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Machine learning methods have been recently applied to learning phases of matter and transitions between
them. Of particular interest is the topological phase transition, such as in the XY model, whose critical points can
be difficult to be obtained by using unsupervised learning, such as the principal component analysis. Recently,
the authors of [Nat. Phys. 15, 790 (2019)] employed the diffusion map method for identifying topological
orders and were able to determine the Berezinskii-Kosterlitz-Thouless (BKT) phase transition of the XY model,
specifically via the intersection of the average cluster distance D̄ and the within-cluster dispersion parameter σ̄

(when the different clusters vary from separation to mixing together). However, sometimes it is not easy to find
the intersection if D̄ or σ̄ does not change too much due to topological constraint. In this paper, we propose to use
the Calinski-Harabaz (ch) index, defined roughly as the ratio D̄/σ̄ , to determine the critical points at which the
ch index reaches a maximum or minimum value or jumps sharply. We examine the ch index in several statistical
models, including ones that contain a BKT phase transition. For the Ising model, the peaks of the quantity ch
or its components are consistent with the position of the specific-heat maximum. For the XY model, both on
the square and on the honeycomb lattices, our results of the ch index show the convergence of the peaks over
a range of parameters ε/ε0 in the Gaussian kernel. We also examine the generalized XY model with q = 2 and
q = 8 and study the phase transition using the fractional 1/2-vortex or 1/8-vortex constraint, respectively. The
global phase diagram can be obtained by our method, which does not use the label of configuration needed by
supervised learning, nor a crossing from two curves D̄ and σ̄ . Our method is, thus, useful to both topological and
nontopological phase transitions and can achieve accuracy as good as supervised learning methods previously
used in these models and may be used for searching phases from experimental data.

DOI: 10.1103/PhysRevResearch.3.013074

I. INTRODUCTION

Exploring phases of matter and phase transitions is a tradi-
tional but still active research direction in statistical physics
[1,2], partly due to new phases of matter that have been
uncovered. In recent years, this field of research has been
revived thanks to the introduction of artificial intelligence and
machine learning methods to recognize phases and transitions
[3]. Among the various methods, supervised learning meth-
ods are used to train the network using prior labeled data
generated by Monte Carlo (MC) methods in various classical
systems, such as the Ising model and its variants [3–5], XY
models [6–9] with Berezinskii-Kosterlitz-Thouless (BKT)
phase transitions [10,11], Dzyaloshinskii-Moriya ferromag-
nets [12], skyrmions [13], Potts models [14], and percolation
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models [9]. The properties of quantum systems, such as the
energy spectrum, entanglement spectrum [15], or configura-
tion in the imaginary time [16,17] are also used as inputs
to the neural networks for the training. On the other hand,
unsupervised learning methods can provide unbiased classi-
fication as they do not need prior knowledge of the system so
as to classify phases and obtain the phase transition. These
include methods, such as the principal component analysis
[18], autoencoders [19], t-distributed stochastic neighboring
ensemble [20], and clustering with quantum mechanics [21].
A key feature of these is to determine the sought-after prop-
erties (such as phase transition) by examining indicators from
the scattered plot in the reduced space. Beyond equilibrium
statistical physics, nonequilibrium and dynamical properties
[22–24] are also obtained by machine learning methods. In
addition, there are other newly developed schemes applied to
the phases of matter, such as the adversarial neural networks
[25], confusion method and its extension [26], the superre-
solving method [27], and even applications to experimental
data [28,29]. Other developments in this area can be found in
Refs. [30–41] and the review article [42].

It is well known that in traditional continuous phase tran-
sitions global symmetry is broken and these transitions can
be described by the Landau theory. However, the topological
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phase transitions have no broken symmetry, and, therefore, it
is of great interest to understand how the transitions emerge
and how to locate the transition points. Recent develop-
ments of machine learning offer new tools for this endeavor
[6–9], based on supervised learning. However, the learning-
by-confusion scheme when applied to the XY model predicts
a transition temperature set by the value located at the max-
imum of the specific heat [8]. In Ref. [7], it was found that
significant feature engineering of the raw spin states is needed
to relate vortex configurations and the transition. More-
over, single-hidden-layer fully connected networks could not
correctly learn the phases in the XY model, whereas the
convolutional neural networks were successfully employed
to learn the BKT transition [7], and the classification was
later extended to the generalized XY model [9]. However, for
unsupervised learning with the principal component analysis
(PCA) method, it was claimed to be difficult to identify the
transition [6]. Recently, Rodriguez-Nieva and Scheurer (RNS)
used the diffusion map method [43] invented by Coifman
et al. [44] and related to quantum clustering [21] and devised
an unsupervised learning method for identifying topological
orders and successfully locating the BKT transition. They di-
vided the configurations into several topological sectors with
different winding numbers, then calculated the eigenvector �

and eigenvalues λ of the so-called diffusion matrix P (see
Sec. II A). From the intersections of the average cluster dis-
tance D̄ and within-cluster dispersion σ̄ , or, equivalently, the
intersection of �λ (the jump in the eigenvalues) and σλ (the
standard deviation of the eigenvalues), the phase transition of
the XY model on the square lattice can be obtained very well.

Our motivation of this paper is to examine whether or
not the diffusion map (DM) method of the RNS method is
suitable beyond the pure XY model, such as the generalized
XY model. Indeed we find that the DM method works for
some topological phase transitions, but it fails to locate the
phase transition in the generalized XY model in other regimes.
Specifically, the RNS method for determining the transition
point relies on the intersection of the two curves (such as
the average cluster distance D̄ and within-cluster dispersion
σ̄ ), and in the q = 8 generalized XY model as illustrated in
Sec. V, we cannot find an intersection there. The thermal fluc-
tuation is not strong enough, and the scattering clusters with
different winding as numbers do not mix close to Tc, i.e., D̄
does not decrease substantially. The question arises: Are there
other quantities that can be used to locate the phase-transition
points?

In this paper, we mainly use the Calinski-Harabaz (ch) in-
dex score [45] defined by cht/chb, related to the ratio of D̄/σ̄ ,
which means that if the variation of D̄ can be negligible due
to strong topological constraints, the variation of σ̄ itself can
help to determine the phase-transition point. We also use the
silhouette coefficient (sc) [46] or its components to compare
with the results.

The outline of this paper is as follows. Section II shows
the DM methods, the definition of the indices ch, sc, and their
components, their advantage, and prior knowledge for using
the indices. Section III shows the signature of ch and sc for the
two-dimensional (2D) Ising model from configurations using
the Swendsen-Wang algorithms [47]. In Sec. IV, the critical
phase-transition points of the XY model on the square and

the honeycomb lattices are obtained using the DM method.
In Sec. V, for the q = 2 and q = 8 generalized XY models,
the global phase diagrams are obtained by the DM method
assisted by PCA or kernel-PCA (k-PCA) methods. Other
techniques are discussed in Sec. VI regarding the effect of
higher dimensions considered in the k-means method and how
to automatically find the hyperparameter ε/ε0. Concluding
comments are made in Sec. VII. In Appendix A, the simplest
example one-dimensional (1D) XY model is discussed, and
the comparison between PCA and k-PCA is shown in Ap-
pendix B. Finally, a total of 11 indices used in unsupervised
learning are listed in Appendix C.

II. METHODS

A. The review of the diffusion map method

Here, we explain the DM method of Rodriguez-Nieva and
Scheurer [43]. Assume that we have M configurations {xl},
where l = 1, . . . M. The connectivity between xl and xl ′ is
denoted by the elementary Gaussian kernel,

Kε(xl , xl ′ ) = exp

(
−‖xl − xl ′ ‖2

2Nε

)
. (1)

The normalization of Kε(xl , xl ′ ) can be performed by perform-
ing the sum over l ′,

Pl,l ′ = Kε(xl , xl ′ )

zl
, zl =

m∑
l ′=1

Kε(xl , xl ′ ). (2)

We can also perform the normalization along the direction
of l (i.e., the sum over l). The eigenvalue equation of the
diffusion matrix Pl,l ′ is Pψk = λkψk , where ψk’s are the right
eigenvectors with the corresponding eigenvalues λk � 1 for
k = 0, 1, . . . , m − 1.

To find the phase-transition point, Ref. [43] and its earlier
preprint use two different ways, respectively:

(a) Intersection of the mean distance of cluster centers
D/2n, where n is the number of clusters and the dispersion
σ of the data points in each cluster. The quantities D/2n and
σ are obtained from the scatter plot, where n is the number of
topological sectors.

After obtaining the eigenvectors of the P matrix given by

� := [(ψ )1, (ψ )2, . . . , (ψ )m−1], (3)

the authors project them onto a two-dimensional space,
namely, a two-column matrix, then D/2n and the dispersion
σ can be obtained from the scatter plot of the two-column
vectors or their modified version. The detailed application to
the one-dimensional XY model is reproduced in Appendix A.

(b) Intersection of the mean fluctuation σλ and gap of
eigenvalues �λ, where

σλ = 1

n

n−1∑
k=0

(λk − λ)2, λ = 1

n

n−1∑
k=0

λk, (4)

and the gap of eigenvalues between the topological sectors n
and n − 1,

�λ = λn − λn−1. (5)
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B. The indices ch and sc

We propose to use indices instead of intersections. Based
on the first two leading eigenvectors �0 and �1 of the PCA,
k-PCA, or the second and third vectors �1 and �2 of the DM
method for a manually chosen cluster number k, the ch index
is given in terms of the following ratio:

ch = cht

chb
= tr(Bk )

tr(Wk )

N − k

k − 1
, (6)

where Bk is the between-group dispersion matrix and Wk is
the within-cluster dispersion matrix and they are defined as
follows:

Wk =
k∑

q=1

∑
x∈Cq

(x − cq)(x − cq)T , (7)

Bk =
∑

q

nq(cq − c)(cq − c)T ,

where N is the number of data points, Cq is the set of points in
cluster q, cq is the center of cluster q, c denotes the average
center of all cluster centers {cq}, and nq denotes the number of
points in cluster q. The sc index of the ith sample is

sc(i) = b(i) − a(i)

max[b(i), a(i)]
, (8)

where a(i) is the mean distance between sample i and all other
data points in the same cluster, b(i) is the mean dissimilarity
of point i to some cluster C expressed as the mean of the
distance from i to all points in C (where C �= Ci). The mean
sc = ∑

sc(i)/N over all points of a cluster is a measure of
how tightly grouped all the points in the cluster are. Some-
times sca = ∑

a(i)/N or scb = ∑
b(i)/N are also very useful

[48].
The performance of a total of 11 indices is shown in

Appendix C, and the results of indices ch, dn, pbm, and Ii
applied to the q = 8 generalized XY model are all reasonable
choices. Here, we choose two representative indices ch and sc
as examples.

C. Advantage and prior knowledge required using ch

Figure 1 draws the flowchart of the RNS method and the
place of our modifications. Depending on whether or not we
are considering topology, we perform dimensional reduction
by DM or PCA (k-PCA), respectively, to get the features of
the data, i.e., the eigenvectors of the diffusion matrix P or
the covariance matrix. Then we apply k-means to cluster the
two-dimensional or higher-dimensional scattering points. If
we do not choose ch, then intersections of �λ and σλ, or the
intersections of D̄/2n and σ̄ [43] can be used instead.

To test whether the clustering is good or bad, if ch is
chosen, then the peaks of ch or its components cht and chb will
be used directly. For the topological phase transition, the index
ch or its components cht and chb can give signatures of phase
transition when it is not easy to determine the intersection of
the RNS method or when there is no intersection.

The index ch can also be applied to nontopological phase
transitions, such as the order-disorder phase transition of the
Ising model. This does not require any prior knowledge except

FIG. 1. Flow chart and main steps of the RNS method and our
modifications. The main difference begins at how to use the DM
method, (a) clustering algorithm in the RNS method, (b) intersections
of �λ and σλ, and (c) our method using ch.

for the configurations generated by, e.g., Monte Carlo meth-
ods or from real experiments.

For topological phase transitions, such as the XY and
generalized XY models, although this type of unsupervised
learning is not similar to supervised learning (such as fully
connected layers, or convolutional neural networks), it still
needs labels of configurations, i.e., the topological winding
number and the number of possible phases. However, the label
of the topological winding number does not mean the label of
phases, and essentially, this method is still an unsupervised
learning method.

III. THE TWO-DIMENSIONAL ISING MODEL

To test the ability to locate the phase-transition point Tc, we
calculate ch for the simplest model, i.e., the Ising model,

H = −J
∑
〈i, j〉

SiS j, (9)

where J is the ferromagnetic interaction between a pair of
nearest-neighborhood spins and Si = ±1. The unsupervised
learning of the Ising model has been studied before, (see, e.g.,
Refs. [18,19]).

We use a two-dimensional 64 × 64 lattice and generate
Ns = 2000 samples for each temperature Ti and analyze them
by PCA, using the scattering data of the first two leading
eigenvectors �0 and �1. Moreover, we calculate ch(k = 2)
and sc(k = 2) for each Ti according to Eqs. (6) and (8).

Figure 2 shows the main results for the Ising model. In
Fig. 2(a), sc itself and scb have a sharp decrease whereas
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FIG. 2. For the Ising model with sizes L = 64, (a) sc, sca, scb,
(b) cht and chb presented in the normalized range [0,1], (c) ch (d)–
(f) scatter plots with �1 and �2 at three typical temperatures T <

Tc, T ≈ Tc, and T > Tc, respectively, where different colors mean
labels generated by k-means. (g)–(i) Monte Carlo results square of
magnetization m, specific heat capacity CV , and zoomed CV . The
peaks are at 2.295, consistent with 2.30.

sca has peaks around Tc (here we rescale the results so the
maximum value is 1). In Figs. 2(b) and 2(c), the chb index is
peaked around 2.3; cht and ch also have a sharp jump at the
phase-transition points.

To understand these results, the scatter plots of �1 and
�2 are shown in Figs. 2(d)–2(f) for temperatures T = 1.5,
2.3, and 2.9, respectively. At low temperatures, the clusters
identified by the two colors separate from each other in the
reduced space and finally mix together at high temperatures.

In general, the ch index is large when the clusters are well
separated, and the points in each cluster are well aggregated.
From this viewpoint in the low-temperature phase, the ch
index becomes large because all up states and all down states
can be easily distinguished if the analysis is successful.

The index ch and its components perform well in detecting
the transition, and the position of the peak or if the jump is the
largest at T = 2.3. Around the phase-transition point, configu-
rations possess the properties from both phases (paramagnetic
and ferromagnetic), and the fluctuation is the largest there.

Comparing to traditional Monte Carlo results with the
same size L = 64 as shown in Figs. 2(g)–2(i), we find that
the position of the peak is located at around 2.295 consistent
with our ch or sc results with numerical intervals of 0.01. For
the purpose of reference, the thermodynamic limit transition
Tc = 2.269 is marked.

It should be noted that if we simulate the Ising model by
the Metropolis Monte Carlo algorithm [49], which flips one
spin each time in the low-temperature limit, almost all spins
choose to sit in the initial state (i.e., 111111, spin up). The
scatter plot will simply have one group. However, this is not
wrong because the state still obeys the Boltzmann distribution.
This is the reason for small ch at low temperatures of using
the Metropolis algorithm to generate configurations. How-
ever, we can still observe the signature at the phase-transition
point. Using the Swendsen-Wang algorithm instead [47], i.e.,
a global updating Monte Carlo method, the spin states will all
be spin up or spin down in lower temperatures, which is not
dependent of the initial state.

IV. THE 2D XY MODEL

The Hamiltonian of the classical XY model is given by

H = −J
∑

cos(θi − θ j ),

where 〈i, j〉 denotes a nearest-neighbor pair of sites i and j,
and θ in (0, 2π ] is a classical variable defined at each site
describing the angles of spin directions in a two-dimensional
spin plane. The sum in the Hamiltonian is over nearest-
neighbor pairs on the square lattice (L × L) with the periodic
boundary condition; other lattices can be also considered.

A. The 2D XY model on square lattices

Now we analyze the first example, i.e., the two-
dimensional XY model on the square lattice. First, we
generate the configurations with five fixed winding number
pairs at ν = (νx, νy) = (0, 0), (0, 1), (1, 0), (0,−1), and
(−1, 0). For each fixed winding number pair, it should be
noted that, for the two-dimensional geometry, the winding
number component νx = 1 means that the spins in each row
form a winding number of 1 rather than just the spins on one
row randomly selected. Cluster simulation algorithms [47,50]
are not suitable to update the spins because the global flips
break the topological winding number easily and, therefore,
the Metropolis algorithm is used while trying to rotate the spin
vector with a very small step each time so as to preserve the
winding number.

For each topological sector, we generate m = 500 con-
figurations. Combining all configurations {xl , l = 1, . . . , 5m}
from all five sectors, we construct the kernel Kε. The elements
between Kε(xl , xl ′ ) are defined in Eq. (1) and the normalized
matrix Pε(xl , xl ′ ) is obtained, obeying its eigenvalue equation
P�k = λk�k . Using the scatter plot of the second and third
leading eigenvectors �1 and �2 of Pε, the ch indices are
obtained and displayed in Figs. 3(a)–3(d).

There is a parameter ε in the above matrices and in order
to deduce consistent results, we need to make sure the results
are converging for a finite range of ε/ε0. We see that this is
indeed the case for different values of ε/ε0 in Figs. 3(a)–3(d).
For ε/ε0 = 2.5, 3, 3.5, and 4, Tc is less than 0.9, and then
becomes 0.93 when ε/ε0 = 4.5, 5, 5.5, 6, 6.5, and 7. Fi-
nally, the peaks move left and deviate from 0.93 again when
ε/ε0 = 8 or larger. It should be noted that here 10 000 or more
Monte Carlo steps are used in order to reach the equilibrium
of the systems.
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FIG. 3. The ch index for the XY model on a two-dimensional
square lattice of size L = 32 with various values of ε/ε0 (a) 2.5, 3,
3.5, (b) 4, 4.5, 5, (c) 5.5, 6, 6.5, and (d) 7 and 8. The error bars
are calculated by using ten or more bins of data. (e) Comparing the
Tc vs ε/ε0 using ch, Ref. [43], and the latest MC result [51]. (f)
Histogram of Tc obtained by using various ε/ε0’s. (g)–(i) ch index for
the XY model on a two-dimensional square lattice of sizes L = 8 and
L = 16, and the scaling of estimated critical points.

The estimated points are labeled by the circles in Fig. 3(e),
and they all distribute nearby or on the red lines representing
the latest result critical temperature Tc = 0.8935 [51]. The
intersections of D̄ and σ̄ are labeled by the gray regions in the
critical regimes Tc = 0.9 ± 0.1 from Ref. [43]. It appears that
it is easier to use ch to locate the phase transition as we only
need to identify the peak location. The results from Ref. [43]
have greater uncertainty than those by using the ch index.

The histogram of our estimated Tc is shown in Fig. 3(f),
which helps to determine the hyperparameter ε/ε0 (see
Sec. VI).

In Figs. 3(g)–3(i), the finite-size effect of Tc is checked
using the ch with two smaller sizes L = 8 and L = 16 with
ε/ε0 = 5.5, 6, and 6.5. Combining the estimated Tc(L) with
L = 8, 16, 32, we use two different ways of (linear and ex-
ponential) extrapolation to get Tc(∞) in the thermodynamic
limit. The results are 0.88(5) and 0.89(5), respectively.

B. The 2D XY model on honeycomb lattices

Here, we study the second example, i.e., the pure XY
model on the honeycomb lattice as the critical point is known
exactly at Tc = 1/

√
2 ≈ 0.707 [52].

The geometry of the honeycomb lattice is equivalent to the
8 × 8 brick-wall lattice shown in Fig. 4 where every spin has
three nearest-neighbor spins. To initialize the configurations
with a fixed winding number (νx, νy) = (0, 1), the spins con-
nected by solid gray lines are defined as forming νy = 1 in the

FIG. 4. An 8 × 8 honeycomb lattice equivalent to a brick-wall
lattice. The gray solid line connects the spin forming the winding
number in the y direction, i.e., (νx, νy ) = (1, 0).

vertical direction. Specifically, if we start a spin at position
(2,1) and then go left to → (1, 1) → (1, 2) · · · (2, 8) and go
back to (2,1) through the red dashed lines, connecting the sites
at the boundaries for periodic boundary conditions, the spins
sweep an angle of 2π counterclockwise.

It should be noted that two spins, such as (1,1) and (2,1),
connected by the horizontal gray lines will contribute to the
winding number νy, and they contribute to νx. This poses a
problem when fixing νx and νy independently. Fortunately, this
problem can be solved. Specifically, in the first row, labeled
by 1 in the vertical (y) direction, the relation of angles obeys
θ(2,1) − θ(1,1) = −(θ(1,1) − θ(2,1)) ≈ −(θ(3,1) − θ(2,1)). During
the simulation, small fluctuations are allowed if they do not
break the winding number.

In Fig. 5, using configurations constrained in five topolog-
ical sectors on the 32 × 32 lattices, we find that the peaks
are located at the exact value of Tc = 1√

2
≈ 0.7 for several

different values of ε/ε0 in the interval [2,6] with intervals
of 0.5. We also calculate the intersections by �λ and σλ

at ε/ε0 = 5–7. The intersection can also arrive at 0.7 when
ε/ε0 = 7 but not 5 and 6. It indicates that the ch performs
better than the intersection as the intersection method may not
give high confidence for the transition.

V. THE 2D GENERALIZED XY MODELS

Here, we apply our method to the generalized XY (GXY)
models [53,54], whose Hamiltonian is given by

H = −
∑

[� cos(θi − θ j ) + (1 − �) cos(qθi − θ j )],

where � is the relative weight of the pure XY model and q is
another integer parameter that can drive the system to form a
nematic phase. For both � = 0 and � = 1 the model reduces
to the pure XY model (redefining q as 1 in the first case), and,
hence, the transition temperature is identical to that of the pure
XY model. However, such a redefinition is not possible with
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� �= 1. The phase diagrams of the GXY models depend on the
integer parameter q, and they have been explored extensively.

A. q = 2 GXY model

The q = 2 GXY model has a richer phase diagram than the
XY model and has an additional new phase [9]. Thus, it is a
good candidate model to test our method away from the pure
XY limit. The phase diagram is illustrated in Fig. 6(a) on the
�-T plane, and we show the results from our unsupervised
method and those from PCA as comparison. The symbols
N, F , and P represent nematic, ferromagnetic, and param-
agnetic phases, respectively. The dashed lines are data from
the MC simulations [53] mainly of L = 50 up to L = 300.
The color indicates the value of the ch index obtained from
simulation with the system size L = 32. We now discuss the
F -P, N-F , and N-P transitions as follows.

(i) The F -P phase transition: Interestingly, the positions of
the peaks by ch are consistent with the dashed line of the phase
boundary in the whole region � > 0.4. The index ch performs
very well where � is away from the pure XY model limit. The
essential nature of the F -P phase transition is still BKT.

(ii) The N-P phase transition: In the regime � = 0, using
integer-vortex constraint the ch peaks around T = 0.7, which
is 0.2 less than 0.9. This discrepancy is likely due to the
nature of half-vortex in the N phase. We can improve the
result by limiting the configurations to have the half-winding
number νx(y) = 1/2 as the topological constraint in our Monte
Carlo simulation. The half-vortex physics has been discussed
in Ref. [53].

Thus, we only consider (νx, νy) in the four types of com-
binations (±1/2, 0) and (0,±1/2). To form (νx = 1/2, 0), the
difference between a pair of spins located at the left-most and
right-most boundaries is fixed as π , and we assign each spin

0.6 0.8 0.90.7
T 

0

1

ch

0.70.6 0.90.8
T 

(c) Δ=0.1 ε/ε0=3(b) 

(a) 

Δ=0  ε/ε0=3

FIG. 6. (a) The phase diagram of the q = 2 GXY model, con-
taining N, F , and P by calculating the ch index. The dashed lines are
from Ref. [53] (b) N-P transition at fixed � = 0 : ch vs T . (c) N-P
transition � = 0.1: ch vs T . The peaks are closer to the known values
using the half-vortex constraint with L up to 64 when compared with
those using only integer vortices.

using Eq. (A2). With the half-vortex constraint, our results
illustrated by the red symbols move closer to the dashed lines
of the N-P transition in Fig. 6(a) than the results using the
integer-value constraint.

Figures 6(b) and 6(c) show the details at � = 0 and � =
0.1, respectively. For L = 64, we generate two groups of data,
the peaks almost converge in the interval [0.82,0.85], and
the convergence is closer to 0.89 than the result from the
integer-vortex constraint. For � = 0.1, the half-vortex con-
straint gives better results at Tc = 0.8.

(iii) The N-F phase transition: When we realize that the
topological constraint makes the peaks (features) of the distri-
bution for the spin directions implicit in the F and P phases,
we use the configurations without any constraint in this case.
The results are labeled by purple symbols with the legend
“pca, L32.”

The behavior of ch depends on the structure of the sample
points, and sometimes ch emerges as a sharp jump at the
phase-transition point, such as in the Ising model discussed
in the main text. Sometimes it is a local minimum value at
the phase-transition point. Take the q = 2 GXY model at
T = 0.5 as an example in Fig. 7, both ln(cht ) and ln(chb)
increase as a function of �. However, the difference α =
ln(cht ) − ln(chb) = −gap decreases first and then increases
around �2 = 0.22 where the gap has a positive value.

According to the following equation:

ch = exp[ln(cht ) − ln(chb)] = exp(−gap), (10)
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 q=2, T=0.5

Δ2

-α1<−α2

FIG. 7. For the q = 2 GXY model, ch, cht , and chb on the
logarithmic-scale vs � without any constraint. ch is obtained by
applying k-PCA and k-means.

clearly, min(ch) ⇒ max(gap) and the local minimum of the
ch is at the location of �2.

For the N-F phase transition in Fig. 6(a), the PCA is
stronger than the DM method. Here, we would like to give
a physical discussion about this because such a difference is
related to the advantage of the proposed method, and, thus, a
more detailed discussion should be made.

The reasons for PCA being stronger for the N-F transition
can be explained as follows:

(i) The N-F phase transition is not a topological phase
transition [54]. The DM method designed here is to determine
the topological phase transition. It is still interesting to see the
ch of the DM by inputting Ising configurations without any
topological constraint. In Fig. 8, using the k-PCA and the DM
method with complete same configurations, the signatures
of phase transition emerge and the results are consistent at
Tc = 2.3. However, the signature of the k-PCA method is
clearer.

(ii) From the view of the data, it is also understandable that
PCA is stronger. Without any topological constraint in the
nematic (N) phase the spins prefer two dominant directions,
and their histograms obey a double peaks structure. In the
ferromagnetic (F ) phase, one main direction remains, and
one peak emerges for the histograms. Figures 9(b1)–9(b3)

1.8 32.3
T

c

1

0

ch

1.5 2.3 3
T

c

0

0.5

1
(a) k-PCA (b) DM

FIG. 8. The value of chb obtained by the k-PCA and the DM
model for the complete same configurations of the 64 × 64 Ising
model without any constraint.
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/π
)
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Δ=0.1, T=0.4

Δ=0.2, T=0.4

Δ=0.3, T=0.4

constraint without constraint
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(a2)

(a3)

(b1)

(b2)

(b3)

FIG. 9. In the N (� = 0.1) and F (� = 0.3) phases and critical
points � = 0.2, the distributions of spin vector of the q = 2 GXY
model with (a1)–(a3) and without (b1)–(b3) constraints, respectively.

show the typical histograms in three phases. The main feature
difference between the phases is obvious.

However, with a topological constraint, the spin directions
are mainly distributed according to the winding numbers.
For example, the spin angles in each row are θx = 2πx/L
with additional fluctuations, where x and L are the number
index and total number, respectively, in each row. Therefore,
the distribution sits almost in the range [0, 2π ] as shown in
Figs. 9(a1)–9(a3). The feature difference of spin angles disap-
pears when using the constraint. Therefore, the DM method
cannot get transition points using the configurations with con-
straints.

B. q = 8 GXY model

For the q = 8 GXY model [54], Fig. 10(a) shows the global
phase diagram using the values of the ch index. The phases
N, F2, F , and P are obtained, and the distributions are shown.

In the new F2 phase, the distribution of the spin vectors has
eight peaks but is dominated by four possible angles. The “X”
shape dashed lines are from Refs. [53,54]. The orange color
represents the values of ch by the DM method.

Let us first discuss the F (F2)-P transition. Clearly, for the
F -P transition in the range 0.5 < � < 1, the peak positions
of ch align well with the dashed line. In the center of X, the
F2 and P transitions are also consistent with MC result, i.e.,
Tc = 0.5.

However, we could not use the intersection of the cluster
average distance D̄ and within-cluster dispersion σ̄ as de-
scribed in Ref. [43] because D̄ does not vary too much and
there is no intersection as shown in Figs. 10(e)–10(g). The five
different colors therein represent the five typical topological
sectors. However, fortunately, when zooming in the figures
in Figs. 10(g)–10(i), we find that, near the transition region,
the shape of a fixed cluster shrinks because the data points
gather closer together, and, hence, the within-cluster disper-
sion σ̄ is smaller. The index ch = cht

chb
, thus, develops a peak

around Tc = 0.5 as shown in Fig. 10(c) with cht and chb also
displayed in Fig. 10(d). In contrast, Fig. 10(b) shows that sc
cannot be used to signal the transition temperature Tc because
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FIG. 10. (a) Phase diagram (with N, F, F2, and P phases) of
the q = 8 GXY model and results from calculating the ch index,
whose values are represented by colors. The dashed blue lines are
MC results [54]. (b) The curves of sc, sca, scb vs T at � = 0.5.
(c) and (d) The curves of ch, cht , and chb vs T at � = 0.5 (and note
that Tc = 0.5). (e)–(g) Scatter plot of �1 and �2 at T = 0.1, 0.5, and
1.0. (h)–(j) Zoom-in view for a fixed group of data.

it evaluates the difference scb − sca, but sca  scb despite the
fact that sca has a local minimum.

It should be mentioned that for the N-P transition, the
use of either the integer or the half-vortex constraint is not
suitable. Instead the νx(y) = 1/8 vortex constraint is needed
in generating the configurations. Moreover, after comparison,
we find that k-PCA works better if we use θi as the input
into the k-PCA (using PCA does not work well). The kernel
used for k-PCA defined as a radial basis functional kernel
exp(−γ ‖x/L − y/L‖2), where L = 32 is the system size, x
and y are the configurations {θi}, and γ = 1 is the default value
[55].

The other details of the F -P, F2-F, N-F2, and N-P transi-
tions will be discussed as follows. For the q = 8 GXY model,
Fig. 11 shows the distributions of spin vectors in the (a1) N ,
(a2) F2, and (a3) F phases with the integer-vortex constraint.
The distributions of spin vectors in the N and F2 phases have
no obvious differences. To distinguish the N and F2 phases,
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2

F

FIG. 11. In the N, F2, and F phases, the distributions of spin
vector of the q = 8 GXY model with (a1)–(a3) and without (b1)–(b3)
constraints, respectively.

the constraints are canceled, and the distributions are shown
in Figs. 11(b1)–11(b3), respectively.

Figures 12(a)–12(d) show the detail of phase-transition
F -P, F2-F , and N-F2, respectively. For the F -P transition, in
Fig. 12(a), fixing � in the interval [0.5,1] at steps of 0.1, the
peaks of ch are located at 0.5 and 1, respectively, completely
matching the dashed lines in the global phase diagram in
Fig. 10.

In Fig. 12(b), for the F2-F transition, by fixing � = 0.8,
the peaks of ch are located at 0.2 with L = 8, 16, 32, 48, and
64. The other values of � are not shown. In Fig. 12(c), fixing
T = 0.2, 0.3, and 0.4, the positions � of the local minimum
of ch are located at 0.2, 0.3, and 0.4, respectively.

In Fig. 12(d), for � = 0, using the 1/8 vortex constraint
results in the most accurate critical points. The peak position
is at 0.9 more closely to 1 than 0.7 by the integer-vortex con-
straint. The error bars are obtained by the bootstrap method
using 400 randomly chosen configurations between the total
2000 configurations and the total of 20 bins.
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(a) Δ (b) Δ=0.8

(c) (d) Δ=0

FIG. 12. (a) F -P: ch vs T at fixed � in the interval [0.5,1]. The
peaks are at 0.5, 0.6, 0.7, 0.8, 0.9, and 1, respectively. (b) F2-F : ch vs
T , and Tc is 0.2 for � = 0.8. (c) The numerator cht and denominator
chb of the ch index in Eq. (6). (c) N-F2: ch vs � for T = 0.2, 0.3,
and 0.4. (d) N-P: using the 1

8 vortex constraint and k-PCA, ch vs T ,
and Tc is about 0.9.
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FIG. 13. The ch index as a function of T for various values of
�d (a) �d = 3, (b) �d = 4, and (c) �d = 5 for Ising systems. ch
vs T of the GXY model at fixed � = 0.5 and varying T with the
number of vectors considered (d) �d = 3 and 4, (e) �d = 5, and (f)
�d = 6, respectively. The results are best using two vectors �d = 2.

VI. OTHER TECHNICAL MODIFICATIONS

In the above sections, during the use of the k-means
method, we apply two output eigenvectors of the diffusion ma-
trix P and then get the values of the ch index. The conclusion
is that using two leading vectors leads to the best accuracy. At
the same time, it is possible to design a way to determine the
super parameter ε/ε0 automatically. In this section, we will
focus on such issues for the completeness of our method.

Here, the effects of higher-dimensional features will be dis-
cussed using k-means, namely, whether or not the accuracy is
enhanced when including more features will be clarified. The
answer is that retaining more dimensions of the eigenvectors,
the result may deviate from the right critical points or even
predict wrong critical points.

Assuming the covariance matrix of the PCA method is C,
and its eigenvectors are {�d}, where d = 1, . . . , dmax (�d =
dmax ). For the Ising model in Sec. III, the first and sec-
ond vectors {�d} are used, where dmax = 2, or �d = 2.
Here, we consider vectors with �d = 3–5. The difference
is found between the results of two-dimensional vectors and
higher-dimensional data as shown in Figs. 13(a)–13(c). The
estimated position of the peaks are 2.31, 2.31, and 2.33, re-
spectively. The result Tc = 2.3 for �d = 2 is the closest to
the peak of the specific heat.

For the generalized XY model (q = 8, � = 0.5) with the
DM method, the vectors with index d = 2, . . . , dmax (�d =
dmax − 1) are used as the first vector ignored. In Fig. 13(d)
with �d = 3 or 4, the position of peaks are Tc = 0.5 as
the same as that of �d = 2. However, if higher-dimensional
data are used, such as �d = 5 and 6, the ch score does not
yield the correct signature of the phase transition as shown in
Figs. 13(e) and 13(f).

Another issue discussed here is whether one can design
an automatic method to determine the hyperparameter ε/ε0.

Since its value has been tried many times for some reasonable
choices, one may expect to find a way to determine its optimal
value automatically.

Here is such an automatic determination of the hyperpa-
rameter ε/ε0. Here we devise a simple analysis from the
statistics (histogram) of Tc obtained by various ε/ε0’s:

(i) Calculate ch(T ) as a function of temperature T with
various ε/ε0’s in a range from εmin/ε0 to εmax/ε0 by using the
configurations with topological constraints;

(ii) store the position of ch peaks, i.e., Tc and the times
they appear as shown in Figs. 3(e) and 3(f).

The histogram of Tc vs ε/ε0 can be used to give the best
estimate for the transition. Therefore, corresponding to the
highest position Tc = 0.96, the values of 4 � ε/ε0 � 6 are
acceptable.

Another possible approach is to calculate a location-
dependent σ for each data point instead of selecting a single
scaling parameter [56]. Then, the kernel matrix between a pair
of points can be written as

ω(x j, x j ) = exp

(
−‖xi − x j‖2

σiσ j

)
, (11)

where σi and σ j are the local scale parameters for xi and x j ,
respectively. The selection of the local scale σi is determined
by the local statistics of the neighborhood of point xi. For
example, the scale can be set as

σi = ‖xi − xK‖, (12)

where xK is the K th nearest neighbor. However, here, K is
also a hyperparameter to be chosen. By comparing Eqs. (11)
and (1), 2Nε = σiσ j , the obtained ε/ε0 ≈ 30 is about several
times larger than the acceptable regimes.

VII. DISCUSSION AND CONCLUSION

To summarize, we use the ch index to successfully locate
phase transitions of a few classical statistical models, includ-
ing the Ising, XY, and the generalized XY models. From the
scatter data for which we use the ch index to obtain the phase
transitions for the Ising, XY, and GXY models on lattices.
This combines the advantages of the PCA and DM methods as
the scattering data can be based on either the first two leading
eigenvectors of the PCA, kernel-PCA, or the second and third
vectors from the DM method.

The advantages of using the ch index are less steps, wider
applications, and better convergence. After k-means applied
to the eigenvectors of the diffusion matrix P, using the ch
index, we do not need to maximize the visibility of cluster
as proposed in the RNS method. For some phase transitions,
it may not be easy to find the intersections of D̄ and σ̄ . In
Figs. 10(e)–10(g), the ch index could capture the signatures
of both quantities. In Fig. 5, for the pure XY model on the
honeycomb lattices, the exact critical point is at Tc = 0.707.
Using ch when ε/ε0 is in the interval [2,6], the estimated
results of Tc are all close to 0.7.

In the pure XY limit, we have tested that ch can locate the
phase transition for the XY model on both the square and the
honeycomb lattices, similar to the DM method of Rodriguez-
Nieva and Scheurer. For the q = 2 GXY model, the values
of the ch index in the whole phase diagram matched the
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TABLE I. Internal clustering validation measures.

Measure Notation Definition

1 Calinski-Harabasz index ch

∑
i

nid
2(ci, c)/(NC − 1)

∑
i

∑
x∈Ci

d2(x, ci )/(n − NC)

2 Silhouette index sc { 1
NC

∑
i

[
1

ni

∑
x∈Ci

b(i) − a(i)

max[b(i), a(i)]
]}

a(x) = 1
ni−1

∑
y∈Ci,y �=x

d (x, y)

b(x) = min j. j �=i [ 1
n j

∑
y∈Cj

d (x, y)]

3 Davies-Bouldin index db { 1
NC

∑
i

max
j, j �=i

1
ni

∑
x∈Ci

d (x, ci ) + 1

nj
d (x, c j )

d (ci, c j )
}

4 SDbw validity index SDbw {Scat (NC) + Dens_bw(NC)}

scat (NC) = 1
NC

∑
i

‖σ (Ci )‖
‖σ (D)‖

Dens_bw(N )

= 1
NC(NC−1)

∑
i

[
∑
j, j �=i

∑
x∈(Ci∪Cj )

f (x, ui j )

max {
∑
x∈Ci

f (x, ci ),
∑
x∈Cj

f (x, c j )}
]

5 Xie-Beni index xb {

∑
i

∑
x∈Ci

d2(x, ci )

n mini, j �=i d2 (ci,c j )
}

6 Dunn’s indices dn {mini [min j (
minx∈Ci ,y∈Cj d (x,y)

maxk {maxx,y∈Ck
d (x,y)} )]}

7 pbm pbm { 1
K

n∑
i=1

d (xi,y j )

N∑
j=1

∑
xi∈Cj

d (xi, y j )

maxi, j=1,2,...,K d (yi, y j )}

8 I index Ii {[ 1
NC

∑
x∈D

d (x, c)

∑
i

∑
x∈Ci

d (x, ci )
maxi, j d (ci, c j )]

P

}

9 Root-mean-square std dev rmss {[

∑
i

∑
x∈Ci

‖x − ci‖2

P

∑
i

(ni − 1)
]

1/2

}

10 R2 r2 {1 −

∑
i

∑
x∈Ci

‖x − ci‖2

∑
x∈D

‖x − c‖2
}

11 Modified Huberta � statistic mhgs { 2
n(n−1)

∑
x∈D

∑
y∈D

d (x, y)dx∈C,y∈c j (ci, c j )}

aD: dataset; n: number of objects in D; c: center of D; P: attributes number of D; NC: number of clusters; Ci: the ith cluster; ni: number of
objects in Ci; ci: center of Ci; σ (Ci ): variance vector of Ci; d (x, y): distance between x and y; ‖Xi‖ = (X T

i Xi )1/2.

boundary between the ferromagnetic phase to the paramag-
netic phase very well even away from the pure XY limit. Close
to the N-P transition, the accuracy can be improved by using
the 1/2-vortex constraint in generating the Monte Carlo con-
figurations. For the q = 8 GXY model, using intersections of
D̄ and σ̄ cannot be used to locate the transition point, such as
at � = 0.5, but the ch index can still work to locate the phase-
transition point due to its incorporation of the fluctuation of

samples within each cluster. Moreover, the N-P transition can
also be identified by using the 1/8-vortex constraint.

We have also compared the results from other indices (see
Table I), but we find that the ch index works best overall
for the models considered in this paper. In the future, it will
be desirable to systematically study the utility of various pa-
rameters in models of statistical physics that exhibit different
natures of transitions.
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The development of applying machine learning to physics
could develop new methods for studying unknown phases. For
the Ising model or similar models, the transition point is well
known. This situation will help to check our proposed method.

If we get the first-hand data from experiments and do not
know the details of the Hamiltonian, our unsupervised method
can help deduce the number of possible classes (phases) in
the data. Furthermore, using the ch index we could iden-
tify phase-transition points. Therefore, the method of using
the ch index is very useful for future nontopological phase
transitions. For the XY model and Hamiltonians similar to
the GXY model by using the ch index, topological phase-
transition points were obtained without using the traditional
method of measuring correlations [54] and spin stiffness [51].
Of course, some reasonable prior knowledge is needed, such
as the possible winding numbers. The idea of DM can be
applied to topological quantum systems (see Refs. [57,58]).
In principle, the topological quantum phases and transitions
between them may be probed using the ch or sc indices.

Note added. After we finished the revised version of the
paper, we found the same topics by other methods [59–61].
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APPENDIX A: THE 1D XY MODEL

The Hamiltonian of the pure XY model reads

H = −J
N∑

i=1

cos(θi − θi+1), (A1)

where J is the coupling strength of the nearest-neighboring
pair of spins 〈i, i + 1〉 and throughout this paper, we set J = 1
for simplicity and use the periodic boundary condition θN+1 =
θ . For simplicity following Ref. [43], we generate the spin
vectors according to the following:

θ
(l )
i = 2πν (l )i/N + δθ

(l )
i + θ

(l )
, (A2)

where ν is the winding number and l is the identification
number of the configuration {θi} with i varying from 1 to
the total length N . The first term 2πν (l )i/N is used to de-
fine the winding number ν = ∑

i �i/2π where �i is in the
range [−π, π ) by the so-called saw function [7] obtained by
replacing �i with �i ± 2π if it is not in the target range. The

term δθ
(l )
i obeys the Gaussian fluctuation, and θ

(l )
is generated

randomly between [0, 2π ).
We consider two types of generated configurations with

winding numbers ν = 0 and ν = 1. The histogram of the
values of the first component of the diffusion map ψ1 is shown
in Fig. 14(a). The histogram of ψ1 has values at ±1, and ψ

is a vector with size m × 1, therefore, the values are equal
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FIG. 14. (a) Histogram count of ψ1
√

m. (b) The largest 20 eigen-
values of matrix P, and (c) ν vs ψ1 for the configurations with
seven topological sectors. (d) The largest 30 eigenvalues of matrix P.
Clearly in (b) and (d), the leading two and seven eigenvalues occur,
respectively.

to ±1 when ψ1 is rescaled by
√

m. Figure 14(b) shows the
largest 20 eigenvalues of the transition probability matrix Pl,l ′

in Eq. (2). Two maximum eigenvalues are found equal to
unity. Following Ref. [43], we also test ν = 7 according to
the following equation:

θ
(l )
i = 2πν (l )i/N + δθ

(l )
i + θ

(l ) + η(l )[1 − cos(2π i/N )],
(A3)

where ν = {0,±1,±2,±3}. We find that ψ1 has seven district
values ranging from −0.03 to 0.03, corresponding to seven
winding numbers marked by the symbols in Fig. 14(c). Eigen-
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FIG. 15. The distributions of λk vs ε/ε0 of the 2D XY model for
three typical temperatures, (a) T = 0.3, (b) T = 0.6, and (c) T =
1.0. The right column: the corresponding λk vs k. The five arrows
point to the eigenvalues of the leading five topological sectors.
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FIG. 16. PCA and kernel PCA with Gaussian and polynomial
kernels on a simple dataset. PCA and kernel PCA with Gaussian and
polynomial kernels for the generalized dataset.

values λk vs k are also shown in Fig. 14(d). Clearly, the plateau
of eigenvalues appears in k � 7.

Figures 15(a)–15(c) show the largest 24 eigenvalues λk�24

of Pl,l′ as a function of ε/ε0 for T = 0.3, 0.6, and 1.0, respec-
tively. The band of eigenvalues λk could not be distinguished
for small values of ε/ε0, and the reason can be seen from
the matrix of P, which is a diagonal matrix in that limit.
Increasing ε/ε0, the bands of λk will separate away from each
other.

The choice of ε/ε0 is important. We choose ε/ε0 = 4
marked by the dashed lines in the left column. The right
column presents λk vs k (k = 0, 1, . . .). Clearly, the gap be-
tween the k = 4 eigenvalue and the k = 5 eigenvalue becomes
smaller when increasing temperature and, subsequently, dis-
appears when T > Tc.

APPENDIX B: THE PCA AND THE k-PCA

Figure 16 represents some results of PCA and k-PCA on
simple and generalized datasets in the Appendix of Ref. [43].
The simple datasets are configurations of the one-dimensional
XY model with size N = 256, m = 1000, and σθ = 0.3 and
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FIG. 17. In the first row (a)–(d), the indices, called ch, Ii, dn,
and pbm, can distinguish the F2 and P phases. (e)–(k) The remaining
indices fail to present signals.

with topological winding numbers ν = 0 and ν = 1 according
to Eq. (A2). Figure 16 shows results of linear PCA, PCA with
Gaussian kernels, and PCA with polynomial kernels, respec-
tively (the first three panels). Obviously, the classifications of
PCA with a nonlinear kernel are much clearer for the XY
models. The three-dimensional visualization is based on the
three reduced components. However, the above method fails
for data generated with slight modification of Eq. (A2) with
an additional term η(l )[1 − cos(2π i/N )], where η(l ) is random
in the range [−η0, η0]. The results are shown in Fig. 16 at the
last three panels, respectively.

APPENDIX C: OTHER INDICES

As listed in Ref. [48], we check the 11 indices listed in
Table I for validating the classifications. Take the q = 8 GXY
model as an example, the value of the parameters, such as
the temperature T and � are fixed as those in Fig. 10(b). We
find only four indices, presented in Figs. 17(a)–17(d) produce
signals at the critical points. These are ch, Ii, and pbm, whose
full names are listed in Table I.

The other indices could not give correct signals to locate
the phase-transition points.
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