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Fractional diffusion theory of balanced heterogeneous neural networks
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Interactions of large numbers of spiking neurons give rise to complex neural dynamics with fluctuations occur-
ring at multiple scales. Understanding the dynamical mechanisms underlying such complex neural dynamics is
a long-standing topic of interest in neuroscience, statistical physics and nonlinear dynamics. Conventionally,
fluctuating neural dynamics are formulated as balanced, uncorrelated excitatory and inhibitory inputs with
Gaussian properties. Yet heterogeneous, non-Gaussian properties have been widely observed in both neural
connections and neural dynamics. Based on balanced neural networks with heterogeneous, non-Gaussian
features, our analysis reveals that synaptic inputs possess power-law fluctuations in the limit of large network
size, leading to a remarkable relation between complex neural dynamics and the fractional diffusion formalisms
of nonequilibrium physical systems. We derive a fractional Fokker-Planck equation with analytically tractable
boundary conditions for the network, uniquely accounting for the leapovers caused by the fluctuations of spiking
activity. This body of formalisms represents a fractional diffusion theory of heterogeneous neural networks and
results in an exact description of the network activity states. In particular, the fractional diffusion theory identifies
a dynamical state at which the neural response is maximized as a function of structural connectivity. This state
is then implemented in a balanced spiking neural network and displays rich, nonlinear response properties,
providing a unified account of a variety of experimental findings on neural dynamics at the individual neuron
and network levels, including fluctuations of membrane potentials and population firing rates. Our theory and its
network implementations provide a framework for investigating complex neural dynamics emerging from large
networks of spiking neurons and their functional roles in neural processing.
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I. INTRODUCTION

Networks composed of a large number of interacting units
are ubiquitous in physical, biological, financial, and ecolog-
ical systems [1–4]. In these systems, interactions of units
give rise to complex network dynamics with great fluctua-
tions occurring at multiple spatial and temporal scales [1–4].
Understanding such complex dynamics is a long-standing
topic of common interest in these diverse systems. In neuro-
science, neural networks of many interacting neurons likewise
exhibit great fluctuations in their firing activity [5–7]; such
fluctuations provide a critical window into understanding the
working mechanism of neural systems. The classical the-
oretical framework for understanding how complex neural
dynamics emerge is based on homogeneous, randomly cou-
pled networks with balanced excitation and inhibition [8–12].
Such balanced network models have successfully reproduced
many experimental observations such as the high irregular-
ity of neural firing activity and broad distributions of firing
rates, and have been analyzed using dynamical mean field
models with the assumption of homogeneous Gaussian noise
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as synaptic inputs, often referred to as the normal diffu-
sion theory [8–10]. The standard Fokker-Planck formalism
is then used in this theoretical framework to obtain the
key statistical properties of complex neural dynamics. Virtu-
ally all existing balanced neural network models, including
the classical ones [8–10] and their recent extensions incor-
porating heterogeneous degrees [13–15], distance-dependent
connectivity [16–18], and alternative neuron models such as
conductance-based neurons [19,20], have been studied by ap-
plying such normal-diffusion-based formalisms.

Recent experimental studies, however, have been in-
creasingly demonstrating that heterogeneous, non-Gaussian
properties are ubiquitous for both neural connectivity and
neural activity dynamics. For instance, it has been found
that synaptic connection strengths [21,22] and the number of
synaptic connections [23] exhibit heavy-tailed distributions
with non-Gaussian features. Furthermore, it has been em-
pirically found that neural firing activity has super-Poisson
dynamics [7], with great heterogeneity and fluctuations occur-
ring at multiple scales [24–26], and that membrane potentials
fluctuate far from the firing threshold [27]. Some of these
properties are not necessarily incompatible with Gaussian
input statistics: non-Gaussian, lognormal distributions of
synaptic strengths lead to the classical, normal diffusion the-
ory in the large network limit. Suitable assumptions on the
classical theory such as adaptation can be incorporated into
individual modeling studies, in order to reproduce individual
phenomena such as large fluctuations of membrane poten-
tials [28]. Nevertheless, the fundamental problems of whether
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and how the non-Gaussian features of neural dynamics can
be explained in a unified theoretical framework, and the
mechanistic relationships between these neural dynamics and
heterogeneous connectivity, remain unclear.

Here, extending the classical theory of balanced net-
works, we develop a theory explaining how the non-Gaussian
features of complex neural dynamics emerge from biolog-
ically realistic, heterogeneous neural networks. Based on
balanced spiking neural networks with heterogeneous con-
nection strengths, our analysis reveals that synaptic inputs
in such heterogeneous networks possess heavy-tailed, Lévy
fluctuations, a type of fluctuation typical for nonequilibrium
systems with many interacting units [29–31]. This thus leads
to a relation between complex neural dynamics and fractional
diffusion formalisms developed for studying nonequilibrium
physical systems [32–37]; correspondingly, we refer to this as
the fractional diffusion theory of balanced neural networks.
In our fractional theory, we mathematically demonstrate how
these biologically realistic neural networks lead to membrane
potentials undergoing fractional, Lévy diffusion instead of
the normal, Brownian diffusion arising in homogeneous net-
works. By uniquely accounting for the Lévy leapovers caused
by the great fluctuations of spiking activity, we develop an
analytically tractable fractional Fokker-Planck equation with
absorbing boundary conditions. The fractional theory leads
to an exact description of the activity states of balanced het-
erogeneous neural networks; we verify our theory in spiking
neural network models. We also demonstrate how heteroge-
neous firing rate distributions can be analytically incorporated
into our fractional diffusion theory.

Based on this fractional diffusion theory of heterogeneous
neural networks, we identify a network state which is fun-
damentally different from the asynchronous irregular state
and the synchronous irregular state in the conventional mod-
els [9,10,38]. Due to the fractional nature of this state, we
term it the fractional state. This state exhibits rich nonlinear
response properties and can explain a variety of complex neu-
ral dynamics at the individual-neuron and circuit levels, which
otherwise would be treated in isolation in previous studies. In
this state, membrane potential resides far from the threshold,
exhibiting heavy-tailed, skewed distributions, quantitatively
consistent with neurophysiological recordings in the visual
cortex of awake monkeys [27]. Neural firing activity exhibits
great variability with firing rate fluctuations, as observed in
Refs. [7,24,26]. The collective firing rate fluctuations of neural
networks happen at multiple scales in a scale-free manner, as
widely observed in experimental studies [25,39]. We further
demonstrate that in this fractional state, the neural response is
maximized as a function of structural connectivity, indicating
that the heterogeneity of neural connectivity has an impact on
neural dynamics. Our fractional diffusion framework not only
provides a unified account of a variety of the key features
of neural dynamics, but can also be applied to understand
how complex dynamics emerge from other nonequilibrium
systems with large numbers of interacting units.

II. HETEROGENEOUS NETWORK MODEL

We consider a generalization of the classical homogeneous
networks which have been extensively studied over the past

two decades [8–11,38,40]. Our circuit model consists of NE

excitatory and NI inhibitory neurons. Each neuron receives
CE and CI connections from excitatory and inhibitory neu-
rons, respectively, and Cext from excitatory neurons outside
the network. The membrane potential Vi(t ) of neuron i ∈
{1, . . . , NE + NI} satisfies the equation for a leaky integrate-
and-fire neuron [10],

τV̇i(t ) = −Vi(t ) + Ii(t ), (1)

where τ is the integration time, and Ii(t ) denotes the total
synaptic current to neuron i. The current is modeled as a
weighted sum of δ functions representing spikes from incom-
ing neurons,

Ii(t ) := τ

CE +CI +Cext∑
j=1

Ji j

∑
k

δ
(
t − t k

j − D
)
, (2)

where Ji j is the synaptic connection strength from neuron j to
neuron i; t k

j is the emission time of the kth spike of neuron
j; and D is the transmission delay. The spikes of external
neurons are modeled as independent excitatory neurons with
Poisson spike trains at rate νext. The ith neuron spikes when
Vi(t ) reaches the firing threshold θ , resetting the membrane
potential to the reset potential Vr after a refractory period τrp

during which the membrane potential is unresponsive to input.
In previous studies, heterogeneous heavy-tailed distribu-

tions of synaptic weights have been fitted to lognormal
distributions [21–23]. Because of the central limit theorem, in
the thermodynamic limit of large network size, the dynamics
of neural networks with lognormal coupling weights should
be equivalent to those under the homogeneous Gaussian hy-
pothesis [Fig. 1(a)], yielding the classical asynchronous state
with Poisson-like spikes. To theoretically explore the effect
of heterogeneous connectivity on network dynamics, we as-
sume that the heavy-tailed distributions of synaptic weights
are power laws, the same assumption made in Ref. [41] to
theoretically study the effect of heterogeneous connectivity on
neural dynamics. Recent experimental studies have found the
existence of power-law synaptic strengths in drosophila whole
brain data [42,43], but note that these are not mammalian
brain data. In our heterogeneous network model [Fig. 1(b)],
heavy-tailed distributions of outgoing synaptic weights Ji j

are approximated by power law distributions. This power-law
assumption, as demonstrated in the following sections, leads
to a fractional diffusion framework that accounts for a vari-
ety of non-Gaussian properties of neural dynamics such as
the infrequent large fluctuations of membrane potential and
the power-law scaling of the Fano factor of spike counts. The
relationship between the outgoing, statistically independent
synaptic strengths in the excitatory (JE ) and inhibitory (JI )
populations is 〈JI〉 = g〈JE 〉 = gJ , where g is a balance fac-
tor describing the relative strength of inhibitory inputs, and
J := 〈JE 〉 = 〈Jext〉.

A. Fractional diffusion formalism for heterogeneous networks

As in the classical normal diffusion theory for homo-
geneous networks [8–11,13–20], we consider the dynamics
of our heterogeneous network in the limit of large network
size. By using the generalized central limit theorem [44], we
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FIG. 1. Schematic of the stochastic formalisms of homogeneous and heterogeneous networks. (a) The classical formalism begins with
a network model where the connection strengths Ji j are constant (or drawn from a Gaussian distribution), denoted by the lines of JE and
JI with constant thickness. The classical theory leads to a Fokker-Planck framework (c), where the membrane potential V resides close to
the threshold θ with Gaussian fluctuations; it thus never crosses the threshold without passing through it (first arrival equaling first passage)
and so the sink is a delta function at the threshold. (b) The network is strongly heterogeneous and the connection strengths are drawn from
a power-law distribution, denoted by the lines with different thicknesses, leading to a fractional Fokker-Planck formalism (d) whereby the
membrane potential resides far from the threshold and has occasional large fluctuations, due to the presence of large jumps in the trajectory.
This leads to leapovers l over the boundary which must be accounted for correctly in the fractional Fokker-Planck equation by using the first
passage leapover density as a spatially extended sink.

rigorously prove that the total synaptic input I (t ) to an in-
dividual neuron in the network has nonequilibrium Lévy
fluctuations, in the limit of large network size, if and only
if the distributions Jr of synaptic strengths outgoing from
population r ∈ {E , I, ext} have a power-law tail (see detailed
derivation in Appendix A). For all other distributions with
well-defined asymptotic tails, however, the classical Gaussian
fluctuations are recovered.

The total synaptic current I (t ) to a given network neuron is
thus expressed as the sum of an average term with a fluctuating
Lévy noise term,

I (t ) = μ(t ) + σ (t )τ 1−1/αη(t ). (3)

The noise term η(t ) is driven by an α-stable Lévy process L =
L(α, β, γL, DL ) [45] with Lévy stable index 1 < α � 2, skew
parameter β given by Eq. (A23),

β = (1 − γ gα )ν(t − D) + νext

(1 + γ gα )ν(t − D) + νext
, (4)

center γL = 0, and scale DL determined by the tails of the
connection strength distributions Jr . The classical diffusive
case is recovered when α = 2, at which point the Lévy process
L(2, β, 0, DL ) = N (0, 2DL ) reduces to a Gaussian process.
The term ν(t ) represents the mean population firing rate at
time t . The mean input term μ(t ) is a sum of internal and
external inputs to the neuron, while σ (t ) is the fluctuation in
the sum of the internal and external inputs (see Appendix A),

μ(t ) := JτC[ν(t − D)(1 − γ g) + νext], (5)

σ (t ) := J[τC(ν(t − D)(1 + γ gα ) + νext )]
1/α. (6)

Here, for clarity, we have taken NI = γ NE , C := CE = Cext,
and CI = γC, where γ = 0.25 is the ratio of inhibitory to
excitatory neurons; the general equation without these con-
straints is given by Eq. (A21). As in previous studies on the
classical normal diffusion theory [13,14], this formalism can
be extended to compute population firing rate distributions
νr (t ); a mean-field method for this under the fractional for-
malism is detailed in Appendix B.

Using the relation dL = η(t )dt , the dynamics of the neu-
rons in Eq. (3) can be expressed using a Langevin-style
stochastic differential equation,

dV (t ) = −V (t ) + μ(t )

τ
dt + σ (t )

τ 1/α
dL. (7)

The membrane potential can thus be regarded as a particle
driven by Lévy noise, moving in a quadratic external well
centered at μ(t ).

The external input νext is expressed in units of νthr =
θ/(CJτ ), which is the external frequency required for the
mean input μ(t ) to reach threshold in the absence of re-
current feedback. When the populations are balanced (g =
γ −1 = 4), we obtain the balance condition in the sense of
Ref. [15],

μ(t ) = JτC[ν(t − D)(1 − γ g) + νext] ≈ θ, (8)

which is satisfied for (g, νext ) = (γ −1, νthr ). In the following
we focus on balanced heterogeneous networks, although the
expressions are applicable more generally as g and νext vary.
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III. FRACTIONAL FOKKER-PLANCK EQUATION AND
CONSTRUCTION OF BOUNDARY CONDITIONS

By applying the theory of Lévy processes, we obtain the
membrane potential probability density P(V, t ) corresponding
to Eq. (7), which satisfies a fractional Fokker-Planck equa-
tion [45]

τ
∂P(V, t )

∂t
= −DLσα (t )(−�V )α/2

β P(V, t )

+ ∂

∂V
{[V − μ(t )]P(V, t )}, (9)

where

−(−�V )α/2
β = −(−�V )α/2 − β tan

πα

2

∂

∂V
(−�V )(α−1)/2

(10)

is the skewed fractional Laplacian, and

(−�V )α/2P(V, t ) = F−1
k {|k|αFV [P(V, t )]} (11)

is the fractional Laplacian, defined as a Fourier multiplier. The
right-hand side of Eq. (9) consists of a fractional diffusive
term arising from the fluctuations of the input, along with a
drift term from the average part of the input. Since −�x =
− ∂2

∂x2 , the equation can be rewritten as a continuity equation,

∂P(V, t )

∂t
= −∂S(V, t )

∂V
, (12)

where

S(V, t ) := −DLσα (t )

τ
Lα,−1

V P(V, t ) − V − μ(t )

τ
P(V, t )

(13)

is the probability current through V at time t , and

Lα,−1
V := ∂

∂V
(−�V )(α−2)/2 − β tan

πα

2
(−�V )(α−1)/2 (14)

has the property ∂
∂V L

α,−1
V = −(−�V )α/2

β .
In order to map the spiking behavior of neurons onto the

fractional Fokker-Planck equation (9), the boundary condi-
tions need to be specified at the reset potential Vr and threshold
θ , along with a normalization condition. In the conventional
Fokker-Planck framework, neural spiking has been defined as
first arrival to the threshold θ . The firing of the neuron thus im-
poses a point sink term ν(t )δ(V − θ ) [19] at the threshold θ ,
where probability density is actively removed with rate ν(t );
this is illustrated in the schematic in Fig. 1(c). Neurons exiting
the refractory period are injected back into the probability
density using a point source term ν(t − τrp)δ(V − Vr ) at the
reset potential Vr . This injection happens at a rate equal to the
firing rate of the network when those neurons had just fired,
ν(t − τrp).

In our fractional case, however, the situation is more nu-
anced due to the discontinuous large jumps of the membrane
potential V (t ) inherent to Lévy processes, which are absent
in the continuous Gaussian trajectories. This allows the mem-
brane potential to jump over the boundary without arriving at
it; as a result, the first passage of the membrane potential V (t )
through the threshold θ is no longer necessarily equivalent
with the first arrival of V (t ) at θ [see Fig. 1(d)] [35]. This

poses a problem with using the conventional Fokker-Planck
derivation of absorbing boundary conditions in the fractional
case. If neural spiking is still defined as first arrival to the
threshold θ , then the membrane potential V (t ) may spend
time above the threshold before firing, which is unphysical
in our network model. In order for the neuron to correctly fire
whenever the membrane potential is found to be above thresh-
old, one must define neural spiking to be first passage rather
than first arrival with respect to the threshold θ . Since first
arrival equals first passage in the conventional Gaussian case,
the definition of neural spiking as first passage is physically
consistent in both the conventional and fractional cases.

When neural spiking is defined as first passage, the sink
term becomes spatially extended in the fractional case, equal
at each point V � θ to the probability that the membrane
potential V (t ) lands at V at the time of first passage through
the threshold θ . In the absence of resetting, the sink term is
determined by the first passage leapover density [46]. The
Langevin equation (7) for the membrane potential in the bal-
anced condition (g, νext ) = (γ −1, νthr ) corresponds to Lévy
motion in a quadratic external well with absorbing boundary
at its extremum. In this case, the first passage leapover density
q(V, t ) can be obtained from a variable transformation of the
leapover in the free case [46,47],

q(V, t ) = sin(πα̂/2)

π

(θ − Vr )α̂/2e(1−α̂/2)t/τ

(V − θ )α̂/2[θ − Vr + (V − θ )et/τ ]
(15)

for V � θ , where

α̂ := α + 2

π
arctan

(
β tan

πα

2

)
(16)

is related to the positivity parameter ρ [48–50] by the identity
2αρ = α̂.

When neurons exiting the refractory period are also con-
sidered, the canonical absorbing sink [47] becomes ν(t ) ∗t

[pFP(t )q(V, t )], where ∗t denotes temporal convolution, and
pFP(t ) is the first passage time density of a particle driven by
Lévy motion in a quadratic external well out of (−∞, θ ) start-
ing at Vr . As time passes, an expanding region is established
around the reset potential Vr , characterized by the nonequilib-
rium stationary state [51]. Within this region, the first passage
time density in the convolution may be regarded as a δ func-
tion pFP(t ) = δ(t − 1/ν(t )) [47]. After a large amount of time
has passed, the sink term everywhere approaches the expres-
sion ν(t )q(V, 1/ν(t )). The analytical results in this work are
expressed in terms of q(V, t ) in order to account for the un-
balanced case (g, νext ) �= (γ −1, νthr ) when its corresponding
first passage leapover density q(V, t ) becomes known in the
statistical physics literature [32–37,46–51]. Since neurons are
always reset to the same reset potential Vr , the point source
term ν(t − τrp)δ(V − Vr ) due to neurons exiting the refractory
period remains unchanged from the classical Gaussian case.

Next, by the definition of the integrate-and-fire neuron,
P(V, t ) = 0 for V > θ , and thus by continuity

P(θ, t ) = 0. (17)
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Since P(V, t ) is a probability distribution, it is integrable
[so its spatial Fourier transform P̂(k, t ) is smooth]:

lim
V →−∞

P(V, t ) = lim
V →−∞

V P(V, t ) = 0 (18)

and satisfies the normalization condition∫ ∞

−∞
P(V, t ) dV + pr (t ) = 1, (19)

where pr (t ) := ∫ t
t−τrp

ν(u) du is the probability that the neuron
is refractory at time t . Incorporating these boundary condi-
tions into Eq. (9) yields an analytically tractable fractional
Fokker-Planck equation for characterizing motion in the pres-
ence of absorbing barriers,

∂P

∂t
= ν(t − τrp)δ(V − Vr ) − ν(t )q(V, 1/ν(t )) − ∂S

∂V
.

(20)

This equation is unique in that previous approaches to incor-
porating absorbing barriers in the fractional Fokker-Planck
equation required the truncation of the integral form of the
fractional Laplacian, preventing standard analytical methods
from being used [35]. Here, however, the absorbing bound-
ary is fully encapsulated in the extended sink term, allowing
the fractional Laplacian to remain untouched and hence per-
mitting the usage of standard techniques for its analytical
solution.

IV. NETWORK DYNAMICS REVEALED BY THE
FRACTIONAL FOKKER-PLANCK FORMALISM

We now show that Eq. (20) can be solved under the con-
dition ∂P/∂t = 0, in order to show the stationary network
dynamics of the membrane potential distribution P0(V ) and
firing rate ν0, and uncover the existence of a state at which
the neural response is structurally maximal. This can be done
by moving into the Fourier domain and solving the resultant
ordinary differential equation, as detailed in Appendix C. We
denote the variables corresponding to the time-independent
solution of Eq. (20) by the addition of a 0 to their subscripts,
and the omission of their time arguments; the stationary mem-
brane potential distribution P0(V ) given by Eq. (C12) is

P0(V ) = −τν0P0,2(θ )

P0,1(θ )
P0,1(V ) + τν0P0,2(V ), (21)

where P0,1(V ), P0,2(V ) are defined in Eqs. (C13) and (C14).
Although the fractional diffusion theory can also be derived
using other neuron models, for which the first term on the
right-hand side of Eq. (1) becomes an arbitrary function of
Vi, we have chosen the theoretically simplest neuron model
in order to focus on the heavy-tailed heterogeneity. The sta-
tionary firing rate ν0 can be obtained by solving the implicit
equation (C19), which is

1

ν0
= τrp + τ

P0,2(θ )

P0,1(θ )
. (22)

This generalizes the classical result for the mean first passage
time of an IF neuron with random Gaussian inputs to the Lévy
case [10,52]. We then directly calculate the stationary mem-
brane potential distributions [Eq. (21)] and numerically [53]

solve the stationary firing rate equation (22) using the biolog-
ically realistic parameter sets detailed in Appendix D.

Figure 2(a) shows the stationary firing rate ν0 [see Eq. (22)]
as a function of the Lévy stable index α, all other param-
eters such as the external firing rate being kept constant.
As α decreases from the classical Gaussian value α = 2,
the probability for the membrane potential V to encounter a
sequence of large jumps towards the threshold θ increases.
This causes an increase to the firing rate, despite the external
input rate remaining constant. However, for low α close to
α = 1, the probability for a large jump of the membrane
potential away from the threshold, from which it would be
difficult to recover with even moderately sized jumps, begins
to become significant, causing a reduction in the firing rate.
These two counteracting forces on the firing rate, arising
from the strong heterogeneity of synaptic strengths, are bal-
anced around the value α = 1.2, representing the maximum
response in activity for a given external input rate; this state
is referred to as the fractional state. We have obtained all
values in Fig. 2 using the biologically realistic parameter set
(see Appendix D), consciously choosing to keep the external
firing rate constant, in order to highlight the differences caused
solely by a change in structural connectivity. Here the firing
rate in the classical Gaussian regime (α = 2) is around 18 Hz,
while in the fractional regime (α = 1.2), the firing rate rises
to 54 Hz, a threefold increase due solely to the heterogeneity
of the network. To see the ability of the fractional regime to
maintain spontaneous activity, we reduce the external stim-
ulus to 30% the threshold value, where the classical network
becomes silent, and find that the heterogeneous network main-
tains a low, sustained firing rate (6.73, 3.02, 1.61 Hz for α =
1.15, 1.2, 1.25), consistent with the conditions under which
heavy-tailed dynamics appear in Ref. [27]. These results thus
reveal that heterogeneous neural coupling can have profound
functional advantages in neural networks.

At this point of maximal response, the membrane po-
tential rests far from the threshold [Fig. 2(b), blue line] in
contrast to the classical case, where the membrane poten-
tial hovers close to the threshold [Fig. 2(b), yellow line].
To further quantify this difference and compare with exper-
imental results on membrane potential residuals, we calculate
the skewness γ3 of the membrane potential distribution be-
tween the reset potential and threshold, which is around −0.7
and 0.5 in the Gaussian and fractional cases respectively
[Fig. 2(c), red line]. These properties of membrane potential
predicted by our theory are consistent with recent whole-cell
Vm measurements from the visual cortex of behaving mon-
keys [27], in which it has been demonstrated that Vm is far
from threshold during spontaneous activity, and its distribu-
tion is skewed positively with median value γ3 = 0.72 [27].
Although leaky integrate-and-fire neurons have a hard thresh-
old, a feature not present in other spiking neuron models such
as the exponential integrate-and-fire neuron, they remain ef-
fective in capturing the subthreshold properties of membrane
potentials.

The zero density of the membrane potential distribution
above threshold in Fig. 2(b) demonstrates that the absorbing
boundary condition has been set up properly; when the classi-
cal first arrival point sink ν(t )δ(V − θ ) is instead used for the
boundary condition [see the schematics in Figs. 1(c) and 1(d)],
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FIG. 2. Stationary states vary with the fractional Lévy index α. (a) The stationary firing rate ν0 as a function of α under the homogeneous-
rate (green) and mean-heterogeneous (green-dashed) assumptions is maximized around the optimal Lévy range α ∈ (1.1, 1.2), which is
significantly higher than the firing rate arising in the classical asynchronous state (α = 2). The vertical lines represent 5th–95th percentile
ranges in the corresponding network firing rate distribution, and the triangles show their means. (b) The membrane potential distributions
P0(V ) for the fractional state α = 1.2 (blue) and the Gaussian state α = 2 (yellow) under the homogeneous-rate assumption agrees with
the network values (triangles). (c) The skewness γ3 (red) and excess kurtosis γ4 (purple) of the membrane potential distribution under the
homogeneous-rate assumption as α varies; the vertical line shows the decrease to the skewness of the network distribution when adding
constant input to the network.

the membrane potential distribution in the fractional case be-
comes nonzero above the threshold point θ [35], representing
the trajectories of the membrane potential which jump over
the threshold without arriving at it.

V. SPIKING NETWORK IMPLEMENTATION

To verify our fractional diffusion theory and further illus-
trate that it can unify a range of neural dynamics [7,24,27],
we next numerically investigate heterogeneous balanced neu-
ral networks with the distributions of heavy-tailed coupling
weights approximated as power-law functions (as detailed in
Sec. II).

In line with the findings in Ref. [15], we have found that
when the synaptic strengths are drawn at random from their
distributions [see Eq. (A15) and Appendix D], the per-neuron
balance between excitation and inhibition is hindered, leading
to the division of the network into silent and saturated neu-
rons. In order to mitigate these effects, without violating the
statistical independence of inputs across different populations,
we ensure that the overall balance between the sums of exci-
tatory and inhibitory connection strengths to a given neuron is
sufficiently close to g = γ −1 = 4, so that

−gγ
CE∑
i=1

JE ,i =
CI∑
j=1

JI, j . (23)

In our network model, we ensure tight balance for each neuron
by drawing the ensembles of excitatory weights once, and
then redrawing the ensembles of inhibitory weights, until the
absolute ratio between the excitatory ensemble sum and the
redrawn inhibitory ensemble sum is to within ε = 10−3 of
1/gγ . Importantly, we recover this balance while maintaining
the heterogeneity in input connectivity.

We use the spiking neural network package NEST [54] to
simulate a network of NE excitatory and NI inhibitory neu-
rons; biologically realistic parameter sets (Appendix D) are
used to highlight the effect of fractional, Lévy noise compared
with the classical, Gaussian asynchronous irregular regime.

To represent the behavior of the fractional regime, we
have chosen the value α = 1.2, around which the firing rate
response is maximized [see Fig. 2(a)]; the essential behavior
of the fractional regime with respect to neural variability,
however, can be seen for any α sufficiently far from the
Gaussian value α = 2. In particular, numerical simulations
of network firing rates at various values of α [Fig. 2(a),
triangles and vertical lines] are generally consistent with
analytical predictions and demonstrate that firing rate distribu-
tions become very wide across neurons in the network in the
fractional regime, which are lognormal as we explain below
[see Fig. 3(c)].

To validate the prediction of our fractional diffusion theory,
we compute the membrane potential distribution across all
neurons in the network [Fig. 2(b), triangles], which is in excel-
lent agreement with the theoretical stationary state values. To
directly compare our results with experimental observations,
we compute the per-neuron properties of membrane potentials
in the fractional regime, as shown in Figs. 3(a) and 3(b). The
heterogeneity in connectivity leads to a wide distribution of
means and skewness of membrane potentials across neurons
in the network; these heterogeneous properties across neurons
are consistent with those measured in Ref. [27] [see their
Figs. 2(e) and 2(f)]. Since classical, randomly connected net-
works with heterogeneous in-degrees are expected to have a
distribution of skewness, it would be interesting to study how
that skewness can be compared with quantitative data as has
been done in this study.

To demonstrate how the activity of the network may be
switched between the fractional state and one with more Gaus-
sian features, as observed experimentally [27], we perform
network simulations (α = 1.2) by adding constant external
input of larger magnitude. The peak of the network membrane
potential distribution flattens, with its skewness decreasing
from around 0.5 to 0.1 [Fig. 2(c), black], largely comparable
with the decrease in skewness observed in Ref. [27] [see their
Fig. 3(d)] after stimulus onset. This change can be analyti-
cally explained using the fractional theory in Appendix A,
by modeling the external input as a subpopulation with
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FIG. 3. Per-neuron properties of the stationary fractional state (α = 1.2). (a) The distribution of distances of the mean membrane potential
from the reset potential Vr across neurons has skewness γ3 = 1.17. (b) The distribution of membrane potential skewness across neurons
has median value γ3 = 0.47. (c) Firing rate distribution using the Monte Carlo method applied to the mean-field formalism in Appendix B
(histogram), and corresponding network distribution (triangles); lognormal fit in inset.

heterogeneity index α = 2, while maintaining the α = 1.2
index of the internal network subpopulations.

Next, we calculate the distribution of firing rates across
neurons in the heterogeneous network; in our fractional
regime, the network displays a lognormal firing rate dis-
tribution [Fig. 3(c), triangles], negatively skewed as in
Refs. [12,55], but with the in-degrees CE ,CI ,Cext remain-
ing constant throughout the network. The mechanism behind
this heterogeneous, lognormal firing rate behavior is the
highly variable Lévy input that each neuron receives, aris-
ing from the independent, heterogeneous structure of the
synaptic strengths; those neurons with a weak ensemble
of synaptic strengths fire least often, while neurons with
strong synaptic strength ensembles have a highly tense
excitation-inhibition balance, and consequently have the high-
est firing rates. The skewed property of the distribution arises
from the existence of a membrane time constant in the net-
work, as noted by previous studies [12]. Classical models can
robustly generate lognormal firing rate distributions by using
randomly connected networks, such as Erdős-Rényi networks
with constant connection probability [12–14], without requir-
ing a tight balance condition such as Eq. (23). This is because
the two sides of Eq. (23) differ by at most a Gaussian quantity
in these classical models, instead of one with a power-law
tail in the heterogeneous case without tight balance. Here,
however, we have achieved lognormal firing rates in a model
where the in-degree is constant. This is in order to isolate
power-law inputs arising from network heterogeneity as a
mechanism for lognormal firing rates, in conjunction with a
variety of experimental findings described in this section.

To assess the ability of the fractional diffusion theory to
reproduce firing rate distributions for strongly heterogeneous
networks, we perform Monte Carlo simulations based on the
mean-field formulation of heterogeneous firing rates under
the fractional theory, in Appendix B, which proposes an ad-
ditional quenched source of variability μq to the mean input
μ(t ) [Eq. (B10)]:

μq = J
[√

CE (1 + γ g2)Var(ν)W

+ C1/α
ext νextUext + (CE 〈|να|α〉)1/αUα

]
, (24)

and find that the skewed lognormal behavior of the network
is reproduced in essence [Fig. 3(c), histogram]. However, as
discussed at the end of Appendix B, a significant contribution

arises due to local effects (via individual properties of nearby-
connected neurons) in the strongly heterogeneous case, which
are by assumption dropped in the mean-field formalism. This
contribution is clearer when computing fixed points by iter-
ating the Monte Carlo simulations [Fig. 2(a), green-dashed]:
the additional correlations discussed in Appendix B serve to
restrain the firing rate, but do not change its relative behavior
as a function of structural connectivity α. In particular, our
fractional diffusion formalism is able to capture the network
peak of the firing rate at α = 1.1 compared to the α = 1.2
prediction under the balance condition (8) in the sense of
Ref. [15].

The spikes of neurons exhibit great variability, as shown
in the raster plot [Fig. 4(a)]. To quantify such variability, we
calculate the coefficients of variation (CV) of the interspike
interval (ISI), and find that the distribution of CV is wide in
the fractional regime (Fig. 5), ranging between 0.5 and 2.5
with a mean of 1.4. On the other hand, the CVs of the classical
homogeneous network with constant in-degree CE are concen-
trated around a single CV value (1.0). This variability in CV
arises because the ensemble sums of heterogeneous synap-
tic strengths in the fractional regime, while balanced across
different populations, differ on a per-neuron basis, leading
to vast fluctuations in firing activity across different neurons.
The distribution of CVs in classical networks such as those in
Ref. [12] is also broad due to the in-degree heterogeneity.

As shown in Fig. 4(a), firing rates exhibit large fluctuations
over long timescales in the fractional regime. To quantify
such firing rate fluctuations, as in Ref. [24], we compute the
Fano factor F (T ) = Var(N (T ))/〈N (T )〉 with different time
window sizes T , where N (T ) is the individual neural spike
count in time window T (Fig. 6). The fractional regime shows
that for T > 10 ms, the Fano factor increases in a fractal
manner as T increases, indicating the presence of great firing
rate fluctuations. Such fluctuations can actually be fitted as
power-law functions as found in Refs. [24,26]. The power-
law index of the Fano factor around the optimal parameter
α = 1.2 is approximately 0.5 (Fig. 6, black dashed line),
consistent with experimental findings on the firing activity
of cortical neurons [26]. As noted in previous studies [56],
the Fano factors in the classical asynchronous state α = 2
have the Poisson-like value of unity only when there is no
refractory period, with sub-Poisson behavior in the presence
of refractory effects; however, the fractional state is able to
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FIG. 4. Network activity in the fractional (α = 1.2) and classical asynchronous (α = 2) regimes. Raster plot (top) of 50 randomly chosen
excitatory neurons from the network model simulation. Membrane potential time series V (t ) (bottom) of a single network neuron as a function
of time t .

exhibit a power-law increase in the Fano factor regardless of
the existence of refractory effects. This suggests the existence
of a phase transition between the Gaussian and fractional

FIG. 5. Density histogram of the coefficient of variation (CV)
of the interspike interval (ISI) across neurons in the heterogeneous
network. The fractional regime (blue) has a wide distribution of CVs
compared to the classical asynchronous regime.

regimes, at which the long-term Fano factor switches from
zero to infinity respectively [57].

To directly compare with the fluctuations of firing rates
found in Ref. [7], we then calculate the variance and mean
of the spike count over 1 sec windows, with each neuron

FIG. 6. Fano factor F (T ) of single-neuron spiking activity in
the heterogeneous network as a function of time window T . Black
dashed power-law line with exponent 0.5 shown for comparison.

013083-8



FRACTIONAL DIFFUSION THEORY OF BALANCED … PHYSICAL REVIEW RESEARCH 3, 013083 (2021)

FIG. 7. Variance-to-mean relation of the neural responses to a
random sample of 1000 excitatory neurons in the balanced heteroge-
neous network.

constituting a single data point. As shown in Fig. 7, the
superlinear increase of the spike count variance as a func-
tion of its mean is consistent with experimentally observed
spike count variability (see Fig. 2 in Ref. [7]) in macaque
cortical areas V1, V2, and MT. In Ref. [7] such fluctua-
tions were modeled based on a phenomenological doubly
stochastic model, in which spikes are generated by a Poisson
process whose rate is modulated by a slowly fluctuating gain
with Gaussian dynamics. However, in our theoretical frame-
work, such firing activity is an emergent, intrinsic property of
our biologically realistic, balanced heterogeneous networks.
Moreover, the doubly stochastic scenario of Ref. [7] leads
to a linear scaling of the Fano factor with time window
size: from Eq. (3) of Ref. [7], F (T ) = Var(N (T ))/[ f (S)T ] =
1 + σ 2

G f (S)T , where f (S) is a function of the stimulus and
G is a stimulus-independent gain. This is in contrast to the
power-law scaling of the Fano factor predicted by our model
(Fig. 6).

We next investigate the fluctuations of population firing
rate, which is the ratio between the number of spikes across
the network and the time window (1 ms) over which the
spikes are counted. We use the analytic Morse wavelet to
compute the continuous wavelet transform and obtain the
wavelet spectrogram of the population firing rate. In the frac-
tional regime α = 1.2, the classical observed frequency band
of oscillation deteriorates, with intermittent bursting activity
at all frequency scales [Fig. 8(a)]. In the classical homoge-
neous regime α = 2, oscillations exist at the characteristic
frequency, albeit partially suppressed in the asynchronous
irregular state as shown in Fig. 8(a). Frequencies suffi-
ciently far from the characteristic oscillation frequency are
fully suppressed compared to the heterogeneous network
regime. The power spectrum of the network activity dis-
plays 1/ f -like behavior in the fractional regime [Fig. 8(b)],

FIG. 8. (a) Wavelet spectrogram of network population firing
rate as a function of time t and oscillation frequency ω, for the
fractional state, α = 1.2 (left), and the classical asynchronous state,
α = 2 (right). (b) Power spectrum (blue dots) of network population
firing rate as a function of oscillation frequency ω, for α = 1.2
(left) and α = 2 (right). Power-law line (orange) with exponent −2.0
provided for comparison. LFP power spectrum with power-law line
of exponent −1.0 in inset.

with a power-law exponent around −2.0 as observed
experimentally [25,39]. Such 1/ f -like behavior can also be
found using other measures for the activity of the network,
such as the local field potential (LFP) calculated as the sum
of the total excitatory current and the magnitude of the total
inhibitory current [58]. We compute the LFP for the net-
work model with constant external input, which exhibits the
1/ f property [Fig. 8(b), inset]. Such fluctuations of LFPs
are thus an intrinsic property of the heterogeneous network;
in the conventional balanced network, an external source of
fluctuations, such as an Ornstein-Uhlenbeck process with a
slowly varying time constant, needs to be incorporated in
order to model LFP fluctuations [59]. This scale-free behavior
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of the firing rate oscillations demonstrates that the classical
linear stability analysis is inadequate in the description of
neural behavior around the stationary state for the fractional
regime: a strongly nonlinear oscillatory response is observed
in the activity with no characteristic oscillation frequency
scale. This distinguishes it from both the asynchronous and
synchronous irregular classical Gaussian regimes in the sense
of Refs. [9,10], where (possibly partially suppressed) oscilla-
tions at characteristic frequencies continue to exist.

VI. DISCUSSION

In this study, we have developed a fractional diffusion
theory of balanced, heterogeneous neural networks. By the-
oretically capturing the highly fluctuating, heterogeneous
synaptic inputs to neurons, our theory identifies a type of state
that exhibits rich nonlinear response properties, providing a
unified network mechanism for a great variety of neural dy-
namics ranging from the individual-neuron to the network
levels [5,7,25–27], which otherwise remain disjointed in ex-
isting theories and models. Importantly, in this state the neural
response is maximized as a function of structural connectivity;
i.e., the firing rate for a given external input is at its greatest.

The fractional diffusion theory provides a theoretical
framework for understanding how complex neural dynam-
ics can emerge from heterogeneous networks. In this theory,
fluctuating synaptic inputs to neurons are formulated as Lévy
stochastic processes. These Lévy processes are characterized
by intermittent large jumps; the presence of these processes
is a hallmark of nonequilibrium complex systems [32–37].
In our theory, we rigorously demonstrate that these processes
arise from heterogeneous neural networks in which the synap-
tic coupling weights are heavy-tailed and comparable with
the size of the network. In the large network size limit, as
a result of the generalized central limit theorem, this corre-
sponds to heavy-tailed, power-law weights. This is, however,
fundamentally different from recent studies of heterogeneous
neural networks, in which heterogeneous connectivity has
been interpreted in terms of heavy-tailed degree distributions
with [18] and without [15] heavy-tailed synaptic strength dis-
tributions. Some of the discussed experimental phenomena
can be reproduced using a different variant of the classical
model with Gaussian input statistics. For example, up-down
fluctuations in membrane potential can be accounted for by
incorporating adaptation into the classical models [28], while
1/ f -fluctuations of LFPs and super-Poissonian features of
neural activity can be generated by adding a time-varying
component to the network inputs [7,59]. The strength of the
fractional theory is that these, along with other currently un-
explained phenomena such as the power-law increase of the
Fano factor over time window [24] and the infrequent large
fluctuations of membrane potential [27], can be explained in
a single framework. As for the specific network model con-
sidered in this study, the tight balance condition (23) is used
in simulations to avoid the disruption of excitation-inhibition
balance by the network heterogeneity, consistent with that
observed in Ref. [15]. This tight balance condition appears
to be biologically implausible; however, it may be naturally
recovered using neural mechanisms discussed in Ref. [15],
such as homeostatic plasticity or spike-frequency adaptation.

In our theory, the Lévy statistics allows for an applica-
tion of fractional diffusion formalisms in neural networks.
Previous studies of fractional diffusion in various branches
of statistical physics [35] have encountered difficulties when
attempting to use the fractional Fokker-Planck equation in the
presence of absorbing boundaries. The integral truncations
performed in those studies on the fractional Fokker-Planck
operator to incorporate these boundary conditions break its
convenient Fourier multiplier representation, rendering it un-
usable for analytical predictions. To develop an analytically
tractable fractional Fokker-Planck equation with the required
absorbing boundary conditions in neural networks, we con-
struct a link between the first passage time and the first
passage leapover, previously regarded as related but indepen-
dent concepts [46,47]. Our unique fractional formalisms can
thus be used to analytically reveal the circuit mechanism of
complex neural dynamics, extending the recent interest in us-
ing fractional approaches for understanding complex physical
systems [31,60] to a new area.

Occasional, large synaptic inputs which are the hallmark
features of Lévy processes have been found in neural circuit
models, due to a combination of heavy-tailed but non-power-
law connectivity features along with a specific dynamical state
of the circuit [18], e.g., near a transition regime between
different circuit states. We thus expect that the fractional
diffusion theory applies whenever the inputs have Lévy fluctu-
ations, regardless of specific network structures. In addition,
it should be noted that scale-free, Lévy-like fluctuations can
emerge from neural networks with criticality [3,18,61,62].
In the future it would be interesting to apply our fractional
framework for the formulation of critical neural dynamics, go-
ing beyond the demonstration of the presence of heavy-tailed
distributions in some neural observables.

As we have demonstrated, our fractional theoretical frame-
work provides a unified account of key properties of neural
activity at the individual-neuron and the circuit levels. First,
membrane potentials in our model exhibit non-Gaussian
dynamics, consisting of quiescent periods interrupted by
short intervals of high-amplitude depolarization, and re-
side far from the threshold. Such non-Gaussian fluctuations
of membrane potential have been observed in the sponta-
neous activity of cortical neurons [27] but are inconsistent
with the existing random walk models [63], which instead
predict Gaussian dynamics of membrane potential. Large
fluctuations of membrane potential could be obtained from
classical excitatory-inhibitory balanced networks with a suit-
able choice of parameters, leading to Gaussian statistics with
frequent fluctuations on the order of the standard deviation.
However, the infrequent, occasional large spontaneous fluc-
tuations observed in Ref. [27] cannot be compatible with
Gaussian input statistics, as noted in Ref. [27], but can
be captured in our model. Moreover, while the classical
excitatory-inhibitory spiking circuits have been able to ac-
count for the fluctuations of up- and down-states of membrane
potentials, which have often been observed in cortex of anes-
thetized animals, by incorporating additional mechanisms
such as adaptation [28], the fractional diffusion theory is
mainly used in this study to explain the brief, large excur-
sions of membrane potential dynamics observed in awake
cortex [27,64]. The non-Gaussian state in Ref. [27], which
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occurs during awake fixation, is characterized by infrequent,
brief bumps in inputs, which constitute a defining feature of
the Lévy process.

Second, the variance of spike counts is a super-linear func-
tion of their mean as measured in Ref. [7], and the Fano factor
of spike counts increases as a power-law as a function of the
time window, as found in Refs. [24,26]. In contrast, in the
classical normal diffusion theory, the variance of spike counts
is equal to the mean, and the Fano factor remains constant
over large timescales. Phenomenological models based on
the Poisson process with the incorporation of global fluctu-
ating modulation factors have been proposed to account for
such fluctuations of firing activity [7]. However, as we math-
ematically demonstrate in the Results, such super-Poisson
statistics display a linear scaling of the Fano factor of spike
counts over time window. Furthermore, because the sources
of these global fluctuations are in general unknown, these
phenomenological models are somewhat circular, leaving the
fundamental problem of the circuit mechanism underlying
the fluctuations unaddressed. While super-Poisson statistics of
neural firing activity can emerge from some spiking neural cir-
cuits [56,65–67], analyses of their Fano factor of spike counts
also suggest that it scales linearly over time window. However,
in our model, the Fano factor increases as a power law with
time window, as found in experimental studies [24,26]. By
demonstrating that such firing rate fluctuations are an intrinsic
property of our heterogeneous balanced circuits, our study
identifies a circuit mechanism by which these phenomena can
be explained.

Third, firing rates across neurons are highly heterogeneous,
with some neurons firing a lot but others firing much less,
resulting in the heavy-tailed lognormal distribution as widely
observed in experimental studies [23]. Fourth, the population
firing rate and local field potentials in the fractional state
oscillate across multiple frequency scales in a 1/ f manner,
and all oscillations, such as gamma oscillations at 40 Hz,
occur intermittently in a bursting manner, consistent with
experimental studies of population activity recorded by local
field potentials [25,39]. Achieving such nonlinear behaviors
of oscillations in conventional balanced neural networks has
remained a major challenge, due to the presence of a single
characteristic frequency as predicted by the linear stability
analysis in the conventional Fokker-Planck formalism [10,38].

Our theory identifies a state of activity in which the re-
sponse of the circuit to input is nonlinear and structurally
maximal. Due solely to the heterogeneity of the network,
the neural response for the same average input is signifi-
cantly higher than that of the classical asynchronous state, and
in the fractional state, the stationary firing rate is maximal
as a function of the fractional Lévy index α arising in the
synaptic strength distribution. The utility of a higher firing
rate response, relative to the Gaussian state, is of interest in
maintaining neural firing during spontaneous activity [27],
which we confirm in the Results. For the remainder of our
investigations, in order to ensure that any differences observed
in the fractional state truly arise from changes in structural
connectivity, we have kept the physiological parameters of
the network, such as the excitatory-inhibitory balance, the
external input size, the mean connection strength, and the
mean in-degree, unchanged from the classical case. These,

combined with recent results on enhanced responsiveness due
to the heterogeneity of inhibitory neurons [68], indicate that
network structure has a fundamental impact on the dynamics
of neural activity. In this fractional regime, other variability
properties remain consistent with physiological findings; this
drives us to use the term ‘regime’ to capture a range of non-
linear, nonequilibrium phenomena which cannot be obtained
solely by changing other physiological, magnitude-based con-
straints.

To test this structurally maximal regime with the essen-
tially nonlinear computation properties revealed in our study,
it would be ideal to combine intra- and extra-cellular record-
ings with massive multi-unit recordings in order to measure
the fluctuations of membrane potentials and firing activity at
the individual neuron and population levels. This could be
done in conjunction with the analysis of membrane potential,
synaptic input and neural fluctuations by using the same meth-
ods as we have done in our modeling study.

APPENDIX A: DERIVATION OF LÉVY STABLE INPUT

To demonstrate the emergence of Lévy stable input, we
consider a single neuron in a network undergoing a discrete
time evolution with time step �t , so the probability of a
neuron in population r being active at a given time step is
〈s(t )〉r := νr (t − D)�t . The probability that a neuron receives
a connection from a given neuron in population r is Cr/Nr .
The general idea here is to consider the inputs from each pop-
ulation of incoming neurons separately, and use the properties
of stable processes to combine them into the total input. The
outgoing connection strengths from population r are drawn
from a distribution characterizing the random variable Jr . If Xr

is the random variable representing the firing of an incoming
neuron from population r, which is Bernoulli with probability
λr/Nr , where λr := Cr〈s(t )〉r , then the characteristic function
of JrXr is

ϕJr Xr (u) = 〈ϕXr (uJr )〉Jr
(A1)

=
〈
1 − λr

Nr
+ λr

Nr
eiuJr

〉
Jr

(A2)

= 1 − λr

Nr
+ λr

Nr
ϕJr (u), (A3)

generalizing the characteristic function of a Bernoulli ran-
dom variable. Suppose now that Xi, Ji are independent and
distributed as Xr, Jr , for all i = 1, . . . , Nr . The characteris-
tic function for the total synaptic input to the neuron from
population r is

ϕ∑Nr
i=1 JiXi

(u) =
Nr∏

i=1

ϕJiXi (u) (A4)

= ϕJr Xr (u)Nr (A5)

=
[

1 − λr

Nr
+ λr

Nr
ϕJr (u)

]Nr

(A6)

=
{

1 + λr[ϕJr (u) − 1]

Nr

}Nr

(A7)

Nr→∞−−−→ eλr [ϕJr (u)−1] (A8)
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generalizing the Poisson limit theorem. Then, using Lévy’s
continuity theorem [44],

ϕ∑∞
i=1 JiXi

(u) = eλa[ϕJr (u)−1] (A9)

= (eϕJr (u)−1)λr (A10)

= ϕ∑λr
j=1 Yj

(u), (A11)

where λr is taken to be an integer in the last equality (valid for
large λr), and the Yj are iid random variables with ϕYj (u) =
eϕJr (u)−1. The cumulant generating function (second charac-
teristic function) of Yj is

HYj (u) = ln ϕYj (u) (A12)

= ϕJr (u) − 1, (A13)

so the cumulants of Yj are precisely the moments of Jr ; in
particular, 〈Yj〉 = 〈Jr〉.

The remainder of the derivation is split into two cases:
when the second moment (or equivalently, the variance) of
Jr is infinite, and when it is finite. We consider first the former
case. Suppose that the random variable Jr satisfies

ϕJr (u) ∼ 1 − Dr |〈Jr〉u|α (A14)

as u → 0, so that its probability density function has a positive
tail of the form

pJr (x) ∼ 2AαDr |〈Jr〉|α|x|−α−1 (A15)

as x → +∞, where Aα = �(1 + α) sin(πα/2)/π [69, pp.
10–11] is a constant independent of the population, and a
negative tail which decays more rapidly. Then, using the gen-
eralized central limit theorem [44],

λ−1/α
r

λr∑
j=1

Yj

∣∣∣∣∣
λr→∞

= L

(
α, 1,

〈
λ−1/α

r

λr∑
j=1

Yj

〉
, Dr |〈Jr〉|α

)
.

(A16)

If, instead, the connection strengths of the population have
a dominant negative tail (e.g. the inhibitory population), the
above holds with the exception of the skew parameter βr

taking the value −1. Hence, using the additive property of
the stable law, the total synaptic input to the neuron from all

populations is∑
r

∞∑
i=1

(JiXi )r

∣∣∣∣∣
λr→∞

=
∑

r

λr∑
j=1

Yj

∣∣∣∣∣
λr→∞

(A17)

=
∑

r

L(α, βr, λr〈Jr〉, λrDr |〈Jr〉|α ) (A18)

= L

(
α, β,

∑
r

λr〈Jr〉,
∑

r

λrDr |〈Jr〉|α
)

(A19)

=
∑

r

λr〈Jr〉 +
(∑

r

λrDr |〈Jr〉|α
)1/α

L(α, β, 0, 1),

(A20)

where β =
∑

r βrλr Dr |〈Jr〉|α∑
r λr Dr |〈Jr〉|α . Moving into the continuous-time

limit, one obtains

Ii(t ) dt = τ
∑

r

Crνr (t − D)〈Jr〉 dt

+ τ

[∑
r

Crνr (t − D)Dr |〈Jr〉|α
]1/α

dL(α, β, 0, 1).

(A21)

If all populations have the same coefficient Dr = DL, then

Ii(t ) dt = τ
∑

r

Crνr (t − D)〈Jr〉 dt

+ τ

[∑
r

Crνr (t − D)|〈Jr〉|α
]1/α

dL(α, β, 0, DL ).

(A22)

Since CI = γCE , the skew parameter of the noise in our
excitatory-inhibitory network model becomes

β = (1 − γ gα )ν(t − D) + νext

(1 + γ gα )ν(t − D) + νext
. (A23)

In the latter case, when Jr has finite second moment, the
generalized central limit theorem reduces to the regular cen-
tral limit theorem and α = 2. Choose Dr such that

〈J2
r 〉
2

= Dr |〈Jr〉|2. (A24)

Since the second moment of Jr is equal to the second cumu-
lant (the variance) of Yj , the above derivation for 1 < α < 2
extends to the α = 2 case with Eqs. (A14) and (A15) replaced
by Eq. (A24).

The generalized central limit theorem, in the form stated
in Table 2.1 of Ref. [44], allows for another case (not in-
vestigated in this study). When pJr (x) ∼ 2Dr |〈Jr〉|2|x|−3 (note
the absence of the Aα term) the resultant dynamics of the
model become Gaussian again, with the sole change being
the replacement of the xr := Crνr (t − DB) term in σ (t ) with
xr log xr .

Note that both the central limit theorem and its generalized
variant rely on the synaptic strength distribution Jr having a
well-defined asymptotic tail. As a result, some finite networks
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with non-power-law empirical synaptic strength distributions
may in fact belong to the Lévy universality class if these
empirical distributions do not retain their finite-size behavior
in the large network limit. We leave the elucidation of the con-
sequences of the asymptotic tail assumption to future work.

APPENDIX B: LÉVY STABLE INPUT WITH
HETEROGENEOUS FIRING RATE DISTRIBUTIONS

In this section we demonstrate how the fractional mean-
field theory in Appendix A may be extended to predict
distributions of population firing rates. In the classical the-
ory, where the firing rate, synaptic strength, and number of
connections all had finite variance across the network, this
involved adding a quenched Gaussian term to the mean input∑Cr

i=1 νr,iJr,i dt for each population r. This corresponds to the
first term on the right-hand sides of Eqs. (A20) and (A21).
Due to the Gaussian randomness, it was sufficient to perform
this to first order for each of these sources of random-
ness [12–14,70].

In the fractional diffusion theory, the same technique would
yield a firing rate distribution describing the network in the
absence of the tight balance condition (23). However, incor-
porating this balance condition causes the first-order terms to
cancel out for the internal populations, and the analysis for
these populations must then be brought to second order.

Using the generalized central limit theorem and the synap-
tic heavy-tailed assumption (A15), the mean input arriving
from population r to a randomly selected network neuron
approaches, in the limit of a large number of connections,

Cr∑
i=1

νr,iJr,i

∣∣∣∣∣
Cr→∞

= 〈Jr〉
[

Cr∑
i=1

νr,i + (
Cr

〈
να

r

〉)1/α
Ur

]
(B1)

= 〈Jr〉
[
Cr〈νr〉 +

√
CrVar(νr )Wr

+ (
Cr

〈
να

r

〉)1/α
Ur

]
, (B2)

where νr,i are samples drawn from the population firing rate
distribution νr ; Ur ∼ L(α, 1, 0, Dr ) is a quenched α-stable
sample; and Wr ∼ N (0, 1) = L(2, 0, 0, 1/2) is a quenched
Gaussian sample. When Cr is large, the central limit theorem
applies on 0 � νr � 1/τrp since it is bounded. This yields a
closed, self-consistent system of equations to second order in
the absence of tight balance.

To incorporate the balance condition (23), we observe that
the above implies for the inhibitory population that

CI∑
j=1

νI, jJI, j = 〈JI〉
CI∑
j=1

νI, j + 〈JI〉
(
γCE

〈
να

I

〉)1/α
UI,1 (B3)

in the limit of large CI . Similarly, taking another CE new
samples of the product νI JI ,

γ 1/α

CE∑
i=1

νI,iJI,i = γ 1/α〈JI〉
CE∑
i=1

νI,i + 〈JI〉
(
γCE

〈
να

I

〉)1/α
UI,2,

(B4)

and we find that in distribution

CI∑
j=1

νI, jJI, j = 〈JI〉
CI∑
j=1

νI, j − γ 1/α〈JI〉

×
CE∑
i=1

νI,i + γ 1/α

CE∑
i=1

νI,iJI,i. (B5)

The tight balance condition (23) then allows us to take JI,i =
−gJE ,i, noting that JI,i are random samples of the distribu-
tion JI which do not appear as network synaptic strengths;
similarly the νI,i do not appear in the network as individual
neural firing rates. As a result, we have that in distribu-
tion the mean input from the internal populations with tight
balance is

CE∑
i=1

νE ,iJE ,i +
CI∑
j=1

νI, jJI, j = 〈JI〉
CI∑
j=1

νI, j − γ 1/α〈JI〉
CE∑
i=1

νI,i +
CE∑
i=1

(
νE ,i − gγ 1/ανI,i

)
JE ,i (B6)

= 〈JE 〉
CE∑
i=1

νE ,i + 〈JI〉
CI∑
j=1

νI, j + 〈JE 〉(CE 〈|να|α〉)1/αUα, (B7)

where

Uα ∼ L

(
α,

〈sgn(να )|να|α〉
〈|να|α〉 , 0, Dr

)
(B8)

is a quenched α-stable sample, and να = νE − gγ 1/ανI is
a random variable. Since in our model excitatory and
inhibitory neurons have identical characteristics, the distribu-
tional equality νE = νI yields the following modification to
Eq. (3) for the input I (t ) to a randomly selected neuron at
time t :

I (t ) = μ(t ) + μq(t ) + σ (t )τ 1−1/αη(t ), (B9)

where

μq = J[
√

CE (1 + γ g2)Var(ν)W

+ C1/α
ext νextUext + (CE 〈|να|α〉)1/αUα] (B10)

is the quenched contribution to the mean input, and instances
of ν(t ) are replaced with their population means, 〈ν〉(t ). This
system of equations is closed through the definition of 〈ν〉(t ),
Var(ν)(t ), 〈|να|α〉(t ), and 〈sgn(να )|να|α〉(t ).

Finally, the above is conducted under the assumption that
the firing rate of a neuron is uncorrelated with its outgoing
synaptic strengths. This may no longer be the case in such
strongly connected networks, especially given the propensity

013083-13



ASEM WARDAK AND PULIN GONG PHYSICAL REVIEW RESEARCH 3, 013083 (2021)

for networks with rich clubs to exhibit local rather than global
behavior [18]. We have attempted to account for this by as-
suming that neurons with low firing rates have a small sum
of incoming synaptic strength magnitudes, and vice versa.
However, the mean-field construction links the firing rate of
a neuron with only its incoming, rather than both its incoming
and outgoing, synaptic strengths. This approaches the limit of
what can be achieved using such mean-field techniques: the
correlations between the outgoing and incoming properties
of individual elements begin to become too significant for a
general mean-field analysis. Unlike the situation in Ref. [13],
where the correlations between neural firing rates and their
a priori correlated in- and out- degrees were able to be con-
sidered, the incoming and outgoing synaptic strengths in our
model are independent. In the future, new techniques, possibly
inspired by fractal, renormalization group-like methods, may
replace the mean-field technique in describing the behavior of
heterogeneous, complex systems in statistical physics.

APPENDIX C: DERIVATION OF THE
STATIONARY STATES

Here we present the technical derivation of the stationary
states of the system, which consists of solving a fractional
differential equation. Classical analyses of FFPEs in the ab-
sence of absorbing boundary conditions tend to prefer solving
the system in Fourier-Laplace space [71], where the relevant
dynamical operators have a simple form. Using our analyti-
cally tractable absorbing boundary conditions, we undertake a
similar method whereby we move into Fourier space, and take
the inverse Fourier transform of the solution to the Fourier
ordinary differential equation.

In the stationary state [where q0(V ) := q(V, 1/ν0)],

0 = ν0[δ(V − Vr ) − q0(V )]

+ 1

τ

{
−DLσα

0 (−�V )α/2
β P0(V ) + ∂

∂V
[(V − μ0)P0(V )]

}
.

(C1)

With the aid of the following rudimentary properties of the
Fourier transform of a function f ∈ Lp(R):

Fx

[
∂

∂x
f (x)

]
(k) = −ikF [ f ](k), (C2)

Fx[(−�x )c/2 f (x)](k) = |k|cF [ f ](k), (C3)

Fx[x f (x)](k) = −i
∂

∂k
F [ f ](k), (C4)

Fx[δ(x − a)](k) = eika, (C5)

where p ∈ [1, 2] and c ∈ (0, 2], Eq. (C1) is expressed in
Fourier space as

0 = ν0
[
eiVr k − q̂0(k)

]
+ 1

τ

[
−DLσα

0 |k|αβ P̂0(k) − ik

(
−i

∂

∂k
− μ0

)
P̂0(k)

]
,

(C6)

where

|k|αβ := |k|α + β tan
πα

2
(−ik)|k|α−1 (C7)

= |k|α
[
1 − iβ tan

πα

2
sgn(k)

]
(C8)

is the multiplier corresponding to the skewed fractional Lapla-
cian (−�V )α/2

β . The solution to this first-order differential
equation is

P̂0(k) = CP̂0,1(k) + τν0P̂0,2(k), (C9)

where

P̂0,1(k) = eikμ0− DLσα
0

α
|k|αβ , (C10)

P̂0,2(k) = −i
∫ k

0
dk1

eik1Vr − q̂0(k1)

−ik1

× ei(k−k1 )μ0− DLσα
0

α
(|k|αβ−|k1|αβ ), (C11)

and C is a constant determined by the boundary conditions,
and so

P0(V ) = CP0,1(V ) + τν0P0,2(V ). (C12)

Taking the inverse Fourier transform of Eqs. (C10) and (C11)
yields expressions in terms of the standard α-stable distribu-
tion,

P0,1(V ) = pL1 (V − μ0), (C13)

P0,2(V ) =
∫ 1

0

dk2

k2

{
pL2 [V − μ0 − k2(Vr − μ0)]

− q0(V/k2)

k2
∗V pL2 [V − μ0(1 − k2)]

}
, (C14)

where

L1 := L(α, β, 0, DLσα
0 /α), (C15)

L2 := L(α, β, 0, DLσα (1 − kα
2 )/α), (C16)

and f (V ) ∗V g(V ) = ∫
f (V − V1)g(V1) dV1 is the convolution

operator. To understand the effect of the threshold θ on the
solution, Eq. (C14) can be written as

P0,2(V ) =
∫ 1

0

dk2

k2

{
pL2 [V − μ0 − k2(Vr − μ0)]

−
∫ ∞

θ

dV2 q0(V2)pL2 [V − μ0 − k2(V2 − μ0)]

}
.

(C17)

To increase computational accuracy, the boundaries in the
inner integral in Eq. (C17) can be rewritten over R, giving

P0,2(V ) =
∫ 1

0

dk2

k2

{
pL2 [V − μ0 − k2(Vr − μ0)]

−
∫ ∞

−∞
eV3 dV3 q0(eV3 + θ )

× pL2 [V − μ0 − k2(eV3 + θ − μ0)]

}
. (C18)
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TABLE I. Parameter sets used in this paper.

α = 1.2 α = 2 Units

NE 40 000 10 000
NI 10 000 2500
γ 0.25 0.25
CE 4000 1000
CI 1000 250
Cext 4000 1000
τ 20 20 ms
D 1.5 1.5 ms
νext 1 2 νthr

θ 20 20 mV
Vr 10 10 mV
τrp 2 2 ms
J 0.02 0.1 mV
g 4 5

Using the two boundary conditions (17) and (19) to determine
the two remaining undetermined variables ν0 and C,
one obtains 1 − ν0τrp = 1 − pr,0 = P̂0(0) = CP̂0,1(0) +
τν0P̂0,2(0) = C and 0 = P0(θ ) = CP0,1(θ ) + τν0P0,2(θ ).
Thus the self-consistent condition that determines ν0, the
stationary firing rate, is

0 = (1 − ν0τrp)P0,1(θ ) + τν0P0,2(θ ), (C19)

or equivalently

1

ν0
= τrp + τ

P0,2(θ )

P0,1(θ )
. (C20)

APPENDIX D: NETWORK IMPLEMENTATION DETAILS

To visualize the behavior of the system in this study, it
is necessary to specify biologically realistic numerical values
for the network parameters. These values are presented for

the two parameter sets we use in Table I. The biologically
realistic values are derived from the balanced case in Sec. 4
of Ref. [10], with a tenfold decrease in the mean excitatory
connection strength J in order to produce realistic membrane
potential distributions in the Gaussian regime. The parame-
ters for the classical, asynchronous irregular case (α = 2) are
derived from Fig. 7(c) of Ref. [10].

To construct a computationally tractable synaptic strength
distribution for the network satisfying Eq. (A15), we consider
the lower-bound-truncated translated power-law distribution
for the synaptic connection strengths,

pJ (x) = 2AαDL〈J〉α
|x − x0|α+1

1(x0+x1,∞)(x), (D1)

where x0, x1 is determined by the normalization condition 1 =
〈1〉, and the constraint on the first moment of J is 〈J〉 = 〈J −
x0〉 + x0. Using the relation

〈(J − x0)n〉 = 2AαDL〈J〉α xn−α
1

α − n
(D2)

we obtain

x1 =
(

2AαDL〈J〉α
α

)1/α

, (D3)

x0 = 〈J〉 − x1
α

α − 1
. (D4)

One can then sample values from this distribution using
NumPy’s pareto function.

For comparison with previous analyses [10,38], although
the exact value of the common scale DL depends on the shape
of the synaptic strength distribution Jr , we have chosen it
in computations to coincide, when α = 2, with the diffusion
approximation case where the synaptic strengths are constant
for all neurons in each population. In this classical case,
|〈J〉|2 = 〈J2〉, and so DL = 1/2 using Eq. (A24).
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