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The discrete truncated Wigner approximation (DTWA) is a powerful tool for analyzing dynamics of quantum
spin systems. Since the DTWA includes the leading-order quantum corrections to a mean-field approximation,
it is naturally expected that the DTWA becomes more accurate when the range of interactions of the system
increases. However, quantitative corroboration of this expectation is still lacking mainly because it is generally
difficult in a large system to evaluate a timescale on which the DTWA is quantitatively valid. In order to
investigate how the validity timescale depends on the interaction range, we analyze dynamics of quantum spin
models with a step function type interaction subjected to a sudden quench of a magnetic field by means of both
DTWA and its extension including the second-order correction, which is derived from the Bogoliubov-Born-
Green-Kirkwood-Yvon equation. We also develop a formulation for calculating the second-order Rényi entropy
within the framework of the DTWA. By comparing the time evolution of the Rényi entropy computed by the
DTWA with that by the extension including the correction, we find that both in the one- and two-dimensional
systems the validity timescale increases algebraically with the range of the step function type interaction.
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I. INTRODUCTION

The state-of-the-art technologies established in ultracold
gases have opened the door for controlling and exploring co-
herent quantum dynamics of isolated many-body systems both
near and far from equilibrium [1]. In the context of condensed-
matter and solid-state physics, charge-neutral atoms loaded
onto an optical lattice have been extensively studied as an
analog quantum simulator for the tight-binding Hubbard-type
models with short-range interactions. Owing to its control-
lability and cleanness, one can gain access to fundamental
questions about dynamical properties of Hubbard-type sys-
tems. The recent topics explored in experiments include
thermalization dynamics of an isolated quantum system [2,3],
propagation of nonlocal correlations [4,5], the Kibble-Zurek
mechanism across quantum phase transitions [6], and the
many-body localization (MBL) in a disordered optical lattice
[7,8]. In recent years, technological developments in creating,
controlling, and probing cold atoms or molecules with strong
dipole-dipole interactions in an optical lattice [9–15], Ryd-
berg gases [16–28], and trapped ions [29–34] have enabled
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quantum simulation of various quantum spin systems with
long-range interactions. In particular, Rydberg gases can be
manipulated by means of the optical tweezer techniques, so
that these offer an intriguing playground to explore novel
quantum magnetism and nonequilibrium dynamics of local-
ized spins caused by variable-range interactions.

While these experimental advances have stimulated theo-
retical studies of quantum many-body dynamics of systems
with various interaction ranges, they are still limited due to
the lack of available computational tools. As a quasiexact
numerical method, the time-dependent density-matrix renor-
malization group (tDMRG) has been typically utilized for
simulating large-scale many-body systems corresponding to
actual experiments [35,36]. However, its efficient applications
are limited to one-dimensional (1D) systems. Among various
candidates for approximate frameworks to tackle many-body
systems, the phase-space methods, especially the truncated-
Wigner approximation (TWA) [37,38] on the basis of the
Wigner-Weyl correspondence, provide a realistic and widely
applicable approach to quantum many-body dynamics even
for higher-dimensional systems with long-range interactions
[39–44]. Employing the TWA, quantum dynamics are re-
duced to a semiclassical problem of simulating randomly
distributed classical trajectories in a phase space, each of
which obeys a saddle-point or mean-field equation of motion
for a given quantum system. The TWA gives quantitative
descriptions of quantum dynamics even at long times if the
system is in a certain classical limit or nearly noninteracting
limit. More precisely, the TWA is asymptotically exact at
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short times [45]. It implies that, within the TWA, there exists
a threshold timescale separating semiclassically simulatable
and nonsimulatable regimes of quantum dynamics depend-
ing on the choice of the phase space. As demonstrated in
some works [46–48], by increasing the number of phase-space
variables, one can improve the validity of TWA descriptions
for strongly correlated lattice systems composed of bosons
or spins. Such an increased phase-space approach is referred
to as the SU(N) or cluster TWA. Furthermore, it is also
possible to construct a fermionic TWA (fTWA) approach
for interacting fermions, in which so(2N ) string variables
are introduced for a fermionic mode number N [40,44].
The fTWA has been used to study semiclassical aspects
of chaos in the Sachdev-Ye-Kitaev (SYK) model [49,50],
which consists of all-to-all (infinitely long-range) two-body
hoppings.

For describing dynamics of quantum spin systems, the
discrete TWA (DTWA) has been widely applied in various
contexts [13–15,51–64]. In the conventional use of the TWA
for spin systems [38,46,48], to be efficient, its Monte Carlo
sampling part employs a Gaussian approximation for the
continuous Wigner distribution function. On the other hand,
the DTWA utilizes a discrete Wigner function for sampling
phase-space variables instead of the continuous Wigner dis-
tribution. Since the discrete Wigner representation is defined
for the basis of local-spin eigenstates rather than coherent
states, it can express typical initial states such as the all down-
spin state |↓ ↓↓↓ . . . 〉 and the staggered magnetization state
|↑ ↓↑↓ . . . 〉 as a positive-valued distribution. Thanks to this
advantage, the DTWA accurately describes all the initial mo-
ments of these states and can capture some revival properties
of quantum dynamics beyond the Gaussian approximation.
These properties have been investigated in Ref. [53]. More
interestingly, the DTWA can also reproduce the experimental
results for Rydberg atoms [54,55] and dipolar atoms [13–15],
which are effectively described by spin- 1

2 and large-S models,
respectively.

Although the DTWA is a powerful tool to analyze quantum
spin systems, there are some problems. One is a timescale
on which the DTWA is valid. Generally, the TWA frame-
work gives quantitatively valid results in a short time regime
[37,38]. This validity timescale depends on the details of
the systems, such as interactions, dimensions, and initial
conditions. In the zero-temperature ground states or thermal
equilibrium cases, it is well established that the mean-field
approximation gives the exact results in large-S limit or infi-
nite dimensions (or all-to-all coupling). As for the quantum
dynamics, it has been shown that the validity timescale be-
comes longer when the size of the spin S increases [65].
By contrast, the dependence of the validity timescale on
the spatial dependence of the interaction is not well un-
derstood. In Refs. [51–53], the performance of the DTWA
for power-law decay interaction has been discussed. An-
other possibility of interaction form is a step function type
interaction, which approximately describes the spin-spin in-
teraction of the Rydberg-dressed atoms [17,20]. Investigating
such a range dependence of the validity timescale will be
useful when the TWA is applied to analyzing such sys-
tems, in which the interaction range can be systematically
controlled.

In this paper, we address the question how the validity
timescale of the DTWA depends on the interaction range
of the step function type interaction. Our approach is to
use higher-order corrections of the DTWA, which are de-
rived by using the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy equation [57]. When the difference be-
tween the DTWA and its higher-order corrections is small, we
can expect that the DTWA is a good approximation.

In order to compare the DTWA with its higher-order cor-
rections, we focus on the second-order Rényi entanglement
entropy. In particular, we consider two-site Rényi entangle-
ment entropy, which contains the information of one- and
two-spin expectation values. In this paper, we develop a
method to calculate the Rényi entropy within the framework
of the DTWA. Our method can be applicable to not only the
benchmark of the DTWA, but also the calculations of the
Rényi entropy in higher dimensions, which are difficult to
access by other methods.

From the comparison between the DTWA and its extension
including higher-order corrections, we show that the validity
timescale of the DTWA becomes longer as increasing the
range of the step function type interaction. We confirm this
property for three different kinds of quantum-spin models,
namely, Ising, XY, and Heisenberg models under a uniform
magnetic field in 1D and 2D. This result means that the
DTWA becomes better as the classical limit is approached.

This paper is organized as follows: In Sec. II A, we explain
our model and the DTWA. In Sec. III A, we explain how to
define the threshold time on which the DTWA is valid and
compare the DTWA and tDMRG results. In Sec. III B, we
show the results of Rényi entanglement entropy and threshold
time for three different quantum spin models. In Sec. III C,
we compare the results in 1D and 2D systems. In Sec. IV, we
summarize our results. In Appendix A, we discuss the details
of the derivation of the DTWA. In Appendix B, we explain
the sampling scheme of the initial conditions. In Appendix C,
we derive the expression of the Rényi entanglement entropy
in the framework of the DTWA. In Appendix D, we explain
the details of the tDMRG calculations. In Appendix E, we
propose an algorithm to calculate the dynamics of the systems
with the long-range interaction by using the tDMRG.

II. MODEL AND METHODS

A. Model

In this paper, we consider a family of quantum spin- 1
2

systems in 1D and 2D, which is generally modeled by the
Hamiltonian

Ĥ = 1

2

∑
i, j,i �= j

∑
μ

Jμ
i j Ŝ

μ
i Ŝμ

j + h ·
∑

i

Ŝi, (1)

where Ŝμ
i (μ = x, y, z) is a spin- 1

2 operator at site i, Jμ
i j is a

spin-exchange coupling between two distant sites, and h ≡
(hx, hy, hz ) is a uniform magnetic field, respectively. Through-
out this paper, we impose open boundary conditions and write
M as an even integer expressing the total number of lattice
sites.
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As a concrete form of the coupling Jμ
i j , we especially focus

on three specific cases as follows:

Jx
i j = Jy

i j = 0, Jz
i j = −J (D)

i j (Ising), (2)

Jx
i j = Jy

i j = −J (D)
i j , Jz

i j = 0 (XY), (3)

Jx
i j = Jy

i j = Jz
i j = J (D)

i j (Heisenberg). (4)

From the top to bottom, let us refer to these as ferromagnetic
Ising, ferromagnetic XY, and antiferromagnetic Heisenberg
models, respectively. Furthermore, we assume that a magnetic
field is applied along the x axis, i.e., h = (hx, 0, 0). The details
of J (D)

i j depend on the spatial dimension of the lattice D. For
the 1D cases (D = 1), it has the properties

J (1)
i j ≡

{ J
r , if |i − j| � r

0, otherwise
(5)

where J > 0 is an interaction strength and r = 1, 2, . . . is the
interaction range. By contrast, the 2D cases (D = 2), in which
the lattice geometry is supposed to be square, are character-
ized by

J (2)
i j ≡

{ J
Cr

, if |Ri − R j | � Rr

0, otherwise
(6)

where Ri ≡ (Rxi, Ryi ) ≡ a(ix, iy) is the position of the ith
lattice site, a is the lattice constant, ix = 1, 2, . . . , Mx and
iy = 1, 2, . . . , My are indices of the ith lattice sites, and Rr

is the distance between the rth neighboring sites. The total
number of lattice points is given by M = MxMy. The constant
Cr is determined such that the following equation is satisfied:

max
i

∑
j �=i

J (2)
i j = 2J. (7)

The explicit values of Cr are given by C1 = 2,C2 = 4,C3 =
6,C4 = 10,C5 = 12, . . . . For later use, we define Nr as

Nr =
{

2r (1D),
2Cr (2D), (8)

where Nr approximately denotes the number of connections
per spin quantifying how many spins are connected to each
spin. Approaching the boundaries from the center of the sys-
tem, the actual number of connections decreases from Nr due
to the finite system size and the open boundary.

It is worth noting that these types of long-range interaction,
Eqs. (5) and (6), are realizable in the experimental setups by
means of Rydberg-dressed atoms [17,20]. A system of such
atoms is typically characterized by a soft-core type potential,
so that interactions among atoms are almost constant in the
short-distance regime and rapidly decay in the long-distance
regime [66,67]. The couplings in Eqs. (5) and (6) may de-
scribe such a situation approximately.

In the subsequent sections we will investigate sudden-
quench dynamics of the interacting spin systems [68–71] in
order to characterize the limitation of the DTWA method.

To be concrete, we especially consider the following direct-
product wave functions as low-entangled initial states:

|ψ (0)〉 =
M∏

i=1

| ←i〉 (Ising), (9)

|ψ (0)〉 =
M∏

i=1

|↓i〉 (XY), (10)

|ψ (0)〉 =
M/2∏
i=1

|↑2i−1 ↓2i〉 (Heisenberg). (11)

Here, |↑i〉 and |↓i〉 denote the eigenstates of Ŝz
i while | →i〉 ≡

(|↑i〉 + |↓i〉)/
√

2 and | ←i〉 ≡ (|↑i〉 − |↓i〉)/
√

2 represent the
ones of Ŝx

i . The corresponding discrete Wigner functions for
these initial states are shown in Appendix B.

B. Discrete phase-space approach to the Rényi entropy

In this work, to characterize the performance of the DTWA,
we focus on the second-order Rényi entanglement entropy
defined by

S(2)
A (t ) ≡ − log(Tr{[ρ̂A(t )]2}), (12)

where ρ̂A(t ) ≡ TrBρ̂(t ) is the reduced density matrix associ-
ated with a subregion A and ρ̂(t ) is the density matrix of the
whole system. The whole system is separated in real space
into A and B. In what follows, let us derive a discrete phase-
space representation for S(2)

A (t ).
An important ingredient to make the discrete phase-space

representation is the phase-point operator Âα [51]. For SU(2)
spin systems, it generally takes the form

Âα ≡
M∏

i=1

(
1

2
+ rαi · Ŝi

)
, (13)

where α ≡ (α1, α2, . . . , αM ) with αi ∈ {(0, 0), (0, 1), (1, 0),
(1, 1)} denotes independent points in the discrete phase
space and rαi is a three-dimensional vector implying r(0,0) =
(+1,+1,+1), r(0,1) = (−1,−1,+1), r(1,0) = (+1,−1,−1),
and r(1,1) = (−1,+1,−1) [72]. The density matrix at time t
can be written as [72]

ρ̂(t ) =
∑

α

Wα(0)Âα(t ), (14)

where Wα(0) is the discrete Wigner function at t = 0 and we
defined Âα(t ) = e−iĤt/h̄Âαe+iĤt/h̄. The reduced density matrix
ρ̂A(t ) is expressed by means of the discrete Wigner function
at t = 0 and Âα(t ):

ρ̂A(t ) = TrB

{∑
α

Wα(0)Âα(t )

}
. (15)

The transformed phase-point operator Âα(t ) contains a
complete information about quantum many-body dynamics
governed by Ĥ . However, carrying out exact calculations for
such an operator is generally impossible.
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In the descriptions of DTWA, the phase-point operator at t
is assumed to be factorized [51], i.e.,

Âα(t ) �
M∏

i=1

[
1

2
+ ri(t,α) · Ŝi

]
. (16)

The time-dependent coefficient ri(t,α) ≡ 2Si(t ) obeys a clas-
sical equation of motion obtained from a first-order BBGKY
hierarchy truncation (see also Appendix A)

h̄
d

dt
Sμ

i (t ) = εμβγ

[
hβSγ

i (t ) +
∑
k �=i

Jβ

ikSβ

k (t )Sγ
i (t )

]
, (17)

where εμβγ is the Levi-Civita symbol and we used the Einstein
notation for repeated Greek indices. Inserting Eq. (16) into
(12), we arrive at a DTWA expression of the Rényi entropy

S(2)
A (t ) ≈ − log

〈〈∏
i∈A

[
1

2
+ 2Si(t ) · S′

i(t )

]〉〉
, (18)

where Si(0) = rαi/2 and S′
i(0) = rα′

i
/2. The doubled angular

brackets mean a phase-space average weighted with two ini-
tial Wigner functions

〈〈 fα,α′ 〉〉 ≡
∑
α,α′

Wα(0)Wα′ (0) fα,α′ . (19)

For direct product states such as Eqs. (9)–(11), Wα(0) is
factorized as Wα(0) = ∏M

j=1 wα j (0). It means that each local
spin variable can fluctuate independently and the entropy for
a subsystem results in zero at t = 0. The subsystem entropy
remains zero during the time evolution if the Hamiltonian is
entirely decoupled into local parts and each part is linear in
SU(2) matrices. For nonlinear systems with a nonzero spin-
exchange coupling, the Rényi entropy becomes nonzero as
a consequence of the many-body time evolution. The semi-
classical expression for the subsystem entropy states that the
amount of entanglement across the boundary of two subre-
gions is related to the degree of complexity in a solution
of Eq. (17) that is, if it is possible to write, provided as a
complicated nonlinear function of initial conditions.

A higher-order correction beyond the DTWA description
based on Eq. (17) arises in a classical trajectory of an enlarged
phase space for a second-order BBGKY method [57]. The
underlying idea of this method is to regard a nonseparable
part of Ŝμ

i Ŝν
j , which is represented by cμν

i j in a replacement

Ŝμ
i Ŝν

j → Sμ
i Sν

j + cμν
i j , as an additional mechanical variable

and define an approximately closed equation of motion for Sμ
i

and cμν
i j . We note that the first-order BBGKY truncation leads

to the time-evolving equation given by Eq. (17). In Sec. III,
we will also exploit the second-order BBGKY method to
compute the Rényi entropy, especially for a subregion of two
sites. The detail of the BBGKY formulation will be presented
in Appendix A.

In this paper, we numerically solve Eq. (17) for the first-
order BBGKY and Eqs. (A12) and (A13) for the second-order
BBGKY by using a fourth-order Runge-Kutta method. A
time step 	t is taken to be 	t = 10−3h̄/J . We have checked
that our results are converged for this 	t in our simulation
timescale. We use M = 100 in 1D and Mx = My = 14 in 2D.
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r=60 1st
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0.0
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0.6
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0 2 4 6 8 10 12 14

(a)

(b)

(c)

hx=0.5J

Ising (1D)

hx=2.0J

XY (1D)

hx=10.0J

Heisenberg (1D)

S
(2

)

r=1 tDMRG
r=1 1st
r=1 2nd
r=3 tDMRG
r=3 1st
r=3 2nd

FIG. 1. Comparison with the DTWA and tDMRG results. Mean
two-site Rényi entropy in 1D. (a) Ising model for hx = 0.5J . (b) XY
model for hx = 2.0J . (c) Heisenberg model for hx = 10.0J . The
black solid and dotted lines represent the tDMRG results. The open
and closed symbols represent the first- and second-order BBGKY
results, respectively. r is the interaction range.

The computational costs for first- and second-order BBGKY
equation scale as O(M ) and O(M2), respectively.

III. RESULTS

A. Criterion for the validity of the DTWA
and comparison with tDMRG results

In this section, we introduce a criterion for giving an
estimation of the timescale within which the DTWA is quan-
titatively valid. Our approach is based on the assumption
that when the difference between the first- and second-order
BBGKY results is small, the DTWA gives a good approx-
imation. Here, a question arises: Which physical quantities
are appropriate for comparing the first- and second-order
BBGKY results? We propose that the second-order Rényi
entanglement entropy is a suitable quantity for confirming the
validity of the DTWA. One advantage to use the Rényi entropy
is that it is an unbiased quantity compared with other physical
quantities such as spin expectation values and spin-spin corre-
lations. The latter quantities strongly depend on the dynamics
and symmetry of the systems. For example, if the system
has spin-rotational symmetry along the z axis, Ŝz

tot ≡ ∑
i Ŝz

i
is conserved so that it is not appropriate for examining the
validity of the DTWA.
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FIG. 2. Time evolution after the sudden quench of the mean two-site Rényi entropy in 1D and 2D. (a), (b) Ising model for hx = 0.5J . (c),
(d) XY model for hx = 2.0J . (e), (f) Heisenberg model for hx = 10.0J . The open and closed symbols represent the first- and second-order
BBGKY results, respectively. r denotes the interaction range.

In this paper, we calculate mean two-site Rényi entropies
for 1D and 2D, which are defined by

S(2)(t ) ≡ 1

M − 1

∑
i< j,|i− j|=1

S(2)
i j (t ) (1D), (20)

S(2)(t ) ≡ 1

(Mx − 1)My

∑
i< j,|Rxi−Rx j |=a

S(2)
i j (t ) (2D), (21)

where S(2)
i j (t ) is the two-site Rényi entropy. Let us mention

differences between our formulation of the Rényi entropy and
that of previous works [13,58,65]. In these previous works,
they calculated the single- or two-site Rényi entropy from
the expressions of the single- or two-site reduced density-
matrix operator because the matrix elements of these reduced
density matrices can be constructed by the expectation val-
ues of Ŝμ

i and Ŝμ
i Ŝν

j , which can be obtained by the DTWA.
The advantage of our formulation is that it allows us to calcu-
late the Rényi entropy for multiple sites. It is easy to calculate
the multiple-site Rényi entropy in the first-order BBGKY. We
have checked the statistical convergence of the results even in
the case of bipartite Rényi entropy. For more details, see Ap-
pendix C. Here, we focus on the case where the two sites are
nearest neighbors in 1D. In 2D, we consider the neighboring
sites of the x direction only.

We calculate the two-site Rényi entropy by using the first-
and second-order BBGKY equations. In order to quantify
the difference between the first- and second-order results, we

define

	(t ) ≡ ∣∣e−S(2)
1st (t ) − e−S(2)

2nd (t )
∣∣/e−S(2)

1st (t ), (22)

where S(2)
1st (t ) and S(2)

2nd(t ) are the mean two-site Rényi entropy
obtained by the first- and second-order BBGKY equation,
respectively. This quantity represents a relative error of the
first- and second-order results. The reason why we do not
use the relative error of S(2)

1st (t ) and S(2)
2nd(t ) is to avoid the

divergence of the relative error because S(2)(0) = 0 in our
initial conditions. Comparing these quantities, we can define
a threshold time Tth, at which 	(t ) exceeds a small positive
number ε. In this paper, we use ε = 1

10 .
We note that the second-order BBGKY equation is nu-

merically unstable as pointed out in Refs. [59,60]. In fact,
we find the divergent behavior of the second-order BBGKY
equation. For example, this behavior can be seen in r = 1
results in Figs. 1 and 2. This is an intrinsic property of the
second-order BBGKY equation. We have checked that this
divergence behavior is not an artificial one because it does not
depend on the choice of the time step 	t .

The small difference between the first- and second-order
results is a necessary condition for the DTWA to be a good
approximation. This criterion is based on the assumption that
the first- and second-order results can approximate the ex-
act results. Even if the difference is small, our criterion is
meaningless if the DTWA cannot reproduce the exact results.
To corroborate that our criterion indeed works, we perform
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FIG. 3. Threshold time as a function of number of interacting
sites for the Ising model. (a) One dimension. The black solid and
dashed lines represent N0.5

r and N0.75
r for guide to eye. (b) Two

dimensions. The black solid and dashed lines represent N0.4
r and N0.6

r

for guide to eye.

the comparison between the DTWA results and the tDMRG
method in the 1D cases. See details of the tDMRG calcula-
tions in Appendix D. Figure 1 shows the results of the mean
two-site Rényi entropy for (a) Ising model, (b) XY model, and
(c) Heisenberg model, respectively. For long-range Hamilto-
nians, we implement tDMRG with utilizing swap gates as
detailed in Appendix E. We can see that the DTWA results are
good agreement with the tDMRG results in a short timescale
(t ∼ h̄/J) for all cases. In the long-range interacting cases,
the DTWA results quantitatively reproduce the tDMRG re-
sults even in the long timescale (t ∼ 10h̄/J). However, in the
long timescale, the second-order BBGKY results for some
parameters are divergent. (We can see this from the fact that
there is no data point for second-order BBGKY results in the
long-time regime.). This means that our criterion does not
work in the long timescale. Therefore, we expect that our
criteria for the performance of the DTWA work in the short
and intermediate timescales. In the following, we focus on
these timescales.

B. Rényi entropy and threshold time

In this section, we show the results of Rényi entropy and
threshold time for Ising, XY, and Heisenberg models. We
consider three different spin models in order to indicate that
the statement that the validity timescale of the DTWA in-
creases with increasing the interaction range holds regardless
of the integrability and symmetry. In 1D, the Ising model
with transverse magnetic field is integrable while the XY

 1
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hx=4.0J
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hx= 4.0J
hx= 20J

FIG. 4. Threshold time as a function of the number of interacting
sites for the XY model. (a) One dimension. The black solid and
dashed lines represent N0.5

r and N0.3
r for guide to eye. (b) Two di-

mensions. The black solid and dashed lines represent N0.5
r and N0.3

r

for guide to eye.

and Heisenberg models under a uniform magnetic field are
nonintegrable. The Ising and XY models have only discrete
symmetry while the Heisenberg model has continuous spin-
rotation symmetry around the magnetic field.

1. Ising model

Here, we show the results of the mean two-site Rényi en-
tropy for the Ising model under the transverse magnetic field
in Fig. 2(a) for 1D and Fig. 2(b) for 2D. In these cases, the
initial condition is the fully −x-polarized state [see Eq. (9)].
This state is the exact ground state when hx → ∞. We can
see the growth of the entanglement in an early stage of the
dynamics. This behavior is a typical one in the quench dynam-
ics of many-body systems [73]. In the long-range interacting
systems, the growth of the entanglement is slow compared
to the short-range interacting systems. This tendency is con-
sistent with the previous work [68]. In the r → ∞ limit, our
model becomes the Lipkin-Meshkov-Glick model [74,75]. In
this model, the dynamics is constructed by a small num-
ber of quantum states. The bipartite entanglement entropy
is bounded by the logarithm of the system size. Although
this property is related to the bipartite entanglement, we can
naively expect that the two-site Rényi entropy has the same
tendency.

From the results of the Rényi entropy, we can obtain the
threshold time Tth as a function of Nr . The results are shown
in Fig. 3(a) for 1D and Fig. 3(b) for 2D. We can see that
the threshold time increases as a power law of Nr (see solid
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FIG. 5. Threshold time as a function of the number of interacting
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and dotted lines in Fig. 3). We can also see that Tth in the
large-hx region is large compared to that in the small-hx re-
gion. This behavior can be understood from the fact that the
DTWA yields exact results when interaction terms are absent.
In the large-hx region, the dynamics is mainly driven by the
magnetic field. In this reason, Tth in the large-hx region is
longer than that of the small-hx region.

2. XY model

Next, we show the results of the XY model under the
magnetic field along the −x direction in Fig. 2(c) for 1D
and Fig. 2(d) for 2D. In this case, the initial condition is the
fully −z-polarized state [see Eq. (10)]. This state is an exact
eigenstate when hx = 0.

From these results, we obtain the threshold time as a
function of Nr . The results are shown in Fig. 4(a) for 1D
and Fig. 4(b) for 2D. The results are similar to those of the
Ising model. We can see that the threshold time increases as
power law of Nr (see solid and dotted lines in Fig. 4). The
dependence of the magnetic field is also similar to that of the
Ising model. The large-hx case is better than the small-hx case.

3. Heisenberg model

We show the results of the Heisenberg model under the
magnetic field along the −x direction in Fig. 2(e) for 1D
and Fig. 2(f) for 2D. In this case, the initial condition is the
Neél state [see Eq. (11)]. In contrast to the previous cases,
we consider the antiferromagnetic interaction and nonuniform
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hx= 4.0J(2D)
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hx= 1.0J(2D)

hx=10J(1D)
hx=10J(2D)

FIG. 6. Comparison with the threshold time for Ising model in
1D and 2D. (a) Ising model. (b) XY model. (c) Heisenberg model.
Open and closed symbols represent 1D and 2D results, respectively.

initial condition. The reason is as follows. If we consider the
ferromagnetic Heisenberg model with a fully polarized initial
condition under the uniform magnetic field, the resultant dy-
namics is the Larmor precession motion, which is not affected
by the interaction. During this dynamics, the entanglement is
exactly zero. Therefore, we need to consider another situation.

The threshold time as a function of Nr is in Fig. 5. We
can see that the threshold time increases as power law of
Nr (see solid and dotted lines in Fig. 5). The dependence of
the magnetic field is also similar to that of the Ising and XY
models. In contrast to the previous two models, we can see
an oscillation behavior of Tth. For example, the oscillation
of hx = 10J shown in Fig. 5(a) can be seen clearly. This
is due to the relation between the interaction and the initial
condition. To explain this behavior, we consider r = 1 and 2
cases in an early-time regime. In the r = 1 case, each pair
of spins coupled via the Heisenberg interaction are aligned
antiparallelly in the initial state such that the initial state has
relatively low energy. However, in the r = 2 case, the next-
nearest-neighbor interactions couple parallelly aligned pairs
of spins in the initial state such that the initial state has much
higher energy than the r = 1 case. In other words, the injected
energy by the quench alternates when r increases one by one.
Therefore, the oscillating behavior of Tth as a function of the
interaction range appears.

C. Comparison with one- and two-dimensional results

Here, we compare the results of the threshold time in 1D
and 2D. The results are shown in Fig. 6(a) for the Ising case,
Fig. 6(b) for the XY case, and Fig. 6(c) for the Heisenberg
case. From these results, we can see that the threshold time

013060-7



KUNIMI, NAGAO, GOTO, AND DANSHITA PHYSICAL REVIEW RESEARCH 3, 013060 (2021)

increases as power law of Nr in all the models and spatial
dimensions. We can also find that Tth results are almost over-
lapped in 1D and 2D at the same hx except the Ising model for
hx = 4.0J , which will be discussed later. These results suggest
that the threshold time depends on the number of interacting
spins. We conclude that when the number of interacting spins
is increased, the validity timescale of the DTWA becomes
longer.

Here, we remark on the result of the Ising model for
hx = 4.0J (see blue triangle symbols in Fig. 6). Unlike the
other results, the 1D and 2D results are clearly deviated. This
deviation may be attributed to the distance of the parameter
from the quantum critical point. The critical field strength of
the transverse field Ising model for r = 1 is hx

c = 0.5J for 1D
[76] and hx

c � 3.044J for 2D [77,78] in our notation. This
means that the distance of the magnetic field from the quan-
tum critical point is different in 1D and 2D. In 2D, hx = 4.0J
is closer to the critical value than in the 1D case. Therefore,
the 1D and 2D results deviate clearly.

IV. SUMMARY

In summary, we investigated the timescale on which the
DTWA can quantitatively describe quantum dynamics of spin-
1
2 models with a step function type spin-spin interaction in
the short and intermediate timescales. In order to corroborate
this, we developed a formulation of the Rényi entropy within
the DTWA framework. Using this formulation, we evaluate
the Rényi entropy after a sudden quench in the Ising, XY,
and Heisenberg models under a uniform magnetic field in
1D and 2D. The Rényi entropy is calculated by the DTWA
and its extension including the second-order correction that
is derived from the BBGKY hierarchy equation. Comparing
these results, we determined the threshold time, on which
the relative error of the exponential of the Rényi entropy in
the DTWA and second-order BBGKY results exceeds 10%.
We found that the threshold time increases as a power-law
function of the interaction range (or the number of interacting
spins per site). This result suggests that the accuracy of the
DTWA becomes better as the classical limit (in this case,
all-to-all coupling) is approached. This behavior is consistent
with the properties of the equilibrium cases.

In this paper, we focused on the sudden quench dynamics
of the quantum spin systems. The sweep dynamics, in which
a parameter of the system varies slowly, is also an important
problem. The adiabatic sweep of the parameter across the
phase transition point leads to the Kibble-Zurek mechanism.
The DTWA can be applicable to this phenomenon. The adia-
batic sweep is necessary for long-time evolution. Therefore, it
is important to confirm the validity of the DTWA in the sweep
dynamics case.
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APPENDIX A: DETAILS OF THE DERIVATION
OF THE DTWA

In this Appendix, we discuss the derivation of the DTWA
for more details. See also Ref. [57]. A starting point for
deriving the BBGKY hierarchy equation is the von Neumann
equation for the density-matrix operator:

ih̄
d

dt
ρ̂(t ) = [Ĥ , ρ̂(t )], (A1)

where ρ̂(t ) ≡ e−iĤt/h̄ρ̂(0)e+iĤt/h̄. By using the phase-point
operator, the density-matrix operator ρ̂(t ) can be written as
[72]

ρ̂(t ) =
∑

α

Wα(0)Âα(t ). (A2)

Substituting Eq. (A2) into (A1), we obtain the equation for
Âα(t ):

ih̄
d

dt
Âα(t ) = [Ĥ , Âα(t )]. (A3)

Here, we introduce the partial trace of the phase-point
operator

Âi(t,α) ≡ Tr′
iÂα(t ), (A4)

Âi j (t,α) ≡ Tr′
i j Âα(t ), (A5)

where Tr′
i and Tr′

i j are the trace over the Hilbert space except
the site i and sites i and j (i �= j), respectively. To derive
the BBGKY hierarchy equation, we use the following cluster
expansion:

Âi j (t,α) ≡ Âi(t,α)Â j (t,α) + B̂i j (t,α), (A6)

Âi jk (t,α) ≡ Âi(t,α)Â j (t,α)Âk (t,α)

+ Âi(t,α)B̂ jk (t,α) + Â j (t,α)B̂ik (t,α)

+ Âk (t,α)B̂i j (t,α) + B̂i jk (t,α). (A7)

Âi(t,α) and B̂i j (t,α) can be expanded as

Âi(t,α) = 1
2 + ri(t,α) · Ŝi, (A8)

B̂i j (t,α) = 4cμν
i j (t,α)Ŝμ

i Ŝν
j , (A9)

where ri(t,α) and cμν
i j (t,α) are expansion coefficients and

determined by solving the classical equation of motion, which
will be discussed below, and we use the Einstein’s notation for
Greek indices in Eq. (A9). We note that the relation cμν

i j (t ) =
cνμ

ji (t ) holds.

Setting B̂i j (t,α) = 0 in Eq. (A6), we can obtain the first-
order BBGKY hierarchy equation, which corresponds to the
conventional DTWA. The Wigner-Weyl symbol of the spin
operator Ŝμ

i becomes
(
Ŝμ

i (t )
)

W = Tr
[
Ŝμ

i Âα(t )
] � [ri(t,α)]μ/2 ≡ Sμ

i (t ). (A10)
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The equation of motion for Sμ
i (t ) can be obtained by the time

derivative of Eq. (A4):

h̄
d

dt
Sμ

i (t ) = εμβγ

[
hβSγ

i (t ) +
∑
k �=i

Jβ

ikSβ

k (t )Sγ
i (t )

]
, (A11)

where we used Eqs. (A3) and (A6) and set B̂i j (t,α) = 0.
We note that cμν

i j (t ) = 0 in the first-order BBGKY hierarchy

equation because B̂i j (t,α) = 0.
To derive the second-order BBGKY hierarchy equation,

we remain B̂i j (t,α) and set B̂i jk (t,α) = 0. From the time
derivative of Eqs. (A4) and (A6), we obtain

h̄
d

dt
Sμ

i (t ) = εμβγ

[
hβSγ

i (t ) + Gβ
i (t )Sγ

i (t ) + Gγ β

i (t )
]
,

(A12)

h̄
d

dt
cμν

i j (t ) = 1

4
εμνβ

[
Jν

i jS
β
i (t ) − Jμ

i j S
β
j (t )

]
+ εβγμhβcγ ν

i j (t ) + εβγ νhβcμγ
i j (t )

+ εβγμGβ

i � j (t )cγ ν
i j (t ) + εβγ νGβ

j �i(t )cμγ
i j (t )

+ εβγμSγ

i (t )Gνβ
i j (t ) + εβγ νSγ

j (t )Gμβ
ji (t )

− εβγ νJβ
i jS

μ
i (t )

[
cβγ

i j (t ) + Sβ
i (t )Sγ

j (t )
]

− εβγμJβ
i jS

ν
j (t )

[
cγ β

i j (t ) + Sγ
i (t )Sβ

j (t )
]
, (A13)

where we used Eqs. (A3) and (A7), set B̂i jk (t,α) = 0, and
defined

Gμ
i (t ) ≡

∑
j �=i

Jμ
i j S

μ
j (t ), (A14)

Gμν
i (t ) ≡

∑
j �=i

Jν
i jc

νμ
ji (t ), (A15)

Gμ

i � j (t ) ≡
∑
k �=i, j

Jμ

ik Sμ

k (t ), (A16)

Gμν
i j (t ) ≡

∑
k �=i, j

Jν
ikcμν

jk (t ). (A17)

APPENDIX B: DETAILS OF THE SAMPLING
OF THE INITIAL STATE

In this Appendix, we discuss the sampling scheme of the
initial states in the DTWA. Because initial conditions (9)–(11)
are direct products states, we can write the density-matrix
operator ρ̂(0) as a product of the density-matrix operator for
each site ρ̂i(0):

ρ̂(0) =
M∏

i=1

ρ̂i(0). (B1)

From Eq. (B1), we can also write the discrete
Wigner function as a product of the discrete Wigner
function for each site: Wα(0) ≡ ∏M

i=1 wαi (0) and
wαi (0) ≡ Tr[ρ̂iÂα(0)]. The discrete Wigner functions

for |↑〉i, |↓i〉, and | ←i〉 are given by

wαi (0) =
{

1/2 for αi = (0, 0), (0, 1),
0 for αi = (1, 0), (1, 1), for |↑i〉, (B2)

wαi (0) =
{

1/2 for αi = (1, 0), (1, 1),
0 for αi = (0, 0), (0, 1), for |↓i〉, (B3)

wαi (0) =
{

1/2 for αi = (0, 1), (1, 1),
0 for αi = (0, 0), (1, 0), for |←i〉. (B4)

The above discrete Winger functions are semipositive definite
and normalized:

∑
αi

wαi (0) = 1. Therefore, we can regard
the above discrete Wigner functions as a probability distribu-
tion function and use the Monte Carlo sampling for the initial
states.

The initial value of the classical variable Sμ
i (0) is deter-

mined by Eq. (A10): Sμ
i (0) = [ri(0,α)]μ/2 = [rαi ]μ/2, where

αi is sampled from the discrete Wigner function and [rαi ]μ de-
notes μ component of the vector rαi . For example, we choose
Si(0) = (1, 1, 1)/2 or (−1,−1, 1)/2 for |↑i〉 state with the
probability 1

2 [see Eq. (B2)]. We note that cμν
i j (0) = 0 because

the initial states are product states.
As pointed out in Ref. [57], there is ambiguity of the sam-

pling scheme of the initial states because we have degrees of
freedom of the definition of the phase-point operator (or defi-
nition of rα). For example, if we use two different phase-point
operators, we can decompose the density-matrix operator as
ρ̂(0) = ∑

α[Wα(0)Âα/2 + W ′
α(0)Â′

α/2], where W ′
α(0) and Â′

α

are the discrete Wigner function and phase-point operator
for different definitions. This means that we have an infinite
number of possible choices of the sampling. According to
Ref. [57], the suitable choice of the phase-point operator de-
pends on the model and initial condition and they proposed
some better choices rather than using Eqs. (B2)–(B4). To
implement the modified sampling, we introduce the following
quantities:

r′
α ≡ ((−1)α2 , (−1)1+α1+α2 , (−1)α1 ), (B5)

r̃α ≡ (rα + r′
α )/2, (B6)

r′′
α ≡ ((−1)1+α2 , (−1)α1+α2 , (−1)α1 ), (B7)

r̃′
α ≡ (rα + r′′

α )/2. (B8)

For the Ising and XY models, we sample rαi from the follow-
ing set with equal probability [57]:

SIsing

= {r(0,1), r(1,1), r′
(0,1), r′

(1,1), r̃(0,1), r̃(1,1), r̃′
(0,1), r̃′

(1,1)}, (B9)

SXY = {r̃(1,0), r̃(1,1), r̃′
(1,0), r̃′

(1,1)}. (B10)

For the Heisenberg model, we have checked that the following
set gives better results:

SHeisenberg =
{{r(0,0), r(0,1), r′

(0,0), r′
(0,1)} for |↑i〉,

{r(1,0), r(1,1), r′
(1,0), r′

(1,1)} for |↓i〉. (B11)
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APPENDIX C: DERIVATION OF THE EXPRESSION
OF RÉNYI ENTROPY

In this Appendix, we derive the expression of the Rényi
entropy in the DTWA. Here, we consider the subsystem A and
its complement B. The total system is given by the sum of
the A and B. The reduced density matrix for subsystem A is
defined by

ρ̂A(t ) ≡ TrB[ρ̂(t )], (C1)

where TrB denotes the trace over the subsystem B. The
second-order Rényi entropy is defined by

S(2)
A (t ) ≡ − log(Tr{[ρ̂A(t )]2}). (C2)

Using the discrete Wigner function [see Eq. (A2)], we can
write Eq. (C1) as

ρ̂A(t ) = TrB

∑
α

Wα(0)Âα(t ). (C3)

In the first-order BBGKY hierarchy equation, we ap-
proximate the phase-point operator as Âα(t ) � ∏M

i=1 Âi(t,α).
Substituting this expression into Eq. (15), we obtain

ρ̂A(t ) �
∑

α

Wα(0)
∏
i∈A

Âi(t,α), (C4)

where we used TriÂαi (t ) = 1. To obtain the Rényi entropy, we
calculate

Tr[ρ̂A(t )]2 = Tr
∑
α,α′

Wα(0)Wα′ (0)
∏
i∈A

Âi(t,α)Âi(t,α
′)

=
∑
α,α′

Wα(0)Wα′ (0)
∏
i∈A

[
1

2
+ 2Si(t ) · S′

i(t )

]
,

(C5)

where the initial conditions of Si(t ) and S′
i(t ) are sampled

from Wα(0) and Wα′ (0), respectively. This expression implies
that we can obtain the second-order Rényi entropy by using
the replica method. The procedure is as follows: First, we pre-
pare two independent copies of the initial states and calculate
the time evolution for two copies independently. Then, we
calculate the ensemble average of

∏
i∈A[1/2 + 2Si(t ) · S′

i(t )].
The second-order Rényi entropy in the first-order BBGKY is
given by

S(2)
A (t ) = − log

〈〈∏
i∈A

[
1

2
+ 2Si(t ) · S′

i(t )

]〉〉
. (C6)

Next, we derive the expression of the Rényi entropy in the
second-order BBGKY hierarchy. On the contrary to the first-
order BBGKY hierarchy, we restrict the subsystem size to two
sites. This is due to a practical reason. In the second-order
BBGKY, we need to approximate the phase-point operator
Âα(t ) by using the cluster expansion. If we consider a large
subsystem, we need expressions for a higher-order cluster

..

expansion of Âα(t ), which is difficult to write. Therefore, we
only consider the two-site Rényi entropy S(2)

i j (t ).
The reduced density-matrix operator in the second-order

BBGKY becomes

ρ̂i j (t ) ≡ Tr′
i j[ρ̂(t )]

�
∑

α

Wα(0)[Âi(t,α)Â j (t,α) + B̂i j (t,α)], (C7)

where we used Eq. (A6). Using this expression, we obtain

Tr[ρ̂i j (t )]2 =
∑
α,α′

Wα(0)Wα′ (0)

⎧⎨
⎩

∏
l=i, j

[
1

2
+2Sl (t ) · S′

l (t )

]

+ c′μν
i j (t )Sμ

i (t )Sν
j (t ) + cμν

i j (t )S′μ
i (t )S′ν

j (t )

+cμν
i j (t )c′μν

i j (t )

⎫⎬
⎭, (C8)

where the initial conditions for cμν
i j (t ) and c′μν

i j (t ) are sampled
from Wα(0) and Wα′ (0), respectively, and we also use the
Einstein’s notation for Greek indices. From Eq. (C8), we can
obtain the two-site Rényi entropy in the second-order BBGKY
hierarchy.

APPENDIX D: DETAILS OF TDMRG CALCULATIONS

For the tDMRG calculations shown in Sec. III A, we use
the optimized Forest-Ruth–type fourth-order decomposition
[80] and set time step δt to 0.05h̄/J . The truncation error is
set to be 10−10, and bond dimensions of MPS are allowed to
increase up to 4000. Simulations based on MPS are efficient
for spatially 1D system or low-entangled states. Thus, we can
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compare DTWA and tDMRG without difficulty when r is
close to one or comparable to the system size.

Because of the SU(2) symmetry, the time evolution of the
two-site Rényi entropy does not depend on the magnetic field
hx in the Heisenberg model. In order to utilize the Abelian
symmetry for numerical efficiency, we set hx to 0 in the
tDMRG simulations.

APPENDIX E: TIME EVOLUTION OF MATRIX PRODUCT
STATES WITH LONG-RANGE INTERACTIONS

If the Hamiltonian consists of two-site operators, bond
terms, the time evolution of MPS can be performed by op-
erating Trotter gates to MPS [35,36,81,82]. Even though the
Hamiltonian has long-range interactions, one can perform the
time evolution of MPS with utilizing the swap gates [83]. It
should be noted that the swap gates to be operated are not
unique, and that even the number of required swap operations
can be different. Less swap operations require less compu-
tational resources. One may come up with a good choice of
swap gates if the types of bond terms are limited likewise
Bauernfeind et al. [84]. If the Hamiltonian consists of many
types of bond terms likewise the long-range models such as
Eq. (1), finding out a good choice is quite an exhausting task.
In this Appendix, we present an algorithm which automati-
cally produces an efficient (maybe not best) choice of swap
operations.

The Hamiltonian consisting of two-site operators can be
expressed as

Ĥ =
∑
i< j

Ĥi, j, (E1)

..

and one can compute the Trotter gates exp(−iδt Ĥi, j ) from
bond terms Ĥi, j . At first step, we group the pair indices of
bond terms [i, j] so that bond terms in the same group com-
mute each other. We also try to group bond terms with the
same distance j − i and order groups in ascending order of

FIG. 7. One example for obtaining two candidates of the arrange-
ment of site indices. Both candidates can be obtained by four swap
operations from the present arrangement.
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the distance. The grouping can be accomplished by
Algorithm 1.1

Next, we determine the arrangement of site indices where
the Trotter gates in each group are operated. As shown in

1For fermionic systems, Algorithm 1 works if every bond term
contains only even product of fermionic operators.

Algorithm 2, swap operations required from one arrange-
ment to another arrangement can be obtained by a sort
algorithm implemented only by adjacent swap operations
such as the bubble sort or the gnome sort. Therefore, it
is sufficient to determine only the arrangement of site in-
dices. In order to find an arrangement requiring less swap
operations, we reorder bond terms in a group in ascending
order in the sense of the present arrangement not to disturb
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the present arrangement so much. This ordering determines
the arrangement of site indices in bond terms and we have
to insert remaining indices between bonds. Similarly to the
case of the bond terms, ordering based on the present ar-
rangement will not disturb the present arrangement so much.
Here, we have a simple alternative: insert remaining indices
based on the first index of bond pairs or the second one.
From the alternative, we can obtain two candidates of an
arrangement. The procedure for obtaining two candidates is
summarized in Algorithm 3, and one example is given in
Fig. 7.

From the two candidates, we select one candidate with con-
sidering possibilities in the next group. With using Algorithm
3, one can obtain two candidates in the next group for each
candidate. Based on consequent four candidates, we choose
one arrangement for the present group which is contained

in the best candidates. By iterating this process over groups,
one can obtain a sequence of arrangement and swap operators
required for performing time evolutions of long-range Hamil-
tonians.

The whole of the above procedures is summarized in Algo-
rithm 4. Algorithm 4 produces the efficient gates in Bauern-
feind et al. [84] when bonds = [[1, 2], [1, 3], . . . , [1, M]], and
thus we consider that gates from the algorithm are efficient.
From Trotter gates calculated from bond gates and the ordered
list of swap operations given by Algorithm 4, one can obtain
the list of gates corresponding to the first-order decomposi-
tion of the time-evolution operator

∏
i< j exp(−iδt Ĥi, j ). The

second-order decomposition is obtained by successive opera-
tions of gates in the reversed list. Furthermore, higher-order
decompositions can be obtained from compositions of the
second-order decompositions [80].
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