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Periodic quenches across the Berezinskii-Kosterlitz-Thouless phase transition
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The quenched dynamics of an ultracold homogeneous atomic two-dimensional Bose gas subjected to periodic
quenches across the Berezinskii-Kosterlitz-Thouless (BKT) phase transition are discussed. Specifically, we
address the effect of periodic cycling of the effective atomic interaction strength between a thermal disordered
state above and a highly ordered state below the critical BKT interaction strength, by means of numerical
simulations of the stochastic projected Gross-Pitaevskii equation. Probing the emerging dynamics as a func-
tion of the frequency of sinusoidal driving from low to high frequencies reveals diverse dynamical features,
including phase-lagged quasiadiabatic reversible condensate formation, resonant excitation consistent with an
intrinsic system relaxation timescale, and the gradual establishment of dynamically recurring or time-averaged
nonequilibrium states with enhanced coherence, which are neither condensed nor thermal. Our study paves the
way for experimental observation of such driven nonequilibrium ultracold superfluid states.

DOLI: 10.1103/PhysRevResearch.3.013097

I. INTRODUCTION

The quench dynamics of a quantum system across a phase
transition are an exciting subject of active ongoing research
[1-5]. Controlled studies have been performed in a plethora
of diverse systems, including spin systems, superconductors,
superfluids, ultracold atoms and exciton-polariton systems
[6-19]. Most studies to date have focused on a simplified
scenario, whereby the system is driven once across the phase
transition by a time-dependent external control parameter
such as chemical potential, temperature, or pumping laser
[18,20-27]. The particular case of linear quenching is known
to lead to the established Kibble-Zurek scaling law, which
quantifies the dependence of correlation functions and spon-
taneous emergence of defects on the quench rate. Such a
model, first proposed in the cosmological context [28] and
subsequently carried through to the condensed matter realm
[29], has since been extensively studied numerically [4,6—
9,18,22-25,30-34], and in a broad range of experimental set-
tings [10-16], with experimental studies in ultracold atoms
addressing the effect across different dimensionalities and
geometries [17,18,23,24,35-42].

The related question of how the presence of a sinu-
soidally modulated driving across a phase transition may
affect the system dynamics arises naturally. Such a peri-
odic cycling was experimentally investigated in the context
of three-dimensional (3D) harmonically trapped ultracold
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atoms, where a time-dependent dimple microtrap was used
to controllably induce a periodic phase space modulation,
leading to a reversible cycling across the thermal and the
Bose-Einstein condensation phase [43]. Condensate forma-
tion was found to lag behind the applied constant-frequency
modulation of the laser power. Such findings were sub-
sequently reproduced qualitatively by means of numerical
simulations based on the stochastic Gross-Pitaevskii equa-
tion [44]. Motivated by the above pioneering works [43,44],
and by our recent studies of instantaneously quenched two-
dimensional quantum gases [26,45], here we address the
corresponding periodically driven phase transition crossing
in the context of (quasi-) two-dimensional homogeneous ul-
tracold atomic Bose gases. Two-dimensional systems are
interesting in their own right, due to the different na-
ture of the underlying Berezinskii-Kosterlitz-Thouless (BKT)
phase transition [46,47], associated with binding-unbinding of
vortex-antivortex pairs, previously observed in diverse physi-
cal contexts [48-51]. Such properties have also been studied
in ultracold atomic systems both experimentally [38,52-60],
and theoretically [26,61-75] with the transversal (typically
harmonic) confinement in the other direction offering a way to
control the effective two-dimensional interaction experienced
between the atoms.

In this work, we perform a detailed quantitative analysis of
the role of driving frequency on the cyclic phase transition
crossing, focusing on the particular case of a periodically
driven 2D homogeneous ultracold atomic Bose gas. This
is facilitated by a periodically modulated-in-time interaction
strength, between an initial incoherent state close to, but
above, the BKT phase transition, and a state with lower in-
teraction strength below the BKT phase transition exhibiting
a high degree of coherence. Our numerical study, performed at
fixed system temperature within the grand canonical picture,
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focusses in parallel on the effect of external driving on density,
vortex number, momentum spectrum, and coherence. Our pa-
rameter choice is based on accessible experimental regimes,
building on our earlier work based on an instantaneous in-
teraction quench from above to below the BKT threshold,
which focused on equilibrium properties and late-time phase-
ordering dynamics [26].

Deep in the superfluid regime, where the system is highly
condensed, modulations of the interaction strength have been
studied both experimentally and theoretically, in different
contexts. Periodic modulations of the interaction strength be-
tween two values in the superfluid regime—conducted within
the context of the Gross-Pitaevskii equation, for which the
system is assumed to be coherent, and often termed “Feshbach
resonance management” [76]—have demonstrated the emer-
gence of Faraday patterns [77-79] and have been used to study
aspects of condensate stability and soliton dynamics [80,81].
Condensate experiments based on a sudden interaction modu-
lation found an interesting analogy with Sakharov oscillations
in the early Universe [82], while periodic interaction strength
modulations led to matter-wave jet emission (Bose fireworks)
[83,84] and other interesting patterns [85].

The novel feature of our present study is that our peri-
odic interaction quenches are neither conducted between two
states deep in the superfluid regime, nor do they start from a
well-formed condensate — but instead the interaction strength
is modulated across the phase transition repeatedly, in direct
analogy to the work of Ref. [43]. For this reason, our analysis
is based on the stochastic (projected) Gross-Pitaevskii equa-
tion [86—89].

Beyond the expected regimes of extremely slow pumping
(which allows the system to proceed adiabatically through
instantaneous equilibrium states) and extremely rapid pump-
ing which only mildly perturbs the initial state, we find the
periodic driving to be intrinsically resonant with a charac-
teristic relaxation time, at which the periodic modulation of
the scattering length causes strongly nonequilibrium features
to emerge. This resonance separates two interesting distinct
and experimentally relevant physical regimes: Driving fre-
quencies lower than the resonant value lead to reproducible
dynamics which are independent of the quench cycle, and—
while not fully equilibrated—resemble certain features of
the corresponding-parameter equilibrium states. This regime
bears close analogy to the experimental 3D findings of
Ref. [43] (upon excluding observed atom losses). In the op-
posite regime of frequencies exceeding the resonant value,
the system grows gradually over multiple quench cycles,
and can—for frequencies few times the resonant frequency—
accommodate significant coherence.

This paper is structured as follows: After presenting a brief
overview of the 3D experiment of Ref. [43], we outline the
numerical scheme and quench protocol to be used in our
work (Sec. II). We start by discussing the dependence of the
emerging density and vortex dynamics on driving frequency,
and present a detailed quantitative analysis of their respective
dynamical time-delay with respect to the external periodic
driving (Sec. III A): This allows us to identify an intrinsic sys-
tem frequency, and thus to focus our subsequent analysis on
the physically interesting and experimentally relevant regime
of driving frequencies which are up to 20 times slower, or

faster, than the identified resonant frequency. Within this ex-
perimentally interesting range where most novel dynamical
features emerge, we analyze the dependence of the momen-
tum spectrum on the driving frequency and identify parameter
regimes of high coherence in spite of fast driving (Sec. III B).
We then study the maximum attained coherence as a function
of quench frequency (Sec. III C), and the emerging nonequi-
librium steady state under rapid pumping (Sec. III D), before
concluding.

II. QUENCH PROTOCOL AND MODELLING SCHEME
A. Experiment of Stamper-Kurn et al. [43]

In a ground-breaking paper, Stamper-Kurn et al. [43]
achieved reversible condensate formation in a three-
dimensional gas of sodium atoms. Initially, this gas was
confined to a broad harmonic trap and cooled to just above the
critical temperature, T;, at which condensation onsets. Subse-
quently, a thin well (dimple trap) was introduced at the center
of the trap, using an infrared laser. This granted the sodium
atoms access to a new, lower-energy state. The well was made
so steep that it could only contain a single new energy level.
As well depth was increased, by increasing the strength of the
laser, the energy of this single state decreased to the extent
that a condensate formed in this well. The condensate fraction
grew with well depth, and hence with laser power. The power
of the laser beam was then sinusoidally modulated between
0 and 7 mW at a frequency of 1 Hz, which resulted in the
periodic cyclic growth and decay of the condensate fraction,
No/N, from 0 to 6%. A nonzero condensate fraction was
observed to recur for 15 oscillations, even though the peak
condensate fraction decayed slightly with each oscillation.
This decay was shown to arise from atom loss, rather than as a
consequence of this periodic crossing of the phase transition.
The latter was confirmed by the fact that the same decay in the
peak values was observed even when the power of the laser
beam was held constant. Importantly, a ~70 ms time delay
was observed between the times of maximum laser power and
corresponding time of peak condensate fraction, giving some
insight into the condensate formation time under this protocol.

To interpret the observed findings, Stoof and Bijlsma [44]
pioneered the use of a stochastic Gross-Pitaevskii equation as
a model to study reversible condensate formation. Introducing
a steep well in the potential, as done experimentally, is equiv-
alent to altering the effective chemical potential, pef, of the
system. Hence, in this numerical investigation, the reversible
formation of a one-dimensional condensate was simulated by
modulating the value of s as (es(f) = usin(wpt ), where
is the chemical potential of the system in the absence of a well
and wp is the frequency of the imposed periodic modulation.
Stoof and Bijlsma analysed the evolution of the condensate
density at the trap center and qualitatively reproduced the
delay in condensate growth observed by Stamper-Kurn et al.
[43] (but observing a slightly longer time of ~100 ms, which
could be attributed to the different probed dimensionality
and potential uncertainties of exact experimental parameters).
That study provided the first numerical evidence of a repeated
phase transition crossing in ultracold atomic gases. Since
that work, the stochastic Gross-Pitaevskii model introduced
by Stoof [44], and its closely related stochastic projected
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Gross-Pitaevskii equation [86,87], have been used to study
a broad range of dynamical ultracold phenomena [87-90],
including the study of quenched phase transitions across dif-
ferent geometries, dimensionalities and mixtures [18,20,22—
24,26,30,32-34,91-100], with direct successful modeling of
phase transition experiments [18,24,34].

B. Numerical model and parameter regime

In this work, we analyze the quenched system dynamics
in terms of the stochastic projected Gross-Pitaevskii equation
(SPGPE), which describes the ‘“classical” field, ®(r,t), of
all highly populated modes up to a fixed energy cutoff. Its
dynamics are governed by [87]

LD , o, 5
i =P —iy)| = =V 4 gapl @ — pu| @+
2m

ot
ey

Here, —iy corresponds to a dissipative/growth term, arising
from the coupling of the “classical field” modes & to the
high-lying modes, which are treated as a heat bath. Consistent
with other treatments [26,100], we set ¥ = 0.01 in our current
calculations, noting that typical physical evolution timescales
are set by the scaled time y¢, controlling system dynamics and
growth. The long-term evolution/steady state is determined
by the balancing of the kinetic energy contribution and the
nonlinear interaction term g,p|®(r, ¢)|> with the bath chemi-
cal potential u. The presence of the dynamical noise term 7,
associated with the collisional randomness of growth/decay
processes differentiates each numerical run in a manner anal-
ogous to experimental shot-to-shot fluctuations. The noise
correlations are given by (n*(r,t)n(r’',t')) = 2hykgTS(t —
1")8(r — r’). Finally, P is a projector which constrains the
dynamics of the system within a finite number of macro-
scopically occupied modes, up to an ultraviolet energy cutoff
€cat(t, T) = kgT In(2) + u, with the mean occupation of the
last included mode set to be ~1, which we have verified in
our simulations. This relation sets our numerical grid spacing
to Ax < w//8mecy [87].

In this work, we consider a two-dimensional, weakly in-
teracting, homogeneous Bose gas, confined to a square box
of sides L, = L, = 100 pum. Considering experimentally ac-
cessible regimes, our presented analysis is based on a gas
of ultracold *°K bosons with mass m = 6.47 x 1072 kg, a
chemical potential = 1.92kg nK and a temperature, 7 =
50 nK [101,102]. The corresponding 2D interaction strength
is given in terms of the tight transversal harmonic confine-
ment of frequency w, by gp = g3D/«/ﬂ£l, where gi3p =
4 h2aS /m, a; = 7.36 nm is the background s-wave scattering
length [103], and ¢, = +/h/mw, the transverse harmonic
length. This yields a dimensionless coupling constant g =
mgap/H? = /8mag/e, .

The location of the BKT phase transition is fixed by the

relation [61]
¢ C
~ (—) )
BKT T 8c

where g. denotes the critical value of the dimensionless
strength at the BKT transition, and Monte Carlo analysis gives

e
ks T

the constant C ~ 13.2 [62]. This relation sets the value of
gc = 1.83 x 1072 for our parameters. This coupling constant
can be varied by changing the transverse confinement, and
the parameters considered in this work relate to the range
1.83 x 1072 < g < 3.48 x 1072, Implicit in our description
is the modulation of the scattering length through Feshbach
resonance [104], or the transverse confining harmonic oscil-
lator frequency w,. All presented results correspond to an
average over A = 50 stochastic realizations, which is large
enough such that the error bars on all figures are of the same
size order as the marker itself.

C. Quench protocol

Stimulated by the work of Refs. [43,44], we impose here a
symmetric interaction quench, as follows. Firstly, we allow
the system to dynamically equilibrate close to, and on the
disordered side of, the BKT critical region. Specifically we
choose to equilibrate initially to a value g = 1.9g. (which
corresponds to an initial number of N =3 x 10* atoms in
the classical field). We verify that this state is in equilibrium
via calculation of the first order correlation function, which
exhibits the correct exponential decay law, and ensuring the
vortex number reaches a steady state value. We then initiate a
periodic quench in the interaction strength which is symmetric
about the critical point, via

g(t) = gc(1 4+ 0.9cos(wpt)), 3

where, wp is the driving frequency, implying that the quench
proceeds between an initial state with g = 1.9g, = gnax (cor-
responding to T > Tgkr), and a final highly ordered state with
g =0.1g. = gmin (T < Tgxr) [105]. This quench protocol can
be easily visualized in Fig. 1(a).

In this work, we examine how the system behavior varies
for different driving frequencies encompassing a broad range
of potential parameters for experimental investigation. To set
the scene, we firstly briefly compare the results of our dy-
namical periodic quenches to the corresponding equilibrium
regimes in the limiting (very slow and very fast) cases of our
quench cycle. We then focus our analysis on the most interest-
ing subset of driving frequencies (wp = 27 x [1/40, 5] Hz)
which exhibit the dominant dynamical evolution, thus identi-
fying an intrinsic resonant driving frequency which should be
experimentally observable.

III. DYNAMICAL RESULTS

The system dynamics under periodic quenching can be
characterized in terms of its density, vortex number, occu-
pation spectrum and coherence, to which we next turn our
attention.

A. Density and vortex delayed oscillations

We start our analysis by considering the impact of the
periodic interaction strength modulation shown in Fig. 1(a)
on density and vortex number.

In our studies, the system is initialized in an equilibrated
purely incoherent state above the critical region, with g =
Zgmax > &, With such a state generated numerically by dynam-
ical relaxation to the desired state through the SPGPE. It is
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FIG. 1. Repeated quenches through the BKT phase transition,
with time normalized to the quench period through the time scale
27 /wp. (a) Quench protocol [Eq. (3)]. Dotted line through g = g,
separates the parameter space corresponding to incoherent (ther-
mal) (g > g.) and (partly) superfluid (g < g.) states at equilibrium.
(b) Evolution of the c-field density averaged over space and stochas-
tic realisations, compared to its initial value (n(t = 0)) = (ny,)
for various driving frequencies wp, ranging from quasiadiabatic
(wp/2m = 1/40, red) to very rapid (wp/2mw = 500, pink). Also
shown are the equilibrium densities for the initial thermal state (eq,,
lower purple horizontal line) and the final-parameter part-superfluid
system eq, (upper blue horizontal line) respectively, found by fixing
() = gmax and g(t) = gmin, and the equilibrium density ny(¢) =
n/g(t). The slowest quench and condensate equilibrium data are
reduced by a factor of 4 for visual aid. For a given driving frequency,
the phase lag between the iy trough of g(¢) and the iy, peak of
the average density is denoted qb]’;’g. The vertical grey dashed line
throughout all three panels highlights the time of the first trough in
g(1). (c) Evolution of the average number of vortices, (N, ), for the
same quench frequencies and equilibria as above.

well-known that above the BKT phase transition the phase
of the system is random, corresponding to an exponentially
decaying phase correlation function: this incoherent state can
be thought of as a system with a large number of “free”
vortices, whose exact number is fixed by the system size, grid
resolution, atomic mass, temperature and interaction strength
(the number itself is not important). As we scan the system
across different equilibrium configurations, we find that the

number of vortices at equilibrium decreases abruptly across
the BKT critical region, reaching a very low, or even zero
value as the system approaches its pure superfluid limit (g <
gc) [26,69,75]. For our chosen parameters, the initial system
(having a density (ny)) is filled by vortices with an average
vortex number (N,) ~ 160 varying by no more then +6 in
individual runs [106].

Figure 1(b) shows the evolution of the average modulation
(n) — (npg) of the c-field density (n), compared to its initial
value (), averaged over space and stochastic realisations,
for a range of driving frequencies, while Fig. 1(c) shows the
corresponding average evolution of the vortex number in the
system.

Let us first consider the limiting (idealized) case of ex-
tremely slow driving (wp — 0): In this case we expect the
system to evolve adiabatically through corresponding equi-
librium states with a time-dependent homogeneous solution
no(t) = p/g(t), oscillating between the initial purely inco-
herent vortex-filled state with (n) = (np,) and a vortex-free
({Ny) = 0) higher-density configuration corresponding to the
equilibrium density value for g = gmin, and T = 50 nK, which
satisfies (n) — (npg) ~ 80 um~2. The time-dependent aver-
aged densities and vortices in this limiting case are shown by
the red curves in Figs. 1(b) and 1(c), for the “quasiadiabatic”
case with wp/2mr = 1/40 Hz. To assist the subsequent analy-
sis, horizontal lines in these plots depict the limiting values
of density and vortex number for the equilibrium configu-
rations gmax and gmin between which the periodic quenches
are performed. In the opposite extreme limit of very rapid
driving (wp — 00), the system has no time to adjust to the
imposed parameters as it is driven across the phase transition
at a rate faster than the inverse timescale associated with
intrinsic vortex-antivortex pairing (relaxation) in the vicinity
of the critical region [25]. As a result, the system remains in
an effective incoherent steady state close to the initial state:
in this limiting case, the system density remains practically
unchanged and the average vortex number remains close to
its initial (N,) # 0 value. Such behavior is demonstrated in
Figs. 1(b) and 1(c) by the pink horizontal lines for the spe-
cific case of wp/2mw = 500Hz: We have explicitly verified
the largely unaffected incoherent nature of such a rapidly
driven state by confirming its rapidly decaying exponential
phase correlation function in the long-time limit. Neither of
the limiting regimes is intrinsically interesting to study, so
our numerical analysis focuses on a broad range of interme-
diate driving frequencies wp = 2w x [1/40, 5] Hz from the
quasiadiabatic to the dynamically driven regimes identified
below.

The slowest quench analyzed in detail in this work is
shown by the red curves in Figs. 1(b) and 1(c), and corre-
sponds to a drive frequency wp = 2w x (1/40) Hz. This has
been selected such that both the density and vortex num-
ber closely resemble the adiabatic case (with (N,) =~ 0), but
strictly speaking the frequency of the drive is such that the
state reached at gn, is not yet fully equilibrated, consistent
with the state likely to arise under experimental driving con-
ditions: we label such state here as quasiadiabatic.

For such slow quenches, the maximum system density
is achieved almost exactly at each local minimum g(¢) =
&min, While density minima temporally coincide with maxima
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g(t) = gmax- In other words, the density modulation oscilla-
tions are in phase with the underlying drive. Moreover, the
vortex number rapidly decreases acquiring its minimum value
at the local g minimum when the density modulation is also
maximized.

As the oscillation frequency increases beyond the adiabatic
limit, the evolution is comparatively slowed down with in-
creased driving frequency (in scaled time units). As a result
of the faster driving, the system no longer has sufficient time
to adjust to the same density maximum within each cycle,
with the oscillating density modulation going out of phase
(lagging behind) the external periodic driving, by an amount
¢l"a’g, corresponding to the phase lag of the ith trough in g(z).
The local density maximum is thus reached at a time after
g(t) has reached its minimum, when the interaction strength
is 8min < g(t) < 8-

This effect becomes pronounced with faster driving, which
leads both to a lower local density maximum being reached,
and a longer time delay between driving and density growth.
For intermediate external driving frequencies, the peak den-
sity increases with cycle number, with the system evidently
requiring multiple driving cycles for the temporally local den-
sity maximum to plateau to its overall maximum attainable
value under periodic driving. Moreover, the rapid evolution
implies that the overall density modulation range is decreas-
ing with increasing wp, so that—as the density maximum is
gradually increasing—the corresponding density modulation
minimum is no longer constrained to coincide with the initial
density value: such features are most evident when comparing
wp/2m = 1/2 (blue) and 5/3 Hz (brown) curves in Fig. 1(b).
The ability of the system to adjust to the drive decreases with
further increase of wp, such that the density increases almost
asymptotically by only about few x 10%, and with barely any
visible oscillations for wp /2w = 50 Hz (with practically no
change when wp is increased by a further factor of 10, which
closely mimics the wp — oo limit).

Such dynamical behavior can be better understood by look-
ing at the corresponding evolution of mean vortex number
(Ny) in the system. As the driving frequency increases, the
rate of decrease of vortices in a given driving cycle becomes
significantly lower, with the local vortex minimum being sig-
nificantly delayed from the corresponding g minimum. The
delay of the first local vortex minimum ¢l‘2g as measured
from the g minimum at ¢t = 7 /wp is in fact significantly pro-
nounced, and occurs clearly after the corresponding density
modulation maximum (which was itself found to phase-lag
behind the external driving). This can be understood in terms
of the additional phase-ordering time required for the an-
nihilation of a vortex-antivortex pair, which is a competing
effect to the external drive. For faster quenches the gradual
vortex number decrease occurs over multiple quench cycles
and does not necessarily reach (V,) ~ 0 as evident from the
brown quench in Fig. 1(c). Consistent with the above density
evolution picture, higher values of wp/2m = 50 Hz clearly
reveal a small monotonic/asymptotic decrease of the vortex
number, with a large number (~100) of remaining vortices,
while practically no change in the vortex number can be
detected for the extreme case of wp /2w = 500 Hz [pink lines
in Fig. 1(c)].

The above discussion has identified an evident difference
in the evolutions of density and vortex number during the
driven quench, identifying two rather different behaviours
with respect to the driving frequency. This points to the
existence of a critical (resonant) frequency which separates
these two regimes. We can identify a characteristic relaxation,
or ‘resonant’ frequency through the identification of a
characteristic timescale in the system. A relevant timescale in
the system is [32]

ro=LN0.4s, @)
vl
corresponding to a relaxation time towards equilibrium after
crossing a phase transition.
This timescale in turn implies a characteristic system fre-
quency wy, defined as

a)():i"’QTIXOAHZ. (®)]
70

This frequency is marked across Fig. 2 as a vertical red
dashed line, and clearly marks the boundary between quasia-
diabatic driving (wp < wp) and dynamically driven systems
(wp > wp). The role of this intrinsic “resonant” frequency
on momentum spectrum and coherence is further highlighted
below. Our analysis in this paper therefore focusses on the
most interesting dynamical response regime corresponding to
values of the driving approximately within an order of mag-
nitude of wy, and more specifically on the parameter regime
0.05 < (wp/wp) < 10. Firstly, we characterize the above be-
havior quantitatively by considering the mean phase lag of
both density and vortex evolution as a function of the driving
frequency wp, as shown in Fig. 2(a). The average vortex
number phase lag is greater than the density phase lag for all
driving frequencies considered, in keeping with observations
from Fig. 1. A phase lag of precisely ¢./2m = 1/4, one
quarter period of the external driving, would correspond to the
maximum density (minimum vortex number) occurring as the
external driving parameter crosses the BKT threshold again,
towards the incoherent side. The density phase lag never ex-
ceeds this boundary, implying the maximum density per cycle
is achieved during the coherent phase where g < g.. However,
the minimum in (&,) occurs later whilst in the thermal phase,
suggesting that the vortex number is not in equilibrium before
the next cycle occurs.

Given that the vortex number decay exhibits oscillatory be-
havior, and that for a large range of probed driving frequencies
it actually requires multiple such oscillations before the vor-
tex number decreases to its steady-state (potentially nonzero)
values, it is also interesting to characterize the time taken
for the vortex to decay to a near-zero final vortex number.
Similarly, the average density also requires several cycles to
saturate to its maximum value. To quantify these effects, we
have here chosen arbitrarily to define a timescale, ncycie, as
the number of quench cycles at which the measured quantity
reaches 90% saturation of its steady-state values. This corre-
sponds to the time the vortex number first reaches 10% of its
initial value, or the density reaches 90% of its final maximum
value.

Apart from the very slow quenches, Fig. 2(b) shows a
near-linear increase in the number of cycles required for
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FIG. 2. Quench dependent time shifts probed here in the phys-
ically interesting range 0.05 < (wp/wp) < 10. (a) The mean phase
shift for the density (¢") and vortex number (¢") between the i
peaks of g and the peak average density, as a function of wp. Error
bars are smaller than the marker size. Points corresponding to the
quench frequencies considered previously are colored according to
the legend of Fig. 1. (b) Average number of oscillation cycles, nycic,
between the first quench and density (vortex number) reaching 90%
of its maximum value (10% of its initial value). The relaxation
frequency wy [Eq. (5)] is marked by a vertical dashed red line, with
the grey-shaded area corresponding to the “quasiadiabatic” regime
wp < wy. Horizontal black lines in (a) and (b) respectively denote the
values of ¢y,/2m = 1/4, marking the transition from the observed
phase lag occurring within a quarter of the driving cycle (i.e., while
the system is within the “coherent” phase), and nyq. = 1, marking
the transition between vortex number counts that are independent and
dependent on cycle number.

the system to reach the steady state as a function of driv-
ing frequency. Moreover, even though it may take multiple
cycles to reach that value, the linear-like curve implies a
near constant duration of time to saturation (27 n¢ycte/wp) for
wp Z wg. This figure thus confirms the two distinct regimes
either side of wp ~ wy. For relatively slow driving wp <
wyp, the vortex number and average density saturate within
a single quench cycle, suggesting maximum coherence has
been reached within one cycle and the vortex number and
density evolution are only dependent on the time during
a cycle when they are measured, and not the total num-
ber of cycles completed. However, when driving faster than
wo, the system saturates after multiple quench cycles, with
extreme limits of (wp/wp) > 10 (not shown here) leading
to only very small variations from the initial (incoherent)
state.

We now turn our attention to the evolution of the momen-
tum spectrum as a function of different driving frequencies.

B. Momentum evolution and zero-momentum mode dynamics

The density analysis considered above focused on the
entire classical field region spanning across all highly oc-
cupied modes with n; = 1, thus encompassing both the
macroscopically occup1ed lowest lying momentum mode, and
higher-lying modes affected by its presence. Although strictly
speaking no condensation manifests itself in two-dimensional
homogeneous systems, finite-sized systems still exhibit quasi-
long-range order associated with an algebraic decay of the
first order correlation function (as opposed to the exponential
decay characteristic of a thermal state), whose behavior will
be discussed later. In this section, we focus on the evolution of
the momentum distribution, and the dynamics of the lowest,
zero-momentum, mode, as both are useful in conceptualizing
the underlying system dynamics.

Firstly, we define the fractional momentum occupation of
mode k via

()N

@)
% (i (1)) n ©

n(t) =

where (-)s denotes averaging over stochastic realisations.
The evolution of the normalized momentum density 7; is
plotted in Fig. 3(a) for different driving frequencies from
slow (left, wp/wp ~ 0.05) through to fast (right, wp /wy ~ 10)
quenches. For a truly adiabatic evolution, proceeding slowly
enough that the system passes through fully equilibrated states
during its entire evolution, one would expect to see the pe-
riodic emergence of a ‘condensate’ mode, in the sense of a
highly populated k¥ = 0 mode. Indeed, this emerges for the
slowest quasiadiabatic periodic quench [panel (a)(i)], whose
modes up to k ~ 0.1um are maximally populated at times
t = (2n/wp)2m + 1)/2 (where m is an integer), when g has
a local minimum.

This regime clearly shows a periodic reversible condensate
formation process, qualitatively similar to the behavior ob-
served in harmonic dimple microtraps cycled across the phase
transition [43,44]. As the quench frequency increases beyond
wp ~ 21w x 0.4 Hz we expect coherence to form over multiple
quench cycles. Indeed for wp ~ 1.25w¢ [panel (a)(ii)], we
find the initial momentum peak after a single quench cycle
to be significantly broadened around k ~ 0, consistent with
the existence of multiple highly occupied modes (and the
gradual emergence of a quasicondensate). Further increasing
the driving frequency leads to coherence only appearing after
multiple cycles, consistent with earlier findings, due to the
more gradual decrease of vortex numbers which—for faster
quenches—becomes significant only after multiple driving cy-
cles through the critical point.

Example slices of 71 versus k (for k > 0), at extreme limits
of g are shown in Fig. 3(b) for both a relatively slow [red; cor-
responding to a(i)] and a relatively fast [green; corresponding
to a(iv)] drive. As a guide for the eye, solid grey lines show
the following limiting behavior: a thermal field is expected to
follow an e 5% scaling, where £ is the coherence length from
the first order correlation function g(l)(r) for a thermal cloud
[107], and a fully equilibrated 2D Bose gas is expected to
exhibit a k=2 scaling [108]. Our findings show that the driven
states oscillate between these limiting cases. As a comparison,
we show the extracted momentum distribution for the thermal
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FIG. 3. Dynamics of the momentum distribution during the periodic quench. (a) Evolution of the average proportion of atoms in mode k,
i (t), defined in Eq. (6). The value of wp /27 (in Hz) is stated at the top of each panel and a colored block appears above to highlight its relation
to previous figures. The solid, dashed, and dotted lines in (i) and (iv) pertain to the first maximum, the tenth minimum and the tenth maximum
of g, respectively. The occupation of the zero-momentum mode is shown along the bottom parts of these subplots. (b) Slices of momentum
density occupation taken through the top panels, showing the profile of 7i; at different times, given as vertical lines in (a) (i) and (iv). Also
shown is the initial # = 0 distribution prior to the initiation of our periodic quenching (hollow purple circles), with error bars indicative of the
magnitude of the error in all of the data shown, and the distribution at equilibrium after a half-quench cycle, followed by a constant g = gy,
post-quench relaxation period (dot-dashed blue line). The expected behavior in the two limiting cases is shown by solid grey lines: exponential
behavior for a thermal cloud ~e =% [with a fitted coherence length § =091um <« L., L,] (see also Sec. III C [107]) and a k2 scaling for
a superfluid system. (c)(i) Occupation of the /i;—o = Ny/N mode for the first density peak (circles) and a late density peak corresponding to
the time yt, = 0.12s (squares) [see later]. (c)(ii) Total atom number evaluated at the same times as (c)(i). A vertical red line depicting the

relaxation frequency wy [Eq. (5)] appears in both panels of (c).

field at t = O (purple circles), and of the Bose gas in equilib-
rium showing the expected k=2 behavior (blue dash dotted),
and find excellent agreement to the expected scaling.

Considering first the slow driving case [case (a)(i)], we
note that the system exhibits a monotonically decaying 7
[Fig. 3(b)] with more than 95% zero-momentum mode oc-
cupation [Fig. 3(c)] both at the first (solid red line) and
subsequent g minima (dotted red line). This is in contrast to
the corresponding behavior at ¢ maxima (dashed red line)
which shows decreasing occupation as k — 0.

Considering now a much faster quench [case a(iv)], the
first g minimum [solid green line] is clearly not condensed, as
evident from the low k = 0 occupation in Fig. 3(c)(i) [green
open circle], and still resembles the initial thermal field dis-
tribution at t+ = 0. After many driving cycles, such a rapidly
driven system develops clear evidence of nonequilibrium con-
densation, with increasing occupation into the lower k modes
[dotted and dashed green lines] and ~50% occupation into the
k = 0 mode [Fig. 3(c)(i)], distinct from the expected thermal

distribution and with little variation between the maximum
(dotted) and minimum (dashed) cases of g. Remarkably, for
fast quenches the system maintains a coherent fraction regard-
less of the drive.

In all cases, it’s worth noting that the spectrum at large k
acquires a power-law behavior with an exponent resembling
~ — 1 [109], clearly distinct from both expected thermal and
Bose gas scalings. We attribute such numerically observed
“anomalous” scaling to the highly nonequilibrium nature of
the driven system, a feature that could be tested in experi-
ments.

The maximum of the zero-momentum mode occupation as
a function of driving frequency is shown in Fig. 3(c)(i), and
the total atom number in (c)(ii). The open circles show the
zero-momentum mode occupation measured at the first peak
in the total density, whereas the open squares show the zero-
momentum mode occupation measured at an arbitrary peak at
sufficiently late times. For faster driving frequencies, the zero-
momentum mode occupation increases over time, as a result
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of the repeated crossing of the phase transition, thus leading
to a nonequilibrium steady state with irreversible growth. This
can be attributed to the total time spent above the phase tran-
sition, 7 /wp, being smaller than the relaxation time tp, and
hence a small fraction of the atoms remain Bose condensed
after each repeated crossing of the phase transition. This effect
disappears both for small driving frequencies, where the zero-
momentum mode occupation follows the equilibrium value
expected from an instantaneous evolution of the dissipative
GPE, and for very rapid frequencies (wp/wy 2 100—beyond
the scale of this graph) which do not allow for any noticeable
coherence to form even after multiple quench cycles. In this
highly nonequilibrium limit the c-field remains incoherent.

Interestingly, the smallest zero-momentum mode occupa-
tion occurs around wp * wgy, when the competing driving and
relaxation are in resonance with one another, leading to a
highly nonequilibrium partly superfluid state, an effect we
explore in more detail in Sec. IIID.

C. Evolution of phase coherence

We now discuss the effect of driving on the spatial coher-
ence of the system.

For a homogeneous 2D system, the spatial correlation
function, or normalized first order correlation function, de-
fined by [108]

(@*(ro)®(ro + 1))
VRPN ([®(ro + 1)

is known (at equilibrium) to exhibit a transition from expo-
nential (above the critical region) to algebraic-order decay
(below the critical region), a characteristic of the BKT phase
transition [26,53,62,69,75,110]. We have indeed verified such
behavior in the steady-state profiles for the two limiting equi-
librium cases g = gmax and g = gmin. For a thermal cloud,
gV (r) ~ e /%, where £ is the coherence length [see also
Fig. 3(b)].

Here we are instead interested in investigating the effect
of the periodic driving on the emerging maximum spatial
phase coherence, and with this in mind, we perform a detailed
analysis of the system coherence at times when g = guin. To
account for the fact that the system does not necessarily relax
after a single driving cycle (for faster driving), we consider the
spatial phase coherence at two times. These correspond to (a)
the end of the first driving half-period (#,,) when the system
reaches its minimum g value after a single phase transition
crossing shown in Fig. 4(a). This corresponds to the same
point in the driving cycle irrespective of wp, thus amounting to
different physical times. (b) We also measure g’ at a fixed ab-
solute late time for all wp, corresponding to a sufficiently long
time such that all considered cases have already acquired their
maximum steady-state values. Specifically, we investigate
g (r) at the g trough at, or just after the time yz, ~ 0.12 s:
Such a time corresponds to the first trough in the limiting case
of quasiadiabatic driving [wp = 27 (1/40) Hz = 0.05w¢] and
the 60th trough, at which a nonequilibrium steady state has
been reached for the fast quench wp = 27 x 5 Hz = 10wy.
This is shown in Fig. 4(b).

Figure 4(a) shows that for the quasiadiabatic driving, the
system exhibits very strong spatial coherence at the first g

gV =

(N
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FIG. 4. Growth of coherence through repeated quenches.
(a) First order correlation function, g')(r), evaluated at r = 1, , the
time of the first peak in the average density in Fig. 1. Each curve
is fitted with an algebraic function, g"(r) ~ r~*, plotted using a
dashed line. (b) Correlation function evaluated at the density peak
closest to yt, = 0.12s. (¢) Value of the correlation function eval-
vated at r, = 40um, [indicated by the dashed vertical grey lines
in (a)—(b)], as a function of time for times g(¢) = gu,. Error bars
are located where g is measured at a peak in the average density.
Data for wp /27 = 1/40 (red) and 5/33 (grey) Hz extend far beyond
yt = 0.12s, with corresponding red/grey bands denoting error bars
over the total range covered. Plotted error bars indicate one standard
deviation of g (r).

minimum, which is perfectly fit with an algebraic-decay func-
tion gV (r) ~ r*, where o = 6.8 x 1073. This correlation
is actually identical in all subsequent peaks with the same
driving. Although this is highly coherent, consistent with the
complete absence of vortices in most numerical realizations,
we nonetheless note here once again that this system is not
yet fully equilibrated. This is because the emerging state is
found to exhibit a momentum spectrum distinct from the
expected k=2 equilibrium spectrum, whereas a k=2 spectrum
does emerge upon allowing this same system to relax (without
further driving) for a significantly longer timescale at g =
&min-

Increasing the driving frequency leads to the establishment
of less coherence in the system after a single cycle, with
coherence nonetheless building up gradually after multiple
cycles. This can be seen by comparing the computed g ()
between Figs. 4(a) and 4(b). Although very fast quenches lead
to very small coherence after a single drive half-cycle, prob-
ing the correlation function instantaneously at ¢ = gnyin <K &¢
nonetheless still facilitates a very good algebraic-decay fit (but
with a higher value of «, implying a highly nonequilibrium
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state). Thus, in order to compare with the maximal coherence
imparted at steady state, we analyze all plots here in terms of
an algebraic-decay fit.

The increase of the (algebraic) decay rate of g"(r) with
increasing wp seen in Fig. 4(a) should come as no surprise,
since the build-up of significant coherence requires the decay
of all vortices in the system, whereas all probed quenches
except the quasiadiabatic (red) one still have at least some vor-
tices present at the first half-cycle [see Fig. 1(c)]. Remarkably,
even the presence of a few vortices is enough to significantly
destroy the system’s overall phase coherence, as evident from
the blue curves [wp = 2w x (1/2) Hz] in Figs. 4(a) and 1(c).

An interesting and rather distinctive feature arises when
looking at corresponding late-time peaks shown in Fig. 4(b),
after allowing the periodically driven system to reach its
nonequilibrium steady state, following a sufficiently large
number of drive cycles, and repeated crossings of the phase
transition. We have already shown earlier that for suf-
ficiently fast driving, the vortex number curve decreases
periodically in an oscillating manner, but with a rapidly
decaying envelope, requiring multiple cycles for a signifi-
cant decrease of its mean vortex number (N,). As a result,
coherence builds up gradually in such systems, and this
was to be expected. The interesting emerging feature here
is that at a steady state, there is an optimum driving fre-
quency, above which the acquired system coherence at one
of the g() = gmin peaks grows over longer distances again,
a feature we demonstrate here within the examined regime
wp = 2w x [1/40, 5] Hz.

This is easily seen by comparing Figs. 4(a) and 4(b).
Focussing at the late time yf, ~ 0.12s, (and always at an
appropriate temporal minimum in g fixed by g(#.) = gmin)
we see that increasing the frequency (in Hz) from wp/2n =
1/40 (red) through 5/33 (gray) to 1/2 ~ O(wy/2m) (blue),
gV (r) decays faster spatially with increasing drive frequency.
However, driving the system even faster than w( periodically
across a sufficiently large number of phase-transition cycles
leads to an increase in the system phase coherence at succes-
sive g(t) = gmin, With the spatial coherence at the maximum
distance (half the box length) of the wp/2mr = 5 Hz (green)
being (after multiple cycles) comparable to that of wp /27w =
5/33 Hz (grey), which is driven 33 times slower (and whose
coherence does not change between consecutive peaks, having
already saturated at its maximal coherence at the end of the
first half-cycle).

Such behavior becomes more evident in Fig. 4(c), when
examining the temporal evolution of the value of the phase
correlation function near the edge of the system, at g'(r, =
40 pum) (at successive times satisfying g(f) = gmin). Slow
quenches (wp/2m < 0.5 Hz) allow maximal coherence to be
effectively established already after a single quench half-
cycle: this is indicated by the red/grey horizontal lines/bands
in Fig. 4(c). For faster driving than that, the system initially
reacts rather slowly, with the coherence growth rate grad-
ually picking up around yt ~ 0.01 s, eventually saturating
at a higher value [well before the yz, ~ 0.12 s used for
the comparison in Fig. 4(b)]. Interestingly the extra growth
of coherence after multiple cycles is very small around the
frequency wp/2m ~ 1/2 Hz (blue curve), but increases no-
ticeably for quenches few times faster than that, as evident
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FIG. 5. Resonances of observables with the relaxation time.
(a) Correlation function evaluated at r, = 40uum, and at a late time
yt, = 0.12s with g(t,) = gmn, see Fig 4. (b) Absolute change in
g (r,,t) from 1| to t, (early to late times). (c) Exponent from
algebraic fits of Fig. 4(b). (d) Average time delay in the average peak
density.

SEOW

from the enhanced values shown by the yellow, brown, and
green curves.

D. Resonances with intrinsic timescales

The behavior of the spatial correlation function is further
characterized in comparison to the relaxation frequency wy =
27 x 0.4 Hz in Fig. 5. Here we plot (a) the steady-state value
of gV near the box edge (r = r,) att = t, [with g(t,) = gmin],
(b) the fractional increase of its value at #,, compared to that
at its first peak, (c) the value of the power-law decay exponent
a, and (d) the density phase lag yré’elay = 2n¢1"ag /wp (a) (cor-
responding to Fig. 2(a), but now plotted in terms of average
delay time which offers a different perspective). This figure
clearly highlights the importance of the critical driving fre-
quency, corresponding to ‘resonant’ driving distinguishing the
slow and fast driving regimes. This resonant driving frequency
is well explained in terms of the frequency wy. Looking at
the various subplots, we easily infer that maximal coherence
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is achieved in the quasiadiabatic regime (leftmost, red points
in all subplots), with g(r, = 40 um, yt, = 0.12s) ~ 0.96
and o = 6.8 x 1073; such a value is much less than the
value o = 0.25 occurring at equilibrium for g = g, [111], due
to the system being in a rather low-temperature state, with
T/TBKT ~ 015,

As the system is driven faster, the late-time coherence
at the system edge rapidly decreases (down to ~0.11)
[Fig. 5(a)], with such value being already reached after
a single quench half-cycle: the latter can be inferred by
looking at the fractional change in the value of the correlation
function at r, from the first peak up to a late converged peak
at t,. Correspondingly, faster driving leads to an increasing
delay (phase lag) of density growth, as shown in Fig. 5(d).
Interestingly, an algebraic power-law fit g (r, 1) ~ r~® of the
correlation function at yt, ~ 0.12s—when the system clearly
possesses a nonzero occupation of the k = 0 mode—Ileads to
a significant increase in the value of o, much exceeding the
equilibrium value of (1/4). This latter observation provides
strong evidence of the nonequilibrium nature of the achieved
a steady state, and points to the strong interplay between
the system’s external driving across the phase transition
(quantified in wp), and its ability to adjust (quantified in wp) to
an averaged behavior across two vastly different equilibrium
states located well above and well below the critical region.

When driving the system even faster than that, the overall
steady-state coherence at the box edge starts increasing again
with increasing frequency [Fig. 5(a)], with an increase of as
much as 50% over its initial (but rather low) acquired value at
the first quench half-cycle [Fig. 5(b)]. As the system has less
and less time to react to the external driving, it effectively only
exhibits a time-averaged effect, and so becomes less nonequi-
librium, consistent with a decreasing value of « with faster
driving wp > wq [Fig. 5(c)]. As a result of the rapid driving,
the overall density evolution time-delay now also decreases
significantly (in the “absolute” time yt [Fig. 5(d)]), which
is testament to the very tiny increase of the system density
facilitated.

Nonetheless, it is important to note that this delay time is
actually a significant fraction of the drive time, as evident from
Fig. 2(a), revealing that the density delay time for the fastest
quench considered here is 20% of the quench period, while
the vortex delay time [not shown here, see Fig. 2(a)] exceeds
60% of the period.

Much faster driving than that (wp/wy 2 100) [not shown
here] leads to a practically monotonic time-averaged evo-
lution and a minor decrease of about 30% in vortex
number, with an associated increase of less than 10% in
the population of the k = 0 mode, indicating a vortex-filled,
low-coherence, nonequilibrium state. Moreover, driving at an
idealized “infinite” frequency wp/wo ~ 1000(corresponding
to wp/2m =500 [pink curve in Fig. 1(b) and 1(c)]) was
found to lead to practically no change to the system’s initial
configuration.

IV. CONCLUSIONS

We have considered the dynamical response of a homo-
geneous two-dimensional ultracold Bose gas under periodic
quenches of its interaction strength through the Berezinskii-

Kosterlitz-Thouless phase transition at a driving frequency
wp. We have identified an intrinsic system response fre-
quency wg and demonstrated that resonant driving leads to a
highly nonequilibrium state exhibiting only limited coherence
growth, compared to when driving the system on either side
of this resonance. Focusing on the most interesting regime of
driving at a frequency within one order of magnitude from the
resonant value, we characterized the system response in terms
of the driving frequency, by analyzing the evolution of densi-
ties, vortices, zero-momentum mode occupations, spectra, and
coherence.

Specifically, we identified two distinct driving regimes
of experimental relevance: Driving at a frequency wp much
smaller than w( gives rise to quasiadiabatic dynamics, with
maximum coherence achieved after a single quench half-
cycle, even if the system has not had sufficient time to fully
equilibrate in momentum space (with the limiting case of
extremely slow drive, wp — 0, corresponding to the adi-
abatic regime). Under (quasi-) adiabatic conditions it is
possible to analytically describe the evolution of the average
density.

In the opposite regime, driving the system faster than the
system response frequency leads to a dynamically driven
nonequilibrium system, whose coherence grows gradually
through multiple quench cycles. Interestingly, such driving
can lead to a significant zero-momentum mode occupation
and enhancement in coherence: for example, even for large
driving frequencies wp/wy ~ 10, the coherence can grow up
to 50% over the range of the box, despite only achieving
<1% coherence after the first quench. As expected, quenching
much faster than that (e.g., wp/wy = 100) leads to practically
no generation of coherence, with the system entering an inco-
herent, vortex-filled steady state.

The single intrinsic resonance identified in our work is,
to the best of our knowledge, the only resonant frequency in
this infinite 2D system found in our model. Experimentally, it
is known that periodic driving through Feshbach resonances
may lead to nonground-state condensation [112] and when
considering external trapping there are likely to be other reso-
nances with trap frequencies [113].

Our study extends earlier works on cyclic phase transition
crossing, and may help guide future nonequilibrium driven
quench experiments and lead to the generation of interesting
nonequilibrium steady states of ultracold atoms with partial
superfluidity.

Data supporting this publication are openly avail-
able under a Creative Commons CC-BY-4.0 License in
Ref. [114].
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