, and a
zero-controlled NOT-gate (Z-CNOT), which does the same
provided that the control qubit is |0〉. Both these operations
can be synthesized upon using several single- and double
qubit gates; see Fig. 14 and Table I. We are particularly in-
terested in these gates as they are required for realization of
Deutsch’s algorithm discussed in the following section.
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TABLE I. Definitions of the Oracles for the quantum Deutsch’s
algorithm. Here we use the following notation for the bit-flip opera-
tion X = Rx (π ).

Constant functions Balanced functions
U Logic gate Circuit U Logic gate Circuit
U1 Identity U3 CNOT •

U2 Bit-flip U4 Z-CNOT X • X

APPENDIX I: IMPLEMENTATION
OF DEUTSCH’S ALGORITHM

Deutsch’s algorithm is realized with the set of four two-
qubit logic functions Ui, whose identities are summarized in
Table I. The gates corresponding to the constant functions
are displayed in the left column. These include the identity
gate U1 = 1 ⊗ 1, which performs no operations between the
preprocessing and the postprocessing Hadamard transforms of
Deutsch’s algorithm; see Fig. 8(a)] and the second qubit flip
gate U2 = 1 ⊗ Rx(π ). The balanced functions U3 and U4 are
encoded by the CNOT- and the zero-controlled NOT gates,
respectively. The circuit shown in Fig. 8(a) operates with the
input state |�〉 = (0, 1, 0, 0)T , i.e., the first qubit in the state
|0〉 and the second qubit in the state |1〉. The algorithm works
correctly if the output state of the first qubit is |0〉 for the gates
U1 and U2, and |1〉 for the balanced gates U3 and U4.

For simulation of the Deutsch’s algorithm implementa-
tion, we solve the following equation of motion for the
four-component complex two-qubit state column-vector |�〉,
whose elements are the amplitudes of the states |00〉, |01〉,
|10〉, and |11〉:

i∂t |�〉 = Ĥ (t )|�〉, (I1)

where Ĥ (t ) is given by Eqs. (E5) and (F4). The sequence
of logic gates is encoded in the time dependence of the
control parameters δω1(t ) and δω2(t ), which are regulated
by means of the external voltage; see Fig. 15. We assume

FIG. 15. The control pulse sequence which encodes a single run
of the quantum Deutsch’s algortihm with the oracle U3. The blue
lines show the pulses applied to the first qubit (QB1) while the
orange lines correspond to the pulses governing the second qubit
state (QB2). The Hadamard gates H as well as the Rx operations are
implemented by the AC pulses, whose carrier frequency is too high
to be resolved at the given temporal scale. For clarification, the signal
encoding the last Hadamard operation is zoomed in the inset; see also
Fig. 13. The gap of the second qubit �2 is used as a normalization
parameter for both axis grids.

that the amplitudes of the ac and dc electric pulses used for
the implementation of local Pauli rotations are equal. These
values correspond to the bias δω0, which is considered as the
governing parameter for testing the validity of the RWA in
Fig. 8(b). The iSWAP operations are realized by the square
pulses which bring the qubits to the avoided crossing; see
Fig. 7. The amplitude of these pulses is determined by the de-

tuning, δω0 =
√

�2
2 − �2

1. In our simulations we considered
the qubits detuned such as �1/�2 = 0.9.

The strongest reduction of the overall algorithm fidelity is
due to the limited validity of the rotating wave approximation
assumed for the local Pauli gates. Since the gate operation
duration is proportional to the electric field amplitude, the use
of the weak electric field is undesirable. It makes longer the
total run time of the algorithm, which is fundamentally limited
from above by the finite coherence time.
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