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Parafermions are elusive fractional excitations potentially emerging in fractional quantum Hall-
superconductor junctions and represent one of the major milestones in fractional quantum matter. However,
generic models of parafermions are not analytically solvable, and understanding their topological modes is a
bigger challenge than conventional Majorana modes. Here, by using a combination of tensor network and kernel
polynomial techniques, we demonstrate the emergence of zero modes and finite energy excitations in many-body
parafermion chains. We show the appearance of zero-energy modes in the many-body spectral function at the
edge of a topological parafermion chain, their relation with the topological degeneracy of the system, and we
compare their physics with the Majorana bound states of topological superconductors. We demonstrate the
robustness of parafermion topological modes with respect to a variety of perturbations, and we show how weakly
coupled parafermion chains give rise to in-gap excitations. Our results exemplify the versatility of tensor network
methods for studying dynamical excitations of interacting parafermion chains and highlight the robustness of
topological modes in parafermion models.
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I. INTRODUCTION

Unconventional excitations in quantum materials are a cen-
tral research area in modern condensed matter physics [1,2].
Paradigmatic examples of unconventional excitations are
the edge modes of topological insulators [1,3,4], including
quantum anomalous Hall insulators and quantum spin Hall
insulators [5]. Solely, these systems have attracted a great
amount of attention for their potential for dissipationless elec-
tronics and spintronics. Topological superconductors [6,7]
represent another instance in which topological excitations
have a major role. In particular, the emergence of Majorana
zero modes [7,8] in these systems puts forward the possibil-
ity of using superconductors as a noise-resilient platform for
topological quantum computing [9–11].

Interest in topological superconductors started with the
first proposals to realize artificial p-wave superconducting
in a variety of platforms [12–21], by combining strong-
spin orbit coupling effects, superconducting proximity effect
and exchange fields. Majorana bound states can be gener-
alized to a wider class of topological excitations, known
as parafermions [22]. In particular, parafermions realize
quantum excitations with generalized commutation rela-
tions, providing a powerful platform for topological quantum
computing, overcoming a limitation of Majorana bound
states [9,10,23]. In contrast to fermions, parafermions do not
exist in nature, and thus they must be artificially engineered.
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Following the previous point, a variety of proposals involving
fractional quantum Hall states with superconductivity have
been put forward for their artificial engineering [24–36], in-
spired by the success of proposals for Majorana bound states.

Majorana bound states can be described in an effec-
tively single-particle picture with the Bogoliuvov-de-Gennes
formalism. The robustness of these modes to perturbations
stems from their topological origin, which is associated
to the existence of a single-particle nontrivial topological
invariants. Interestingly, the inclusion of many-body inter-
actions turns those topological models much richer [37].
Ultimately, parafermion models represent a much bigger chal-
lenge from the theoretical point of view. This stems from
the fact that parafermion models cannot be solved analyt-
ically in general [38,39], and no general proof exists to
demonstrate ground state degeneracies. As a result, models
for parafermions become full-fledged many-body problems,
requiring a full many-body treatment. Parafermion models are
substantially less explored than their Majorana counterparts.
In particular, the computation of dynamical excitations in
parafermion chains remains a challenging problem due to the
genuine many-body nature of the problem, and the lack of
exact analytical tools for its generic treatment.

Here, using a combination of tensor network and kernel
polynomial techniques, we show the emergence of edge and
interface topological excitations in parafermion chains. In
particular, here we demonstrate that parafermion chains show
edge zero modes that are resilient to a variety of parafermion
many-body interactions, and that weak coupling between
parafermion zero modes give rise to in-gap excitations at finite
energy at the interface (Fig. 1). Furthermore, we compare
the phenomenology of these parafermion chains with those
of Majorana excitations in topological superconductors. Our
manuscript is organized as follows. First, in Sec. II, we present

2643-1564/2021/3(1)/013095(10) 013095-1 Published by the American Physical Society

https://orcid.org/0000-0002-9916-1589
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.013095&domain=pdf&date_stamp=2021-01-29
https://doi.org/10.1103/PhysRevResearch.3.013095
https://creativecommons.org/licenses/by/4.0/


VILJA KASKELA AND J. L. LADO PHYSICAL REVIEW RESEARCH 3, 013095 (2021)

FIG. 1. Sketch of two weakly coupled parafermion chains (a),
showing the emergence of decoupled topological excitations at the
edge and coupled modes at the interface. (b) shows the dynamical
spectral function at each site of the chain, showing the emergence of
topological zero modes at the edges (c) and finite energy in-gap exci-
tations at the interface (d). Bound states in (c) and (d) are highlighted
by the purple dashed circles.

a generalized parafermion model, that simultaneously cap-
tures conventional fermions and parafermions, together with
a quantum many-body procedure used to solve the system. In
Sec. III, we use this formalism to study the dynamical topo-
logical modes in a Majorana chain, including the effects of
many-body interactions, decoupling and disorder. In Sec. IV,
we show that a parafermion chain show emergent zero modes
in the spectral function. In Sec. V, we show that perturbations
to the parafermion Hamiltonian leave the zero-edge excitation
unaffected. In Sec. VI, we show how interfacial in-gap exci-
tations at finite energy emerge at the interface between two
parafermion chains. Finally, in Sec. VII, we summarize our
conclusions.

II. MODEL

A. Clock model and parafermions

In the following, we will study a one-dimensional model
of parafermions [22,36,40–52] exhibiting topological zero
modes. Parafermions are generalizations of conventional
fermions with ZN symmetry showing generalized commuta-
tion relations. Parafermion models are conveniently written
from a so-called clock model, involving operators τ and σ .
The clock operators τ and σ generalize the Pauli x and z

matrices, with the following properties:

σ n = τ n = 1, σ † = σ n−1, τ † = τ n−1, (1)

The integer N determines the type of ZN parafermion con-
sidered. In particular, for N = 2, the conventional algebra of
Pauli matrices is recovered, yielding σ 2 = 1. In contrast, for
N = 3, one recovers the same state upon applying the operator
three times. The clock operators allow generalizing the notion
of fermions, by promoting the typical Jordan-Wigner algebra
to ZN symmetry. The clock operators follow a generalized
commutation relation of the form

στ = zτσ (2)

with z = e2π i/n. In a parafermion chain, each site is taken to
have its own set of parafermion operators τ j and σ j . With
those local clock operators, the operators for parafermions are
derived from the clock operators as [22,53,54]

χ j =
(

j−1∏
k=1

τk

)
σ j, (3)

ψ j =
(

j−1∏
k=1

τk

)
σ jτ j, (4)

where ψ and χ correspond to the two parafermion operators.
The previous transformation can be understood as a general-
ized Jordan-Wigner transformation between conventional spin
operators and fermionic operators [22]. The Hamiltonian of
the parafermion chain is constructed with ψ j , χ j , ψ

†
j , and

χ
†
j . The parafermionic commutation relation follows from the

commutation relations of the clock operators and is given by

χ jψk = zψkχ j, χ jχk = zχkχ j, ψ jψk = zψkψ j, (5)

for j < k. These commutation relations are responsible for
the exotic quantum statistics of the chain. In particular, tak-
ing n = 2 recovers the commutation relations for fermions.
Given the previous operators, a many-body Hamiltonian for
the parafermion chain can be written as

H = i f
∑

n

χ†
n ψn + iθ

∑
n

ψ†
n χn+1 + H.c., (6)

where f is an on-site coupling between parafermions on
the same site, and θ a coupling between parafermions in
different sites. We focus on the Hamiltonian of Eq. (6) for sim-
plicity, yet of course more complex Hamiltonians involving
parafermion operators can be written. The previous Hamil-
tonian is known to have a rich phase diagram for complex
values of f and θ [45,55,56], which in particular hosts a
phase with many-body topological order. We note that the
topological order we study exists only in parafermionic model
but not in the clock model. In particular, in the clock chain, the
degenerate ground states are not robust to local perturbations.
Here we will focus on this topological phase, which is ob-
tained in particular by taking θ = 1 and f = 0.5. In particular,
we will be interested in studying the dynamical excitations
of the system, which follows from computing the following
dynamical correlator:

�(ω, n) = 〈GS|χ†
n δ(ω − H + EGS)ψn|GS〉, (7)
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where |GS〉 is the many-body ground state of the system and
EGS the ground-state energy. Due to the genuine many-body
nature of this model, we will compute this dynamical corre-
lator numerically using the kernel polynomial tensor network
as elaborated in the next section.

B. Kernel polynomial tensor network formalism

Due to the many-body nature of the Hamiltonian (6), a
generic analytic solution cannot, in general, be obtained. To
tackle this problem, we will here employ the tensor net-
work formalism [57–62], which is in particular well suited
for generic interacting one dimensional problems. In order
to compute the dynamical correlators we will use the tensor
network kernel polynomial formalism [63–68]. The kernel
polynomial method [63] (KPM) allows for the computation of
spectral functions directly in frequency space by performing
expansion in terms of the Chebyshev polynomials of Eq. (7).
For simplicity, we focus our discussion on the rescaled Hamil-
tonian H → H̄, whose ground state energy is located at E = 0
and whose excited states are restricted to the interval [0,1),1

which can be generically obtained by shifting and rescaling
the original Hamiltonian H. The dynamical correlator � for
the original Hamiltonian H can then be recovered by rescaling
back the energies in the dynamical correlator �̄ of the scaled
Hamiltonian H̄. To compute the dynamical correlator �̄, we
perform an expansion of the form

�̄(ω) = 1

π
√

1 − ω2

(
μ0 + 2

NP∑
l=1

μlTl (ω)

)
, (8)

where Tl are Chebyshev polynomials and NP are the number
of polynomials considered. The coefficients of the expan-
sion μl can be then computed as μl = 〈GS|χ†

n Tl (H̄)ψn|GS〉 ,
where |GS〉 is computed with the density-matrix renormal-
ization group (DMRG) algorithm [57]. Taking into account
the recursion relation of the Chebyshev polynomials Tl (ω) =
2ωTl−1(ω) − Tl−2(ω) , with T1(ω) = ω and T0(ω) = 1, the
different coefficients μl can be computed by iteratively defin-
ing the vectors

|w0〉 = ψn|GS〉, (9)

|w1〉 = H̄|w0〉, (10)

|wl+1〉 = 2H̄|wl〉 − |wl−1〉, (11)

so that |wl〉 = Tl (H̄)ψn|GS〉.
In this way, the coefficients μl are computed as μl =

〈GS|χn|wl〉 . To improve the convergence rate of the expan-
sion, we perform an autoregressive extrapolation [69] and we
quench the Gibbs oscillations with the Jackson kernel [70].

1The MPS-KPM algorithm can be performed with a Hamiltonian
whose full-spectrum is scaled and shifted to fit the interval (−1, 1),
which for computational efficiency should be done in with the spec-
tral center located at 0.

III. DYNAMICAL EXCITATIONS IN AN INTERACTING
TOPOLOGICAL SUPERCONDUCTOR

A. Zero modes in interacting topological superconductors

In this section, we first show how the previous formalism
allows capturing the robustness of Majorana zero modes [71],
a well-studied topological state that emerges taking n = 2
in the generalized parafermion model. To go beyond the
single-particle Majorana limit, we will benchmark our tensor
network formalism with an interacting topological supercon-
ductor. In particular, it is well known that the ground state
degeneracy of a finite island is not lifted by many-body
interactions [72,73] and that the zero-bias peak structure sur-
vives [74]. We take the following many-body Hamiltonian for
an interacting for a one-dimensional topological superconduc-
tor:

H = μ
∑

n

c†
ncn + t

∑
n

c†
ncn+1 + �

∑
n

cncn+1

+ V
∑

n

(
c†

ncn − 1

2

)(
c†

n+1cn+1 − 1

2

)
+ H.c., (12)

where c†
n, cn and the creation and annihilation fermionic op-

erators, μ is the chemical potential, t the hopping, � the
p-wave superconducting order, and V the electron-electron
interaction. In the case of V = 0, the previous Hamiltonian
corresponds to a noninteracting one dimensional topological
superconductor, whose eigenstates can be solved with a con-
ventional Bogoliubov-de Gennes transformation [71]. This
limit of V = 0 corresponds to the Hamiltonian of Eq. (6)
when taking Z2 operators. In this limit V = 0, the previous
Hamiltonian of Eq. (12) is known to show edge zero modes.
In particular, those zero modes are associated with Majorana
excitation, one in each edge of the chain, that together en-
code a net twofold degeneracy of the ground state. In the
noninteracting regime of V = 0, these zero modes can be
understood as arising from a nontrivial topological invariant of
the associated Bogoliuvov-de-Gennes Hamiltonian [7,71,75].

In the presence of interactions V �= 0, the conventional
single-particle classification no longer holds, and the Hamil-
tonian becomes purely many body. However, it is known that
interactions do not lift the twofold degeneracy of an open
Majorana chain [72,73]. The existence of twofold degeneracy
is associated with the emergence of a zero-energy peak at the
edge coexisting with a gapped bulk spectra in the spectral
function

A(ω, n) = 〈GS|cnδ(ω − H + EGS)c†
n|GS〉, (13)

where EGS is the ground state energy. This can be observed by
computing the dynamical correlator of Eq. (13) at the edge
and the bulk of the sample as the interaction V is turned
on Figs. 2(a) and 2(b). In particular, for V = 0 the gapped
bulk and zero-energy peak can be understood from the single-
particle picture as mentioned above. As the interaction V is
increased, a finite gap remains in bulk [Fig. 2(a)], and the zero-
energy peak remains [Fig. 2(b)]. At large enough interaction
strengths, the bulk gap would close, and the zero-energy peak
would get mixed the bulk states. The previous phenomenology
shows that, as long as interactions are not strong enough to
close the bulk gap, the Majorana zero-energy edge mode is
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FIG. 2. Spectral function in the bulk (a) and at the edge (b) of a
topological superconductor as a function of the interaction strength
V . (c) shows the spectral function in the different sites of the chain
for the interacting topological superconductor, showing the presence
of zero-energy modes. (d) shows the spectral function in the different
sites of the chain including both interactions and disorder, highlight-
ing the robustness of the zero-energy excitations.

robust. This can also be observed by computing the spectral
function of Eq. (13) in the different sites of the chain at an
intermediate interaction V as shown in Fig. 2(c). In particular,
it is clearly observed that the zero-energy modes are strongly
located at the edge and that they rapidly decay inside the
chain, leading to a gapped bulk spectra [Fig. 2(c)].

In the discussion above, we have considered an interacting
Hamiltonian, whose terms are uniform in space. It is, however,
worth to note that these topological zero-energy modes remain
robust in the presence of disorder in the Hamiltonian, both in
the noninteracting and in the interacting regime. This can be
explicitly shown by adding a disorder term to the Hamiltonian
of Eq. (12) of the form Hd = ∑

n εnc†
ncn where εn is a different

random number for each site in the interval (−ε, ε). As shown
in Fig. 2(d), the edge zero modes survive in the presence of
this random disorder and interactions, whereas the gapped
bulk states are heavily affected by it. This resilience of the
zero modes is associated with their topological nature, sig-

naling that for a moderate disorder strengths the topological
degeneracy of the ground state remains invariant.

B. Interface excitations in coupled topological superconductors

Previously we showed that the topological zero modes
appear at the edge of the one-dimensional chain, both in the
presence of electronic interactions and disorder. We will now
address how these topological zero modes would emerge a
single chain is decoupled into two, which will lead to edge
modes at each end of each subsystem. For this goal, we
now define a parametric Hamiltonian, in which the coupling
between the left and right parts is controlled by λ.

Hλ = μ
∑

n

c†
ncn + t

∑
n �=L/2

c†
ncn+1 + �

∑
n �=L/2

cncn+1

+ V
∑

n �=L/2

(
c†

ncn − 1

2

)(
c†

n+1cn+1 − 1

2

)

+ λ[tc†
L/2cL/2+1 + �cL/2cL/2+1]

+ λ

[
V

(
c†

L/2cL/2 − 1

2

)(
c†

L/2+1cL/2+1 − 1

2

)]

+ H.c. (14)

By definition, λ = 1 corresponds to the pristine limit of
Eq. (12), whereas λ = 0 corresponds to the fully decoupled
limit in which the system consists of two independent chains.
In this limit, the Hamiltonian consists of two fully decoupled
chains, and therefore each chain develops its own pair of
Majorana edge modes. The evolution from the fully coupled
to the fully decoupled limit can be systematically explored
by computing the the spectral function in the chain for differ-
ent strengths of the coupling λ as shown in Figs. 3(a)–3(d).
As it is obvious to expect, coupling the two chains will lift
away the interface zero modes. In particular, as the chains
are decoupled, an interface state emerges and drifts to lower
energies [Figs. 3(a)–3(d)]. This can be systematically studied
by looking at the evolution of the spectral function at the
interface as a function of the coupling λ, as shown in Fig. 3(e).
In particular, the zero mode in the fully decoupled regime
becomes a finite energy excitation as the coupling between the
two chains is increased. Similar phenomenology is known in
noninteracting Majorana chains, highlighting that the emer-
gence of finite energy excitations from coupled topological
zero modes also holds in the purely many-body regime. In the
following, we will show that an analogous phenomenology
happens in interacting parafermion chains.

IV. ZERO-MODE EXCITATIONS IN
PARAFERMION CHAINS

We now move on to consider chains of Z3 parafermions, in
particular building on top of the previous results for an inter-
acting topological superconductor. The first interesting issue
to consider is the many-body degeneracy of the parafermion
chain, in comparison with the one of the topological supercon-
ductor [22]. This can be observed by analyzing the excitation
energies as a function of the system size, as shown in Fig. 4(a).
It is observed that as the system size becomes bigger, the
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FIG. 3. [(a)–(d)] Spectral function of Eq. (13) in an interacting
topological superconductor as a function of the coupling λ between
the left and right parts, with (a) λ = 0.7, (b) 0.5, (c) 0.3, and
(d) 0.1. As the coupling λ becomes weaker, interface modes move
to lower energies, eventually giving rise to zero-energy excitations
in the decoupled chain. (e) shows the spectral function at the edge
as a function of the decoupling, highlighting the emergence of the
interfacial zero mode at λ = 0. We took t = 1, � = 0.6, μ = −0.3,
and V = 0.3 in (a)–(e).

energies of the first two excited states become arbitrarily
close to the ground state energy, with the next excited state
presenting a finite gap. This very same phenomenology takes
place for the Majorana model, in which the finite splitting
of the states for small chains is rationalized in terms of the
hybridization between the edge modes. It is important to note
that, in contrast with the Majorana model, the ground state
of the Z3 parafermion chain becomes threefold degenerate,
in comparison with the twofold degeneracy of the Majorana
chain.

In the case of a topological superconductor, the degeneracy
of the ground state is associated with the emergence of Majo-
rana zero modes at the edges. The degeneracy of the ground
state with open boundary conditions for the Z3 parafermion
chain is again rationalized in terms of emergent topological
edge modes, but now encoding a threefold degeneracy. This
can be observed in the dynamical correlator computed at the
edge of a parafermion chain as a function of the chain length,

FIG. 4. (a) Many-body excitation energies of a parafermion
chain with open boundary conditions, showing the emergence of
a threefold degenerate ground state in the thermodynamic limit.
(b) shows the spectral function at the edge as a function of the system
size. (c) shows the spatially resolved spectral function, showing the
emergence of edge excitations.

as showed in Fig. 4(b). In this fashion, the finite splitting
between the lowest three energy levels for small chains can
be rationalized in terms of a finite hybridization between the
topological zero modes located at opposite edges. Due to the
existence of a finite gap in the bulk of the chain, the zero
modes are exponentially localized, leading to an exponential
dependence of the hybridization between the states. This can
be verified by looking at the spectral function for every site in
the parafermion chain, as shown in Fig. 4(c). In particular,
the topological zero modes are strongly localized at edges
of the chain, whereas the spectral function remains gapped
in the bulk of the chain [Fig. 4(c)]. In the next section, we
will address the robustness of the edge zero-mode excitations,
showing that the previous phenomenology is robust towards
perturbations.

V. PERTURBATIONS AND DISORDER IN
PARAFERMION CHAINS

Previously we focused on the pristine parafermionic chain
showing the emergence of topological excitations at zero
energy at the edge. In the following, we will assess the robust-
ness of previous zero modes with respect to perturbations. In
particular, we will focus on two different interaction terms,
a biquadratic interaction between parafermions, and a next
to nearest-neighbor hopping in the parafermion chain. We
will examine the impact of these perturbations by computing
the edge and bulk spectral function as the interaction term
is increased, as it was shown in the interacting topological
superconductor above.
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FIG. 5. [(a) and (b)] Spectral function in the bulk (a) and at the
edge (b) as a function of the biquadratic interaction term of Eq. (15).
[(c) and (d)] Spectral function in the bulk (c) and at the edge (d) as
a function of the second-neighbor hopping of Eq. (16). (e) shows the
spectral function in every site for the parafermion chain with random
disorder of Eq. (17).

Let us first address the case of biquadratic interactions. In
particular, we now include a term in the Hamiltonian that in-
volves four parafermionic operators, leading to a Hamiltonian
of the form

HW = i
∑

n

f χ†
n ψn + iθ

∑
n

ψ†
n χn+1

+ W
∑

n

ψ†
n χnψ

†
n+1χn+1 + H.c., (15)

where W controls the strength of the biquadratic interaction.
We compute the spectral function in bulk and at the edge as a
function of the coupling parameter W , as shown in Figs. 5(a)
and 5(b). In particular, we observe that as the interaction term
is ramped up, the bulk spectral gap decreases. However, as
long as the bulk gap remains open, the topological edge exci-
tation remained pinned at zero energy. This phenomenology
emphasizes that the biquadratic interaction parametrized by
W competes with the topological gap. However, as long as
such perturbation is not strong enough to close the bulk gap,

FIG. 6. [(a)–(d)] Spectral function in the different sites of two
coupled parafermion chains, for different values of the interface
coupling λ between the left and right parts. We took (a) λ = 0.7,
(b) 0.5, (c) 0.3, and (d) 0.1. As the coupling λ is decreased, interface
modes move towards lower energies, eventually giving rise to topo-
logical modes in the two decoupled chains. (e) shows the spectral
function at the interface as a function of the coupling, highlighting
the emergence of the interfacial zero mode at λ = 0.

the topological edge excitations will remain pinned at zero en-
ergy. From the point of view of the degeneracy of the ground
state of the parafermion chain, this means that a threefold
degeneracy is robust against the biquadratic perturbation. It
is interesting to note that this is an analogous phenomenology
as the one shown above for the Majorana chain.

After showing that first neighbor interactions compete with
the topological phase, we now turn to a different perturbation
whose effect is dramatically different. We now consider a
bilinear term in the parafermion Hamiltonian, giving rise to a
second neighbor hopping. The full Hamiltonian now becomes

Hγ = i
∑

n

f χ†
n ψn + iθ

∑
n

ψ†
n χn+1+γ

∑
n

ψ†
n χn+2 + H.c.,

(16)

where γ parametrizes the strength of a second-neighbor hop-
ping between the parafermion operators. We show the spectral
function in the bulk as a function of the coupling parameter
λ in Fig. 6. In particular, we see that the spectral func-
tion in the bulk increases its gap as γ is ramped up. At
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the same time, the edge spectral function keeps showing a
zero-energy resonance corresponding to the topological edge
state. This phenomenology highlights that perturbations to the
parafermionic Hamiltonian can also enhance the topological
gap, and more importantly keeping the excitations pinned at
zero energy at the edge.

It is finally interesting to show that the emergence of
zero modes is not associated with the translational symmetry
of the lattice. In particular, we now consider a Hamiltonian
parafermion lattice where the couplings are disordered

Hdis = i
∑

n

fnχ
†
n ψn + iθ

∑
n

ψ†
n χn+1 + H.c. (17)

where now fn takes random values between (0.37,0.62). We
compute the spatially resolved spectral function as shown in
Fig. 5(e). It is seen that the edge zero modes survive in this
disordered chain, despite the strong effect on the bulk states.
This phenomenology demonstrates the robustness of the zero-
energy modes of the parafermion chains, and in particular,
their existence is not associated with lattice symmetries. The
next section addresses how coupling different topological
modes between different chains lifts those excitations from
zero energy.

VI. INTERFACE EXCITATIONS IN COUPLED
PARAFERMION CHAINS

Previously, we showed that weak perturbations to the
parafermion Hamiltonian to not lift the edge excitations
from zero energy. We now explore how topological excita-
tions at zero energy can be created by weakly coupling two
parafermion chains. For this sake, we define a parametric
Hamiltonian of the form

Hdis = i f
∑

n

χ†
n ψn+iθ

∑
n �=L/2

ψ†
n χn+1+iλθψ

†
L/2χL/2+1+H.c.,

(18)
where λ controls the coupling between two halves of the
chain. In particular, for λ = 1 the system corresponds to a
uniform chain, whereas for λ = 0, the system is formed for
two decoupled chains.

Let us now look at the spectral function at every site as a
function of the coupling strength between the two chains λ, as
shown in Figs. 6(a)–6(d). Like in the Majorana case, it is is
obvious to expect that coupling the two chains will lift away
the interface zero-energy excitations. In the pristine case, λ =
1 zero-edge excitations emerge at the two edges, coexisting
with a fully gapped bulk. Starting with a finite but not perfect
coupling λ = 0.7 [Fig. 6(a)], we observe that a finite energy
excitation starts to appear at the interface between the two
chains. As the coupling between the two halves in weakened,
an in-gap state drifts towards lower energies [Figs. 6(b)–6(d)],
ultimately creating zero modes at the edges of the now two
decoupled chains. This can also be systematically explored by
computing the spectral function at the interface between the
two chains as a function of λ, as shown in Fig. 6(e). It is clearly
observed that the two topological edge modes, originally lo-
cated at zero energy, become finite energy excitations as the
coupling between the two chains is increased. This shares
the same phenomenology as conventional Majorana chains,

highlighting that the hybridization between topological zero
modes generically give rise to finite energy excitations. It is
finally interesting to note that for λ �= 0, the collective ground
state of the two chains will be threefold degenerate in the
thermodynamic limit. In contrast, for λ = 0 the ground state
becomes ninefold degenerate. For λ �= 0, the first excited state
will then correspond to the interface excitation that arises from
the coupled edge modes at the junction, whose energy can be
inferred from the spectral function of Fig. 6(e). These results
highlight that coupling topological excitations is an effective
way of creating in-gap modes at finite energy.

VII. CONCLUSIONS

To summarize, we have shown the emergence of zero
modes and excitations at finite energies in a parafermion
chain. Generic parafermion models are challenging to study
analytically, and their topological excitations are less under-
stood than those of single-particle topological systems. To
study this interacting model, we employed a combination
of tensor network and kernel polynomial techniques that al-
low addressing the full excitation spectra of the interacting
Hamiltonian. We have shown that topological parafermion
chains feature robust zero-energy excitations, that encode
the threefold degeneracy of the ground state in the thermo-
dynamic limit. We demonstrated that these excitations are
robust against perturbations, including biquadratic interac-
tions, second neighbor hopping and disorder. We then showed
how interfacial modes at finite energies can be created by
weakly coupling different parafermion chains, with an exci-
tation energy controllable by the coupling between the chains.
Our results demonstrate the robustness of these topological
excitations in parafermion chains, and put forward kernel
polynomial tensor networks as a versatile technique to study
finite-energy excitations in highly interacting models.
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APPENDIX: RELATION BETWEEN A(ω, n) AND THE
SINGLE-PARTICLE EXCITATION ENERGIES

Here we show that, in the noninteracting limit, the spectral
function of Eq. (13) corresponds to the single-particle density
of states.

Let us take a single particle Hamiltonian of the form
H = ∑

i j Hi jc
†
i c j . In its diagonal form, it becomes H =∑

k εkd†
k dk , where dk are the single particle eigenstates and

εk the single particle eigenenergies. A unitary transforma-
tion U relates the c†

n and d†
k operators as c†

n = ∑
k Uk,nd†

k .
We start with the single-particle formalism to compute the
local spectral function, also known as the local density of
states. For the single-particle formalism, we take a basis of
single-electron states |n〉 = c†

n|0〉, where |0〉 is the vacuum
state. In this case, we would compute the local density of
states as D(ω, n) = 〈n|δ(ω − H )|n〉 ∼ 〈n|Im[(ω − H )−1]|n〉,

013095-7



VILJA KASKELA AND J. L. LADO PHYSICAL REVIEW RESEARCH 3, 013095 (2021)

where H is the tight-binding matrix. In the diagonal basis, it
takes the form D(ω, n) = ∑

k |Uk,n|2δ(ω − εk ), which is the
conventional form for the local spectral function.

We now move on to the computation in the spectral
function working in the many-body Fock space as done in
DMRG [76–79]. In this space, the basis is no-longer states
with a single electron, but with an arbitrary number of elec-
trons. The many-body ground state is given by the Fermi sea
|GS〉 = �εk<0d†

k |0〉, where |0〉 is the vacuum state dk|0〉 =
0. This state is, by definition, the eigenstate with the low-
est possible energy associated to the Hamiltonian H, with
H|GS〉 = EGS|GS〉, and it has a total energy EGS = ∑

εk<0 εk .
The excited states can be build analogously. In particular, for
each single-particle energy εk′ > 0, there is an excited many-
body state with one more electron than the ground state given
by |k′〉 = d†

k′ |GS〉, with an energy H|k′〉 = (EGS + εk′ )|k′〉.
With the previous points, let us now move on to consider
the dynamical correlator of Eq. (13) A(ω, n) = 〈GS|cnδ(ω −

H + EGS)c†
n|GS〉. In the Fock space, the term δ(ω − H +

EGS) takes the form
∑

� δ(ω − E� + EGS)|�〉〈�|, where E�

is the many-body energy of the many-body eigenstate |�〉.
With the previous representation and taking the definitions of
the different terms, we get A(ω, n) = ∑

εk>0 |Uk,n|2δ(ω − εk ),
the conventional definition of the local density of states for
a single particle Hamiltonian. In other words, the function
A(ω, n) directly reflects the single particle energies εk > 0,
namely the unoccupied single particle states. As a result,
the spectral function computed with Eq. (13) corresponds to
the conventional single-particle spectral function as D(ω >

0, n) = A(ω, n). We note that the full local density of states
can be computed analogously as D(ω, n) = 〈GS|cnδ(ω −
H + EGS)c†

n|GS〉 + 〈GS|c†
nδ(−ω − H + EGS)cn|GS〉. For an

interacting system that lacks a single particle description,
the previous formalism allows computing the spectral func-
tion generically, and therefore it is the method used in our
manuscript.

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[2] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[3] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W.
Ludwig, Classification of topological insulators and supercon-
ductors in three spatial dimensions, Phys. Rev. B 78, 195125
(2008).

[4] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classifica-
tion of topological quantum matter with symmetries, Rev. Mod.
Phys. 88, 035005 (2016).

[5] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in
Graphene, Phys. Rev. Lett. 95, 226801 (2005).

[6] M. Sato and Y. Ando, Topological superconductors: A review,
Rep. Prog. Phys. 80, 076501 (2017).

[7] C.W.J. Beenakker, Search for majorana fermions in supercon-
ductors, Annu. Rev. Condens. Matter Phys. 4, 113 (2013).

[8] E. Majorana, Teoria simmetrica dell’elettrone e del positrone, Il
Nuovo Cimento 14, 171 (1937).

[9] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[10] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A.
Fisher, Non-abelian statistics and topological quantum informa-
tion processing in 1d wire networks, Nat. Phys. 7, 412 (2011).

[11] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J.
Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K.
Flensberg, and J. Alicea, Milestones Toward Majorana-Based
Quantum Computing, Phys. Rev. X 6, 031016 (2016).

[12] R. M. Lutchyn, T. D. Stanescu, and S. Das Sarma, Search for
Majorana Fermions in Multiband Semiconducting Nanowires,
Phys. Rev. Lett. 106, 127001 (2011).

[13] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids and
Majorana Bound States in Quantum Wires, Phys. Rev. Lett. 105,
177002 (2010).

[14] T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, Majorana
fermions in semiconductor nanowires, Phys. Rev. B 84, 144522
(2011).

[15] J. Röntynen and T. Ojanen, Topological Superconductivity and
High Chern Numbers in 2D Ferromagnetic Shiba Lattices,
Phys. Rev. Lett. 114, 236803 (2015).

[16] P. San-Jose, J. L. Lado, R. Aguado, F. Guinea, and J. Fernández-
Rossier, Majorana Zero Modes in Graphene, Phys. Rev. X 5,
041042 (2015).

[17] J. Klinovaja, P. Stano, A. Yazdani, and D. Loss, Topological
Superconductivity and Majorana Fermions in Rkky Systems,
Phys. Rev. Lett. 111, 186805 (2013).

[18] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic
New Platform for Topological Quantum Computation Using
Semiconductor Heterostructures, Phys. Rev. Lett. 104, 040502
(2010).

[19] J. L. Lado and M. Sigrist, Two-Dimensional Topological Su-
perconductivity with Antiferromagnetic Insulators, Phys. Rev.
Lett. 121, 037002 (2018).

[20] L. Fu and C. L. Kane, Superconducting Proximity Effect and
Majorana Fermions at the Surface of a Topological Insulator,
Phys. Rev. Lett. 100, 096407 (2008).

[21] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker,
G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller,
Majorana Fermions in Equilibrium and in Driven Cold-Atom
Quantum Wires, Phys. Rev. Lett. 106, 220402 (2011).

[22] P. Fendley, Parafermionic edge zero modes in Zn-invariant spin
chains, J. Stat. Mech.: Theory Exp. (2012) P11020.

[23] A.Yu. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).

[24] J. K. Jain, Composite-Fermion Approach for the Fractional
Quantum Hall Effect, Phys. Rev. Lett. 63, 199 (1989).

[25] N. Read and E. Rezayi, Beyond paired quantum hall states:
Parafermions and incompressible states in the first excited lan-
dau level, Phys. Rev. B 59, 8084 (1999).

[26] N. Schiller, E. Cornfeld, E. Berg, and Y. Oreg, Predicted sig-
natures of topological superconductivity and parafermion zero
modes in fractional quantum hall edges, Phys. Rev. Res. 2,
023296 (2020).

[27] W. Zhu, S. S. Gong, F. D. M. Haldane, and D. N. Sheng,
Fractional Quantum Hall States at ν = 13/5 and 12/5 and

013095-8

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1007/BF02961314
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1038/nphys1915
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevLett.106.127001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevB.84.144522
https://doi.org/10.1103/PhysRevLett.114.236803
https://doi.org/10.1103/PhysRevX.5.041042
https://doi.org/10.1103/PhysRevLett.111.186805
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.121.037002
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.106.220402
https://doi.org/10.1088/1742-5468/2012/11/P11020
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1103/PhysRevB.59.8084
https://doi.org/10.1103/PhysRevResearch.2.023296


DYNAMICAL TOPOLOGICAL EXCITATIONS … PHYSICAL REVIEW RESEARCH 3, 013095 (2021)

their Non-Abelian Nature, Phys. Rev. Lett. 115, 126805
(2015).

[28] A. Vaezi, Superconducting Analog of the Parafermion Frac-
tional Quantum Hall States, Phys. Rev. X 4, 031009 (2014).

[29] M. Barkeshli and X.-G. Wen, Effective field theory and pro-
jective construction for Zk parafermion fractional quantum hall
states, Phys. Rev. B 81, 155302 (2010).

[30] A. C. Balram, M. Barkeshli, and M. S. Rudner, Parton con-
struction of particle-hole-conjugate read-rezayi parafermion
fractional quantum hall states and beyond, Phys. Rev. B 99,
241108(R) (2019).

[31] L. H. Santos, Parafermions in hierarchical fractional quantum
hall states, Phys. Rev. Res. 2, 013232 (2020).

[32] M. Barkeshli and X.-G. Wen, u(1) × u(1) � Z2 chern-simons
theory and Z4 parafermion fractional quantum hall states,
Phys. Rev. B 81, 045323 (2010).

[33] J. Behrmann, Z. Liu, and E. J. Bergholtz, Model Fractional
Chern Insulators, Phys. Rev. Lett. 116, 216802 (2016).

[34] G. Moore and N. Read, Nonabelions in the fractional quantum
hall effect, Nucl. Phys. B 360, 362 (1991).

[35] S. Groenendijk, A. Calzona, H. Tschirhart, E. G. Idrisov, and
T. L. Schmidt, Parafermion braiding in fractional quantum hall
edge states with a finite chemical potential, Phys. Rev. B 100,
205424 (2019).

[36] J. Alicea and P. Fendley, Topological phases with parafermions:
Theory and blueprints, Annu. Rev. Condens. Matter Phys. 7,
119 (2016).

[37] L. Fidkowski and A. Kitaev, Topological phases of fermions in
one dimension, Phys. Rev. B 83, 075103 (2011).

[38] J. H. Son and J. Alicea, Commuting-projector hamiltonians for
chiral topological phases built from parafermions, Phys. Rev. B
97, 245144 (2018).

[39] M. A. Levin and X.-G. Wen, String-net condensation: A physi-
cal mechanism for topological phases, Phys. Rev. B 71, 045110
(2005).

[40] W. Li, S. Yang, H.-H. Tu, and M. Cheng, Criticality in
translation-invariant parafermion chains, Phys. Rev. B 91,
115133 (2015).

[41] J. Klinovaja and D. Loss, Parafermions in an Interacting
Nanowire Bundle, Phys. Rev. Lett. 112, 246403 (2014).

[42] A. M. Tsvelik, Integrable Model with Parafermion Zero Energy
Modes, Phys. Rev. Lett. 113, 066401 (2014).

[43] A. S. Jermyn, R. S. K. Mong, J. Alicea, and P. Fendley, Stability
of zero modes in parafermion chains, Phys. Rev. B 90, 165106
(2014).

[44] H. Ebisu, E. Sagi, Y. Tanaka, and Y. Oreg, Generalized
parafermions and nonlocal josephson effect in multilayer sys-
tems, Phys. Rev. B 95, 075111 (2017).

[45] A. Alexandradinata, N. Regnault, C. Fang, M. J. Gilbert, and
B. A. Bernevig, Parafermionic phases with symmetry breaking
and topological order, Phys. Rev. B 94, 125103 (2016).

[46] N. Moran, D. Pellegrino, J. K. Slingerland, and G. Kells,
Parafermionic clock models and quantum resonance, Phys. Rev.
B 95, 235127 (2017).

[47] R. Samajdar, S. Choi, H. Pichler, M. D. Lukin, and S. Sachdev,
Numerical study of the chiral Z3 quantum phase transition in
one spatial dimension, Phys. Rev. A 98, 023614 (2018).

[48] A. Chew, D. F. Mross, and J. Alicea, Fermionized parafermions
and symmetry-enriched majorana modes, Phys. Rev. B 98,
085143 (2018).

[49] D. Rossini, M. Carrega, M. Calvanese Strinati, and L. Mazza,
Anyonic tight-binding models of parafermions and of fraction-
alized fermions, Phys. Rev. B 99, 085113 (2019).

[50] F. Iemini, C. Mora, and L. Mazza, Topological Phases of
Parafermions: A Model with Exactly Solvable Ground States,
Phys. Rev. Lett. 118, 170402 (2017).

[51] L. H. Santos and T. L. Hughes, Parafermionic Wires at the
Interface of Chiral Topological States, Phys. Rev. Lett. 118,
136801 (2017).

[52] C. Chen and F. J. Burnell, Tunable Splitting of the Ground-State
Degeneracy in Quasi-One-Dimensional Parafermion Systems,
Phys. Rev. Lett. 116, 106405 (2016).

[53] G. Ortiz, E. Cobanera, and Z. Nussinov, Dualities and the phase
diagram of the p-clock model, Nucl. Phys. B 854, 780 (2012).

[54] E. Fradkin and L. P. Kadanoff, Disorder variables and para-
fermions in two-dimensional statistical mechanics, Nucl. Phys.
B 170, 1 (1980).

[55] Y. Zhuang, H. J. Changlani, N. M. Tubman, and T. L. Hughes,
Phase diagram of the Z3 parafermionic chain with chiral inter-
actions, Phys. Rev. B 92, 035154 (2015).

[56] L. Mazza, J. Viti, M. Carrega, D. Rossini, and A. De
Luca, Energy transport in an integrable parafermionic chain
via generalized hydrodynamics, Phys. Rev. B 98, 075421
(2018).

[57] S. R. White, Density Matrix Formulation for Quantum Renor-
malization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[58] S. R. White, Density-matrix algorithms for quantum renormal-
ization groups, Phys. Rev. B 48, 10345 (1993).

[59] U. Schollwöck, The density-matrix renormalization group
in the age of matrix product states, Ann. Phys. 326, 96
(2011).

[60] ITensor Library http://itensor.org.
[61] DMRGpy Library https://github.com/joselado/dmrgpy.
[62] M. Fishman, S. R. White, and E. M. Stoudenmire, The

ITensor software library for tensor network calculations,
arXiv:2007.14822.

[63] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske,
The kernel polynomial method, Rev. Mod. Phys. 78, 275
(2006).

[64] F. A. Wolf, J. A. Justiniano, I. P. McCulloch, and U.
Schollwöck, Spectral functions and time evolution from the
chebyshev recursion, Phys. Rev. B 91, 115144 (2015).

[65] H. D. Xie, R. Z. Huang, X. J. Han, X. Yan, H. H. Zhao, Z. Y.
Xie, H. J. Liao, and T. Xiang, Reorthonormalization of cheby-
shev matrix product states for dynamical correlation functions,
Phys. Rev. B 97, 075111 (2018).

[66] J. L. Lado and M. Sigrist, Solitonic in-gap modes in a
superconductor-quantum antiferromagnet interface, Phys. Rev.
Res. 2, 023347 (2020).

[67] J. L. Lado and O. Zilberberg, Topological spin excitations
in harper-heisenberg spin chains, Phys. Rev. Res. 1, 033009
(2019).

[68] M. Rösner and J. L. Lado, Coulomb-engineered topology,
arXiv:2008.07990.

[69] H. Akaike, Fitting autoregressive models for prediction, Ann.
Inst. Stat. Math. 21, 243 (1969).

[70] D. Jackson, On approximation by trigonometric sums and poly-
nomials, Trans. Am. Math. Soc. 13, 491 (1912).

[71] A. Yu. Kitaev, Unpaired majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

013095-9

https://doi.org/10.1103/PhysRevLett.115.126805
https://doi.org/10.1103/PhysRevX.4.031009
https://doi.org/10.1103/PhysRevB.81.155302
https://doi.org/10.1103/PhysRevB.99.241108
https://doi.org/10.1103/PhysRevResearch.2.013232
https://doi.org/10.1103/PhysRevB.81.045323
https://doi.org/10.1103/PhysRevLett.116.216802
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1103/PhysRevB.100.205424
https://doi.org/10.1146/annurev-conmatphys-031115-011336
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.97.245144
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1103/PhysRevB.91.115133
https://doi.org/10.1103/PhysRevLett.112.246403
https://doi.org/10.1103/PhysRevLett.113.066401
https://doi.org/10.1103/PhysRevB.90.165106
https://doi.org/10.1103/PhysRevB.95.075111
https://doi.org/10.1103/PhysRevB.94.125103
https://doi.org/10.1103/PhysRevB.95.235127
https://doi.org/10.1103/PhysRevA.98.023614
https://doi.org/10.1103/PhysRevB.98.085143
https://doi.org/10.1103/PhysRevB.99.085113
https://doi.org/10.1103/PhysRevLett.118.170402
https://doi.org/10.1103/PhysRevLett.118.136801
https://doi.org/10.1103/PhysRevLett.116.106405
https://doi.org/10.1016/j.nuclphysb.2011.09.012
https://doi.org/10.1016/0550-3213(80)90472-1
https://doi.org/10.1103/PhysRevB.92.035154
https://doi.org/10.1103/PhysRevB.98.075421
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1016/j.aop.2010.09.012
http://itensor.org
https://github.com/joselado/dmrgpy
http://arxiv.org/abs/arXiv:2007.14822
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/PhysRevB.91.115144
https://doi.org/10.1103/PhysRevB.97.075111
https://doi.org/10.1103/PhysRevResearch.2.023347
https://doi.org/10.1103/PhysRevResearch.1.033009
http://arxiv.org/abs/arXiv:2008.07990
https://doi.org/10.1007/BF02532251
https://doi.org/10.1090/S0002-9947-1912-1500930-2
https://doi.org/10.1070/1063-7869/44/10S/S29


VILJA KASKELA AND J. L. LADO PHYSICAL REVIEW RESEARCH 3, 013095 (2021)

[72] A. M. Lobos, R. M. Lutchyn, and S. Das Sarma, Interplay of
Disorder and Interaction in Majorana Quantum Wires, Phys.
Rev. Lett. 109, 146403 (2012).

[73] E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A.
Fisher, Interaction effects in topological superconducting wires
supporting majorana fermions, Phys. Rev. B 84, 014503
(2011).

[74] R. Thomale, S. Rachel, and P. Schmitteckert, Tunneling spectra
simulation of interacting majorana wires, Phys. Rev. B 88,
161103(R) (2013).

[75] J. Alicea, New directions in the pursuit of majorana
fermions in solid state systems, Rep. Prog. Phys. 75, 076501
(2012).

[76] R. Peters, Spectral functions for single- and multi-impurity
models using density matrix renormalization group, Phys. Rev.
B 84, 075139 (2011).

[77] A. Holzner, A. Weichselbaum, I. P. McCulloch, U. Schollwöck,
and J. von Delft, Chebyshev matrix product state approach for
spectral functions, Phys. Rev. B 83, 195115 (2011).

[78] K. A. Hallberg, Density-matrix algorithm for the calculation of
dynamical properties of low-dimensional systems, Phys. Rev. B
52, R9827 (1995).

[79] P. E. Dargel, A. Honecker, R. Peters, R. M. Noack, and T.
Pruschke, Adaptive lanczos-vector method for dynamic prop-
erties within the density matrix renormalization group, Phys.
Rev. B 83, 161104(R) (2011).

013095-10

https://doi.org/10.1103/PhysRevLett.109.146403
https://doi.org/10.1103/PhysRevB.84.014503
https://doi.org/10.1103/PhysRevB.88.161103
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1103/PhysRevB.84.075139
https://doi.org/10.1103/PhysRevB.83.195115
https://doi.org/10.1103/PhysRevB.52.R9827
https://doi.org/10.1103/PhysRevB.83.161104

