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Security proof of practical quantum key distribution with detection-efficiency mismatch
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Quantum key distribution (QKD) protocols with threshold detectors are driving high-performance QKD
demonstrations. The corresponding security proofs usually assume that all physical detectors have the same
detection efficiency. However, the efficiencies of the detectors used in practice might show a mismatch depending
on the manufacturing and setup of these detectors. A mismatch can also be induced as the different spatial-
temporal modes of an incoming signal might couple differently to a detector. Here we develop a method that
allows to provide security proofs without the usual assumption. Our method can take the detection-efficiency
mismatch into account without having to restrict the attack strategy of the adversary. Especially, we do not rely
on any photon-number cutoff of incoming signals such that our security proof is directly applicable to practical
situations. We illustrate our method for a receiver that is designed for polarization encoding and is sensitive to a
number of spatial-temporal modes. In our detector model, the absence of quantum interference between any pair
of spatial-temporal modes is assumed. For a QKD protocol with this detector model, we can perform a security
proof with characterized efficiency mismatch and without photon-number cutoff assumption. Our method also
shows that in the absence of efficiency mismatch in our detector model, the key rate increases if the loss due to
detection inefficiency is assumed to be outside of the adversary’s control, as compared to the view where for a

security proof this loss is attributed to the action of the adversary.
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I. INTRODUCTION

For practical quantum key distribution (QKD) [1] using
photon-counting techniques (discrete variable QKD), infor-
mation is usually encoded in optical signals that contain
multiple photons. To decode the information, one measures
the optical signals usually with threshold detectors which
cannot tell apart the number of incoming photons. Security
proofs of practical QKD protocols usually assume that all
threshold detectors used have the same efficiency. Under this
assumption, one can push the detection efficiency into the
transmission channel, which is under the control of an ad-
versary known as Eve. Thus the transmission loss and the
inefficiencies of the detectors can be lumped together, and one
can apply a security proof that applies to the new increased ef-
fective transmission loss followed by ideal threshold detectors
with perfect efficiency [2].

In practice, however, it is not an easy job to build two
detectors that have exactly the same efficiency. For example,
the two detectors may be fabricated by different processes
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and so a mismatch between their efficiencies is induced. In
the presence of efficiency mismatch, the different values for
detection inefficiency cannot be lumped together and further
treated as a single value for the loss over the transmission
channel. Therefore existing security-proof techniques cannot
be applied.

Even with a single detector, an efficiency mismatch can be
induced by Eve. Suppose that the response of this detector to
a photon depends on its degrees of freedom such as spatial
mode, frequency, or arrival time. These degrees of freedom
are not necessarily being used to encode information. If Eve
can manipulate these degrees of freedom, then an effective
efficiency mismatch is induced. When the induced mismatch
is large enough, powerful attacks on QKD systems exist, as
demonstrated in Refs. [3—8]. The intuition behind such attacks
is as follows: The efficiency mismatch usually causes a spe-
cific outcome to be detected more frequently than the other
outcomes in a chosen measurement basis; as a result, Eve
can guess the outcomes correctly with a higher probability
in the presence of efficiency mismatch than in the absence
of efficiency mismatch. In typical experiments, the efficiency
mismatch may not seem significant, but it still means that the
security cannot be formally proven by existing techniques.

In this paper, we develop analytic tools that allow, subse-
quently, to prove with numerical methods the security in the
presence of detection-efficiency mismatch. More precisely,
we consider a setup designed for polarization encoding, where
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each threshold detector used by the receiver Bob is sensitive
to an incoming signal in a number of spatial-temporal modes.
We assume a detector model where no quantum interference
between any pair of spatial-temporal modes would take place
as the incoming signal passes through the receiver or is being
detected by a detector. However, the optical loss experienced
by the signal can depend on its spatial-temporal mode. For
the above detector model, the developed method can be ap-
plied given arbitrary characterized efficiency mismatch. To
demonstrate our approach, we apply it to a Prepare&Measure
BB84-QKD protocol [9]. Here we study the general case
where the optical signals received by Bob may contain an
unbounded number of photons such that their states live in
an infinite-dimensional space. We can lower-bound the secret-
key rate as a function of detection-efficiency mismatch and
observed statistics. With our method, we can also study the
individual effects of transmission loss and detection ineffi-
ciency on the secret-key rate. Our method is transferable to
other QKD protocols. We note that Refs. [10—13] studied the
security proof of the BB84-QKD protocol in the presence
of efficiency mismatch but under the assumption that Bob
receives no more than one photon at each round. However, this
assumption cannot be justified in practical implementations of
QKD where threshold detectors are being used.

We also remark that the spatial-temporal-mode-dependent
efficiency-mismatch models studied by us (see Sec. II for
details) are different from those mode-dependent mismatch
models studied in the previous work [10]. As we assume the
absence of quantum interference between any pair of spatial-
temporal modes throughout the measurement process, the
measurement operators are block-diagonal with respect to var-
ious photon-number subspaces, where in each photon-number
subspace the number of photons in each spatial-temporal
mode is specified. See our previous work [14] for the ex-
plicit expressions of these measurement operators. On the
other hand, the previous work [10] studied the case that a
quantum interference between a pair of auxiliary modes is
possible, where the efficiency mismatch depends on these
auxiliary modes. Therefore the detector model in Ref. [10] is
more general than ours, albeit the security proof in Ref. [10]
relies on a photon-number cutoff. Note that we believe that
the interference between spatial-temporal modes will not
play a significant role in a practical measurement setup. If
we are wrong in this belief, our approach could be gener-
alized to the more general detector model at the expense
of more computational resources in our numerical key-rate
evaluation.

The rest of the paper is structured as follows. In Sec. II
we describe the basic setup for an optical BB84-QKD im-
plementation with a special emphasis on the description of
the spatial-temporal modes coupled to the detectors. Then we
explain our method in Sec. III, where we also apply it to
the described setup. In order to show the implication of our
proof methods, we require a toy model that describes what
observations we would expect in real experiments, which we
do in Sec. IV. There we also show the secret-key rates that we
obtain for setups that exhibit detection-efficiency mismatch.
We summarize our findings in Sec. V. We note that all detec-
tors considered in the rest of the paper are threshold detectors
by default.

II. EXPERIMENTAL CONFIGURATION

The method that we develop in this article is about the
treatment and analysis of the detector. Therefore, to lay out
and illustrate the method we develop, it is sufficient to use the
simple BB84 protocol [9], which we consider with an ideal
single-photon source, but with threshold detectors monitoring
full optical modes. Without loss of generality, we use the
polarization-encoding language.

For our theoretical analysis, we use the entanglement-
based formulation of Bennett, Brassard, and Mermin [15].
This approach has been later generalized for general QKD
protocols to the source-replacement scheme [16]. This source-
replacement scheme, in a thought-setup, realizes the source
by preparing internally to the source a bi-partite entangled
state. Measurements on one system effectively prepare the
remaining system in the desired signal states with the pre-
scribed probabilities. In the case of the BB84 protocol with
an ideal single-photon source, the internal entangled state in
the thought setup is the maximally entangled state

|P)an = %(|H>A|H>A’ + IV)alV)a), (H
where |H) and |V) are horizontally and vertically polar-
ized single-photon states, respectively. System A’ is prepared
in the signal states of the BB84 protocol as Alice uni-
formly randomly selects to measure the system A in the
horizontal /vertical (H/V') basis or the diagonal /anti-diagonal
(D/A) basis. System A’ enters the channel controlled by Eve
and will emerge as system B at Bob’s site. At that stage,
the signal is not necessarily a single-photon signal, but can
(due to Eve’s action) be in any state of the optical modes
supported by the detectors. For example, Eve might amplify
the signal using an optical amplifier or replace the signals
with multi-photon states at her discretion. Bob thus has to
perform a measurement on the full optical modes, not on
the single-photon signals. In our setup, he randomly selects
to measure the signal in either the H/V basis or the D/A
basis of the optical modes supported by his device. We call
the above procedure of preparing, distributing and measuring
signal states a round.

After a large number of rounds, with the data recordings
that detail Alice’s effective signal choices and Bob’s measure-
ment outcomes, Alice and Bob continue the QKD protocol
using the usual steps of testing, sifting, key map, error cor-
rection, and privacy amplification to obtain secret keys. Our
method can be easily generalized for other protocols that use,
for example, weak coherent pulses as signal states, but the
single-photon source example studied in this work is sufficient
to demonstrate our method, which is about the detection side.

So let us turn our attention to Bob’s detection: either the
active- or passive-detection scheme, as depicted in Fig. 1,
can be exploited. As the detectors used in each scheme are
threshold detectors, each detector can respond to an incoming
optical signal only in two different ways, click or no click.
The detectors might respond to different modes (frequency,
timing, etc).

As stated in the introduction, there are two scenarios where
an detection-efficiency mismatch may exist. Let us start with
the first one. Due to the fabrications or setups in practice,
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FIG. 1. Schematic of Bob’s measurement device: (a) and (b) de-
scribe the active-detection and passive-detection schemes, respec-
tively. To actively or passively select a measurement basis, a
polarization rotator or a 50/50 beam splitter is used. Under each ba-
sis, a polarizing beam splitter and two detectors are used to measure
the polarization state of an incoming optical signal. Each detector is
labeled by the associated measurement outcome.

the two detectors shown in Fig. 1(a) for the active-detection
scheme may have different efficiencies ng,p and ny 4. Simi-
larly, the four detectors in Fig. 1(b) for the passive-detection
scheme may have efficiencies g, nv, np, and n, respectively.
Here, the subscripts indicate the detectors used in a scheme.
We call this kind of mismatch the spatial-temporal-mode-
independent mismatch, in contrast to the following mismatch
which depends additionally on the spatial-temporal modes
chosen by Eve.

The second scenario is that of an active Eve. By manipu-
lating the spatial-temporal mode of an optical signal, Eve can
change the coupling of the signal with a detector, resulting in
a change in the effective detection efficiency of the detector.
Especially in free-space QKD it is possible for Eve to change
the angle of an incoming signal [6-8] to influence the coupling
of the signal with the active detection area of a detector,
while for fiber-based signals simple time delays can be intro-
duced [3] to exploit uneven aligned detection time windows.
Therefore, in a setup with several detectors, the efficiencies of
these detectors can not only differ from each other but also de-
pend on the spatial-temporal modes coupled to the detectors,
giving rise to the so-called spatial-temporal-mode-dependent
mismatch. In this work, we analyze the security in both above
scenarios.

Bob’s detectors may respond to a large number of spatial-
temporal modes. If the detection efficiencies related to these
modes differ strongly from each other, it might become pos-
sible for Eve to control Bob’s detection events thoroughly
by sending the signals to the modes that couple particularly
well only to a specific detector of Bob for which Eve desired
to cause a detection event. For this attack to be possible in
its extreme form, the number of modes must be equal to, or
larger than, the number of detectors in the setup. For this
reason, we choose the number of controllable modes to be
equal to the number of detectors. In order to obtain visually
simple illustrations of the secret-key rates, we choose mis-
match models parametrized by two values for the efficiencies:
a high value 5, for one detector, and a lower value 1, for the
other detectors, as shown in Tables I and II. We emphasize that
these mismatch models are considered just for ease of visual
presentation, as the approach developed here can be exploited

TABLE I. Spatial-temporal-mode-dependent mismatch model in
the active-detection scheme, where 0 < 1, < 1, < 1. The efficien-
cies of the two detectors labeled in Fig. 1(a) are listed in a column,
where each column corresponds to a spatial-temporal mode.

Mode 1 Mode 2
Detector “H/D” N 2
Detector “V/A” 2 N

with an arbitrary mismatch model. To analyze the security
of QKD systems, for example, in a certification process, the
choice of the mismatch model and its parameters will need to
be justified and characterized in practice.

III. KEY-RATE CALCULATION METHOD

A. Formulation of key-rate calculation as a convex-optimization
problem

The asymptotic key rate certifiable against all collective
attacks [17] is given by the difference between two terms,
which are associated with privacy amplification (PA) and er-
ror correction (EC), respectively. The EC term depends only
the the measurement statistics and can be calculated without
any further information on the implementation of the QKD
protocol. The main difficulty of the security proof relies on
how to obtain a lower bound on the PA term. As shown in
Refs. [18,19], a reliable numerical lower bound on the PA term
can be provided by solving a convex-optimization problem. In
the following, we will give a brief review of the theory behind
that reformulation.

In a generic QKD protocol, the measurement statistics in
an experiment are summarized as a probability distribution
pas(x,y), where x and y are random variables corresponding
to the events detected by Alice and Bob, respectively. The
corresponding measurement operators are M2 and MyB. In
addition, for the techniques shown in this paper, we will be
able to provide from experimental observations lower bounds
on the probability of at most k photons arriving at Bob. These
bounds will be brought in as additional explicit constraints
in the convex-optimization problem. To formulate the corre-
sponding constraints, we introduce the projectors I onto the
photon-number subspace of Bob containing at most k photons,
and the corresponding lower bound on its expectation value as
by.. Then, the calculation of the PA term, denoted by «, can be

TABLE II. Spatial-temporal-mode-dependent mismatch model
in the passive-detection scheme, where 0 < 1, < n; < 1. The ef-
ficiencies of the four detectors labeled in Fig. 1(b) are listed in a
column, where each column corresponds to a spatial-temporal mode.

Mode 1 Mode 2 Mode 3 Mode 4
Detector “H” m p) ) 2
Detector “V” 72 m 2 2
Detector “D” /) M2 n 2
Detector “A” M2 p) ) m
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written as the convex-optimization problem [18,19]
o= r{r)lin D(G(pap)IIZ(G(paB)))
AB

subjectto  pap = 0, Tr(pag) = 1
Tr((Mﬁ ®ME)PAB) = pas(x, y)
Tr(Ikpas) = bx - )

Here, D(o||t) := Tr(o log, o) — Tr(o log, ) is the relative
entropy, G is the post-selection map, and Z is the quantum
channel describing the key map of the QKD protocol (see
below for the details). In our applications we will later choose
for k € {1, 2}, or use even the constraints for both values of k.
We remark that both the objective function and constraints are
convex in the optimization variable pap.

Once we obtain a reliable lower bound 8 on the PA term
o of Eq. (2) as B < « according to the numerical method
developed in Ref. [19], the asymptotic key rate K per round is
bounded by

K > K = 8 — leakES, 3)
where leak™S. denotes the amount of information leaked to Eve
per round of the protocol during error correction. This takes
automatically into account any post-selection mechanism of
the protocol, as any jointly discarded signals do not cause an
error-correction cost. Likewise, the PA cost 8 automatically
takes care of the same post-selection process, so that the total
key rate K is counted as per round of the protocol. As we are
discussing key rates in the asymptotic limit of a large number
of exchanged signals, the reduction by any fraction of signals
that is utilized to estimate the observed probability distribution
pas(x,y) of measurement results and other finite-size effects
are negligible. Furthermore, the security proofs under col-
lective and coherent attacks are equivalent in this limit [20],
and hence our key-rate lower bound Kj, in principle holds
for coherent attacks. We remark that the numerical method
developed in Ref. [19] obtains a key-rate lower bound by the
following two steps: First, by an iterative method, we find a
near-optimal solution of the convex-optimization problem in
Eq. (2) and thus an upper bound on the PA term «; second,
we take advantage of the duality principle satisfied by convex
optimization to obtain a reliable lower bound 8 on the PA term
«. The key-rate lower bound Kj, obtained according to the nu-
merical method developed in Ref. [19] is reliable in the sense
that the lower bound Kj, is valid even considering the finite
precision in floating-point representations. Moreover, the im-
precision in function evaluations is estimated to be at the level
of 107% according to the CVX package used by us for solv-
ing convex programs [21,22], although a rigorous analysis is
currently missing and deserves further investigation in future
work. The estimated function-evaluation imprecision is much
smaller than the numerical key-rate lower bounds reported in
Sec. IV, suggesting that our numerical key-rate lower bounds
are reliable even considering the effect of function-evaluation
imprecision.

The map G in the objective function of Eq. (2) describes the
post-selection after Alice’s and Bob’s public announcements
for sifting. For simplicity, we concentrate here on the case
where to distill secret keys Alice and Bob keep only those

signals where both measured in the H/V basis. We also note
that for optical implementations, the announcements usually
used for sifting are slightly more involved than the simple
basis-dependent sifting of the BB84 protocol. The reason
is that the potential presence of multiple photons in the
incoming signals can cause several detectors to show detec-
tion events simultaneously. If Bob uses the active-detection
scheme, the sifting announcement by Bob consists of the
declaration whether he used the H/V basis measurement, and
whether at least one detector fired. However, if Bob uses the
passive-detection scheme, we have to decide what to do with
events where we have multiple detections across the groups
associated with different polarization bases (cross clicks), for
example both the H and the D detector firings. Here we make
the choice to keep only those events where either the H, the
V, or both the H and V (denoted as HV event) detectors fire,
while all other events (no clicks, clicks only in any of the D
and the A detectors, or cross clicks) are being discarded. In
order to achieve this goal, Alice publicly announces the basis
choice where one of two bases is chosen uniformly randomly
at each round, and Bob announces whether the desired events
are observed. This corresponds to applying the post-selection
map

G(pas) = GpapG', (€Y

where G = \/%IIA ® \/Mg + ME + MB,, is a Kraus operator.

Here, 1” is the identity operator in the state space of Alice,
and the positive-operator valued measure (POVM) elements
ME, M2, and M2, for Bob have been derived in Appendixes
A and B of Ref. [14], with the remark that for the active-
detection scheme we need to put the coefficient 1/2 before
each POVM element shown in Ref. [14] to account for Bob’s
probability of selecting each measurement basis.

After the public announcements and the corresponding
post-selection step, Alice chooses a key map, which is repre-
sented by a quantum channel Z. The key map is a function
whose input is Alice’s measurement outcome in the key-
generation basis and whose output is a key value, 0 or 1.
Suppose that we make a particular choice of key map here,
namely that Alice’s outcomes H and V' are mapped to key val-
ues 0 and 1, respectively, and that the corresponding POVM
elements Mj; and M are projective (see Appendix). The
application of the key map corresponds to the application of
the quantum channel

Z(G(pap)) = (M} ® 1¥)G(pap) (M ® 1B)
+ (M ® 1°)G(pap)(My @ 1°).  (5)

Given the measurement statistics pag(x,y), the lower
bounds b, on the photon-number distribution, the post-
selection map G, and the key-map-realizing quantum channel
Z, in principle we can run numerical optimization to obtain a
reliable lower bound of the minimization problem in Eq. (2).
However, for the situation studied, the number of photons
arriving at Bob is unbounded and so the dimension of the
quantum state pap is infinite. For this reason we need to
develop techniques that allow us to simplify the optimization
problem such that a reliable key-rate lower bound can be nu-
merically obtained by optimizing over only finite-dimensional
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quantum states. These techniques are described in the next two
subsections.

B. Simplification of the convex-optimization problem:
flag-state squasher

Since Bob’s measurement POVMs are block-diagonal with
respect to the subspaces associated with total photon numbers
across all modes [14], we can assume without loss of gen-
erality that Eve performs a quantum non-demolition (QND)
measurement of the total photon number after her interaction
with the signals, and before their arrivals at Bob’s side. As
a consequence, the state pap can be assumed, without loss
of generality, to be block-diagonal with the same subspace
structure, meaning that the state takes the form

o0
pas = EP papin. (6)
n=0

The weight of each subspace carrying a total number of n
photons is given by the corresponding probability p,, and the
corresponding normalized conditional state is denoted by ,oxg.

Considering the block-diagonal structure of the state and

Bob’s measurement POVMs, we can write
<k k
pa = pu<kPin . @D (1 = pucidpiy s
B B B
My :My,nék @ Mv,n>k’ (7)

where k is a free parameter chosen in the security proof
and p,<i is the probability that no more than k photons
arrive at Bob. The (n < k)-photon subspace is of finite di-
mension, which is compatible with the numerical key-rate
optimization framework. On the other hand, the (n > k)-
photon subspace is infinite dimensional, which is not directly
suitable to be handled by our numerical method. To re-
solve this problem, we introduce the flag-state squasher.
The general framework of squashing models that map large-
dimensional state/measurement descriptions without loss of
generality to lower-dimensional systems has been described
in Refs. [23-25].

Theorem 1. Flag-State Squasher Suppose that we have
a POVM with elements M,, where y € {1,...,J}, such
that each element can be written in a block-diagonal
form M, < © M, i, with an associated Hilbert space
structure given by H,<r @ H,-«. Then there exists a com-
pletely positive trace preserving (CPTP) map A (referred
to as a squashing map) from H, < ® Hu=r to Hack ® Hy,
where the dimension dim(H;) =J, such that Tr(oM,) =
TT(A(,O)M)) V,O € 7-lngk @ Hn>k with

My = My, @ [y) (V] , (8)

where the states |y) form an orthonormal basis of ;.

Proof. We need to show that the CPTP map A exists with
the desired properties. This can be done by an explicit con-
struction as indicated in Fig. 2. For this purpose, we consider a

general input state given in block form p = (f}: f)::) , where

index ‘s’ refers to the small subspace H,<; and index “1” to
the large subspace H,-x. We can then describe the action of
the squashing map A by its action onto an arbitrary input state

Wnsk ‘Z{nsk M -
® Squashing Map A @ én_k
Fnsk [y}l

| My,n>k 52164 | #

FIG. 2. Constructive description of the squashing map A for the
flag-state squasher. Each line corresponds to a subspace of the input
Hilbert space associated with the block-diagonal decomposition of
the POVM elements M, with y € {1, ..., J}, as indicated on the left
side.

of the above form as

Pss 0
Alp) = NG
) ( 0 X0 (Tr(puMyni) Iy) <y|>> ©

It is straightforward to see that the state A(p) satisfies the
properties Tr(pM,) = Tr(A(p)My) Vy required by a flag-
state squasher. |

The large subspace H,-x, which in the case of Bob’s
measurement is infinite dimensional, is simply reduced to
a smaller subspace H,; by performing the measurement
My p-r,y=1,...,J} on H,- and flagging the result y into
an orthogonal register which replaces the original large sub-
space. This approach of creating squashing models to smaller
Hilbert spaces relies only on the block-diagonal structure
of the original POVM elements. As soon as that assump-
tion is met, a flag-state squasher can be constructed. In this
work, we apply Theorem 1 to Bob’s states and measurements.
As Bob’s measurements are block-diagonal for an arbitrary
choice of k [see Eq. (7)], we can freely choose which large
photon-number subspace of Bob to be flagged. For this reason,
we refer to the free parameter k as the photon-number flag
threshold.

As in any case where a squashing map exists mapping
the original measurement to an alternative measurement of a
smaller dimension, we can assume that the squashing map is
part of Eve’s action. As a result, we overestimate Eve’s power
(see below for a detailed explanation), but as a trade-off we
can now assume without further loss of generality that Bob
receives signals in a reduced, finite-dimensional Hilbert space.
So the key-rate optimization problem in Eq. (2) formulated
with the squashed states of the form in Eq. (9) and POVM
elements of the form in Eq. (8), which is a finite-dimensional
convex-optimization problem, will provide a lower bound on
the secret-key rate in the actual implementation. Note, how-
ever, that the virtual POVM element components M?,_, =
|v){(y| are projective and orthogonal. Therefore, when her
QND measurement result of the total photon number is n >
k Eve could perform a strong attack by measuring the in-
coming signals from Alice with Bob’s actual measurement
{Mfwk :y=1,...,J} and then preparing/sending to Bob
the flag state |y’) corresponding to her measurement result
y'. This attack would deterministically trigger the same re-
sult y' when Bob performs the virtual measurement {M),_, :
y=1,...,J} according to the squashing map. Hence, by
attributing the squashing map to Eve’s action, Eve could
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completely learn every result of Bob when n > k, and so we
overestimate the power of Eve as compared with in the actual
implementation. For this reason, the flag-state squasher must
be accompanied by a constraint that limits the resulting state
mostly to the (n < k)-photon subspace, which is given by the
bound by in our optimization problem of Eq. (2).

Finally, we remark that without loss of generality the
states pap and :01(\”1; can be assumed to be real-valued. This
is because all measurement POVM elements M2 and MB of
Alice and Bob can be represented by real-valued matrices and
because the objective function to be minimized for bounding
the key rate in Eq. (2) is a convex function of the state pap.
For detailed proofs, see for example Sec. V C in Ref. [26].
We also emphasize that the block-diagonal structure and the
real-matrix representation of the state pap apply to both the
active- and passive-detection schemes. By using a real-matrix
representation of pap, the number of free parameters in the
key-rate optimization problem of Eq. (2) is reduced.

C. Constraints on photon-number distribution

To solve the convex-optimization problem in Eq. (2), we
need make use of a flag-state squasher as introduced in the-
orem 1 where the small subspace will be chosen to be the
incoming subspace containing at most n = 1 photon, or at
most n = 2 photons. In order to obtain positive key rates, it
will be necessary to show that the overlap of the incoming
states with this subspace can be lower-bounded by some num-
ber by, k = 1 or 2. Following the numerical method developed
in our previous study of entanglement verification with effi-
ciency mismatch [14], we obtain such bounds directly from
the experimentally observed measurement statistics pag(x, y).
The intuition behind this approach is that higher photon num-
bers will necessarily lead to double clicks, cross clicks, and/or
errors.

This way of using experimental observations to bound the
photon-number distribution was first established in Ref. [2]
and further refined in Ref. [27], and then extended to the case
of inefficient detectors in Ref. [14]. Note that the theoretical
approach is independent of the number of spatial-temporal
modes that we use (in addition to the polarization degree of
freedom). We demonstrate the results of our method here for
the two-mode case (with the active-detection scheme) and for
the four-mode case (with the passive-detection scheme).

Before explaining the method, we would like to point out
that the two properties of the state pap discussed in the above
subsection, i.e., the block-diagonal structure with respect to
various photon-number subspaces and the real-number rep-
resentation of the density matrix, will be used also in the
optimization problems formulated in this subsection. The sec-
ond property helps to reduce the number of free parameters in
the optimization.

1. Active-detection case

As stated before, the intuition is that as an increasing num-
ber of photons are received by Bob, the probability of double
clicks (clicks at both detectors) will increase and finally sur-
pass the double-click probability observed in an experiment.
Similar arguments hold for an effective error, which we define
below. Thus we will show that the experimental observations

allow us to put an upper bound on the probability that the
signals received by Bob contain more than any given number
of photons.

In order to make this intuition precise, we start by defining
the double-click operator

Fpe = 1% @ My, + 31* @ Mp,, (10)
and the effective-error operator
Fep = 3My ® (My + 3Miy) + 3My ® (My; + 3Mjy )
+3Mp ® (M} + 3Mp,) + M5 @ (Mp + 3Mp,),
an

where the prefactor 1/2 at each term describes the proba-
bility to choose the corresponding measurement basis. The
form of the effective-error operator is chosen according to
the squashing model [23,24] for the active-detection scheme:
the double-click events are mapped uniformly randomly in a
post-processing step to either of the two single-click events
associated with the chosen basis. In Egs. (10) and (11), Al-
ice’s measurement operators are ideal measurement operators
in the one-photon space (see Appendix), while Bob’s mea-
surement operators are described in Appendixes A and B of
Ref. [14].

We formalize the above intuition by studying the following
optimization problems

dp min = minpxg Tr(pnglg’é))
subject to pX’]; >0 (12)
Tr(pip) = 1
and
€pmin = Min Tr( (")F("))
n,min — pl‘\"}; PABLEE
subject to p/((g >0 (13)

Tr(p) =1

The operators Fg’g and be'fg) are projections of the operators
Fpc and Fgg onto the n-photon subspace of Bob. We remark
that the above optimizations are over all possible n-photon
states ,oxg, while the optimization problems formulated in our
previous study of entanglement verification with efficiency
mismatch [14] run over only the states ,O(A"]; satisfying the
positive-partial-transpose criterion [28,29].

The optimization problems described by Eqs. (12) and (13)
have the form of semi-definite programs (SDPs). In order
to solve them, we utilize the YALMIP [30] toolbox in MAT-
LAB. From our calculations, we make the observation that
the minimum double-click probability d;, min 1S monotonically
nondecreasing as the photon number n goes up. We therefore
obtain the inequality

dn,min > d3,mina Vn > 3. (14)
Moreover, we observed the inequality relations

Vi >3, (15)

€5, min 2 €3 min>
and
€5, min > €min ‘= min{€2,min7 e3,min}a vn > 2. (16)

We would like to point out that we did not go through the
effort to prove the above inequalities with analytical methods,
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FIG. 3. The minimum double-click probability d, i, vS. the pho-
ton number n received by Bob for the active-detection mismatch
model of Table I with n; =1 and 1, = n. Note the monotonicity
of each curve as a function of n and that d; in, as well as dj min, 1S
always equal to zero.

though the numerical evidence strongly supports that these
inequalities hold for an arbitrary active-detection efficiency
mismatch. In Figs. 3 and 4, we report our numerical evidence
for the specific mismatch model of Table I. Especially, one can
see from these figures that the curve becomes monotonous as
the efficiency mismatch increases.

In view of Egs. (14) and (15), we find that the double-
click probability d.ps and the effective-error probability eqps

0.25

0.2

0.15

€n,min

0.1

0.05

1 5 10 15 20
n

FIG. 4. The minimum effective-error probability e, min Vs the
photon number n received by Bob for the active-detection mismatch
model of Table I with n; = 1 and 1, = n. Note that e3 ,;, is a lower
bound on e, min When n > 3 and that e, is always equal to zero.

observed in practice satisfy
[e.¢]
dovs = Y paTr(pinFpe) = (1= po = p1 — p2)dz min (17)
n=0
and

0
€obs = anTr(PXl];FE(Z)) 2 (I = po — p1 — P2)€3 min,

n=0
(18)
by using that Z;’io pn = 1. Hence, we can set the bound b, <
po+ p1+pras
dO S obs
by = 1 — min <—b e—b> (19)
3,min  €3,min

Note that for the observations simulated in Sec. IV, we found

that ;3"’—*’? < ;"—"5 and therefore the bound b, = 1 — dff’—‘“?. Sim-

ilarly, in view of Eq. (16), we have
o0

Cors = Y, paTr(piaFiy) = (1= po — p)emin.  (20)
n=0

Thus we can obtain a bound b; < pg + p; as
€obs

by=1- 21
€min

In this case, the double-click estimations do not lead to a

nontrivial bound on b; as there exist two-photon states that

do not lead to double clicks (da min = 0), see Fig. 3.

The above bounds b; and b, together with the flag-state
squasher approach for the corresponding subspaces can be
used in the key-rate optimization problem of Eq. (2) when the
active-detection scheme is used.

2. Passive-detection case

The passive-detection scheme utilizes a 50/50 beam split-
ter to passively select a measurement basis, as shown in
Fig. 1(b). Clearly, the probability that each output arm of
the beam splitter contains at least one photon is given by
1 — 20D We therefore have the following expectations:
(1) the probability of simultaneous photon detections at both
output arms (referred to as cross clicks) would increase with
the photon number n; and (2) in the limit of large n, the
cross-click events would happen with near certainty. These
motivate us to consider the associated cross-click operator

Fee = 1A @ M., (22)

with MZ. being Bob’s cross-click POVM element (see Ap-
pendixes A and B of Ref. [14] for the derivation and
expression of M&.). To obtain bounds on the photon-number
distribution using experimental observations, we thus con-
sider the optimization problem

Comin = minpngr(,ngFC(g))
subject to ng >0 23)

Tr(oly) = 1.

Here, Fc('é) is the n-photon component of the cross-click oper-
ator Fec.

Again, we solve this optimization problem using the
YALMIP toolbox [30] in MATLAB. The numerical solutions of
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Cp, ,min

n

FIG. 5. The minimum cross-click probability ¢, mi, Vs. the pho-
ton number n received by Bob for the passive-detection mismatch
model of Table II with n; = 1 and n, = n. Note the monotonicity of
each curve as a function of n, supporting the inequalities in Eqs. (24)
and (25).

the optimization problem in Eq. (23) provide strong evidence
that the cross-click probability ¢, min increases monotonically
with n and converges to the unit value 1 for an arbitrary
passive-detection efficiency mismatch. We would like to point
out that any evaluation of secret-key rates using our ap-
proach requires solving an SDP problem, such as those in
Egs. (12), (13), and 23, thus allowing the validification of the
working assumption for a chosen mismatch model and param-
eters. Particularly, the numerical evidence for our mismatch
model and parameters is shown in Fig. 5, which suggests the
following two inequalities

Cpmin = C3,min> YA 2 3, (24)
and
Cpn,min > €2, min> Vn > 2. (25)

The inequality in Eq. (24) tells us that the cross-click
probability c,ps observed in practice satisfies

oo
Cobs = anTr(p,(\’gFég)) Z (1 = po— p1 — P2)C3 min-
n=0
(26)
Here we used the fact that ) -, p, = 1. Thus we obtain a
bound b < (po + p1 + p2) as

Cobs

by=1- 27

C3 min )
Similarly, from Eq. (25) we can obtain a bound b; < (po +
p1)as

Cobs

by =1-— (28)

C2 min

The above bounds b; and b, together with the flag-state
squasher approach for the corresponding subspaces can be
used in the key-rate optimization problem of Eq. (2) when the
passive-detection scheme is used.

IV. SECRET-KEY RATES WITH SIMULATED
OBSERVATIONS

As pointed out before, the method developed in Sec. III
allows a security analysis of a QKD setup with an arbitrary
detection-efficiency mismatch. Any such security analysis re-
quires the determination of constraints on the probability of
the state in a subspace containing at most a given number
of photons, and then a reliable key-rate lower bound can be
obtained using those constraints together with a flag-state
squasher. We now illustrate our approach for the specific
mismatch models of Tables I and II. As the security analysis
usually requires as input some data observed in experiments,
we replace here the experiments by simulations according to
a simple quantum-optical model. We specify this toy model
below, but it is important to point out that this toy model is
not part of the security analysis, or in anyway an assumption
on which our security proof itself is based. We also emphasize
that the numerical values for the key rate reported in this sec-
tion are reliable in the sense that they are computed according
to the lower bound Kj, on the key rate [see Eq. (3)].

A. Data simulation

We study a BB84 protocol with an ideal single-photon
source using polarization encoding. As described in Sec. II,
at each round of the protocol Alice prepares one of four
possible single-photon polarization states selected uniformly
randomly. Bob can use either the active- or passive-detection
scheme. In the active-detection scheme, we assume that at
each round Bob can randomly select the key-generation ba-
sis with probability p = 1/2. The single photon prepared by
Alice is transmitted through Eve’s domain to Bob. We model
the corresponding quantum channel as a depolarizing channel
A(p) = (1 — ®)p + w31 with depolarizing probability w; ad-
ditionally, the single-photon transmission efficiency over the
channel is ¢. In order to introduce multiple detector clicks, Eve
intercepts in our channel model with probability  the single
photon and resends multiple photons to Bob. Specifically, Eve
resends randomly polarized m photons in the state

1 2w

Pm =

=3 d6(ag)™ |0) (O] (@)™ (29)
mrit

Here, the photon-creation operator @, is given in terms of

the operators &L and &‘T, of the respective linear polarizations

as 21; = cos(@)&}; + sin(G)&‘T/. In our simulations, we will

choose the photon number m = 2.

When applying the flag-state squasher approach, we
choose to separate either the (n < 1)-photon or the (n < 2)-
photon subspace from their respective complements. That is,
we set the photon-number flag threshold to be k = 1 or 2. In
our efficiency-mismatch models, we consider several spatial-
temporal modes, in addition to the polarization mode. We note
that the detectors used are assumed to be free of dark counts.
In our toy quantum channel, we additionally assume that the
optical signals are uniformly randomly distributed over all
considered spatial-temporal modes.
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B. Key rates in the absence of mismatch: trade-offs between
transmission efficiency and detection efficiency

As mentioned in the introduction, when there is no
efficiency mismatch between the detectors used in the mea-
surement device, one can pull the detection inefficiency out of
the detectors and into the channel action, creating an effective
transmission loss. Consequently, the measurement device now
is described by an ideal-detector setup for which a squashing
model [23-25] exists, and so one can execute a full security
proof. However, the resulting key rate might be conservatively
low, because the existing security proof assumes that the pho-
ton loss during the actual transmission, as well as that due to
the detection inefficiency, can be manipulated by Eve while
under the original description of Bob’s measurement device
the photon loss inside of the device cannot be accessed by
Eve. Such fact has been explicitly pointed out in literature
such as in Ref. [31]. So while it is known that this is an overly
pessimistic assumption, the issue is that proof techniques were
missing to treat the security assuming the detection efficiency
to be not accessible by Eve. We can tackle this question now
with the techniques developed in this work.

With our numerical method, we can prove the security of a
QKD protocol with arbitrary measurement operators as long
as they are well characterized. In particular, we can character-
ize the detection efficiency of each detector in a measurement
device, and so we can determine the corresponding measure-
ment operators (see Appendixes A and B of Ref. [14]). In
this way, we can study the individual effects of transmission
efficiency and detection efficiency on the secret-key rate. To
demonstrate these effects, for this particular result we assume
for simplicity that each optical signal arriving at Bob contains
no more than two photons, rather than using our flag-state
squasher approach.

The results are shown in Fig. 6. From this figure, one can
see that given the fixed total photon loss over both transmis-
sion and detection, Alice and Bob can distill more secret keys
if they consider detection inefficiency and transmission loss
separately rather than lumping these two kinds of loss together
in the security proof. In particular, when the product ¢7 is
fixed, the higher the value of ¢, the higher the secret-key rate
is. On the other hand, when ¢ and 5 are lumped together as
an effective transmission efficiency 77, our numerical method
provides the same key-rate lower bound as the standard secu-
rity proofs with the help of the squashing model [23-25] for
treating multiple-detection events. Specifically, the key-rate
lower bound i Pdet(1 — 2h(e)), where pgee is the detection
probability at the key-generation basis, e is the qubit error
rate and h(e) is the binary entropy function, is satisfied by
the results plotted in Fig. 6 when n = 1.

We also performed numerical calculations, not presented
here, which show that the higher the multi-photon probability
r, the more significant improvement in the secret-key rate
is achieved when separating ¢ and n in the security proof.
Particularly, we observed that when the optical signal has no
multi-photon component (i.e., r = 0), the secret-key rate is
independent of 1 as long as w and tn are fixed. However,
in practice multiple-detection events occur due to the use of
sources containing multi-photon states, cross talks in fibers,
or dark counts in detectors.

00083 ————————————

—B— Active detection

0.0081

—©O— Passive detection

0.0079

0.0077

Key rate (bit/round)

0.0075

0.0073 | ]

01 02 03 04 05 06 07 08 09 1
n

FIG. 6. Reliable key-rate lower bound in bits per round obtained
by our numerical method vs the detection efficiency 7 of all detectors
used in Bob’s measurement device as shown in Fig. 1. We consider
both the active- and passive-detection schemes. For data simulation,
we fix the depolarizing probability w = 0.05, the multi-photon prob-
ability » = 0.05, and the product of transmission efficiency ¢ and
detection efficiency 71 to be rn = 0.1. We choose these values just for
ease of graphical illustrations. We remark that under each detection
scheme, the probability distribution observed by Alice and Bob does
not change with n as long as the simulation parameters w, r, and tn
are fixed.

C. Key rates with active-detection efficiency mismatch

Let us study the dependence of the secret-key rate on
the detection-efficiency mismatch with the active-detection
scheme. We consider two scenarios: In the one-mode scenario
all photons received by Bob are in the same spatial-temporal
mode, and the two detectors labeled by “H/D” and ‘‘V/A”
in Fig. 1(a) have efficiencies n; and 7,, respectively; in the
two-mode scenario the photons received by Bob can stay
in one of two possible spatial-temporal modes or in a co-
herent superposition of the two spatial-temporal modes. The
efficiency mismatch for the combinations of spatial-temporal
modes and polarization detectors is shown as in Table 1. For
security proofs, we make use of and compare two different
assumptions/techniques to deal with potential multi-photon
signals arriving at Bob’s detectors: we either assume that each
signal received by Bob contains no more than two photons,
or we prove security without such assumption. In the latter
case, we apply a flag-state squasher with the photon-number
flag threshold £ = 2, and in the key-rate optimization problem
of Eq. (2) we incorporate the lower bounds b; and b, on the
photon-number probabilities (py + p1) and (po + p1 + p2).
These bounds are based on observations and are discussed in
Sec. III C [see Egs. (19) and (21)].

The typical results are shown in Fig. 7. We can make
directly several observations from Fig. 7. (1) The larger the
efficiency mismatch, the lower the secret-key rate is. There
exists a threshold for the efficiency mismatch beyond which
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FIG. 7. Reliable key-rate lower bound in bits per round obtained
by our numerical method vs. the detection efficiency 7, of the
detector labeled by “V/A” (for the signals stayed in the first spatial-
temporal mode) in the active-detection scheme of Fig. 1(a). For data
simulation, we fix the detection efficiency of the detector labeled
by “H/D” (for the signals stayed in the first spatial-temporal mode)
to n; = 0.2. We also fix the depolarizing probability w = 0.05, the
multi-photon probability » = 0.05, and the transmission efficiency
t = 0.5 (corresponding to 3dB loss). We remark that for the active-
detection scheme the key rate scales linearly with the probability
p for Bob to select the key-generation basis when other simulation
parameters are fixed, and that for the results shown in this figure and
the following Fig. 8 the probability p is fixed to be 1/2 according to
the data-simulation model detailed in Sec. IV A.

it is not possible for Alice and Bob to distill secret keys. (2)
Making assumptions on Eve’s attack strategy, such as assum-
ing that no more than two photons are being resent from Eve
to Bob, can overestimate the true secret-key rate computed
according to the analysis without making that assumption. (3)
The spatial-temporal-mode-dependent mismatch helps Eve to
attack the QKD system. Our results show that Eve’s cor-
responding freedom to manipulate the detection efficiencies
decreases the secret-key rate. (4) If there is no efficiency
mismatch, then the secret-key rate does not differ whether we
consider one or two spatial-temporal modes. Note that in this
case the lower bounds b; and b, in Egs. (21) and (19) are
independent of the number of spatial-temporal modes, and so
is the key-rate optimization problem in Eq. (2).

We can also study the dependence of the secret-key rate
on the transmission efficiency or distance when fixing other
data-simulation parameters. For this, we assume that the
transmission efficiency ¢ is determined by the transmission
distance L in kilometers according to t = 107/, Also, as
mentioned in Sec. IVA we assume that the detectors used
are free of dark counts. The typical results as shown in Fig. 8
suggest the following observations. First, with the increase of
the transmission distance L, the key-rate lower bound obtained
decreases. Particularly, when the distance L is large and in
the absence of dark counts, the key-rate lower bound obtained

10 : : : :
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—+8— One mode, flag-state squasher with k=2
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FIG. 8. Reliable key-rate lower bound in bits per round obtained
by our numerical method vs the transmission distance in kilometers
from Alice to Bob with the active-detection scheme of Fig. 1(a). For
data simulation, we fix the detection efficiencies of the two detectors
labeled by “H/D” and by “V/A” (for the signals stayed in the first
spatial-temporal mode) to n; = 0.2 and 1, = 0.18, respectively. We
also fix the depolarizing probability @ = 0.05 and the multiphoton
probability » = 0.05. Note that when the same photon-number flag
threshold k& = 2 is used, the key-rate lower bound obtained for the
case of mode-dependent efficiency mismatch is slightly lower than
that for the case of mode-independent efficiency mismatch, although
due to the use of a logarithmic scale in the plot such a difference is
hard to be visible.

decreases exponentially with the increase of L. Second, in the
limit of large distance L, the key-rate lower bounds obtained
under different efficiency-mismatch models or using different
assumptions/techniques to handle multi-photon signals ap-
proach to each other.

D. Key rates with passive-detection efficiency mismatch

As in the active-detection scheme, we consider two scenar-
ios: In the single-mode scenario all photons received by Bob
are in the same spatial-temporal mode, and the four detectors
labeled by “H,” “V.)” “D,” and “A” in Fig. 1(b) have effi-
ciencies ni, 12, N2, Ny respectively; in the four-mode scenario
the photons received by Bob can stay in one of four possible
spatial-temporal modes or in a coherent superposition of the
four spatial-temporal modes. The efficiency mismatch in
the four spatial-temporal modes is shown as in Table II. In
the security proofs, we again compare the flag-state squasher
approach with the photon-number catoff assumption. Note
that for the case with one spatial-temporal mode, we apply
a flag-state squasher with the photon-number flag threshold
k = 2, and at the same time we incorporate the lower bounds
b, and b, in Egs. (28) and (27). For the case with four
spatial-temporal modes, instead we apply a flag-state squasher
with the photon-number flag threshold £ = 1, and exploit the
corresponding photon-number distribution bound b;. We do
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FIG. 9. Reliable key-rate lower bound in bits per round obtained
by our numerical method vs. the detection efficiency 1, of the detec-
tors labeled by “V,” “D,” or “A” (for the signals stayed in the first
spatial-temporal mode) in the passive-detection scheme of Fig. 1(b).
For data simulation, we fix the detection efficiency of the detector
labeled by “H” (for the signals stayed in the first spatial-temporal
mode) to n; = 0.2. We also fix the depolarizing probability w =
0.05, the multiphoton probability r» = 0.05, and the transmission
efficiency + = 0.5 (corresponding to 3dB loss).

not use the tighter approach with the larger photon-number
flag threshold k = 2, due to the large dimensionality of the
corresponding key-rate optimization problem in the presence
of four spatial-temporal modes. The dependence of the secret-
key rate on the detection-efficiency mismatch is shown in
Fig. 9. Similar to the active-detection case, the results in Fig. 9
suggest that the larger the efficiency mismatch, the lower
the secret-key rate is. When the efficiency mismatch is large
enough, it is not possible for Alice and Bob to distill secret
keys. The results also suggest that spatial-temporal-mode-
dependent mismatch helps Eve to attack the QKD system.
We remark that one cannot straightforwardly compare
the robustness of the active- and passive-detection schemes
against efficiency mismatch for distilling secret keys via
Figs. 7 and 9. The reasons are as follows. First, there is no
one-to-one correspondence between the two mismatch models
given in Tables I and II, for the active- and passive-detection
schemes respectively. Second, for spatial-temporal-mode-
dependent mismatch, in the active-detection scheme, we
considered two spatial-temporal modes and used the photon-
number flag threshold & =2 as well as the corresponding
lower bounds on the photon-number probabilities (po +
p1) and (po + p1 + p2). However, in the passive-detection
scheme we considered four spatial-temporal modes and used
the smaller photon-number flag threshold £k = 1 as well as the
corresponding lower bound on the photon-number probability
(po + p1)- The higher the photon-number flag threshold and
the more constraints on the photon-number distribution, the
higher the secret-key rate certified by our method is. We
emphasize that here we have developed a general method for
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—&— One mode, flag-state squasher with k=2
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FIG. 10. Reliable key-rate lower bound in bits per round ob-
tained by our numerical method vs the transmission distance in
kilometers from Alice to Bob with the passive-detection scheme
of Fig. 1(b). For data simulation, we fix the detection efficiencies
n = 0.2 and n, = 0.18, where n; and 7, have the same mean-
ings as those in Fig. 9. We also fix the depolarizing probability
w = 0.05 and the multi-photon probability » = 0.05. Note that when
the same photon-number flag threshold k = 1 is used, the key-rate
lower bound obtained for the case of mode-dependent efficiency
mismatch is slightly lower than that for the case of mode-independent
efficiency mismatch. Also, by comparing the results obtained using
the photon-number flag threshold k = 1 with those obtained using
k =2 in the case of one spatial-temporal mode, we can see that
the usage of the photon-number flag threshold & = 1 can induce a
nonmonotonic behavior of the obtained key-rate lower bound as a
function of the transmission distance.

proving security of practical QKD protocols with efficiency
mismatch. How to optimize our method and improve the
secret-key rates certified will require future study.

We can also study the dependence of the secret-key rate
on the transmission distance. Similar to the active-detection
case, the typical results as shown in Fig. 10 suggest the
following observations. First, in the limit of large trans-
mission distance L, the key-rate lower bounds obtained
under different efficiency-mismatch models or using differ-
ent assumptions/techniques to handle multi-photon signals
approach to each other. Second, when the transmission dis-
tance L is large, the key-rate lower bound obtained decreases
exponentially with the increase of L. We note that when the
distance L is small, the key-rate lower bound obtained by
the flag-state squasher approach with the photon-number flag
threshold £ = 1 depends on L in a non-monotonic way. Such
nonmonotonic behavior is understandable considering the fol-
lowing two competing facts: (1) with the increase of L, the
cross-click probability decreases and so the lower bound on
the photon-number probability (pg + p;) increases, which is
helpful for our numerical method to distill secret keys; 2) with
the increase of L, the detection probability decreases, which
would result in a decrease of the key rate. By using the larger
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photon-number flag threshold £ = 2, the above nonmonotonic
behavior disappears as we verified for the case with one
spatial-temporal mode, see Fig. 10.

V. CONCLUSION

The security proof of QKD usually assumes that the
threshold detectors used have the same detection efficiency.
However, in practice, their detection efficiencies can show
a mismatch, either due to the manufacturing and setup, or
the influence by Eve (for example, by controlling the spatial-
temporal-mode-dependent coupling of an optical signal with
a detector). In this work we present an approach that allows
to lower-bound the secret-key rate of a QKD setup with an
arbitrary, but characterized detection-efficiency mismatch. We
formulate the key-rate calculation as a convex-optimization
problem. In order to prove security without relying on a
catoff of photon numbers in the optical signal, we exploit the
bounds on the photon-number distribution obtained directly
from experimental observations with the help of semi-definite
programs (SDPs), and simplify the key-rate optimization
problem by introducing a flag-state squashing map. The key-
rate optimization problem formulated is based on the practical
measurement operators that depend on the characterized ef-
ficiency mismatch. Therefore we can study the effect of
efficiency mismatch on the secret-key rate.

We illustrate the power of our method with numerical sim-
ulations, demonstrating that our method can be numerically
well handled even in the presence of spatial-temporal-mode-
dependent mismatch. Our method is especially applicable
to free-space QKD where spatial-temporal-mode-dependent
mismatch can be easily induced by Eve as demonstrated in
Refs. [6-8].

Moreover, with our method, one can clearly see the individ-
ual effects of transmission loss and detection inefficiency on
the secret-key rate (see Fig. 6). In the particular case of no mis-
match, the simulation results show that our method provides a
tighter lower bound on the secret-key rate than the squashing
model [23-25] when we separate detection inefficiency (out
of the domain of Eve) from transmission loss (in the domain
of Eve).

Note added. After the submission of our work, we no-
ticed that a related work by Trushechkin appeared on arXiv,
see Ref. [32]. In contrast to our numerical bounds on the
photon-number distribution obtained by solving semidefinite
programs, Trushechkin [32] derived analytical bounds for the
active-detection case. These analytical bounds can be com-
bined with the flag-state squasher introduced in our work for
a security proof without a catoff of photon numbers in the
optical signal. Motivated by Trushechkin’s work [32] and the
construction of squashing models presented in Ref. [23], we
can derive better analytical bounds on the photon-number
distribution. We will present the details of these analytical
bounds and their applications in the future work.
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APPENDIX: ALICE’S MEASUREMENT OPERATORS

In the source-replacement description of a BB84-QKD
protocol with an ideal single-photon source using polar-
ization encoding, the quantum system A held by Alice is
two-dimensional and Alice performs ideal one-qubit mea-
surements with perfect detection efficiency. In particular,
Alice’s measurement operators My, M{y, My, and M4 are
ideal polarization-measurement operators in the one-photon
space. In the basis {|1y,0y), |0g, ly)s} of Alice’s one-
photon space over two polarization modes, these operators are

represented as
0 0
A _
w=(o 9)

M‘D*:l/z(} }) M;::l/z(_ll _11) (A1)
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