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Scale-free behavior in hailstone sequences generated by the Collatz map
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The Collatz conjecture, perhaps the most elementary unsolved problem in mathematics, claims that for all
positive integers n, the map n �→ n/2 (n even) and n �→ 3n + 1 (n odd) reaches 1 after a finite number of
iterations. We examine the Collatz map’s orbits, known as hailstone sequences, to determine whether or not
they exhibit scale-invariant behavior, in analogy with certain processes observed in real physical systems. We
develop an efficient way to generate orbits for extremely large n (e.g., higher than n ∼ 103000), allowing us to
statistically analyze very long sequences. We find strong evidence of a scale-free power law for the Collatz map.
We analytically derive the scaling exponents, displaying excellent agreement with the numerical estimations.
The scale-free sequences seen in the Collatz dynamics are consistent with geometric Brownian motion with
drift, which is compatible with the validity of the Collatz conjecture. Our results lead to another conjecture
(conceivably testable through direct, nonetheless very time consuming, numerical simulations): Given an initial
n, the average number of iterations needed to reach 1 is proportional, to lowest order, to log[n] (basis 10).
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I. INTRODUCTION

Complexity, already a more than 70-year-old notion [1],
has become an important framework for the proper under-
standing of a huge number of natural (and artificial) systems
[2]. However, unlike many concepts in physics, its definition
is not always concise or precise [3]. In fact, complexity is
based on a relatively large set of features [2,3], e.g., similar-
ity (or not) of constituents, nonlinearity, feedback responses
(interdependence), self-organization, robustness to perturba-
tions, critical and emergent properties, etc., which, when
occurring more or less concomitantly, can characterize com-
plex behavior. Due to this diversity of factors, it can be more
useful to think about distinct groups of problems as possessing
different degrees of complexity, forming hierarchical families
of processes [4–6].

Nonetheless, one of the key features of many complex
systems relates to hierarchical organization or self-similar
structure [5,7]. The mathematical signature of self-similarity,
and more generally self-affinity, is the presence of a power law
for some relevant quantity describing the dynamics. Functions
with asymptotic power-law decay are characterized by the
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absence of typical scales, in the sense that for f (x) = x−μ one
has f (αx) = α−μ f (x) for any dilation α �= 0. Often power
laws arise from the exact cancellation of two exponentials
when a tunable parameter assumes a special critical value [8].
At this critical point, the system becomes scale-free, so the
correlation lengths diverge. This is exactly the case for con-
tinuous phase transitions, as in the classic two-dimensional
ferromagnetic Ising model [9].

Still, criticality in this technical sense is not a necessary or
even a sufficient condition for a system as a whole to become
scale-free. For instance, fractals (structures not necessarily
associated with critical phenomena) have scale-free proper-
ties. Another example is weak chaos, in which the Lyapunov
exponent is zero. Thus, initially close orbits separate not ex-
ponentially but rather with power-law growth. Yet another
example concerns random walks with long-range power-law
correlations, such as Lévy walks and flights. The random-
walk propagator for a Lévy flight has power-law tails, whereas
for a Lévy walk the propagator dynamically evolves these
power-law tails (because of aging). None of these cases are
directly associated with criticality, but they share with critical
phenomena certain scale-free properties.

Also related to scale-free behavior is the idea of self-
organized criticality (SOC) [10,11]. Although not uncondi-
tionally implying complexity [12–14], SOC proposes both
emergent organization and criticality as potential identifying
trends of complex behavior [15–18]. Contrasting with contin-
uous phase transitions [8], in SOC the dynamics itself drives
the system towards a critical scale-free distribution of a rel-
evant parameter. In particular, inherent fluctuations resulting
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in avalanchelike patterns of activity [19] are a key mechanism
maintaining the system at a critical state. Since the paradig-
matic sandpile model [10] (but see [20,21]), several realistic
systems [22] have been investigated from the perspective of
SOC. Complying with the view of distinct levels of complex-
ity, few systems have been proposed as minimal illustrations
of SOC. Examples range from simple deterministic [23] and
stochastic [24] models to purely mathematical [25,26] con-
structions.

Motivated by the above discussion, in this work we look
at how scale-free behavior can emerge in a straightforward
purely mathematical evolution, hence having some, but far
from all, the typical aspects associated with physical criticality
[4,9]. In other words, we will address scale-free behavior
and the existence of potential scale-invariant evolution in a
very basic deterministic rule of the kind xt+1 = f (xt ). Such
a type of analysis certainly bears the fundamental question
of how elementary a dynamics can be while still leading to
certain emergent features of complexity (here self-similarity)
[27]. Indeed, efforts have been put forward in methods to
identify power-law behavior and their stability in dynamical
systems [28,29]. We should emphasize that this is not just
an academic curiosity. For instance, since bona fide complex-
ity can normally emerge from deterministic evolution taking
place in innate scale-free networks [30,31], eventually it could
justify the apparent ubiquity of complex phenomena in nature
[2,4,6,9]. However, this explanation may not be so direct as
realistic true scale-free networks might not be as common as
previously thought [32].

The most elemental rule in the form xt+1 = f (xt ) should
involve only positive integers [25]. We consider then the
mapping of the Collatz conjecture [33]. This approximately
80-year-old open problem is considered by many to be one
of the hardest in all of mathematics, allegedly making Erdős
comment that “mathematics may not be ready for such prob-
lems.” Since this “evolution law” is taken from number theory
[34], there are no experimental limitations or conceptual dif-
ficulties related to the underlying physics [13]. We report
findings of scale-free features in the Collatz dynamics as
defined below, which in many aspects is even more straight-
forward than the integer-based model in [25].

The work is organized as follows. In Sec. II we first review
the Collatz conjecture and its corresponding map f . Second,
we explain our method of analysis to identify scale-free be-
havior for proper orbits generated by f . In Sec. III we present
our main findings, considering a few orbits in detail as well
as addressing statistical properties of a collection of orbits.
In Sec. IV we conclude with several remarks and also argue
that our results are consistent with the validity of the Collatz
conjecture.

II. COLLATZ MAP DYNAMICS

Certain important (arguably true) facts are simple to state
but extremely difficult to prove. The Collatz conjecture [35]
surely belongs to such a class of renowned hard open prob-
lems. Let n ∈ N+ be a positive integer and f : N+ → N+ a
function, where

f (n) =
{

n/2, n even
3n + 1, n odd.

(1)

The Collatz dynamics is generated by iterating the map n �→
f (n). Successive applications produce a sequence of integers
{n0, n1, n2, n3, . . .} (with n0 the initially chosen integer to
start off the sequence). Each successor is half or approxi-
mately triple the value of its predecessor. From the notation
f (0)(n0) = n0, f (1)(n0) = f (n0) = n1, f (2)(n0) = f ( f (n0)) =
n2, f (3)(n0) = f ( f ( f (n0))) = n3, etc., we have that the Sth
Collatz step is given by f (S)(n0). We denote by { f (S)} the se-
quence of the above numbers up to nS . The { f (S)} is known as
a hailstone sequence because of the multiple ascents and de-
scents that hailstones go through during their formation [36].

The Collatz conjecture states the following [33,35,37]: For
every positive integer n0, the hailstone sequence generated by
n �→ f (n) will necessarily reach the number 1. In other words,
for all n0 ∈ N+ there exists a finite T (which, however, can be
very large) such that under f , O(n0) ≡ {n0, n1, n2, . . . , nT =
1} holds or similarly f (T )(n0) = 1 (note that from nT = 1,
subsequently {. . . , nT = 1, 4, 2, 1, 4, 2, 1, . . .}). We call any
sequence O of this form an orbit whose period is T . The
present record in testing positively the Collatz conjecture is
for all n0 up to 5 × 260 > 5.764 × 1018 [38] with the highest
n0 already tested being 2100 000 − 1 [39]. We also should men-
tion that recently Tao has shown that “almost all orbits of the
Collatz map attain almost bounded values” [40].

Following the aforementioned philosophy of unveiling
minimal models displaying certain universal ingredients, re-
current in actual physical processes, below we look for
power-law characteristics in the Collatz orbits.

There is a major feature of the Collatz dynamics which
must be taken into account. While looking for power laws,
long periods T are required for a proper statistical analysis,
demanding very large initial n0’s. However, even then, a small
fraction of the resulting orbits may not be typical. A few may
be very short and others extremely long but with a repetitive
trivial succession of ascents and descents in their hailstone se-
quence. Moreover, the majority of sequences (hereafter called
typical orbits) usually need to pass through intermediate inte-
gers that can be considerably larger than the initial number.
Thus, we have developed a method for representing large
positive integers, which is particularly suitable for the Collatz
map. Also, through numerical tests with such a protocol, we
have determined typical initial n0’s, potentially leading to
scale-free behavior in the orbits O(n0). We briefly describe
our approach next (for more details see Appendix A).

We must work with gigantic natural numbers n, to which
the Collatz map f must be applied. Then a proper decompo-
sition considerably helps to find good candidates n0 for the
scale-free orbits, also being very handy for the computational
implementation of f . Our decomposition method is as fol-
lows. Any n ∈ N+ can always be represented in a unique way
by

n = 2m1 + 2m1+m2 + 2m1+m2+m3 + · · · + 2m1+m2+m3+···+mr

≡ (m1, m2, m3, . . . , mr−2, mr−1, mr ). (2)

The uniqueness is guaranteed by imposing certain conditions
on the mi’s (Appendix A). As an illustration, we have

n = 7 = 20 + 20+1 + 20+1+1 ≡ (0, 1, 1),

n = 26 = 21 + 21+2 + 21+2+1 ≡ (1, 2, 1).
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FIG. 1. Semilogarithmic plots of log[ f ] × S, showing the hailstone sequences { f (S)(n0 )} (until S = T ) for the six n0 values considered
in details in this work. Logarithms are in base 10. The insets display a close-up of the first few steps of the sequences in a linear scale. The
hailstones { f (S)(n0)} resemble a 1D RW with drift towards an absorbing boundary at the termination value 1.

Also, for any n there is a simple and rapid algorithm to derive
its exponent set (m1, m2, . . . , mr ) (Appendix A).

Using this construction, we have written a code to generate
the hailstone sequences of the Collatz map, assuming properly
chosen n0 that can be as large as 101000 (or even larger). The
resulting orbits consequently can have extremely long T ’s. For
these orbits O(n0) we have looked for scale-free behavior. In
particular, we have analyzed the sizes of the jumps and their
frequency. Note that although in this work we show only six
sequences in greater detail for their dynamics (for statistical
analysis we consider a set of 50 sequences), we have looked
at many more to check that our findings are in fact general.

III. RESULTS

We have performed an exhaustive investigation and
here we present just a few representative examples.
Thus, we discuss only six values for n0, labeled n(1)

0 <

n(2)
0 < n(3)

0 < n(4)
0 < n(5)

0 < n(6)
0 . Their total numbers of dig-

its (in the usual base-10 number system) are, respectively,
19, 106, 157, 167, 1914, 3827. For instance, for n(1)

0 ,

n(1)
0 = (0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2,

3, 1, 2, 3, 1, 2, 3, 1, 2, 3)

= 1, 354, 225, 259, 379, 471, 051. (3)

Using the representation in Eq. (2), n(4)
0 = (0, 3, 5, 7, 77,

3, 5, 7, 77, 3, 5, 7, 77, 3, 5, 7, 77, 3, 5, 7, 77, 3, 5, 7, 77), and
for n(2)

0 , n(3)
0 , n(5)

0 , and n(6)
0 the number of exponents are

r = 106, 157, 867, and 1773, respectively. Also, m1 = 0
for all the n0’s and for the remaining r − 1 exponents
(from m2 to mr) we have a repeated sequence of 2, 3, 5
for n(2)

0 and for n(3)
0 ; a repeated sequence of 5, 7, 11, un-

less for m104–m114, m319–m329, m534–m544, m749–m759, and
m862–m867 (all equal to 2) for n(5)

0 ; and a repeated sequence
of 5, 7, 11, unless for m104–m114, m319–m329, m534–m544,

m749–m759, m862–m867, m970–m980, m1185–m1195, m1400–m1410,
m1615–m1625, and m1728–m1733 (all equal to 2) for n(6)

0 .
For completeness, the full coefficients list can be seen in
Appendix A.

Since these numbers are very large, it is convenient to use
a logarithmic (base-10) scale to plot the relevant quantities
graphically. We show histograms on a double-logarithmic
scale, so we have employed the logarithmic binning method
for better visualization.

An important (but still unproven) hypothesis associated
with the Collatz conjecture is that for n0 chosen uniformly
at random, on average the decay of { f (S)(n0)} also resembles
a fairly random sequence [41,42]. Hence, any measure based
on the drops (to reach the number 1) should be subjected to
fluctuations. In fact, in a semilogarithmic plot we see from
Fig. 1 (for all six values of n0) that typically the hailstone
sequences look similar to a one-dimensional (1D) (geometric)
random walk (RW) with a drift [43–46] towards an absorbing
boundary (at the termination value 1). Thus, if indeed the
Collatz dynamics could be mapped onto a biased 1D RW, the
Collatz conjecture would be readily demonstrated (conceiv-
ably by induction) from the famous directed graph structure
of the Collatz orbits [33].

Despite the similarity to a 1D drifted RW [43,45], shown
in Fig. 1, it is difficult to observe relevant differences between
small and large fluctuations. However, better insight into the
general trend of the hailstone Collatz sequences is obtained by
constructing a simple normalized histogram of { f (S)(n0)}, and
thus generating the distribution D( f ). The resulting curves in
log-log plots are depicted in Fig. 2. They are consistent with
straight lines, indicating a power law for D( f ) in the form

D( f ) ∼ f −α, (4)

with α = 1.0 regardless of n0. We can interpret α as the
critical exponent reflecting the effect of fluctuations (up
and down) of the dynamics. It is worth mentioning that a
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FIG. 2. The log-log plots log[D] × log[q] of normalized histograms for the six n0 values considered in this work. Logarithms are in base
10. The circles represent the distribution D( f ) for the hailstone sequence values f . The squares represent the distribution D(l ) of the avalanche
lengths l as defined in the main text. In both cases D(q) ∼ q−1 for all n0.

D( f ) ∼ 1/ f signal is commonly associated with self-
organization in different systems [10,47]. For example, it
arises in concrete instances where the physical system under-
goes a drift to an absorbing state (e.g., due to dissipation) [48].

Another important characterization of scale-free behavior
is the distribution of magnitudes of a certain variable of
interest v, resulting from the system’s time evolution. The
famous avalanches in the theoretical sandpile model [10] in
fact mean that v can display very large fluctuations, much
more frequent than expected from a usual normal distribution.
In other words, v should obey a power-law-like distribution.
For the Collatz map, we also analyze the sizes (or lengths) l
of the avalanches. We should note that the word “avalanche”
in our context is just an analogy; it is not supposed to bear the
exact same meaning as that in SOC. In fact, an appropriate
way in the present context to define the quantity l is as follows.
Consider all the distinct stretches of orbits O(n0) which fall
without interruption. Each one of these stretches corresponds
to a (small or big) avalanche. We suppose the jth stretch
sequence of O(n0), having the first and last terms n j,i and n j, f ,
respectively. We define then l j = n j,i − n j, f . For example,
O(n0 = 48) = {48, 24, 12, 6, 3, 10, 5, 16, 8, 4, 2, 1}, leading
to three avalanches: from 48 to 3 (with l1 = 48 − 3 = 45),
next from 10 to 5 (with l2 = 10 − 5 = 5), and finally from 16
to 1 (with l3 = 16 − 1 = 15). For a long enough orbit, we can
calculate the distribution of D(l ), which for a scale-free pro-
cess should also follow a power law. In Fig. 2 we show D(l )
for all six n0. The numerical analysis fits perfectly well the
power-law form D(l ) ∼ l−αav , again for the critical exponent
αav = 1.0. The numerical coincidence of α in Eq. (4) with αav

is addressed below.
For our next numerical analysis, it is useful to define the

Collatz map in a slightly different way. Recall that if n is
odd, then 3n + 1 is even, and so necessarily n �→ 3n + 1 �→
(3n + 1)/2. Thus, without loss of generality we can redefine

the Collatz dynamics as

f̃ (n) =
{

n/2, n even
(3n + 1)/2 = n + (n + 1)/2, n odd.

(5)

For these f̃ sequences we can ask about the time duration
(in steps) of stretches corresponding to either successive in-
creases or successive decreases of the corresponding nS’s.
For instance, for { f̃ (S)(48)} = {48, 24, 12, 6, 3, 5, 8, 4, 2, 1},
first we find a decrease during four steps (48 → 24 → 12 →
6 → 3), then an increase during two steps (3 → 5 → 8), and
a final decrease during three steps (8 → 4 → 2 → 1). Thus,
for the jth stretch (which now can be either an up or a down
sequence), we define

t j = log

[
n j,i

n j, f

]
. (6)

Here t j > 0 (t j < 0) if we have a down (an up) avalanche,
as previously defined. The logarithm in Eq. (6) is justified
because for a down avalanche where nj,i = 2mnn, f , we have
that t j ≈ 0.3m is proportional to the avalanche’s number of
steps m (we do not use log2, for which t j would be exactly m,
for uniformity with the previous analysis). In Fig. 3 we show
the t’s for the successive up and down stretches j for six n0’s.
The insets of Fig. 3 display the corresponding D(t )’s, but only
for the down avalanches.

What could be the mechanism that underpins the observed
scale-free behavior? Observe in Fig. 1 that the logarithm of the
sequence appears to be of uniform velocity with a noise term
added. The simplest stochastic process with these properties
is geometric Brownian motion. Indeed, the overall picture
emerging from the analysis of our examples so far is that of
geometric Brownian motion (GBM) [43,44]. However, then
a pertinent issue concerns the robustness of these findings,
namely, their statistical significance. Before we address this
question, we stress an important distinction between pure
mathematics and physics, appropriate in the present study. In
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FIG. 3. Quantity t j , defined in Eq. (6), for the up and down avalanches j. The insets show the distributions D(t ) of the down avalanches.
Since the number of steps (or time duration) m of a down avalanche is roughly m = t/0.3, we see that although the avalanches duration
distribution is not exactly a power law, it is also not a distribution with a sharp mean.

pure mathematics a probability of 100% is not necessarily
as meaningful as it is in physics. For example, since the
rationals are a countable set, they have a measure of zero
in the reals and hence their density is also zero in R. Thus,
although the probability to pick uniformly an irrational in the
line is 100%, this certainly does not imply that there are no
rationals. Following the same reasoning, it is not enough or
even meaningful to say that the Collatz conjecture is valid for
100% of all initial conditions or that 100% of the zeros of
the Riemann ζ function analyzed lie on the critical line. Even
a small exceptional set of measure zero is enough to inval-
idate these hypotheses. A single counterexample constitutes
disproof, in which case questions of statistical significance are
not relevant.

On the other hand, considered as a dynamical system,
it is still fair to ask about how confident we are about the
claim of GBM for an important fraction of arbitrarily chosen
very large n0’s. Therefore, we have performed an elementary
self-consistency check as follows. Our hypothesis is that the
observed power-law scaling is a consequence of the GBM.
Of course, power-law scaling could have other causes, so in
order to test for GBM we should focus not on the power-law
scaling or the exponent α, but rather on a quantity that is
directly associated with the GBM. For arbitrary n0, let γ be
the exponent defined according to f (S)(n0) ∼ n010−γ S for the
drift in sequences of the type observed in Fig. 1. Assuming
GBM, this exponent should fairly carry over (as discussed
below) the distinct { f (S)(n0)}. Thus, we have generated 50
sequences with 1 × 1013 < n0 < 2 × 1013 randomly chosen.
Such an n0 interval is already adequate for statistical analysis
yet keeping the numerical work cost low. In Table I we list
the n0’s as well as the estimated γ for each sequence (taking
the initial and ending points to obtain the exponential fit; thus
no regression, least squares, spline, etc., have been used). For
this sample of 50 exponents, the mean is γ̄ = 0.046 63. The
standard deviation is σ = 0.0112.

If we really have GBM, then if we nonrandomly split these
50 sequences, say, into two sets of 25 sequences (splitting into
more sets, i.e., three, four, etc., would surely require more
than 50 initial n0’s), a two-sample t-test will immediately be
able to reveal an estimate of the probability of whether the
γ were generated by the same process. Obviously, a random
division is not expected to show differences in statistical
properties. To maximize systematic bias and check for the
worst case scenario, our two sets are composed of the 25
largest and 25 smallest n0’s in Table I. If the two sets have
statistically significant differences in their γ , this difference
would represent evidence against our hypothesis of GBM. Let
the null hypothesis be that the two sets have the same mean.
The alternate hypothesis is that the group means differ. We
assume the standard significance level of 0.05, often denoted
by the symbol α (not to be mistaken for our exponent α)
in hypothesis testing theory. For the two-sample t-test we
obtain a p-value of p = 0.19 assuming the null hypothesis.
Since p = 0.19 > 0.05 is a relatively large p-value, we can
conclude that there is no statistically significant difference
between the group means. Recall that p < 0.05 is frequently
considered the gold standard of significance, so we find no
relevant evidence for the alternative hypothesis. We can safely
conclude that the evidence against GBM is not statistically
significant (of course with the caveats related to mathematics
versus physics mentioned above).

As a second, independent, test of the plausibility of GBM,
we have calculated a theoretical value of γ by assuming that
we have a random process that depends only on the density of
the even and odd numbers (see Appendix B). The theoretical
estimate is γt = 0.041 646, which is nicely bracketed by γ̄ ±
σ = 0.0466 ± 0.0112.

Some other relevant features can be inferred from Fig. 3.
First, we do not find the same shape for all the n0’s. Second,
the shapes do not indicate any kind of power law. However,
by the same token, the D(t )’s clearly do not represent well-
concentrated (e.g., normal) distributions for t . Notice also that
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TABLE I. Extra 50 values of n(#)
0 (randomly chosen) and the fittings for the γ ’s of the corresponding Collatz sequences.

# (m1, . . . , mr) of n(#)
0 n(#)

0 γ

07 3, 1, 2, 2, 5, 1, 2, 2, 1, 3, 2, 1, 5, 3, 7 1109230707032 0.0412070
08 4, 1, 2, 2, 7, 2, 2, 3, 2, 1, 2, 2, 3, 7 1109554168496 0.0451697
09 4, 1, 2, 2, 5, 2, 2, 2, 3, 2, 1, 2, 2, 3, 7 1109554184880 0.0451697
10 4, 1, 2, 5, 2, 2, 2, 2, 3, 2, 1, 2, 2, 3, 7 1109554188464 0.0451697
11 3, 1, 2, 2, 5, 2, 2, 2, 1, 3, 2, 1, 2, 2, 3, 7 1109554536792 0.0593137
12 5, 3, 2, 2, 3, 1, 2, 5, 2, 5, 2, 3, 5 1139282384160 0.0593717
13 1, 5, 7, 2, 2, 4, 7, 2, 2, 3, 5 1139510779970 0.0430611
14 1, 3, 5, 7, 1, 2, 5, 7, 1, 3, 5 1140331315730 0.0350925
15 1, 3, 5, 2, 5, 1, 2, 5, 7, 1, 3, 5 1140331317778 0.0593737
16 3, 1, 2, 2, 5, 1, 2, 2, 1, 3, 2, 1, 5, 3, 2, 5 1143590445400 0.0476002
17 3, 1, 2, 2, 5, 1, 4, 4, 2, 1, 3, 2, 3, 2, 5 1143858291032 0.0513421
18 5, 1, 2, 5, 1, 4, 4, 2, 1, 3, 2, 3, 2, 5 1143858291040 0.0513421
19 3, 1, 2, 2, 5, 1, 5, 3, 2, 1, 3, 2, 3, 2, 5 1143858553176 0.0350965
20 1, 1, 5, 7, 2, 2, 3, 2, 2, 2, 5, 2, 1, 5 1155524804742 0.0351097
21 1, 3, 5, 3, 2, 3, 2, 2, 5, 2, 7, 2, 3 1271648637458 0.0301106
22 1, 3, 5, 7, 2, 1, 2, 3, 2, 2, 7, 2, 3 1271665590802 0.0252748
23 1, 3, 5, 7, 2, 1, 4, 3, 2, 2, 5, 2, 3 1272728846866 0.0334383
24 5, 3, 2, 2, 3, 1, 2, 7, 5, 2, 3, 2, 3 1276712949024 0.0611661
25 5, 3, 2, 2, 3, 5, 3, 2, 5, 2, 3, 2, 3 1276722058528 0.0440488
26 5, 3, 2, 2, 3, 1, 5, 2, 2, 5, 2, 3, 2, 3 1276723172640 0.0611661
27 5, 3, 2, 2, 5, 5, 2, 2, 5, 2, 2, 2, 3 1282135954720 0.0412829
28 1, 3, 5, 1, 3, 3, 2, 2, 2, 2, 5, 2, 3, 1, 2, 3 1291196900882 0.0559714
29 5, 3, 2, 7, 2, 2, 3, 2, 1, 2, 2, 3, 1, 2, 3 1291395400992 0.0366771
30 1, 5, 3, 1, 3, 3, 2, 5, 2, 2, 5, 2, 1, 2, 3 1292961654338 0.0315790
31 5, 3, 2, 3, 2, 1, 4, 3, 7, 2, 2, 1, 2, 3 1293868442912 0.0395012
32 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3, 5, 1, 3 1308225185298 0.0498551
33 1, 2, 3, 1, 2, 3, 1, 2, 6, 3, 1, 2, 3, 1, 2, 3, 1, 3 1317667910346 0.0612372
34 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 3 1317668696778 0.0656599
35 1, 3, 3, 1, 3, 3, 2, 2, 2, 1, 3, 3, 1, 3, 3, 2, 2, 2 1462859286930 0.0275271
36 1, 3, 1, 7, 3, 7, 2, 2, 2, 1, 3, 7, 1 1654455832626 0.0388196
37 1, 3, 7, 1, 3, 7, 2, 2, 2, 1, 3, 7, 1 1654455834642 0.0388196
38 1, 2, 3, 3, 3, 1, 2, 6, 1, 2, 3, 1, 2, 3, 6, 1 1659356885578 0.0461973
39 3, 1, 2, 3, 3, 1, 2, 6, 1, 2, 3, 1, 2, 3, 6, 1 1659356885592 0.0608108
40 1, 2, 3, 1, 2, 3, 1, 2, 6, 1, 2, 3, 1, 2, 3, 6, 1 1659356885706 0.0461973
41 1, 2, 3, 1, 1, 1, 3, 1, 2, 6, 1, 2, 3, 1, 2, 3, 6, 1 1659356885962 0.0357925
42 2, 1, 3, 1, 1, 1, 3, 1, 2, 6, 1, 2, 3, 1, 2, 3, 6, 1 1659356885964 0.0357925
43 5, 1, 2, 3, 3, 1, 6, 1, 2, 3, 1, 2, 3, 6, 1 1659356891488 0.0608108
44 5, 1, 2, 3, 3, 1, 2, 2, 2, 2, 1, 3, 1, 2, 3, 6, 1 1659361741152 0.0461973
45 1, 2, 3, 5, 1, 3, 6, 1, 2, 2, 2, 1, 3, 2, 5, 1 1671637801034 0.0388342
46 1, 3, 2, 5, 1, 3, 6, 1, 2, 2, 2, 1, 3, 2, 5, 1 1671637801042 0.0388342
47 1, 3, 2, 5, 1, 3, 6, 1, 2, 3, 1, 1, 3, 2, 5, 1 1671704909906 0.0476885
48 1, 3, 7, 1, 3, 7, 2, 2, 2, 1, 3, 2, 3, 2, 1 1809074657298 0.0353740
49 1, 3, 7, 1, 3, 2, 3, 2, 2, 2, 2, 1, 3, 2, 3, 2, 1 1809075836946 0.0724632
50 5, 1, 1, 2, 2, 4, 3, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 1 1809077013216 0.0474461
51 1, 3, 7, 1, 3, 3, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 1 1809077016594 0.0472586
52 1, 3, 2, 5, 1, 3, 3, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 1 1809077016658 0.0472586
53 5, 1, 2, 6, 1, 4, 4, 1, 3, 1, 2, 3, 2, 2, 2, 1 1831158202720 0.0421186
54 5, 1, 2, 6, 1, 2, 2, 2, 2, 1, 3, 1, 2, 3, 2, 2, 2, 1 1831160430944 0.0672005
55 5, 1, 2, 6, 1, 4, 4, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 1 1831258866016 0.0572331
56 5, 1, 2, 6, 1, 4, 4, 2, 1, 3, 2, 3, 2, 1, 2, 1 1875399721312 0.0626810

in some cases we get long avalanches, with m = 12 succes-
sively decreasing steps. These results indicate that although
hailstone sequences are well approximated by GBM with
drift, this identification is not the full story. Indeed, the actual
dynamics is richer and more interesting.

For instance, for the increments (absolute values of the
increments) of the hailstone sequences we have calculated

the autocorrelation C(τ ) [|C(τ )|] as a function of the lag τ .
The calculations are depicted in Fig. 4 [we show C and |C|
only for the orbit of n(6)

0 (chosen since it has the longest
sequence, so leading to a better statistics), but the other cases
are qualitatively similar]. We see that the correlations expo-
nentially decay with the lag τ . Therefore, the orbits can be
described more precisely as GBM with drift but with short-
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FIG. 4. Functions C and |C| versus the lag τ for the increments
of the hailstone sequence of n(6)

0 in Fig. 1. The inset shows |C(τ )|
in semilogarithmic scale, evidencing an exponential decay. This be-
havior is inconsistent with Gaussian white (δ-correlated) noise. Such
correlations are instead typical of one-step Markov chains. Hence,
hailstone sequences are approximated by GBM, but only to low
order since hailstone sequences contain short-range exponentially
decaying correlations.

range correlations typical of one-step Markov processes. We
note that in the initial intervals of S in Fig. 1, the small
oscillations and other deviations from (geometric) Brownian
motion for n(1)

0 and the plateaus for n(2)
0 and n(3)

0 might be
due to these correlations. We finally observe that Brownian
motion plus such short-range correlations cannot be described
by usual diffusion or Fokker-Planck-like equations. Instead,
it can can be well approximated by the telegrapher’s equa-
tion as well as by the continuous-time RW formalism [49].
Nevertheless, upon renormalization of such correlated motion
via coarse graining, in the long-time limit one always recovers
the same diffusion properties and generalized Hurst exponents
as for standard (i.e., uncorrelated) Brownian motion. This is
so because short-range correlations cannot alter the stochastic
dynamics long-time diffusion features.

We now analytically estimate the scaling exponents. A rel-
evant question is why to expect the exact α values numerically
found in our examples. A possible explanation is based on
a simple hypothesis about the Collatz sequences, moreover
bearing a possible strategy to prove the conjecture [41,42] (see
Sec. IV).

It seems that at least for some sets of Collatz orbits, the
corresponding decaying sequences do resemble a stochastic
processes, viz., geometric Brownian motion with drift. Such
randomness (or pseudorandomness [37]) is more properly
encoded into the logarithm of the step sizes rather than in
their actual values (see, e.g., [50]). Thence, {log[ f (S)]} is a
Brownian motion evolving towards the absorbing boundary
at log[ f (T )(n0)] = 0 such that xS = log[ f (S)(n0)] = 〈xS〉 + ξS ,
with 〈xS〉 approximately a linear decreasing function of S
and ξS a stochastic (possibly Wiener-like) variable. Thus, the
density of visited points xS is some constant ρS and we can
calculate the density of visited points f (S). Dropping S in xS

and f (S), note that dx/df = 1/ f and

ρ f df ≈ ρxdx ⇒ ρ f ≈ ρx
dx

df
⇒ ρ f ∝ 1/ f . (7)

From Eq. (7), the points visited by the Collatz sequences are
distributed not uniformly along the integers, but according

to a density that scales inversely with the magnitude of the
number. This gives us the D( f ) = 1/ f distribution observed
in Fig. 2.

For the power-law behavior of D(l ) ∼ l−1 (Fig. 2), sim-
ilar arguments (although a little trickier) apply. Assuming
n j,i = 2mnj, f , we have l j = n j,i − n j, f = n j,i(1 − 2−m) and
log[l j] = log[n j,i] + log[1 − 2−m], which can be approxi-
mated as log[l j] ≈ log[n j,i] since most of the terms in our
orbits are huge numbers and already for m = 2, log[1 −
2−m] ≈ 0.125 is comparatively very small. In this way, the
distribution of l j [D(l ) ∼ l−αav ] is essentially that of n j,i. How-
ever, the n j,i’s are the onsets of all the down cascades. Thus,
the distribution of the whole hailstone sequence { f (S)} should
be dominated by the power-law behavior of {n j,i}. In other
words, the distribution of {nj,i} must have the same exponent
α of D( f ) ∼ f −α . Consequently, αav = α.

IV. CONCLUSION

We conclude the present work with a few general remarks
and speculation on eventual implications of our findings.

First, one of the most exciting consequences of our study
is that our results allow us to make a numerically testable
theoretical prediction. Assuming that the Collatz dynamics is
really a type of geometric Brownian motion with drift towards
an absorbing lower boundary, we can estimate the time (i.e.,
the number of iterations) necessary to reach 1, starting from
an arbitrary initial condition. Up to logarithmic corrections,
this time, for a typical initial integer n, should simply be
proportional to log[n]. To properly test (but of course not
prove) this conjecture, we need to sample over a very large
ensemble of initial integers. Such a task, however, is beyond
the scope of the present analysis.

Second, surely the Collatz dynamics is not an example
of a natural process displaying genuine SOC. For instance,
SOC usually (but see [25]) is defined in a spatial (geometric)
medium, which of course is not the case for a plain sequence
of integers. Nonetheless, we will point out some parallels
between our purely mathematical rules and certain physical
mechanisms generating SOC [17–19]. Commonly, SOC mod-
els alternate between slow input and fast dissipation bursts of
energy. For the Collatz map, we could suppose n j to be some
extensive quantity, proportional to energy. In this hypothetical
interpretation, for n large the gradual increase of energy might
correspond to instances where n → n′ ≈ 3

2 n, whereas the fast
release results from the avalanches n → n′ = n/2m. Also, re-
gardless of the starting condition [for the Collatz a typical very
large n0 (see Appendix A)], standard physical systems self-
organize to the critical behavior after some time. Similarly, if
for a particular integer the Collatz map takes it very far down,
then the correspondingly lower density (of multiples of 2)
makes the next avalanche likely to be smaller than otherwise
expected. Thus, a typical hailstone sequence has a built-in
negative feedback, e.g., the sandpile model. Hence, although
the Collatz map cannot have SOC in the usual sense, it bears
these striking (and unexpected) similarities.

Third, as in our model, scale-free behavior does not emerge
only in systems tending to a stationary state [25,48] or neces-
sarily presenting randomness [23,51]. However, it would be
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worth asking how and why the positive integers yield such
remarkable properties under such a simple linear map [52].

Fourth, an important signature in complex systems
[2,4,5,22] is long-range power-law correlations. Assuming the
Collatz conjecture is true (but even if it is not, a very recent
result [40] implies that infinite many n0 satisfy the hypothe-
sis), among all the infinite possible hailstone sequences, one
should find orbits that contain a stretch of M numbers with
such a type of correlation, moreover with M arbitrarily large.
In fact, by means of a constructive example, we demonstrate
in Appendix C that highly correlated stretches in the Collatz
sequence actually can emerge. Hence, conceivably certain
Collatz orbits could mimic statistical features of important
classes of natural processes [7,9]. In this way, a relevant ques-
tion is the following: Given the interval {n0 − 
, n0 + 
},
what is the number N (n0,
) of such orbits? Of course, if N
is very small, the scale-free dynamics would be only marginal
for the Collatz map. Surely, this is an investigation worth
pursuing in future studies.

We finally mention some implications of our analysis for
the validity of the Collatz conjecture (see [40]). The fact that
the orbits appear as 1D RWs with drift on a logarithmic scale
(related to the importance of the logarithmic scale, refer to the
surprising model in [26]) strongly suggests that the absorbing
boundary (here nT = 1) will always be reached. We further
recall that, as it is well known in one and two dimensions,
even a usual RW consistently returns to the origin because the
root mean square displacement only scales as the square root
of the number of steps. A possible strategy to prove the Collatz
conjecture is to show that for any n0, a finite S such that
f (S)(n0) < n0 always exists [53]. This is closely associated
with the first-passage-time problem for RWs [54]. Also, it
would be interesting to study hailstone sequences from the
perspective of the Andersen theorem [54], linking RWs and
renewal theory.

Concluding, as already pointed out, the possible ubiqui-
tousness of scale-free behavior in nature has motivated its

search in very simple (but rigorous) purely mathematical
models [15,24–26]. The hope is to find possibly universal
rules that can lead to complexity, even independently of fine-
tunable details. If successful, this kind of approach might
be very useful to describe and understand countless realistic
phenomena.
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APPENDIX A: DECOMPOSITION OF A NATURAL
NUMBER IN A SPECIAL (AND UNIQUE) FORM OF

POWERS OF 2

Consider a natural number n0 � 1. Now assume that m1 =
0, 1, 2, . . . is the largest non-negative natural number for
which n0/2m1 is an integer. Thus, we can write

n0 = 2m1 (n1 + 1), (A1)

where n1 is uniquely determined (given the above condition
for m1). Also, n1 is zero if n0 is an exact power of 2 (and then
the decomposition ends) or a non-null even number otherwise.
In the latter case, we can further decompose n1 as

n1 = 2m2 (n2 + 1) (A2)

for m2 = 1, 2, 3, . . ., the largest non-null integer for which
n1/2m2 is an integer (recall that m2 � 1 because n1 is even).
Again, n2 is unique and either zero (so the decomposition
ends) or even. This process continues until we reach nr = 0
for some r = 1, 2, 3, . . .. We therefore finally get

n0 = 2m1 ((2m2 ((2m3 ((2m4 (( · · · (2mr )) + 1)) + 1)) + 1)) + 1) = 2m1 + 2m1+m2 + 2m1+m2+m3 + · · · + 2m1+m2+m3+···+mr . (A3)

The above representation of the integer n0 � 1 in terms of
powers of 2 can be defined as

n0 ≡ (m1, m2, m3, . . . , mr−1, mr ) (A4)

for the exponents mi (i = 1, 2, . . . , r) being determined in a
very precise way from the above-described rules. Here it is
worth recalling that only m1 can be null; all the other mi (i �
2) are necessarily greater than zero. Furthermore, if m1 = 0
(m1 > 0) then n0 is odd (even).

In fact, the following is a direct algorithm to find the mi’s
in Eq. (A4) for any n0 � 1.

(a) Set M = n0.
(b) Set s = 1.
(c) Start the loop.
(c 0) The loop halting condition M = 0.
(c 1) Successively divide M by 2 until finding m such that

m is the largest integer for which M/2m is an integer.

(c 2) Set ms = m.
(c 3) Update M → M/2m − 1.
(c 4) Update s → s + 1.
(c 5) Return to (c 0).
The converse, namely, writing a natural number in the

usual base-10 system from the Eq. (A4) representation, fol-
lows directly from Eq. (A3).

1. Values of the f̃ (n) Collatz map in the above power
of 2 representation

The action of the Collatz map f̃ [Eq. (5)] (the analysis for
f [Eq. (1)] is very similar) on a natural number n is simple
to portray when n is given in the representation of Eq. (A4).
Indeed, for f̃ defined by

f̃ (n) =
{

n/2, n even
n + (n + 1)/2, n odd,

(A5)
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it is not difficult to see from Eq. (A3) that for n =
(m1, m2, m3, . . . , mr−2, mr−1, mr ), if n is even (so that m1 �
1) then

n

2
= (m1 − 1, m2, m3, . . . , mr−2, mr−1, mr ), (A6)

whereas for n odd (hence m1 = 0)

n + n + 1

2
= (m1, m2, m3, . . . , mr−2, mr−1, mr )

⊕ (m1, m2 − 1, m3, . . . , mr−2, mr−1, mr ).

(A7)

Here we should interpret ⊕ as the proper way to sum two
natural numbers written in the present specific power of 2 rep-
resentation. The first term on the right-hand side of Eq. (A7)
is simply the representation of n and the second is the repre-
sentation of (n + 1)/2.

Presently, we are still working on a possible analytical
method to obtain m′

1, m′
2, m′

3, . . ., where

(m′
1, m′

2, m′
3, . . .) = (m1, m2, m3, . . . , mr−2, mr−1, mr )

⊕ (m1, m2 − 1, m3, . . . , mr−2, mr−1, mr ).

(A8)

Nevertheless, for all the numerical calculations we can write
the right-hand side of Eq. (A8) as

(2m1 + 2m1+m2 + · · · + 2m1+···+mr ) + (2m1 + 2m1+m2−1

+ 2m1+m2−1+m3 + · · · + 2m1+m2−1+m3+···+mr )

and then apply the algorithm discussed above (with few extra,
but simple, steps) to compute the exponent set m′

1, m′
2, m′

3, . . ..

2. The n0’s used to generate typical orbits

As mentioned in the main text, it is important to choose
appropriate very large n0’s to guarantee the presence of scale-

free behavior in the corresponding generated orbits O(n0), as
well as to be able to perform reliable statistical analysis. Ap-
propriate here does not mean very special particular instances.
On the contrary, it refers to n0’s giving rise to “typical” hail-
stone sequences, i.e., with fairly heterogeneous patterns of up
and down fluctuations. Moreover they usually need to pass
through intermediate n j’s that can be much larger than, e.g.,
one googol (10100).

The six examples given in this work result from typical
n0’s. In fact, by picking at will a certain huge n0, in the great
majority of the cases the resulting O(n0)’s will be appropriate
to our study. However, obviously, one may choose an n0

leading to too structured orbits, e.g., of very short length or
with a very repetitive trivial succession of ascents and de-
scents in their hailstone sequence. These would be nontypical
situations.

However, by numerically playing with the orbits we have
observed some potential (heuristic) criteria for good n0 can-
didates. Although we still do not have a solid theoretical
explanation for these eventual criteria, it seems that if the
exponent set {mi} of n0 consists of repeated short sequences
of primes, such as 2, 3, 5 or 5, 7, 11, or even the simple case
of 1, 2, 3 (of course here with 1 not prime) and from time to
time we have a stretch of mi’s all equal to 2’s (also prime),
then the resulting O(n0) will be “typical”; here we should
observe that the very simple example of SOC in [25] is also
based on the generation of prime numbers. However, this
type of prime-based pattern is not unique to giving rise to a
power law for the hailstone sequences. In certain instances,
unexpectedly, particular numbers such as 77 should appear
repeatedly in the {mi} set, which is exactly the example for
n(4)

0 below.
Finally, we comment that we do believe that the behavior

of the {mi}’s themselves (under the action of the Collatz map)
might constitute an important hint to finally settle the Collatz
conjecture.

The set of {mi}’s of the six n0 used in our study is the fol-
lowing (recall that all are odd numbers, hence always m1 = 0):

n(1)
0 = (0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3),

n(0)
2 = (0, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5,

2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5,

2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5,

2, 3, 5, 2, 3, 5),

n(0)
3 = (0, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5,

2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5,

2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5,

2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5,

2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5, 2, 3, 5),

n(4)
0 = (0, 3, 5, 7, 77, 3, 5, 7, 77, 3, 5, 7, 77, 3, 5, 7, 77, 3, 5, 7, 77, 3, 5, 7, 77),

n(5)
0 = (0, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,
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5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 2, 2, 2, 2, 2, 2),

n(6)
0 = (0, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,
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5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 2, 2, 2, 2, 2, 2, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11, 5, 7, 11,

2, 2, 2, 2, 2, 2).
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APPENDIX B: ANALYTICAL ESTIMATION OF γ

In Sec. III we numerically calculated a mean value for
γ using 50 randomly generated orbits. Here we present an
analytic estimation for this exponent.

Observe the following (a known argument in favor of the
Collatz conjecture [33]). Whenever the jth Collatz hailstone
term n j is even, then (e) the subsequently is n j+1 = f (n j ) =
n j/2, which can be either even or odd. However, if n j is
odd, then (o) n j+1 = f (n j ) = 3n j + 1 is necessarily even,
so n j+2 = f (n j+1) = (3n j + 1)/2, which again can be even
or odd. Since evens and odds are equally distributed in N,
process (e) takes one step, process (o) takes two steps, and
for (o) and nj large, n j+2 ∼ 3

2 n j , we find that on average after
s = 3 steps an integer n j is reduced to 1

2 × 3
2 n j = 3

4 n j .
Suppose now that starting with n0, we have a steady de-

crease of n0 by a factor 3
4 in each step or

n0 → ( 3
4 )n0 → ( 3

4 )2n0 → · · · → ( 3
4 )T̃ n0 ≈ 1.

The total number of terms (or steps) T̃ in the above monotonic
sequence is associated with the initial number n0 through

log[( 3
4 )T̃ n0] = log[1] or log[n0] = (3T̃ )

log[ 4
3 ]

3
. (B1)

However, from the previous considerations, the main num-
ber of steps of { f (1)(n0), . . . , f (T )(n0) = 1} is T = sT̃ = 3T̃ .
Thus, given the definition of γ in Sec. III and Eq. (B1),

γ = 1
3 log[ 4

3 ] ≈ 0.041 646.

APPENDIX C: EXAMPLE OF THE EXISTENCE OF A
LONG CORRELATED STRETCH IN A COLLATZ

HAILSTONE SEQUENCE

Here we give an explicit example of a long stretch in a
Collatz sequence that can lead to distributions similar to those
of time series associated with strongly correlated systems. We
emphasize that, on the one hand, our example does not exhaust
all the possibilities of correlations in the Collatz hailstones.
On the other hand, it also does not prove that such correlations
commonly arise in { f (S)(n0)} if n0 is arbitrarily large. With
the present analysis our aim is limited to giving concrete
support to our speculations in Sec. IV (see the fourth point
in the Conclusion), namely, the Collatz map might be a sur-
prising generator of long-range power-law correlated series,
thus somehow emulating the dynamics of complex systems.

We define �i = ∑ j=i
j=0(
 j + k j ) (i = 0, 1, 2, . . .) for 
0 =

r0 = 0 (so �0 = 0) and 
, �, and k all non-negative inte-
gers. In the following a “step” means a single application
of the Collatz map f . Suppose we start with a very large
(and special, discussed below) number n0 = n�0 , yielding the

following hailstone pattern (for odd Fi):

n�0


1 steps−−−−→ n�0+
1 = 2k1F1
k1 steps−−−→ n�1 = F1,

n�1


2 steps−−−−→ n�1+
2 = 2k2F2
k2 steps−−−→ n�2 = F2,

n�2


3 steps−−−−→ n�2+
3 = 2k3F3
k3 steps−−−→ n�3 = F3,

n�3


4 steps−−−−→ n�3+
4 = 2k4F4
k4 steps−−−→ n�4 = F4,

...

(C1)

Eventually the above repetitive structure could terminate after
the �I th step. Nonetheless, for I big enough, Eq. (C1) is our
sought long stretch of the Collatz sequence.

For the ki’s obeying some particular distribution, say, a
power law, the successive avalanches in the Collatz sequence,
as defined in the present work, would display scale-invariance
behavior. Likewise, the 
i’s (the duration between the power-
law decays) could also present some specific distribution. The
key point is that all this may take place, but only depending
on the fine-tuning characteristics of the Fi’s. We are not aware
of general conditions resulting in such proper sets {Fi}. How-
ever, next we propose a particular instance where Eq. (C1)
with strong correlations can emerge.

Let us make the workable assumptions that for all i, (i) ki

is even, (ii) Fi = 6 F (0)
i + 1 is an odd integer, and (iii) F (0)

i =
4 ji Ei for ji = 1, 2, . . . and Ei odd. Of course, we must verify
that these suppositions are self-consistent and conform with
Eq. (C1). Assuming this is the case, for an arbitrary i,

6F (0)
i + 1

3 steps−−−→ 9F (0)
i

2
+ 1 = 6F (1)

i + 1, F (1)
i = 3

4
F (0)

i .

If F (1)
i is still even, we once more get

6F (1)
i + 1

3 steps−−−→ 9F (1)
i

2
+ 1 = 6F (2)

i + 1, F (2)
i = 3

4
F (1)

i ,

and so forth. This recursive calculation repeats until

F ( ji )
i = ( 3

4 ) ji F (0)
i (C2)

is ultimately odd because of assumption (iii) above.
Upon reaching 6 F ( ji )

i + 1 (from Fi), we have

6F ( ji )
i + 1

3 steps−−−→ 33F ( ji )
i + 7 = 3 ji+3

4 ji
F (0)

i + 7

for the latter number being even. Finally, we suppose the
assumption (iv),

3 ji+3

4 ji
F (0)

i + 7 = 2ki+1Fi+1 = 2ki+1 (6F (0)
i+1 + 1), (C3)

or [considering (iii) for F (0)
i ]

2ki+1+1F (0)
i+1 = 3 ji+2Ei − 2ki+1 − 1

3
+ 2. (C4)

From (i) ki+1 is even; then it is an elementary result that
2ki+1 − 1 is an odd number divisible by 3. Since 3 ji+2 Ei is
also odd, the right-hand side of Eq. (C4) is even. Thus, it is
always possible to choose a large Ei (actually, there are infinite
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solutions1) such that the right-hand side of Eq. (C4) is equal
to 2v Ei+1, with v a big odd integer. Thus, consistently, we
end up with F (0)

i+1 = 4 ji+1 Ei+1 for 2 ji+1 = v − ki+1 − 1. These
are just the previously considered assumptions (i)–(iii), which
once valid for i are also valid for i + 1. Furthermore, note
that 
i+1 in Eq. (C1) is entirely related to the value of ji in
Eq. (C2).

In summary, the conditions (i)–(iii) are recursively consis-
tent with Eq. (C1) for any i = 1, 2, . . . , I (with I arbitrary).
Similarly relevant, the assumption (iv) leads to a functional
relation between the parameters of Eq. (C1) in the form [cf.
Eq. (C3)]

G(ki+1, ji+1, Ei+1; ji, Ei ) = 0. (C5)

1This statement is essentially equivalent to show that, regardless of
the integers u and B (with B moreover odd), the expression 3uA − B
can always be written as 2vC (v and C odd integers) by properly
choosing an odd integer A (actually, there are infinite many A’s
satisfying the proposition, each yielding a particular v and C). The
proof can be done recursively, but we omit it here. However, we
mention that this result is easy to check by playing with simple
numerical simulations.

We notice that although the Ei’s are constrained by Eq. (C5),
there is great freedom for their possible values (especially if
they are allowed to be very large). Hence, mathematically, one
can have {ki} (in effect {ki/2}) following, say, a power-law
distribution and still verify Eq. (C5) through proper {Ei}’s (this
is further reinforced by the fact that the ji’s are partially free
due to the v dependence above). One finally guarantees that
Eq. (C1) occurs in a Collatz hailstone sequence, for instance,
by starting with n0 = F1.

The aforementioned attainable numerical structure for
long intervals of { f (S)(n0)} illustrates that stretches of
the Collatz sequence can indeed exhibit scale-free corre-
lations. Certainly the present constructive demonstration is
not practical from a numerical point of view. However,
the central point is that they do exist. Thus, conceivably
other numerical arrangements could also give rise to simi-
lar features. This naturally introduces the question of how
frequently sequences with scale-free properties, somehow
akin to complex systems, should emerge in the Collatz
dynamics.
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