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Pseudo-BCS wave function from density matrix decomposition:
Application in auxiliary-field quantum Monte Carlo
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We present a method to construct pseudo-BCS wave functions from the one-body density matrix. The resulting
many-body wave function, which can be produced for any fermion systems, including those with purely repulsive
interactions, has the form of a number-projected BCS form, or antisymmetrized geminal power (AGP). Such
wave functions provide a better ansatz for correlated fermion systems than a single Slater determinant, and often
better than a linear combination of Slater determinants (for example from a truncated active space calculation).
We describe a procedure to build such a wave function conveniently from a given reduced density matrix of the
system, rather than from a mean-field solution (which gives a Slater determinant for repulsive interactions). The
pseudo-BCS wave function thus obtained reproduces the density matrix or minimizes the difference between
the input and resulting density matrices. One application of the pseudo-BCS wave function is in auxiliary-field
quantum Monte Carlo (AFQMC) calculations as the trial wave function to control the sign/phase problem.
AFQMC is often among the most accurate general methods for correlated fermion systems. We show that the
pseudo-BCS form further reduces the constraint bias and leads to improved accuracy compared to the usual Slater
determinant trial wave functions, using the two-dimensional Hubbard model as an example. Furthermore, the
pseudo-BCS trial wave function allows a new systematically improvable self-consistent approach, with pseudo-
BCS trial wave function iteratively generated by AFQMC via the one-body density matrix.
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I. INTRODUCTION

The study of strongly correlated quantum many-body sys-
tems is highly challenging. A general approach does not yet
exist to compress the complexity of the many-body wave
functions that is widely applicable and yields systematic
accuracy across different ranges of many-body models and
materials [1–3]. Methodological developments thus have a
key role in the study of interacting quantum systems, which
spans several subfields in physics, including condensed matter
physics, nuclear physics, cold atoms physics, as well as in
quantum chemistry and materials science. Recent work and
collaborations on method developments have lead to signifi-
cant progress with computational approaches.

The simplest approaches to many-fermion systems are
based on the independent-particle framework. The basic en-
tity in this framework is the Slater determinant. The Slater
determinant can be the wave function ansatz itself, as in a
Hartree-Fock (HF) mean-field calculation. Alternatively and
more commonly, it is used as a vehicle either to capture
some property of the system, for example the electronic
density and gradients in a density-functional theory (DFT)
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calculations [4,5], or as the starting point or reference state
for many-body calculations such as perturbation theory (e.g.,
MP2) or coupled cluster [e.g., CCSD(T)] calculations in
quantum chemistry [6], or to impose fermion antisymme-
try in quantum Monte Carlo (QMC) calculations [7–9]. The
Slater determinant can be manipulated with low-polynomial
computational cost while fully accounting for permutation
antisymmetry, which is a great advantage in treating fermion
systems.

The Slater determinant has a major shortcoming in these
roles, however. It is fundamentally a Fermi liquid picture that
contains only occupied orbitals and discards any information
on the virtual orbitals. The BCS wave function [10,11] is a
simple ansatz that allows one to overcome this shortcoming of
the Slater determinant, and describe a nontrivial modification
to the topology of the independent-electron Fermi surface
and momentum distribution. A number-projected BCS wave
function can be viewed as a linear combination of Slater
determinants. It maintains fermion antisymmetry and requires
only marginally more computational cost to manipulate. This
form can therefore be advantageous in various contexts in
the study of interacting fermion systems. For example, the
BCS form is clearly more desirable in treating systems with
superconductivity. Even in more conventional systems, the
BCS wave function (usually in its particle-number projected
form) has been found to lead to better trial wave functions
[12–15] in QMC calculations. One can also imagine that a
BCS wave function might serve as a better reference state for
many-body (e.g., coupled-cluster) calculations [16,17].
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The BCS wave function can be generated via a mean-field
calculation, as the solution to a Hamiltonian which contains
attractive interactions. Conceptually, for a system with attrac-
tive interactions, the BCS wave function can be thought of
as a natural way to go beyond the Fermi liquid picture, by
letting pairs of spin-up and spin-down particles occupy those
orbitals which are virtual in the so-called restricted Hartree-
Fock (RHF) solution, thereby creating a better variational
wave function with lower energy. (For simplicity, we consider
a spin-balanced system with singlet pairing only.)

For electronic systems with purely repulsive Coulomb
interactions (such as in most electronic models or atoms,
molecules, and most real materials), this picture breaks down.
If we think of the occupied and virtual orbitals defined by an
RHF calculation, the BCS ansatz includes a linear combina-
tion of electronic configurations consisting of the RHF and all
possible paired excitations from it. The pair occupancy of the
higher virtuals raises the one-particle energy without lowering
the interaction energy. The lowest energy mean-field solution
is thus a Slater determinant, not BCS.

We consider in this paper a generalized form of the BCS
wave function designed for use in electronic systems. The
pseudo-BCS wave function, as we shall refer to it by, is based
on the concept of the one-body density matrix instead of the
variational energy. The wave function is constructed in the
structure of a particle-number-projected BCS wave function,
with the goal of reproducing the desired one-body density
matrix of the many-body system. The pseudo-BCS wave func-
tion can be thought of as a general pairing form involving the
occupied and virtual orbitals of, for example, an unrestricted
Hartree-Fock (UHF) solution (as opposed to RHF in standard
BCS). As is well known, the UHF determinant, by allow-
ing spin-symmetry-breaking, often provides a better reference
description than RHF for so-called correlated systems (e.g.,
in Hubbard-like models [18], or bond breaking in molecules
[19]). In our pseudo-BCS form, we allow the coefficients
for orbital pairing occupancy to be complex numbers. The
complex phase provides an additional variational degree of
freedom to lower the interaction energy, whose physical origin
will be discussed below. We introduce a low-cost algorithm to
construct the pseudo-BCS wave function by a decomposition
of the density matrix.

Our approach allows a straightforward way to incorporate
the pseudo-BCS form into a computational framework beyond
mean field. For example, by coupling it with the auxiliary-
field quantum Monte Carlo (AFQMC) method [8,9], we
obtain a self-consistent procedure in which the pseudo-BCS
wave function serves as a trial wave function for the constraint
to control the sign/phase problem. The AFQMC calculation
computes a one-body density matrix, to which we apply our
density matrix decomposition procedure to produce a new
pseudo-BCS wave function, and the process is iterated until
convergence. We describe the approach below, and illustrate
its implementation and performance in the Hubbard model.
We show that this self-consistent AFQMC can generate a
systematically improved trial wave function during the sim-
ulation. With the converged pseudo-BCS trial wave function,
the AFQMC calculation leads to smaller projection time for
reaching the ground state, and smaller systematic bias from
the constraint compared with Slater determinant trial wave

functions. In the Hubbard model with next-nearest-neighbor
hopping, the improvement with self-consistent pseudo-BCS
trial wave function allows AFQMC to accurately distinguish
the subtle spin orders as the hopping amplitudes are varied.

The rest of this paper is organized as follows. In Sec. II we
introduce the formalism of the pseudo-BCS wave function,
and show how it can be obtained from the one-body density
matrix of the many-body state. In Sec. III we briefly intro-
duce AFQMC and present details to couple the AFQMC to
pseudo-BCS trial wave functions to achieve self-consistency.
In Sec. IV we show illustrative results, and demonstrate the
improvement of the pseudo-BCS wave function and the self-
consistent AFQMC with it. Then in Sec. V we discuss several
additional points and summarize.

II. PSEUDO-BCS WAVE FUNCTION

The approach discussed in this paper applies generally to
any electronic Hamiltonian. To help make the discussion more
concrete, we use the Hubbard model to introduce the pseudo-
BCS wave function and the density matrix decomposition
algorithm. Also the results in Sec. IV will all be for this model.

The Hubbard Hamiltonian is

H= −
∑
σ,i, j

ti, jc
†
i,σ c j,σ + U

∑
i

ni,↑ni,↓, (1)

where c†
i,σ (ci,σ ) creates (annihilates) an electron with spin

σ (σ =↑,↓) at lattice site i defined in two dimensions on a
rectangular lattice of Ns ≡ Lx × Ly sites, and ni,σ ≡ c†

i,σ ci,σ is
the density operator. Periodic or open boundary condition will
be applied. The hopping matrix elements {ti, j} will contain
near-neighbor terms with amplitude t (which is used to set
the units of energy) and next-nearest-neighbor terms with
amplitude t ′. The parameters t ′/t and U/t and the boundary
conditions will be specified explicitly later for each system.
In this paper we use Nσ to denote the number of electrons
with spin σ . As mentioned, we focus in this work on spin-
balanced systems, with N↑ = N↓, and no spin-flip terms in the
Hamiltonian. We comment briefly on generalizations to other
cases in Sec. V.

A. Formalism

In the following we introduce the formalism and notations,
before discussing how to obtain a pseudo-BCS wave function
from a given one-body density matrix of the targeted many-
body state. A general Slater determinant, for example the UHF
solution, can be written as

|�〉 = φ
†
1,↑ · · · φ†

N↑,↑ φ
†
1,↓ · · · φ†

N↓,↓ |0〉, (2)

where |0〉 represents the vacuum state and the operator

φ†
n,σ ≡

∑
i

(�σ )i,n c†
i,σ (3)

creates an electron of spin σ in an orbital described by the nth
column vector (�σ )i,n of the Ns × Nσ matrix �σ , with σ =↑
or ↓. The one-body density matrix of the Slater determinant
wave function is given by

〈c†
j,σ ci,σ 〉� = [�σ (�σ )†]i, j =

∑
n

(�σ )i,n (�σ )�j,n. (4)
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The structure of a particle-number-projected BCS wave
function, also known as antisymmetrized geminal power
(AGP) [20], is

|�〉 = ψ† · · ·ψ†︸ ︷︷ ︸
Nσ

|0〉, (5)

where ψ† is a pair creation operator, defined as

ψ† ≡
∑
i, j

Fi, jc
†
i,↑c†

j,↓. (6)

The Ns × Ns matrix F can be written, for example by a singu-
lar value decomposition (SVD), in the form F = UDV †, with

Fi, j =
∑

n

dn Ui,n V �
j,n, (7)

where D is a diagonal matrix whose elements are given by
{dn}, and the Ns × Ns matrices U and V � contain single-
particle orbitals. Our pseudo-BCS wave function will have
the same form, and will allow the diagonal elements to be
complex:

Fj,k =
∑

n

eiθn |dn|Uj,n V �
k,n. (8)

The pseudo-BCS wave function will couple orbitals described
by U and V � in a way that represents different principles of
pairing from standard BCS, as we discuss in the next subsec-
tion.

B. Pseudo-BCS wave function from density matrix

For the reverse process of Eq. (4), namely to find the best
Slater determinant wave function given the density matrix
Gσ , one can construct so-called natural orbitals. The den-
sity matrix can be diagonalized to obtain the natural orbitals
(eigenvectors) and occupancies (eigenvalues). The matrix �σ

for the Slater determinant is then formed by the natural or-
bitals with the Nσ highest occupancies. Clearly the resulting
density matrix from Eq. (4) is an approximation and does not
reproduce Gσ exactly, with information of the higher (virtual)
orbitals lost.

Now we consider this process for pseudo-BCS wave func-
tions: If we have a best estimate of the one-body density
matrix Gσ ,

(Gσ )i, j = 〈�0|c†
j,σ ci,σ |�0〉

〈�0|�0〉 , (9)

where |�0〉 represents the many-body ground-state wave func-
tion, how to obtain a pseudo-BCS wave function which best
reproduces the density matrix? This is accomplished using a
decomposition of the density matrix with no truncation of the
occupancy, as we illustrate next.

If G↑ and G↓ share the same eigenvalues, there exists a
pseudo-BCS wave function which can reproduce the density
matrix exactly. To demonstrate the procedure, we work with
the natural orbitals and occupancy for each spin sector:

G↑ = P	P† ; G↓ = Q	Q†, (10)

where 	 is a diagonal matrix with eigenvalues
{λ1, λ2, . . . , λNs}, the common occupancy numbers. Using

the natural orbitals:

c̃†
n,↑ =

∑
i

Pi,nc†
i,↑; c̃†

n,↓ =
∑

j

Q j,nc†
j,↓, (11)

we can write down a pseudo-BCS wave function:

|�〉 =
(∑

n

dnc̃†
n,↑ c̃†

n,↓

)Nσ

|0〉

=
∑
{n}

dn1 · · · dnNσ
c̃†

n1,↑c̃†
n1,↓ · · · c̃†

nNσ ,↑ c̃†
nNσ ,↓ |0〉,

(12)

where {n} = {n1, n2, . . . , nNσ
} is a set of Nσ nonrepetitive

indices from {1, 2, . . . , n, . . . , Ns}.
In the basis of these natural orbitals, the density matrix of

|�〉 is

(G̃σ )i, j = 〈�|c̃†
j,σ c̃i,σ |�〉

〈�|�〉 . (13)

It is straightforward to verify that G̃σ is diagonal. To match
it with the occupancy of the target density matrix 	, we have
the following condition:

λi =
∑

{n},i∈{n} |dn1 · · · dnNσ
|2∑

{n} |dn1 · · · dnNσ
|2 , (14)

where in the numerator the sum is restricted to sets of {n}
which contain i. This gives Ns equations which can be solved
to determine the Ns elements of the diagonal matrix D. The re-
sulting pseudo-BCS wave function |�〉 reproduces the target
density matrix:

〈c†
j,↑ci,↑〉 = P	P† = G↑; 〈c†

j,↓ci,↓〉 = Q	Q† = G↓. (15)

The pseudo-BCS wave function |�〉 in Eq. (12) has the
characteristic matrix

F = PDQT . (16)

Comparing it to Eq. (7), we see that U = P and V = Q�. It is
useful to consider the special case of AGP wave functions.
If the natural orbitals are real, as in RHF-type orbitals in
quantum chemistry, we have P = Q. Otherwise, if the orbitals
are complex, P should be equal to Q� for BCS pairing. That is,
we must organize the degenerate natural orbitals in P and Q
such that ↑-spin and ↓-spin orbitals with the same occupancy
are arranged in complex conjugate pairs. For example, for the
attractive Hubbard model [U/t < 0 in Eq. (1)], the column-
vectors Pi,n and Qj,n should give a plane wave with momentum
k and −k, respectively, so as to have |k〉 for ↑-spin and |−k〉
for ↓-spin be coupled, and the corresponding F matrix in the
form PDP†. In the reverse direction, if we obtain F via a BCS
mean-field calculation, which yields diagonal matrix elements
in momentum space given by vk/uk [15], the SVD of F will
result in a form UDU †, consistent with the construction from
the one-body density matrix discussed above.

In general, when a degeneracy is present in the density
matrix eigenvalues in Eq. (10), there are extra degrees of
freedom in how the eigenvectors (i.e., natural orbitals) among
the degenerate set can be paired in constructing the pseudo-
BCS wave function. In the AGP case, this is determined by
BCS theory as discussed above. With pseudo-BCS, we have
adopted the approach of minimizing the variational energy.
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We next discuss the solution of Eq. (14) for D. For wave
functions in BCS form without number projection, that is,
within grand canonical ensemble, the density matrix decom-
position procedure in Eq. (14) has the following exact solution
[21]:

|di| =
√

λi/(1 − λi ). (17)

For our pseudo-BCS wave functions, this is an approximate
solution which should become more accurate as the system
becomes larger. In our applications below, we use Eq. (17) to
determine the amplitude of di.

Only the amplitude of di is determined by Eq. (14) or (17),
however. Any complex phase factor can be assigned to di

without affecting the density matrix G̃. We use this degree of
freedom to minimize the variational energy of the resulting
pseudo-BCS wave function. For the Hubbard Hamiltonian,
this turns out to be equivalent to minimizing the double oc-
cupancy 〈∑i ni,↑ni,↓〉, which can be done efficiently. This is
further discussed in Sec. V.

In general, one can also replace the solution of Eq. (14)
with a minimization procedure, to find the set of complex di-
agonal elements {dn} which minimize the difference between
the density matrix and the target, as well as the variational
energy, of the resulting pseudo-BCS wave function.

In our applications below, we sometimes deliberately break
the spin symmetry in the Hubbard model, by applying a
spin-dependent pinning field to induce antiferromagnetic cor-
relations [22]. Similar to the situation in UHF, this preserves
the condition that G↑ and G↓ share the same eigenvalues
but have different eigenvectors (orbitals). For systems that
do not satisfy this condition, one could still enforce the
condition and adopt the approach of seeking a pseudo-BCS
wave function whose density matrices are closest to the
target, but that would of course be an additional level of
approximation.

III. SELF-CONSISTENT AFQMC WITH PSEUDO-BCS
WAVE FUNCTION

As mentioned earlier, the pseudo-BCS wave function can
provide a better ansatz not only for systems with supercon-
ducting correlations, but for systems with purely repulsive
electron-electron interactions. By generalizing the concept of
AGP, the pseudo-BCS wave function allows paired states in
the sense of UHF orbitals. For many systems with antiferro-
magnetic correlations, the UHF provides a better description
(at the cost of symmetry breaking). In such systems, the
pseudo-BCS with UHF orbitals is analogous to AGP with
RHF-like orbitals in BCS systems.

In this section we illustrate one application of the pseudo-
BCS form by coupling it to the AFQMC framework. We input
into the AFQMC a trial wave function chosen in the form
of a pseudo-BCS wave function, and then self-consistently
improve it with the density matrix from AFQMC, using
the decomposition discussed in the previous section. Be-
low we first briefly review the concept and algorithms of
AFQMC, before introducing the procedure for realizing the
self-consistency with the pseudo-BCS wave function.

A. AFQMC and self-consistency

The ground-state AFQMC method relies on imaginary
time evolution from an initial Slater determinant |�I〉 (or any
linear combination of Slater determinants):

|�0〉 = e−τH |�I〉 = e−τ (K+V )|�I〉, (18)

which will project to the ground state of H if the overlap
〈�0|�I〉 is nonzero. To realize this imaginary time evolution,
we first use Suzuki-Trotter decomposition to break up the
imaginary-time evolution operator

e−τH ≈
N∏

n=1

e−δτK/2 e−δτV e−δτK/2, (19)

where δτ = τ/N . We then apply the Hubbard-Stratonovich
transformation to the two-body term

e−δτV=
∫

dx p(x) eh(x), (20)

where h(x) is a one-body operator which dependents on the
auxiliary-field vector x, p(x) is a probability density function,
and eh(x) propagate a Slater determinant |�〉 to another Slater
determinant |�′〉. Putting these together [8], we have

e−τH =
N∏

n=1

e−δτ (K+V )

≈
N∏

n=1

∫
dxn e−δτK/2 p(xn)eh(xn )e−δτK/2. (21)

The integrals on the right-hand side are in many dimensions
and will require Monte Carlo. In a sense, the imaginary-time
evolution in AFQMC can be viewed as an ensemble of ran-
dom walks in a space of Slater determinants. The orbitals
in each Slater determinant are orthonormal, but these Slater
determinants are not orthogonal to each other. The branching
random walks thus occur in an over-complete determinant
space [23].

The antisymmetry of fermions will cause an arbitrary sign
or phase to develop in each of the Slater determinants during
the stochastic propagation. If a walker propagates to become
perpendicular to the ground state, this walker will effectively
cease to contribute under further projection. The number of
such walkers will in general grow exponentially with projec-
tion time, which will result in large statistical fluctuations.
Eliminating them is an exact condition which removes the
sign or phase problem [8,9]; in practice the condition is imple-
mented using a trial wave function |�T 〉, which is applied to
constrain the random walk paths. In Hubbard-like models, this
constraint is 〈�T |�〉 > 0 for ground-state calculations, but for
a more general form of interaction a condition involving the
phase is needed [9]. If the trial wave function is the exact
ground state, then this constraint is unbiased. Many studies
have shown that even a free-electron or HF wave function
typically gives high accuracy in a variety of correlated systems
[1,2,24].

To reduce the dependence on the trial wave function in the
constrained path or phaseless approximation, a self-consistent
procedure was introduced based on Slater-determinant-type of
wave functions [22]. Here we introduce a new self-consistent
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AFQMC based on the pseudo-BCS decomposition. A trial
wave function in the form of a pseudo-BCS is used as a
constraint to carry out the AFQMC calculation, from which
a density matrix is computed. We then apply the density ma-
trix decomposition to the result to obtain a new pseudo-BCS
wave function, which is used as the trial wave function in
the next iteration of AFQMC calculation. The procedure is
repeated until the density matrix or other physical observables
computed from AFQMC are converged. The approach pro-
posed here achieves self-consistency via the one-body density
matrix without needing to involve a fictitious mean-field cal-
culation [22,24].

B. Additional details: Application of pseudo-BCS
trial wave function in AFQMC

We provide some of the formalism and details [15,21] nec-
essary to apply a pseudo-BCS trial wave function in AFQMC
and to realize the self-consistent procedure described above.
We define the overlap matrix between the pseudo-BCS wave
function of Eq. (5) and a Slater determinant of Eq. (2) as

A ≡ �T
↑ · F � · �↓. (22)

The overlap between |�〉 and |�〉 is then

〈�|�〉 = (−1)Nσ (Nσ −1)/2Nσ ! det(A). (23)

(The global sign and coefficient above will have no affect in
the calculations in this paper.)

The mixed estimate of a one-body term [23] is

〈�|c†
i,↑c j,↑|�〉

〈�|�〉 = [F � · �↓ · A−1 · �T
↑ ]i, j (24)

or

〈�|c†
i,↓c j,↓|�〉

〈�|�〉 = [F † · �↑ · (A−1)T · �T
↓ ]i, j . (25)

In order to evaluate the pure estimator (as opposed to the
mixed estimator) of the density matrix or other observables,
back-propagation is needed [8,25]. The back-propagation of
a pseudo-BCS wave function is more subtle, and a scheme
to ensure numerical stability has recently been proposed [14],
which we adopt here.

IV. RESULTS

In this section we use the Hubbard model as an example to
illustrate the method described above and show the improve-
ment of the self-consistent AFQMC with a pseudo-BCS form
of the trial wave function. In Sec. IV A we show results in the
pure Hubbard model with t ′ = 0. Here extensive results exist
from previous studies which have shown that AFQMC with
the usual Slater determinant trial wave functions is very accu-
rate, and we use this case as a benchmark. Then in Sec. IV B
we apply the method to the case with t ′ 
= 0 where it is shown
that our pseudo-BCS leads to an improvement in parameter
regimes where the single determinant trial wave function is
less accurate.

FIG. 1. Illustration of the density matrix decomposition to con-
struct the pseudo-BCS wave function. The system is a 4 × 4 Hubbard
model, with N↑ = N↓ = 7 (i.e., 1/8 doping), U = 4t , with periodic
boundary condition and overall momentum (0, π ) or (π, 0). “SD”
indicates natural orbital, i.e., the result of a single Slater determinant
constructed from the eigenvectors of the density matrix. “pBCS”
indicates the pseudo-BCS wave function constructed from the pro-
cedure in Sec. II B.

A. Illustration in the pure Hubbard model

We first study the Hubbard model with only nearest-
neighbor hopping, i.e., with ti, j = t for near neighbors 〈i, j〉
and ti, j = 0 otherwise. We will work with a 4 × 4 lattice under
periodic boundary condition as a test case, in which exact
diagonalization (ED) can be performed straightforwardly. We
choose U = 4t , and doping h ≡ 1 − (N↑ + N↓)/Ns = 1/8.
This doping represents the parameter regime where the sign
problem is the most severe, and the constraint error is the
largest because of both open-shell and interaction effects.
The ground state of this system has threefold degeneracy,
distinguished by their overall momentum (0,0) and (0, π ) or
(π, 0) [26]. The (0,0) case has a degeneracy in the occupancy
of the natural orbitals. We focus on the latter situation below
in order to compare with single-determinant (SD) cases with
no ambiguity.

In Fig. 1 we illustrate the density matrix decomposition
procedure discussed in Sec. II B. The pseudo-BCS wave func-
tion is generated from the exact one-body density matrix given
by ED. The resulting eigenvalues of the pseudo-BCS wave
function from the decomposition in Eq. (17) are compared
with the exact results.

The result of a single Slater determinant wave function
constructed from natural orbitals (which is equivalent to the
free-electron wave function in this case) is also shown.

For this test we obtain the exact ground state density ma-
trix from ED, and apply the density matrix decomposition to
obtain a pseudo-BCS wave function. This wave function is
then applied in AFQMC as the trial wave function. In Fig. 2
the density matrix computed from AFQMC using this trial
wave function is compared with that from ED. For refer-
ence, the density matrix computed from AFQMC using a SD
trial wave function which is formed with the natural orbitals
with the Nσ largest eigenvalues (occupancy) is also shown.
We see that the results from AFQMC/pseudo-BCS are not
exact, despite using the exact density matrix to generate the
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FIG. 2. The density matrix Gi, j computed from AFQMC, shown
as a function of the distance �r between sites i and j under PBC,
compared with the exact result from ED. The inset shows the error
δGi, j with respect to the ED result. The system and setup are the
same as in Fig. 1. Statistical error bars are shown but are smaller
than symbol size.

pseudo-BCS. This is not surprising, because the pseudo-BCS
wave function is not the exact many-body wave function, and
apparently still incurs a finite constraint error in AFQMC.

B. Hubbard model at half-filling with t ′

In this section we study the Hubbard model at half-filling
with both near-neighbor (t) and next-nearest-neighbor hop-
ping (t ′). These systems provide a good test case for us, with
the presence of different magnetic orders [27–30]. We will
focus on its magnetic correlations, applying pinning fields
[31–33] under cylindrical boundary conditions, i.e., periodic
along x direction and open along y. The pinning fields are ap-
plied at the edges of the cylinder, adding a one-body external
potential term

∑
i,σ ui,σ ni,σ to the Hamiltonian of Eq. (1), with

ui,↑ = −ui,↓ = (−1)ix u0 for iy = 1 and Ly, and ui,σ = 0 for all
other sites. The strength of the pinning field is fixed at u0 =
0.25t in our calculations. The cylindrical boundary condition
and pinning fields break translational symmetry along the y
direction and induces AFM correlations. Under this setting,
two-body spin correlation functions in periodic systems can
be probed by one-body spin densities: Sz

i = 〈(ni,↑ − ni,↓)/2〉.
It provides a convenient way to detect the presence and nature
of long-range AFM orders including collective modes such
as stripes [22,34]. We will study width-4 cylinders which can
be treated very accurately by density matrix renormalization
group (DMRG) calculations [35], which we perform using
the ITensor Library [36] and with which we benchmark our
self-consistent AFQMC results.

We carry out self-consistent AFQMC calculations and
benchmark the computed ground-state energy and spin densi-
ties. For the SC AFQMC/SD calculations, we keep the trial
wave function in the form of a single Slater determinant,
which is obtained in the self-consistent iteration from the
natural orbitals of the computed density matrix, taking the
Nσ leading natural orbitals with the largest occupancies [22].
For the SC AFQMC/pBCS, we compute the one-body density
matrix with back-propagation [14] and then apply our density
matrix decomposition procedure discussed in Sec. II B. In
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er
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DMRG
S.C.CPMC/pBCS
S.C.CPMC/SD
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FIG. 3. Convergence of the self-consistent AFQMC calculation
using a trial wave function of the pseudo-BCS form versus a single
Slater determinant from natural orbitals. The system is a 4 × 8 Hub-
bard cylinder at half-filling, with pinning field applied on both edges,
with U = 4t and t ′ = 0.3t . (a) The ground-state energy and (b) the
mean squared error δ2

Sz in the spin density with respect to DMRG.
The SC procedures were repeated multiple times with different ran-
dom number seeds to estimate the uncertainties in the convergence
process, with the standard deviations shown by the shading on the
curve.

Fig. 3 we show the convergence of the ground-state energy
and spin density as a function of self-consistency iterations.
For the spin density we measure the mean squared deviation
δ2

Sz ≡ ∑Ns
i (Sz

i − Sz
i,DMRG)2/Ns with respect to the DMRG ref-

erence result. Both self-consistency processes were initialized
using the free-electron wave function, which provides the
wrong initial input in most cases as it is not magnetically
ordered. Both sets of SC calculations yield improved results
over the initial AFQMC/FE result, as expected. The SC
AFQMC/pBCS shows both a faster convergence and better
converged results over the SC AFQMC/SD.

The ground-state energies are listed in Table I for the
system above and several other cylindrical systems, using
the two different self-consistent approaches, as well as one-
shot AFQMC calculations with the free-electron trial wave
function. The final energy for self-consistent AFQMC with
pseudo-BCS is calculated using the pseudo-BCS trial wave
function with lowest variational energy after density ma-
trix convergence. The free electron trial wave function is
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TABLE I. Comparison of the computed total energies from self-consistent AFQMC using trial wave functions of pseudo-BCS form
(SC AFQMC/pBCS) and single Slater determinant (SC AFQMC/SD), as well as one-shot AFQMC using free-electron trial wave functions
(AFQMC/FE) for various systems, compared to DMRG in 4 × 8 and 4 × 16 cylinders with pinning fields applied at the edges. All systems
have U = 4t , and the details of the pinning fields in the cylindrical systems are given in the text.

Lx × Ly N↑ N↓ t ′/t AFQMC/FE SC AFQMC/SD SC AFQMC/pBCS ED/DMRG

4 × 8 16 ↑ 16 ↓ 0.3 −27.271(1) −27.611(1) −27.682(1) −27.6924
4 × 8 16 ↑ 16 ↓ 0.35 −27.802(1) −27.805(1) −27.914(1) −27.9755
4 × 16 32 ↑ 32 ↓ 0.3 −56.110(4) −56.268(3) −56.176(3) −56.236
4 × 16 32 ↑ 32 ↓ 0.4 −57.801(3) −57.943(2) −57.868(3) −57.930

degenerate in 4 × 16 with t ′/t = 0.3. We break the de-
generacy by solving the noninteracting Hamiltonian with a
small twist angle (0.01,0.01) applied in the boundary con-
dition. Consistent with the trend observed in Fig. 3, both
SC procedures are seen to improve the energy, with the SC
AFQMC/pBCS giving systematic errors of ≈0.2% or less
compared to DMRG.

In Fig. 4 we study the spin density more systematically.
As a function of the next-nearest-neighbor hopping ampli-
tude t ′, different magnetic correlations arise, which provides

an excellent test ground for the self-consistency procedure
via pseudo-BCS decomposition. The converged spin densities
from self-consistent AFQMC with pseudo-BCS decomposi-
tion are shown and compared to the exact results from DMRG.
Results from single determinant trial wave functions are also
presented, including both the one-shot calculation using the
free-electron trial wave function and the self-consistent con-
straint from truncated natural orbitals. We see that the SC
AFQMC with pseudo-BCS is able to resolve the details of
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FIG. 4. Resolving different magnetic orders. The computed spin densities with self-consistent AFQMC, using either pseudo-BCS (SC
AFQMC/pBCS) or single determinant (SC AFQMC/SD) form of trial wave functions, are shown in four systems with different magnetic
correlations, together with the one-shot AFQMC/FE and reference DMRG results for comparison. All systems have U = 4t and are at half-
filling, with cylindrical boundary condition and edge pinning fields applied; the system size and next-nearest-neighbor hopping value t ′ are
indicated in each panel. All four panels use the same symbols as indicated in the top left panel. The inset in the lower right panel shows a
magnified view of the middle region. The spin density is plotted versus site label along a cut in the y direction of the cylinder, with ix = 2. For
all systems, the results are statistically indistinguishable (after accounting for the alternating sign) with respect to ix .
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the spin order, yielding results in excellent agreement with
DMRG.

V. DISCUSSION

A. Variational optimization of the phases of {dn}
As mentioned in Sec. II A, the density matrix decompo-

sition determines only the absolute values of {di}, allowing
for arbitrary phase factors. We adjust the (Nσ − 1) indepen-
dent phase factors to minimize the variational energy of the
pseudo-BCS wave function

E� = 〈�|H |�〉
〈�|�〉 = 〈�|K + V |�〉

〈�|�〉 . (26)

The variational energy of a pseudo-BCS wave function can
be evaluated by a Monte Carlo sampling of the ket, which
we have used in earlier studies [14,15] and which we briefly
describe below.

To evaluate the expectation value of an observable with
respect to a pseudo-BCS (or AGP) wave function, we can
use the expansion in Eq. (12) to write the ket |�〉 as a linear
combination of Slater determinant |�〉 = ∑

� c�|�〉 , where
c� = dn1 · · · dnNσ

and |�〉 is the Slater determinant obtained
by occupying the set of natural orbital pairs specified by the
indices {n1, n2, . . . , nNσ

}. Equation (26) can then be written as

E� =
∑

�
〈�|H |�〉
〈�|�〉 c�〈�|�〉∑
� c�〈�|�〉 =

∑
�

〈�|H |�〉
〈�|�〉 |c�|2∑
� |c�|2 , (27)

which is similar to the “mixed estimator” in AFQMC. The
sum over � contains a combinatorial number of terms, which
makes an explicit summation impractical for larger systems.
We can sample the Slater determinants |�〉 according to |c2

�|
by, for example, a Markov chain Monte Carlo procedure in
the discrete space of indices {n}, proposing to swap one of the
occupied index ni with one from the unoccupied set n′

i, and
accepting the move based on |dn′

i
/dni |2. The mixed estimate

between 〈�| and |�〉 in the numerator can be computed using
Green functions as shown in Eqs. (24) and (25), and applying
Wick’s theorem for the two-body term in V as needed [14].
(The one-body and two-body terms of a pseudo-BCS wave
function could also be computed using related characteristic
polynomial [37].)

The phases of {di} only enter in the local energy in Eq. (27).
They do not affect the Monte Carlo sampling or the sampled
|�〉’s. The phases in |�〉 can be optimized using, for exam-
ple, standard variational minimization techniques employed
in variational Monte Carlo [38]. In the Hubbard model, the
kinetic term K is invariant with respect to the phase; the V
term easily decouples into single particle forms for the two
spin sectors.

B. Generalization of the pseudo-BCS form

We briefly comment on generalization of the pseudo-BCS
approach beyond systems we have discussed, which has been
restricted to Hamiltonians with no spin-flip terms and singlet
pairing with spin balance.

With a one-body term K that contains spin-flip terms, such
as systems with spin-orbit coupling (SOC), the Slater deter-
minant state |�〉 contains spin-orbitals and is described by

a 2Ns × (N↑ + N↓) matrix [39]. The corresponding one-body
density matrix is a 2Ns × 2Ns matrix. The eigendecomposition
of the density matrix gives 2Ns natural spin-orbitals listed in a
matrix U . The pseudo-BCS wave function is given by a matrix
F , in the form of F = UDU T , where D is a skew-symmetric
matrix. Similar to the spin-decoupled case, the elements of
D, {di, j}, are to be determined by the eigenvalues {λ} of
the density matrix, where a pair of comparable eigenvalues
λi = λ j gives di, j = −d j,i.

The equations for overlap and the mixed estimator be-
tween a general Slater determinant � with spin orbitals and
a pseudo-BCS wave function � from the above are given by

〈�|�〉 = pf[�T · F � · �], (28)

and

〈�|c†
i c j |�〉

〈�|�〉 = [F † · � · (�T F †�)−1 · �T ]i, j, (29)

where i (and j) is a general spin-orbital index (i.e., combining
both the site index i and spin σ in the Hubbard Hamiltonian),
and pf denotes Pfaffian [40].

We comment briefly on applications to molecules and
real materials. Although we have used the Hubbard model
for demonstration and benchmark, the formalism generalizes
directly when a basis set replaces lattice sites. The varia-
tional optimization will require full evaluations involving the
Hamiltonian matrix elements, but the approach discussed in
Sec. V A still applies.

VI. SUMMARY

In summary, we introduced an approach to use the one-
body density matrix to build pseudo-BCS wave functions for
many-body systems, i.e., wave functions with a similar form
to number-projected BCS. They can be thought of as a gener-
alization of BCS to systems with repulsive interactions such
as in molecules and real materials. Such wave functions can
provide a better mean-field ansatz than any single Slater de-
terminants, and a natural and very powerful extension beyond
UHF. The pseudo-BCS wave functions are more versatile
and have more variational freedom than the usual number-
projected BCS wave functions. They can be manipulated with
costs similar to AGP or Slater determinants, and can be used
as the reference state in a variety of many-body methods.
By coupling pseudo-BCS wave functions to AFQMC self-
consistently via a density matrix decomposition approach,
we achieve a self-consistent AFQMC method, which yields
improved results in the Hubbard model over state-of-the-art
self-consistent AFQMC calculations based on single Slater
determinants.
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