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Circular polariton currents with integer and fractional orbital angular momenta
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We study internal dynamics of exciton-polariton condensates created by the nonresonant optical pump in
a cylindrical pillar microcavity with an ensemble of embedded quantum wells. The polariton condensates
are intrinsically nonequilibrium systems: Their dissipative nature together with a spatial inhomogeneity of
a potential landscape and localized pumping leads to formation of steady polariton flows. The gain-loss
engineering consisting of a deliberate breaking of the rotational symmetry of the system makes the polariton
flows controllable. We demonstrate the switching between the polariton current states characterized by both
integer and fractional orbital angular momenta (OAM) by tuning the position and ellipticity of the pump spot.
At a weak shift and a small ellipticity, the phase rather than the density of the exciton-polariton condensate is
significantly affected. Then the polariton condensate is characterized by an integer OAM per particle coinciding
with the topological charge of the polariton vortex state. We demonstrate experimentally the polariton current
states with the topological charges from −3 to +2. The further shift of the pump spot perturbs the azimuthal
distribution of the polariton density and causes a jump of the phase of the condensate at the density deep. The
mean orbital angular momentum characterizing such polariton condensate acquires fractional values. To describe
the experimentally observed polariton current states, we propose a model based on the Gross-Pitaevskii equation
projected onto the azimuthal states of the ring trap which treats the formation of fractional OAM states as a result
of the coherent superposition of integer OAM states sustained due to the gain-loss balance in the system with a
broken rotational symmetry.

DOI: 10.1103/PhysRevResearch.3.013072

I. INTRODUCTION

Light dramatically changes its properties when coupling
to a resonant medium. The established platform for studying
the effects induced by the light-matter coupling is specially
designed two-dimensional semiconductor microcavities with
embedded quantum wells (QWs) [1]. Being confined in a
microcavity light modes hybridize with QW excitons and
form new self-sufficient states called exciton polariton. One
can refer to the flow of exciton polaritons as “liquid light”
since its behavior is similar to that of a superfluid liquid [2,3].
If confined in a trap, the polariton liquid supports formation
of internal flows analogous to currents of charge carriers in
normal conductors or currents of Cooper pairs in supercon-
ducting circuits. The polariton currents in microcavities are
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characterized by the vector field of the current density J =
(i/2)[�(r)∇�∗(r) − �∗(r)∇�(r)], where �(r) is the wave
function of the polariton condensate.

Persistent currents are the intriguing phenomenon in quan-
tum coherent systems. The nonreciprocity of the systems
underlies the emergence of current states [4]. It implies break-
ing the equivalence of directions of propagation within the
system whereby one of the directions becomes preferred. An
extensive study of persistent currents was done in annular
Bose-Einstein condensates of ultracold atoms. Breaking the
reciprocity was achieved by applying a rotating barrier [5–7]
or an artificial gauge field [8] induced, e.g., by an external
laser beam [9] or by rotating the trapped condensate with a
constant velocity [10]. A wide spectrum of approaches for
the induction of a nonreciprocity was developed for photon
transmission systems. Among them are the optomechanical
coupling in microring resonators [11], refractive index modu-
lation in waveguide ring resonators [12], and Kerr nonlinearity
in photonic crystal circuits [13].

Exciton polariton condensates are known to be intrinsically
strongly nonequilibrium systems [14,15]. In the stationary
regime, they are governed by the requirements of a detailed
balance between the pumping from an external source and

2643-1564/2021/3(1)/013072(12) 013072-1 Published by the American Physical Society

https://orcid.org/0000-0001-5684-151X
https://orcid.org/0000-0002-6565-916X
https://orcid.org/0000-0002-8010-2714
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.013072&domain=pdf&date_stamp=2021-01-22
https://doi.org/10.1103/PhysRevResearch.3.013072
https://creativecommons.org/licenses/by/4.0/


E. S. SEDOV et al. PHYSICAL REVIEW RESEARCH 3, 013072 (2021)

losses of polaritons. This nonequilibrium nature of macro-
scopic polariton states offers new tools for breaking the
reciprocity, namely the reservoir engineering [16–19] and
the dissipation engineering [20,21]. It implies structuring the
environment in a such manner that it supports the desirable
behavior of the system [16]. It can be considered as a local
modification of an effective complex potential which affects
upon the nonlocal gain and dissipation, so that the system
becomes chiral. This results in the appearance of intrinsic
current states of polaritons.

The conventional way to the characterization of enclosed
internal currents of exciton polaritons is using their orbital
degree of freedom which is the orbital angular momentum
(OAM) per particle. The presence of internal currents in the
exciton-polariton condensate is reflected in a nonzero OAM of
light emitted by the condensate. The orbital angular momen-
tum per particle � may be found from the polariton current
density J as follows:

� = Lz

N
= 1

N

∫ ∞

−∞
(xJy − yJx )dr, (1)

where N = ∫ ∞
−∞ |�(r)|2dr is the number of polaritons in the

condensate, and the integral in the right-hand side is the actual
OAM Lz.

A nonzero OAM � is often confused with the winding
number m which is the characteristic of vortex states. It is
also known as the vortex topological charge. To distinguish
between these two crucial characteristics, one can represent
the complex wave function of the polariton condensate in
the form �(r) = ρ1/2(r) exp[iϕ(r)], where ρ(r) and ϕ(r) are
the spatial distributions of the density and the phase of the
condensate. A vortex state is characterized by the phase singu-
larity at the point of vanishing density referred to as the vortex
core [22]. The winding number m characterizes the circulation
of the gradient of the condensate phase around the singularity
point. It is introduced as follows:

m = 1

2π

∮
∇ϕ(r)dl, (2)

where dl is the change along the closed path around the singu-
larity. Physically, m is a measure of the velocity of the phase
variation around the singularity. The positive m corresponds to
the counterclockwise variation while the negative m stands for
the clockwise variation [23]. Since the scalar wave function of
the condensate is required to be single valued, the phase may
only change by a multiple of 2π as one goes around the core,
so that the winding number m is an integer.

In an infinite isotropic superfluid, vortices possess the az-
imuthally homogeneous density distribution with the central
node. In this case, values of the characteristic OAM per par-
ticle � and the winding number m coincide, indicating that
the internal current in the superfluid is accompanied by the
circulation of the phase gradient around the singularity. The
creation of polariton vortices using the optical control was
demonstrated, e.g., in [24–26]. In a general case, however, the
values of � and m do not necessarily match. In particular, they
frequently mismatch in chiral systems generated by means
of the reservoir engineering. Moreover, due to the azimuthal
density variation, the OAM � is not forced to be quantized
and it can acquire any real values [27,28]. The origin of the

states with fractional OAM, known, e.g., in optics [29,30] and
ultracold atoms [6,7], is a distortion in the annular intensity (or
density) distribution accompanied by the phase discontinuity.
In optics, the latter is induced by using specially designed
vortex lenses [31] or spiral plates [32]. In Bose-Einstein
condensates of ultracold atoms the density depletion in the
azimuthal direction is induced by the local defect, that is, a
so-called weak link [6,7].

The states with fractional OAM are also known in polari-
tonics. The spin (polarization) degree of freedom is essential
for the formation of such a state. In Ref. [33] half-quantum
polariton vortices with the average OAM per particle |�| = 0.5
were proposed theoretically. These states represent a spinor
polariton superliquid where a quantized vortex is present for
one spin (polarization) component and there is no vortex in
another spin (polarization) component. References [34–36]
report on the experimental evidence of such states. Reference
[37] reports on another type of a half-OAM polariton state
involving the polarization degree of freedom. It exists in the
ring geometry close to that considered by us here. The inver-
sion of the circular polarization when moving around the ring
is a characteristic feature of that state.

In the present work we limit ourselves to scalar polariton
fields, i.e., we leave the spinor polariton condensates and
spin-orbit interaction effects beyond the scope of our con-
sideration. To generate integer and fractional OAM states of
polaritons, we create an effective complex potential landscape
which enables modulation of the density of the polariton
condensate and introduce the chirality to the system. As we
show both theoretically and experimentally, in the presence of
the induced chirality and polariton-polariton interactions, the
circular superfluid current states with nonzero OAM, � �= 0,
may be formed in driven-dissipative polariton condensates
even in the absence of vorticity, m = 0.

II. PROJECTED GENERALIZED GROSS-PITAEVSKII
EQUATION

We model persistent polariton currents in a ring trap with
use of the generalized Gross-Pitaevskii equation (gGPE) for
the polariton condensate wave function �(t, r) [3]:

ih̄∂t� =
[
− h̄2

2M
∇2 + V (r) + α|�|2 + αRnR

]
�

+ ih̄

2
(RnR − γ )�, (3)

where M is the effective mass of a polariton. V (r) = Vc(r) +
δV (r) is the stationary potential combining the axially sym-
metric trapping potential defined by the edge of the pillar
Vc(r) and the symmetry-breaking term δV (r) responsible for
the reduction of the axial symmetry of the pillar. The param-
eters α and αR are accounting for the polariton-polariton and
polariton-exciton interaction, respectively. The repulsive in-
teraction of polaritons with the exciton reservoir is responsible
for the formation of the maximum of the effective potential
for the polaritons under the pump spot, where the reservoir
is predominantly localized. The height of the potential is
proportional to the concentration of excitons in the reservoir
and it can be further increased by involving optically inactive
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(dark) exciton states [38]. The right parentheses in Eq. (3) are
responsible for the balance of gain and losses in the polariton
condensate. R is the stimulated scattering rate from the reser-
voir to the polariton mode; γ is the decay rate of polaritons.

The polariton state is fed from the reservoir of excitons,
which is excited by the nonresonant optical pump. The reser-
voir density nR(t, r) obeys the rate equation,

∂t nR = P(r) − (γX + R|�|2)nR, (4)

where γX is the exciton decay rate. P(r) is the pump in-
tensity which we take in the form of a Gaussian, P(r) ∝
exp [−(x − xp)2/2w2

x + (y − yp)2/2w2
y ], shifted from the cen-

ter of the pillar by a vector rp = (xp, yp). wx,y are the
widths of the pump spot in x and y directions. We intro-
duce the ellipticity of the pump beam as s = wy/wx. For
the further consideration, it is convenient to represent the
pump as P(r) = Ps(r) + δP(r), where Ps(r) is the azimuthally
symmetric component given by Ps(r) = P(r)|rp=(0,0),wx=wy ∝
exp [−(x2 + y2)/2w2

x ], and δP(r) is the symmetry-breaking
perturbation of the pump.

Below we assume that the dynamics of excitons in the
reservoir is fast with respect to the dynamics of the con-
densate, which allows us to exclude Eq. (4) from the model
following the approach developed in [39]. We take the reser-
voir density in the form,

nR(t, r) � P(r)

γX + R|�|2 ≈ P(r)

γX
− P(r)R|�|2

γ 2
X

, (5)

where the first term describes the creation of the exciton cloud
by the optical pump, and the second term is responsible for the
depletion of the reservoir.

A. Azimuthally symmetric problem

Let us first consider the azimuthally symmetric linear
problem, assuming δV (r) = δP(r) = 0 and setting |�|2 →
0. In a narrow ring, the confining energy in the radial
direction significantly exceeds the kinetic energy in the az-
imuthal direction. This allows one to solve the radial problem
first, next treating the azimuthal problem as a perturba-
tion [14,40,41]. In this case, Eq. (3) enables separation and
factorization of the polariton wave function in cylindrical co-
ordinates r = (r, θ ) as �m,n(t, r) = �m,n(r) exp(−iEm,nt ) =
ϒn(r) exp[i(mθ − Em,nt )]. Here Em,n = E (n)

r + E (m,n)
θ is the

complex eigenenergy of the (n, m) state, where n and m are
the radial and azimuthal quantum numbers, respectively. E (n)

r

and E (m,n)
θ are the eigenvalues of the radial and azimuthal

problems. The radial component of the wave function obeys
the following stationary equation:

E (n)
r ϒn =

[
− h̄2

2M
∇2

r + Vc(r) + αRPs(r)

γX

]
ϒn

+ ih̄

2

(
RPs(r)

γX
− γ

)
ϒn, (6)

where ∇2
r = ∂2

rr + r−1∂r . In a narrow ring, the vast majority
of polaritons occupies the lowest radial mode, n = 1. This
allows one to exclude the highest modes from further con-
sideration keeping only ϒ1(r). In further sections we will
demonstrate an experimental evidence of the validity of this

FIG. 1. The radial distribution of the density of the polariton
condensate. The blue shaded region denotes the effective potential
formed by the cloud of reservoir excitons (left hill) and the edge of
the pillar (right wall).

assumption. Below we omit the index “n” for the ease of
notation, setting �m(r) ≡ �1,m(r), ϒ(r) ≡ ϒ1(r), Em ≡ E1,m,
and E (m)

θ ≡ E (1,m)
θ . The contribution from the azimuthal com-

ponent of the wave function to the eigenenergy of the ground
radial mode is found as E (m)

θ = (h̄2m2/2M )
∫ ∞

0 |ϒ |2r−1dr.
The radial distribution of the polariton condensate calculated
for the set of parameters given in [42] is shown in Fig. 1.

B. Projection of gGPE onto the azimuthally symmetric basis

To visualize the effect of the symmetry breaking, we now
project the gGPE (3) onto the basis of �m(r). First, we substi-
tute the factorized wave function �(t, r) = ϒ(r)(t, θ ) into
Eq. (3) and, after averaging over r, we obtain the equation for
the azimuthal component (t, θ ):

∂t(t, θ ) = −ih̄−1T̂ (t, θ ) − [iU1(θ ) − I1(θ )](t, θ )

− [iU2(θ ) − I2(θ )]|(t, θ )|2(t, θ ), (7)

where the kinetic energy operator T̂ and the coefficients de-
pending on the angle θ are given by

T̂ = Er − h̄2

2M

(∫ ∞

0
|ϒ(r)|2r−1dr

)
∂2

∂θ2
, (8a)

U1(θ ) = 1

h̄

∫ ∞

0

[
δV (r) + αR

γX
δP(r)

]
|ϒ(r)|2rdr, (8b)

I1(θ ) = R

2γX

∫ ∞

0
δP(r)|ϒ(r)|2rdr, (8c)

U2(θ ) = 1

h̄

∫ ∞

0

(
α − RαRP(r)

γ 2
X

)
|ϒ(r)|4rdr, (8d)

I2(θ ) = − R2

2γ 2
X

∫ ∞

0
P(r)|ϒ(r)|4rdr. (8e)

The coefficients U1(θ ) and I1(θ ) describe symmetry-breaking
contributions coming from the shift of the pump spot and from
the built-in anisotropy of the stationary potential. U2(θ ) and
I2(θ ) are responsible for the effect of interactions.

We now expand the azimuthal wave function component
(t, θ ) in terms of the spectrum of eigenfunctions of the
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azimuthally symmetric problem as follows:

(t, θ ) =
∑
m∈Z

ψm(t )eimθ , (9)

where ψm(t ) are the time-dependent complex coefficients of
the expansion. To further simplify the problem, we expand

the coefficients (8) in the following series:

Uj =
∑
m∈Z

U (m)
j eimθ , I j =

∑
m∈Z

I (m)
j eimθ , (10)

where j = 1, 2. Substituting the expansions (9) and (10) into
(7), we finally obtain the following system of the first-order
differential equations for the coefficients ψm(t ):

∂tψm = −ih̄−1Emψm −
∑
m′∈Z

(
iU (m′ )

1 − I (m′ )
1

)
ψm−m′

−
∑
m′∈Z

∑
m′′∈Z

∑
m′′′∈Z

∑
m′′′′∈Z

δm+m′′′′,m′+m′′+m′′′
(
iU (m′ )

2 − I (m′ )
2

)
ψ∗

m′′′′ψm′′′ψm′′ . (11)

We can now define the population of the polariton state
N (t ) and the orbital angular momentum per particle �(t ) via
the expansion (9) as follows:

N (t ) =
∑
m∈Z

|ψm(t )|2, (12a)

�(t ) = 1

N (t )

∑
m∈Z

m|ψm(t )|2. (12b)

It is convenient to characterize OAM by calculating the
imbalance of contributions from the clockwise and the anti-
clockwise polariton currents:

�(t ) = 1

N (t )

∑
m∈N

m(|ψm(t )|2 − |ψ−m(t )|2). (13)

The second term in the right-hand side of Eq. (11) can
be considered as a source of internal circular currents in a
polariton condensate. Due to the chirality induced by the
azimuthal asymmetry of the pump and the effective potential
the orthogonal spectral components, m and −m, are pumped
with different rates. They all are subjects to different potential
landscapes. This induces an imbalance in populations of the

winding states of opposite direction and leads to the appear-
ance of polariton flows of preferred directions. The broken
spatial symmetry of the system is responsible for the genera-
tion of polariton currents. It is important to note that its effect
is different for different spectral components m. That is why
the broken symmetry cannot be treated as a homogeneous
gauge field, as it was done, e.g., in atomic condensates for
particle flows induced by rotation of a weak link or a trap
at a constant velocity [6,7,27]. The localized pump is at the
origin of the nonlocal interplay between pump and decay. The
local measure of the pump-decay balance is the divergence
of the flux D = ∇J [44], which for the azimuthal component
reduces to

Dθ (θ ) =
∑
m∈N

∑
m′∈N

m(m′ − m)ψ∗
m′ψmei(m−m′ )θ . (14)

Dθ > 0 for the gain region and Dθ < 0 for the loss region. In
the steady-state regime where the overall loss is exactly com-
pensated by the pumping, the following condition is fulfilled:∫ 2π

0 Dθdθ = 0.
The proposed model is valid at a moderate pump power

where the system is in the nonlinear regime. As Ref. [45]
shows, in this regime the lobe patterns transform to the

(a) (b) (c) (d)

FIG. 2. Schematic of excitation of polaritons with a nonresonant optical pump in a pillar microcavity with embedded quantum wells (a).
Energy E (b), OAM � (c), and topological charge m (d) of the polariton condensate as functions of the azimuthal coordinate θp and the ellipticity
s of the pump spot. The pump spot is shifted by rp = 0.5 μm along one of the radial directions. The equivalue contours in (b) and (c) are the
guides for the eye. The white curves in (b) indicate the positions of the energy maxima as functions of s, Emax(s). Black diamonds numbered
from i to iv in panel (c) indicate the parameters used in Fig. 3.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(j)

(k)

(l)

(m)

FIG. 3. The simulated spatial distribution of the density (upper panels) and the phase (middle panels) as well as the azimuthal distribution
of the phase (lower panels) of the polariton condensates at different positions and ellipticities of the pump corresponding to those indicated by
the black diamonds in Fig. 2 numbered from i to iv: θp = 0 and s = 0.96 (a)–(c), θp = 45◦ and s = 0.91 (d)–(f), θp = 135◦ and s = 0.91 (g)–(j),
θp = 91◦ and s = 0.85 (k)–(m). The black cross and the white ellipse in the upper panels indicate the center of the pillar and the position and the
ellipticity of the pump spot, respectively. The black drops in the middle panels show the vector field of the current density J. The purple-green
circles around the meaning region indicate the local measure of the gain-loss balance: Dθ > 0 (purple) and Dθ < 0 (green). The inserts in the
lower panels show the parametric relationship of the real and imaginary parts of the azimuthal component of the polariton wave function (θ )
that serves to distinguish vortex (m �= 0) and nonvortex (m = 0) states: For the former, the point (0,0) is inside the parametric contour.

crescent patterns and the separation of the radial and az-
imuthal components of the polariton wave function becomes
possible.

Another limitation of the applicability of the proposed
model is the polariton lifetime which should be large enough
for the formation of circular polariton condensates around the
pump-induced potential maximum. In contrast to the short-
living polaritons considered, e.g., in [46], where the conden-
sate is formed under the ring shape pump spot, the long-living
polaritons form condensates beyond the pump spot in the
minimum of the potential landscape. The recent achievements
in the growth of high-Q microcavities allow for experimental
studies of polaritons having lifetimes of the order of hundreds
of picosecond [47,48]. Nevertheless, even a more modest life-
time of up to a few tens of picosecond [49] is sufficient for the
condensate to be formed outside the pump spot.

Our model can be adapted for another geometry of a
possible experiment where the pump-induced potential and
the stationary potential swap. To create an effective potential

trap of a required landscape, instead of shaping polariton
structures by means of deep etching of microcavities [50–52]
one can use an all-optical approach. Optical traps created
by nonresonant pumping have proven themselves to be an
efficient controllable tool for generation of spatially localized
polariton condensates [53–55]. In combination with the cen-
tral potential maximum, regardless of its origin, the ring-shape
optical traps allow creating a chiral surrounding required for
the induction of circular polariton currents.

III. POLARITON CURRENT STATES
WITH FRACTIONAL OAM

We consider the steady-state regime reached by an exciton-
polariton condensate after its initial evolution and sustained
by the balance of the spatially localized gain and losses. Since
the pump spot plays the role of both the symmetry-breaking
potential barrier and the spatially localized pump, the height
of the barrier is correlated with the gain of the condensate
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and it cannot be considered as an independent parameter. The
azimuthally symmetric states are achieved if the pump spot
is situated right at the center of the pillar, rp = 0, and in the
case of no ellipticity of the pump beam, s = 1. Such states
are characterized by well-defined integer OAM. Herewith, the
states with � �= 0 are vortex states with the topological charge
m = �. The vortex states either appear spontaneously [55] or
are imprinted by an external impact force [14], e.g., by a
resonant short laser pulse [2]. The presence of the nonlinearity
caused by interactions affects the energy of the final state
rather than its OAM.

Breaking the rotational invariance itself causes the mixing
of the polariton vortex states with different winding numbers
m. In the presence of the nonlinearity, this leads to the for-
mation of the current states with noninteger OAM. To break
the rotational symmetry, we take the pump beam with an
elliptical cross section (s �= 1) shifted from the center of the
pillar by rp �= 0. No variation of the stationary potential is
considered, δV (r) = 0. In the further consideration, we use
the ellipticity s, the azimuthal θp, and the radial rp, shifts of
the pump as the control parameters allowing one to manipu-
late the polariton current states. A schematic of excitation of
an exciton-polariton condensate in a micropillar is shown in
Fig. 2(a). The color maps Figs. 2(b)–2(d) show the energy (b),
OAM (c), and topological charge (d) of the polariton current
state as functions of the azimuthal shift and the ellipticity of
the pump spot at the radial shift taken as rp = 0.5 μm. The
same patterns are repeated for the angles from 180◦ to 360◦.
The other parameters are given in [42].

The appearance of fractional OAM ground polariton states
is evident from the figure. Herewith, the value of � is a subject
to controllability. The polariton condensate OAM can be both
positive (the pump spot is in quadrants I and III) and negative
(the pump spot is in quadrants II and IV). The larger the
achievable absolute value of � is, the smaller the parameter of
the ellipticity of the pump spot s. We would like to emphasize
the different behavior of both dependencies of E and � on the

azimuthal shift θp around θp = 0◦ and 90◦. Although at both
angles the azimuthal symmetry is broken due to the shift of
the pump, the system is not chiral as it possesses an axial
symmetry with respect to the axes of the pump ellipse. The
parameter s < 1 indicates that the major axis of the ellipse is
parallel to the x axis. When the azimuthal shift of the pump
is θp = 0◦, the axis of symmetry splits the pump ellipse along
its major axis, while for the shift of θp = 90◦, the minor axis
is the axis of symmetry. Since the effective potential from the
pump is more slopping along the major axis, the overlap of
pump with the condensate is the highest in this direction. A
larger angular size of the elliptic pump spot along the major
axis causes a stronger sensitivity of the polariton state to a
small shift along this axis.

In Fig. 3 we show examples of the characteristic polariton
current states with fractional OAM. In column i [Figs. 3(a)–
3(c)] the polariton state with � = 0 is shown, that is, obtained
with the major axis of the pump spot being parallel to the
direction of the shift of the pump. Since the system is nonchi-
ral, the clockwise and counterclockwise current states are
pumped equally. In the conservative linear limit, the resulting
steady state could be considered as a standing wave. Here we
deal with the nonlinear eigenstate, which due to the spatially
localized gain and homogeneous loss possesses internal cur-
rents; see Fig. 3(b). The currents are centrifugal due to the
maximum of the effective potential originated by the pump
near the center of the pillar. Due to the shift of the pump, the
currents flow along the edge of the pillar which results in the
variation of the phase of the polariton condensate in space.
The local gain region in the azimuthal direction (Dθ > 0) on
the side of the shifted pump is replaced by the loss region
(Dθ < 0) on the opposite side of the pillar; see the purple-
green ring around Fig. 3(b). The phase varies smoothly in the
azimuthal direction and does not exhibit any sharp jumps; see
Fig. 3(c).

The polariton current states with OAM � = 0.5 and
� = −0.5 are shown in the columns ii and iii in Fig. 3,

FIG. 4. Schematic of the experimental setup for photoluminescence and interferometry measurements. The following abbreviations are
used in the figure: beam splitter (BS), monochromator (Mc), microscope objective (MO), coordinate table with the sample (CT). The red
arrows indicate directions of propagation of the light beam along the optical track.
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respectively. The peculiarity of the fractional OAM states is
the slit in the azimuthal density distribution. The azimuthal
shift of the pump spot is about 45◦ and 135◦ in Figs. 3(d)
and 3(g), respectively. Since the equivalence of the clockwise
and counterclockwise directions is broken in these cases, the
states are characterized by internal currents of preferred az-
imuthal directions. The centrifugal runaway of polaritons is
present also. The phase changes in the azimuthal direction,
herewith the monotonic variation beyond the polariton density
slit coexists with the sharp jump of the phase in the density
minimum. The jump compensates the phase change, so that
the phase gained by a polariton during one full pass around
the pillar is zero. We would like to underline that although
in both cases circular polariton currents are observed, these
are not vortex states. The winding number for these states is
calculated to be m = 0. The inserts in Figs. 3(f) and 3(j) allow
one to distinguish these current states from the vortex states,
as the coordinate origin on the phase plane (Re[], Im[]) is
beyond the area circumscribed by the closed curves character-
izing the azimuthal component of the polariton wave function.

In the phase diagram in Fig. 2(d) we predict the existence
of both vortex and no-vortex states with nonzero OAM. The
polariton current state acquires vorticity with the increasing
OAM. The value of � when the polariton current state switches
to the vortex state depends on the shift of the pump. For the
considered parameters and the ellipticity s = 0.85 it is � ≈
0.65. The vortex state with the topological charge m = −1
and the fractional OAM � ≈ −0.78 is shown in column iv in
Fig. 3 as an example. In this case, the jump of the phase in the
area of the density slit supplements the change of the phase
beyond the slit, so the overall phase change is 2π . In the insert
to Fig. 3(m), the coordinate origin is inside the closed curve
on the phase plane (Re[], Im[]).

We performed the experimental verification of the the-
oretically predicted formation of polariton current states.
Our experimental setup is schematically shown in Fig. 4.
An exciton-polariton condensate was excited in a cylindri-
cal pillar GaAs-based microcavity of a 25-μm diameter by
a nonresonant pumping at temperature of 4 K. We use a
multiple QW sample in order to maximize the exciton-photon
coupling strength and achieve sizable values of the vacuum-
field Rabi splitting (polariton splitting). The polariton splitting
in microcavities is known to increase proportionally to the
square root of the number of QWs placed in the antinodes
of the optical field of the cavity mode [1]. We have measured
the near-field photoluminescence spectra and compared them
with interferometry images obtained with use of the Mach-
Zehnder interferometer where a spherical wave obtained by
magnification of a small periphery part of the condensate
image was used as a reference beam. More details on the ex-
perimental setup are given in [26]. The experimental evidence
of the realization of polariton condensates with controllable
fractional OAM is shown in Fig. 5. The images of the cres-
cent polariton density distribution, Figs. 5(a) and 5(d), and
the interferometry images, Figs. 5(c) and 5(f), are adapted
from [43]. Two polariton condensates with opposite OAM
of � ≈ 0.5 [Figs. 5(a)–5(c)], and � ≈ −0.5 [Figs. 5(d)–5(f)],
were experimentally observed. One can conclude that circular
superfluid currents exist based on the observed gradient of the
phase of the condensate in the azimuthal direction. The phase

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 5. The experimentally measured spatial distribution of the
density (upper panels) and the phase (middle panels), and the inter-
ferometry images (lower panels) of the polariton condensates with
OAM � ≈ 0.5 (a)–(c) and � ≈ −0.5 (d)–(f). Images (a), (c), (d), and
(f) are adapted from [43]. The size bar in (a) applies to all panels.

varies with θ within a range of the width of about π accom-
panied by the jump of about π at the position of the deep
in the polariton density to compensate the phase change. For
the state with � ≈ 0.5 (� ≈ −0.5), phase increases (decreases)
with θ beyond the density deep, while the jump is by about
−π (+π ). The switch from one state to another was achieved
by shifting the pump spot from the center of the pillar towards
its edge.

IV. POLARITON VORTICES

An ellipticity of the pump spot together with a shift of
the pump spot from the center of the pillar strongly affects
the azimuthal distribution of the condensate density, which
significantly influences the distribution of polariton flows and
causes fractional OAM. Nevertheless, even a small ellipticity
(s → 1) and a small shift of tens of nanometers effectively
breaks the azimuthal symmetry and induces formation of po-
lariton vortices. Herewith the azimuthal density distribution
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(a)

(c)

(e)

(b)

(d)

(f)

FIG. 6. The experimental spatial distributions of the phase (left panels in each pair) and the interferometry images (right panels in each
pair) measured for the polariton states with integer OAM: � ≈ −3 (a), � ≈ −2 (b), � ≈ −1 (c), � ≈ 0 (d), � ≈ 1 (e), � ≈ 2 (f). Interferometry
images on panels (d)–(f) are adapted from [26]. The size bar in (a) applies to all panels.

remains almost homogeneous along the azimuthal angle, and
OAM remains nearly integer. A similar method of controllable
excitation of polariton vortices has been first discussed in
Ref. [26].

Figure 6 shows the spatial distributions of the phases
(left images in each panel) extracted from the interferometry
images (right images in each panel) obtained from the inter-
ference of the photoluminescence from the condensates with
the reference spherical wave for polariton condensates with
integer OAM � varying from −3 to +2. The interferometry
images for the states with � ≈ 0, 1, 2 are adapted from [26].

Using the proposed model, we have simulated the observed
integer OAM states. The results of simulations are presented
in Fig. 7. The spatial distributions of the phase density very
well coincide qualitatively with the corresponding experi-
mentally observed ones. We have supplemented the phase
distributions with the polariton current density field J. The
phase varies with the azimuthal angle nearly linearly in the
range of [0, 2π�]. The simulations confirm that for nearly
integer OAM vortex states, the topological charge m coincides
with OAM � in each case.

V. DISCUSSION

In the present work, we have demonstrated the control over
the superfluid circular currents of exciton polaritons appearing
in a system of a ring geometry with the controlled chirality.
To excite exciton polaritons in a cylindrical pillar we used
pumping with the nonresonant optical beam. This excitation
method excludes the possibility of a transfer of OAM from the
pump beam to the condensate or the conversion of the circular
polarization of the pump to OAM of the polariton condensate
via a spin-orbit interaction mechanism as in [56]. We would
like to mention, that in the recent paper [57] the direct transfer
of OAM from the pump beam to the polariton condensate was
reported without disclosing the mechanisms of the transfer.
Nevertheless, we are confident that no OAM was transferred
in our case since the pump beam was Gaussian and it was
not deliberately endowed with OAM. We did not detect any
traces of the OAM in a pump beam emerging spontaneously.
It is important to underline that the polariton condensate with
no circular currents appears in the experiment much often than
those with � �= 0. The polarization measurements discussed in
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 7. The simulated spatial distributions of the phase of the condensate (a)–(c) and (e)–(g), and the variation of the phase around the
pillar (d) and (h) refer to the polariton states with an integer OAM: � ≈ −3 (a), � ≈ −2 (b), � ≈ −1 (c), � ≈ 0 (e), � ≈ 1 (f), � ≈ 2 (g). The
colors of lines in (d) and (h) coincide with colors of markers in the corresponding panels (a)–(c) and (e)–(g).

[43] also allow one to rule out the effect of the polarization of
the pump beam.

We were slightly shifting the pump beam for switching
between the polariton current states. Since the shift of the
beam with respect to the center of the pillar in the experiment
was less or comparable with the accuracy of movements of
the coordinate table, we were unable to precisely control the
position of the pump spot. Based on the results of simulations,
we presume that the pump spot was shifted to the northeast for
� ≈ 0.5 and to the southeast for � ≈ −0.5.

In our experiments, the system acquires chirality due to the
shift of the pump. We do not certainly know what triggered
this in the experiment in addition to the pump spot shift.
Among the possible reasons are the defect of the stationary
potential from the pillar edge, the broken azimuthal symmetry
of the pump beam or the pillar. All these options can be easily
taken into account in the proposed model.

The established states both with integer and fractional
OAM are highly stable and reproducible. Once emerged, they
exist until the pump is on. In this regime, the OAM of the
condensate is being preserved. After switching the pump off
and on, OAM of the established ring current turns to be
unchanged. The stability of the states and the conservation
of both OAM � and the topological charge m bring us to
the conclusion that the observed states are eigenstates of the
nonlinear system. In this connection, the expansion (9) should
be understood not as the linear superposition of quantum topo-
logical states, but referred to as the set of nonlinear states with
superimposed complex spectral coefficients ψm. The spatial
coherence of the resulting state is kept constant during the

time of the experimental measurement, while the overall time-
dependent phase of the multicomponent wave function of the
condensate may be subject to dephasing. The expansion (9) is
analogous to the Fourier transform of a function with periodic
boundary conditions in this case.

We have demonstrated that superfluid circular currents of
polaritons do not necessarily indicate formation of vortices in
a polariton condensate. The distinction between the current
and vortex states is especially evident in the approach we
use for controlling a polariton condensate behavior, that is,
the reservoir engineering. Polariton currents originate from
imbalance in real space of polariton inflow and outflow in-
duced by a spatially localized pump. Trapped in a confinement
potential they acquire a nonzero OAM determined by the
azimuthal variation of both the density and the phase of the
polariton condensate. A vortex state of a polariton conden-
sate is a particular current state characterized by the nonzero
azimuthal variation of its phase which changes by an integer
number of 2π when going around the ring. The variation of
the phase of the condensate is reflected in the helical wave
front of the photoluminescence emission from the conden-
sate. The topological charge is the measure of the helicity of
emitted light. By optically controlling the effective complex
potential, we have demonstrated in our experiment excitation
of circular current states without vorticity.

In the present manuscript, we have developed the nu-
merical model for simulating the experimentally observed
polariton states both with fractional and integer OAM. Fac-
torizing the wave function of the condensate, we limited
ourselves to considering the ground state of the radial

013072-9



E. S. SEDOV et al. PHYSICAL REVIEW RESEARCH 3, 013072 (2021)

component. Let us now list the main arguments in favor of
this assumption. In the ring geometry, the narrower the ring,
the better justified is separation of the azimuthal and radial
components of the wave function. In the limit of an infinitely
narrow ring, only the ground radial state exists that is char-
acterized by an infinite set of azimuthal states. In a ring of a
finite width, the sequence of states with n � 1 and m �= 0 on
the energy scale is governed by the shape of the potential. In
the expansion on a narrow ring, several lower energy states
can be characterized by n = 1 and differ only by the value
of m. The narrower the ring, the more states with n = 1 and
different m join the bunch of lower energy states. Our simula-
tions show that for the used parameters the maximal azimuthal
quantum number |m| for the ground radial state exceeds with
a margin the largest substantially contributing m state in the
expansion of the fractional OAM states. Another argument for
the validity of this assumption is that in the given geometry of
the pillar and the pump beam no other radial states than the
ground state have been observed in our experiments.

Finally, we would like to comment on the observability and
measurement of fractional OAM states. An elegant method of
measuring fractional OAM of light was proposed in the recent
paper [58]. The method is based on decomposing the light
beam into a series of integer vortex beams in real space. The
OAM of the beam is determined by averaging the multiplex-
ing beams with their energies as the weighting coefficients.

In this sense, the decomposition (9) represents a convenient
mathematical model that is embodied in the experimental
instrument.
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