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Universal quantization of the magnetic susceptibility jump at a topological phase transition
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We examine the magnetic susceptibility of topological insulators microscopically and find that the orbital-
Zeeman (OZ) cross term, the cross term between the orbital effect and the spin Zeeman effect, is directly related
to the Berry curvature when the z component of spin is conserved. In particular, the OZ cross term reflects
the spin Chern number, which results in the quantization of the magnetic susceptibility jump at the topological
phase transition. The magnitude of the jump is in units of the universal value 4|e|μB/h. We also apply the
obtained formula to an explicit model and demonstrate the quantization. For this model, the physical origin of
this quantization is clarified.
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I. INTRODUCTION

Topological insulators (TIs) [1–13] show anomalous phe-
nomena such as electric conduction on sample surfaces.
Experimentally, the search for candidate materials for TIs
is one of the most important problems. In particular, two-
dimensional (2D) TIs are predicted to show unique phenom-
ena, such as the spin Hall effect and robust edge states against
nonmagnetic impurities, only a few of which have been found
[7–11]. So far, the confirmation of topological materials has
been achieved by finding the edge state by angle-resolved
photoemission spectroscopy or from the transport coefficients.
Since both methods detect anomalous electronic states at the
edge, it is desirable to develop some bulk-sensitive methods
that enable us to confirm the topological nature of a material.
In this paper, we propose that the quantization of the bulk
magnetic susceptibility jump can be used as strong evidence
for the topological phase transition in 2D TIs.

Usually, the magnetic susceptibility is discussed in terms
of the orbital effect of the magnetic field [14–30] and spin
Zeeman effect independently. In general, however, there can
be a cross term between the orbital and Zeeman effects
[5,6,31–35], which we call the orbital-Zeeman (OZ) cross
term χOZ in the following. Recently, Nakai and Nomura [34]
discussed the jump in χOZ at the topological phase transition
using the formula of the orbital magnetization [36–42] and
the Středa formula [43]. They calculated the OZ cross term
in the Bernevig-Hughes-Zhang model [4] and concluded that
the width of the jump depends on the g factors of the involved
orbitals introduced phenomenologically. In general, spin-orbit
interaction (SOI) modifies the g factor from its bare value
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g0 = 2. (Here we neglect the relativistic correction of g0.)
Thus, their conclusion means that the jump in χOZ is not
quantized in a universal value.

In the present paper, we study χOZ microscopically based
on the Green’s function formalism and show that, in contrast
to the results of Nakai and Nomura, the jump in χOZ is exactly
quantized in units of the universal value 4|e|μB/h [see Eq. (9)
below] even in the presence of SOI as long as the z component
of the spin is conserved. Here μB = |e|h̄/2m is the Bohr mag-
neton. When we study a model microscopically [as in Eq. (1)],
the modification of the g factor does not occur explicitly,
and instead the effect of SOI appears in the deformation of
the Bloch wave functions and the energy dispersion, which
eventually leads to the orbital-dependent g factors. We show
below that the effect of SOI is exactly canceled out in χOZ,
which leads to the quantization of jump with a universal value.
In the latter part of this paper, we apply the obtained formula
to a low-energy effective model for a topological insulator
to show the validity of the present proposal. For this model,
we clarify the physical origin of the quantization: It turns out
that the quantization is associated with the chiral edge current,
which is characteristic of the topologically nontrivial state.

II. GENERAL FORMALISM

First, we develop microscopically a general formula for
magnetic susceptibility including orbital magnetism, Pauli
paramagnetism, and the OZ cross term in terms of thermal
Green’s functions in the presence of SOI. Let H be the general
Hamiltonian derived from the Dirac equation in the presence
of a general 3D periodic potential V (r) and a magnetic field,
which is given by

H = 1

2m
[p − eA(r)]2 − eh̄

2m
σ · B(r) + V (r)

+ h̄2

8m2c2
∇2V + h̄

4m2c2
σ · ∇V × [p − eA(r)], (1)

where A(r) is a vector potential, e < 0 for electrons, σ =
(σx, σy, σz ) are 2 × 2 Pauli matrices, and B(r) = ∇ × A(r)
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represents a magnetic field. The last term represents the SOI.
It is to be noted that the second term representing the Zee-
man interaction has the bare value g0 = 2. As performed
by Fukuyama [20], we implement a perturbative calculation
of the free energy in terms of the vector potential A(r) via
the Luttinger-Kohn representation [44]. As a result, we ob-
tain the expression for each contribution as follows (the details
of the derivation are shown in the Appendix):

χorbit = e2

2h̄2

kBT

L3

∑
nk

Tr γxGγyGγxGγyG, (2a)

χPauli = −kBT

L3

∑
nk

Tr Ms
zGMs

zG, (2b)

χOZ = − i|e|
h̄

kBT

L3

∑
nk

Tr
[
Ms

zGγxGγyG − Ms
zGγyGγxG

]
,

(2c)

where G is the thermal Green’s function G(k, iεn), whose (ll ′)
component is the matrix element between the lth and l ′th
bands. Each band index includes the pseudospin degrees of
freedom in the case with SOI. εn is the Matsubara frequency,
γμ represents the current operator in the μ direction divided by
e/h̄, and Ms

z is the matrix for the operator −μBσz. The effect
of SOI is included in G and γμ. Tr is the trace over the band
indices and the spin degrees of freedom. In Eq. (2), χorbit and
χPauli represent the orbital and Pauli magnetic susceptibility,
respectively. These are the same expressions as were obtained
before [20,45] even in the presence of SOI. On the other hand,
χOZ is the OZ cross term, which we focus on in this paper.

III. UNIVERSAL QUANTIZATION OF χOZ

In the following, we consider the case where the z com-
ponent of spin is conserved even in the presence of SOI.
This situation will be realized more easily in 2D systems
than in 3D systems. Therefore, we focus on 2D systems in
the following. As shown in Appendix, it is straightforward
to extend Eq. (2) in 2D systems where V (r) gives a con-
finement potential in the z direction and the magnetic field

perpendicular to the 2D x-y plane. Eventually, we obtain the
formula for 2D systems by substituting the 3D k summation
for a 2D k summation and by including trace over the subband
index for the z direction wave function. Hereafter, we use bold
for two-component vectors, e.g., k = (kx, ky ).

Then, to discuss the quantization, we rewrite Eq. (2c)
in terms of the Bloch wave functions in a similar way to
Ref. [22]. The periodic part of the Bloch wave function
ûlk(r, z) = t (ulk↑(r, z), ulk↓(r, z)) satisfies

Hkûlk(r, z) = εl (k)ûlk(r, z), Hk = e−ikrHeikr, (3)

where l represents both the band index in the 2D Brillouin
zone and the subband index in the z direction. In the fol-
lowing, we abbreviate ulkσ (r, z) as ulkσ . When the SOI is
given by (h̄/4m2c2)σz[(∂xV )(py − eAy) − (∂yV )(px − eAx )],
the z component of spin is conserved. In this case, up- and
down-spin electrons are independent, and ulk↑ and ulk↓ are the
eigenstates of σz with eigenvalues εl↑(k) and εl↓(k) (denoted
as εl↑ and εl↓ in the following). In this case, the matrices G and
Ms

z are diagonal and given by [Gσ ]ll ′ = δll ′ (iεn − εlσ + μ)−1

and [
Ms

z

]
lσ,l ′σ ′ =

∫
u∗

lkσ (−μBσz )ul ′kσ ′drdz

= −μBσδll ′δσσ ′, (4)

respectively. Note that the normalization is fixed by the equa-
tion ∫

u∗
lkσ ul ′kσ ′drdz = δll ′δσσ ′, (5)

where the spatial integral is over the entire crystal. On the
other hand, the matrix γμ has off-diagonal matrix elements
between the different bands and it becomes [20,46],

[γμσ ]ll ′ =
∫

u∗
lkσ

∂Hk

∂kμ

ul ′kσ drdz

= ∂εlσ

∂kμ

δll ′ + (εl ′σ − εlσ )
∫

u∗
lkσ

∂ul ′kσ

∂kμ

drdz. (6)

Substituting these quantities into Eq. (2c) and carrying out the
Matsubara summation, we obtain

χOZ = −2|e|μB

h̄L2

∑
lkσ

f (εlσ )σ�z
lkσ

+ i|e|μB

h̄L2

∑
lkσ

σ f ′(εl )

{∫
∂u∗

lkσ

∂kx
(εlσ − Hk)

∂ulkσ

∂ky
drdz − (x ↔ y)

}
, (7)

where �z
lσ is the Berry curvature in the z direction,

�z
lkσ

= i
∫ (

∂u∗
lkσ

∂kx

∂ulkσ

∂ky
− ∂u∗

lkσ

∂ky

∂ulkσ

∂kx

)
drdz, (8)

f (ε) = [1 + e(ε−μ)/kBT ]−1, and the completeness condition∑
l ′σ ul ′kσ (r, z)u∗

l ′kσ (r′, z′) = δ(r − r′)δ(z − z′) has been used
to take the summation over the intermediate state l ′. Espe-
cially for 2D insulator at zero temperature, the second term
in Eq. (7) vanishes because the Fermi surface is absent. Then

χOZ is written as

χ2D
OZ = −4|e|μB

h

∑
l:occ

Chs,l , (9)

where the summation
∑

l:occ is taken for the occupied bands
and Chs,l is the spin Chern number for the lth band defined by

Chs,l = 1

2

2π

L2

∑
k

(�lk↑ − �lk↓). (10)

At a topological phase transition, Chs,l changes from one
integer to another. Therefore, Eq. (9) leads to the quantiza-
tion of the magnetic susceptibility jump at the topological
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phase transition. The magnitude of the jump is in units of
χ0 = 4|e|μB/h, which is universal. Although the effect of
SOI is included in ulkσ , it does not affect the coefficient in
Eq. (9) since Chs,l is a topological number, which leads to the
universal quantization of jump in χOZ.

IV. EXPLICIT CALCULATION OF χOZ IN A
TOPOLOGICAL INSULATOR

In the rest of this paper, we consider the low-energy effec-
tive model of the Kane-Mele model [1,2,47–51], one of the
models for 2D TIs, to show that χOZ actually has a jump at
the topological phase transition and that other contributions do
not conceal the quantized jump. We introduce the Kane-Mele
model,

H = −
∑
〈i, j〉α

tc†
iαc jα + �0

( ∑
i∈A,α

c†
iαciα −

∑
i∈B,α

c†
iαciα

)

+
∑

〈〈i, j〉〉,αβ

it2νi jc
†
iαsz

αβc jβ, (11)

where c†
iα is the creation operator of an electron with spin α

at site i, and the summation 〈i, j〉 (〈〈i, j〉〉) runs over all the
nearest- (next-nearest-) neighbor sites of the 2D honeycomb
lattice. The first term represents the usual nearest-neighbor
hopping with transfer integral t . The second term represents a
staggered on-site potential, +�0 for A sublattice and −�0 for
B sublattice. The last term represents the hopping originating
from SOI. We take account of only the sz component as in
Ref. [2] and set νi j = −ν ji = +1 (−1) if the electron makes
a left (right) turn to propagate to the next-nearest sites. This
model is known as one for silicene [47–51]. We can control
�0 by changing the electric field applied perpendicular to the
layer due to its buckled structure.

Performing the Fourier transform, we obtain the Hamilto-
nian in a matrix form,

Hkσ =
(

�0 + σλk −tγ ∗
k−tγk −�0 − σλk

)
, (12)

where σ = 1 is for up-spin and σ = −1 is for down-spin. The
complex factor γk,

γk = e−ikya + ei(
√

3
2 kx+ 1

2 ky )a + ei(−
√

3
2 kx+ 1

2 ky )a, (13)

comes from the Fourier transform of hopping with a being the
distance between the nearest-neighbor sites, and

λk = 2t2 sin

√
3

2
kxa

(
cos

3

2
kya − cos

√
3

2
kxa

)
(14)

comes from the spin-dependent hopping, t2. The energy dis-
persion of this model is given by

E±
σk = ±

√
(�0 + σλk)2 + t2|γk|2, (15)

which is shown in Fig. 1(a) with �0/t = 1/4, t2/t = √
3/36

(topologically trivial; solid line) and in Fig. 1(b) with �0/t =
1/4, t2/t = √

3/12 (topologically nontrivial; dashed line). In
the following, we use Figs. 1(a) and 1(b) as typical cases.
Since the space inversion symmetry is broken, the energy
dispersions for up and down spins can be different. In the

FIG. 1. Energy dispersion for σ = 1 (up spin) of the model in
Eq. (11) along the path � → K → K ′ → � for two typical choices
of parameters: (a) solid line, �0/t = 1/4, t2/t = √

3/36 (topo-
logically trivial), and (b) dashed line, �0/t = 1/4, t2/t = √

3/12
(topologically nontrivial). The energy dispersion for σ = −1 (down
spin) is obtained by exchanging K for K ′ points. Inset: Phase diagram
of this model.

momentum space, gaps open at K = (4π/3
√

3a, 0) and K ′ =
(−4π/3

√
3a, 0). Their magnitudes are 2|�0 + (3

√
3/2)σ t2|

at K and 2|�0 − (3
√

3/2)σ t2| at K ′, respectively.
In this model, the ratio of �0 to t2 determines the topolog-

ical order [49–51]: topologically trivial for |t2/�0| < 2/3
√

3
and topologically nontrivial for |t2/�0| > 2/3

√
3. The phase

diagram is shown in the inset of Fig. 1.
Before calculating magnetic susceptibility, let us examine

the Berry curvature. Figure 2 shows the distribution of the
Berry curvature in the momentum space for the valence band
electrons with up spin for the two choices of the parameters
in Fig. 1. It is seen that the Berry curvature is localized near
K and K ′ points. After numerical integration, we find that the
Chern numbers are 0 for Fig. 2(a) and 1 for Fig. 2(b), which
is consistent with the fact that Figs. 2(a) and 2(b) belong to
the topologically trivial and nontrivial phases, respectively.
According to Figs. 1 and 2, the low-energy excitations in
the vicinity of K and K ′ points are important when μ 
 0.
Therefore, we approximate the Hamiltonian by the expansion

FIG. 2. Distribution of Berry curvature in the momentum space
for the valence band electrons with up spin for case of (a) (topolog-
ically trivial) and (b) (topologically nontrivial). The Chern numbers
are 0 for (a) and 1 for (b).
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FIG. 3. Contributions to magnetic susceptibility as a function of
(3

√
3/2)t2/�0 for μ = 0 with �0 = t/4. They are normalized by

χ0. The values of vF and a are chosen to be the same as those
of graphene. The system is topologically trivial (nontrivial) in the
region (3

√
3/2)t2/�0 < 1(> 1).

around K and K ′ points, i.e., k · p perturbation. In this way,
we obtain a low-energy effective model,

hK/K ′
σ = (

�K/K ′
σ − σαk2

)
τz + h̄vF kxτx + h̄vF kyτy, (16)

where τx, τy, and τz are the Pauli matrices representing the
degrees of freedom of sublattices A and B, �K

σ = �0 +
σ (3

√
3/2)t2, �K ′

σ = −�0 + σ (3
√

3/2)t2, α = (9
√

3/8)a2t2,
and h̄vF = (3/2)at . Note that the signs of the mass term �K/K ′

σ

at K and K ′ points with different spins are opposite, i.e.,
�K

↑ = −�K ′
↓ and �K

↓ = −�K ′
↑ . This effective Hamiltonian is

justified in the limit of t2,�0 → 0 with t2/�0 fixed.
Let us discuss the magnetic susceptibility. Note that Ezawa

[50] calculated the orbital magnetism but the OZ cross term
was not taken into account. In the model Eq. (16), the ther-
mal Green’s function is defined as GK/K ′

σ = (iεn − hK/K ′
σ )−1.

The current operator in the μ direction is given by γμ =
h̄vF τμ − 2σαkμτz. Substituting these quantities into Eq. (2),
carrying out the Matsubara summation, and performing the
2D momentum integration at T = 0, we obtain

χorbit = −e2v2
F

6π

∑
η=K,K ′

1

|�η

↑|θ (|�η

↑| − |μ|), (17a)

χPauli = μ2
B

π h̄2v2
F

∑
η=K,K ′

|μ|θ (|μ| − |�η

↑|), (17b)

χOZ = −2μB|e|
h

∑
η=K,K ′

sgn(�η

↑)θ (|�η

↑| − |μ|), (17c)

in the limit of t2,�0 → 0 with t2/�0 fixed. Here χorbit is the
orbital diamagnetic susceptibility of the 2D Dirac electrons
discussed in the preceding studies [23–29]. χPauli is the Pauli
paramagnetism proportional to the density of states (∝|μ|).

To observe the quantization of the jump, we focus on
the case of μ = 0, an insulating case, where χPauli vanishes.
Figure 3 shows χorbit and χOZ as a function of t2/�0. When
(3

√
3/2)t2/�0 < 1, the system is topologically trivial and the

signs of �K
↑ and �K ′

↑ are opposite, which leads to χOZ = 0

FIG. 4. Schematic pictures for the edge state. (a) Ground state
without an external magnetic field. (b) Change caused by the Zeeman
interaction. (c) New ground state in the magnetic field.

from Eq. (17c). When (3
√

3/2)t2/�0 > 1, on the other hand,
the system is topologically nontrivial and the signs of �K

↑ and

�K ′
↑ are the same, which leads to χOZ = −χ0. As a result,

χOZ has a universal jump at the topological phase transition
at t2/�0 = 2/3

√
3. On the other hand, χorbit diverges at the

phase transition due to the gap closing. However, we can see

that χorbit = − e2v2
F

6π
(|�0 − 3

√
3t2/2|−1 + |�0 + 3

√
3t2/2|−1)

and the magnitude of divergence is the same on both sides
of the phase transition. Therefore, when we subtract the di-
vergence of χorbit , we will be able to detect the jump in χOZ.
Note that the effect of SOI represented by t2 appears only in
the magnitude of χorbit and does not affect the magnitude of
χOZ.

V. PHYSICAL ORIGIN OF QUANTIZATION

Let us consider the physical origin of the quantization.
χOZ is interpreted as the sum of the correction to the orbital
magnetic moment induced by the magnetic field that couples
to the spin magnetic moment and the correction to the spin
magnetic moment induced by the magnetic field that couples
to the orbital magnetic moment. Here we estimate the former
correction. In the edge state, there are spin-polarized linear
dispersions and a spin current flows. Figure 4(a) corresponds
to the state with Chs,l = +1. (Note that the number of pairs
of dispersion coincides with |Chs,l |.) When a magnetic field
is applied through the Zeeman interaction μBσzB, the up-
spin (down-spin) band moves upward (downward) as shown
in Fig. 4(b). The width of change � is μBB. Then, in the
lowest energy state [Fig. 4(c)], the number of down-spin
(up-spin) electrons increases (decreases) by νμBB, where ν

is the density of states ν = L/ch and c is the velocity of
the edge current. This change leads to an electric current of
−2|e|μBB/h in the right direction, which causes the orbital
magnetic moment of −2|e|μBB/h per area. The coefficient
of B is half of the quantization of magnetic susceptibility,
−χ0/2. We can also estimate the contribution from the other
correction (i.e., the spin magnetic moment induced by an en-
ergy shift originating from an orbital magnetic moment made
by a circular electric current), which gives the same value.
Combining these two contributions, we obtain the OZ cross
term as −χ0, which is consistent with Eq. (9).
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VI. DISCUSSION AND CONCLUSION

The expression for the magnetic susceptibility includ-
ing the spin Zeeman effect was obtained in terms of
Bloch wave functions [35], which contains a term χocc:2 =
− e

h̄ Re
∑

lk f (εk)Mz
ll�

z
l . Actually, χocc:2 gives half of χOZ in

Eq. (9). The origin of this difference is as follows. In Ref. [35],
the effect of Zeeman interaction is distributed among several
terms for total magnetic susceptibility including χocc:2. There-
fore, if we collect all the effects of Zeeman interaction in the
formalism of Ref. [35], then we can recover χOZ.

Based on the microscopic theory, we have derived a new
simple formula for magnetic susceptibility in a Bloch system
with SOI and Zeeman interaction to show that the OZ cross
term, one of the three contributions to magnetic susceptibility,
is always quantized in units of the universal value 4|e|μB/h
for 2D spin-conserving insulators at zero temperature. We
have also applied the formula to a model for a 2D TI and
demonstrated the quantization. For this model, we have clari-
fied that this quantization originates from the redistribution of
the chiral edge state due to the magnetic field. We expect that
this discussion is also qualitatively applicable to other 2D TIs.
Our results clearly show that the magnetic response reflects
the topological nature of a material. Therefore, it should be
possible to make a bulk-sensitive confirmation of the topolog-
ical phase transition.
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APPENDIX: DERIVATION OF THE MAGNETIC
SUSCEPTIBILITY FORMULA FOR PERIODIC SYSTEMS

1. 3D cases

We consider Bloch electrons in a 3D periodic potential
V (r), Zeeman interaction, and SOI. For this purpose, we use
the following Hamiltonian derived from the Dirac equation in
the presence of a magnetic field:

H = 1

2m
[p − eA(r)]2 − eh̄

2m
σ · B(r) + V (r)

+ h̄2

8m2c2
∇2V + h̄

4m2c2
σ · ∇V × [p − eA(r)], (A1)

where A(r) is a vector potential, e < 0 for electrons, and
B(r) = ∇ × A(r) represents a magnetic field. The g factor for
electrons is assumed to be g = 2.

The magnetic susceptibility per volume is defined as

χ = − 1

L3
lim
B→0

∂2�

∂B2
, (A2)

where � is the thermodynamic potential of the system with
chemical potential μ, i.e.,

� = −kBT ln Tr exp[−β(H − μN )]. (A3)
Therefore, it is sufficient to evaluate the second-order devia-
tion of � due to a magnetic field, defined as �(2).

To perform the pertubative calculations with respect to A
and B as was done by Fukuyama [20], we rewrite the Hamil-
tonian in a second quantized form as

H = H0 + H1 + H2 (A4)

with

H0 =
∑
αβ

∫
ψ†

α (r)

{
− h̄2

2m
∇2 + V (r) + h̄2

8m2c2
∇2V (r) + h̄

4m2c2
σαβ · ∇V × p

}
ψβ (r)dr

H1 = −
∫

j(r) · A(r)dr −
∑
αβ

∫
ψ†

α (r)
eh̄

2m
σαβ · B(r)ψβ (r)dr

H2 =
∑

α

e2

2m

∫
A2(r)ψ†

α (r)ψβ (r)dr, (A5)

where j(r) is the current operator without a vector potential,

j = e

2m

∑
α

{ψ†
α (pψα ) − (pψ†

α )ψα}

+ eh̄

4m2c2

∑
αβ

ψ†
ασαβ × ∇V ψβ. (A6)

The subscript of each Hamiltonian represents the order of
A. To avoid unphysical contributions due to the unbounded
character of the coordinate operators, we introduce the vec-
tor potential A with Fourier component q, as was done by

Hebborn and Sondheimer [16],

A(r) = −iAq(eiqr − e−iqr), (A7)

and let q = 0 in the final expressions.
To make the pertubative calculation easier, we employ the

Luttinger-Kohn representation [44],

ψα (r) =
∑
lkα

χlkα (r)alkα, χlkα (r) = eikrulk0α (r), (A8)

where k0 is a fixed wave vector and ûlk(r) = t(ulk↑(r), ulk↓(r))
is the periodic part of the Bloch wave function with the wave
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vector k of the lth band. ûlk satisfies

Hkûlk(r) = εlkûlk(r) (A9)

with

Hk = h̄2

2m
(k − i∇ )2 + V (r) + h̄2

8m2c2
∇2V

+ h̄2

4m2c2
σ · ∇V × (k − i∇ ). (A10)

In this representation, H0, H1, and H2 are rewritten as

H0 =
∑

ll ′αβk

Ell ′αβa†
lkα

al ′kβ,

H1 = ie

h̄
Aq ·

∑
ll ′αβk

γ (k)
(
a†

lk+ q
2 α

al ′k− q
2 β − a†

lk− q
2 α

al ′k+ q
2 β

)

− q × Aq ·
∑

ll ′αβk

Ms
(
a†

lk+ q
2 α

al ′k− q
2 β + a†

lk− q
2 α

al ′k+ q
2 β

)
,

H2 = − e2

2m

∑
α

A2
q(ρ−2qα − 2ρ0α + ρ2qα ), (A11)

where

Ell ′αβ =
∫

u∗
lk0α

Hkul ′k0βdr, (A12)

[γ (k)]lα,l ′β =
∫

u∗
lk0α

∂Hk

∂k
ul ′k0βdr, (A13)

[Ms]lα,l ′β =
∫

u∗
lk0α

eh̄

2m
σul ′k0βdr, (A14)

ρq =
∑
lkα

a†
lk−qα

alkα. (A15)

By using the Luttinger-Kohn representation, the thermody-
namic potential becomes

� = �0 + kBT
∫ 1

0

dλ

λ

∑
kn

Tr[��λ(k, iεn)Gλ(k, iεn)],

(A16)

where �0 is the thermodynamic potential without a vector
potential. ��λ and Gλ are the self-energy matrix and ther-
mal Green’s function corresponding to the Hamiltonian H0 +
λ(H1 + H2), respectively. We expand the self-energy as

��λ = λ��(1) + λ2��(2) + O(A3). (A17)

Making use of Dyson’s equation,

Gλ(k, iεn) = G (0)(k, iεn) + G (0)(k, iεn)��λ(k, iεn)Gλ(k, iεn),
(A18)

with G (0) being Green’s function for the nonperturbative
Hamiltonian H0, we can carry out the integral as

� − �0 = kBT
∑

kn

Tr

[
��(1)G (0) + 1

2
��(2)G (0)

]
+ O(A3).

(A19)

To estimate Eq. (A19), we find nine types of contributions
of the order of A2, whose diagrams are shown in Fig. 5.
Figures 5(1a)–5(1c), 5(2a)–5(2d), and 5(3a) and 5(3b) give
the orbital contribution, the orbital-Zeeman cross term con-
tribution, and the Zeeman contribution to the free energy,
respectively. Each contribution is calculated as

�
(2)
orbit = 1

2
kBT

∑
nk

e2

h̄2 AqμAqνTr

[
γμG

(
k + q

2
, iεn

)
γνG

(
k − q

2
, iεn

)
+ (q ↔ −q)

]
+ kBT

∑
nk

e2

m
A2

qTrG(k, iεn), (A20)

�
(2)
OZ = −1

2
kBT

∑
nk

Tr

[
ie

h̄
AqμγμG

(
k + q

2
, iεn

)
q × Aq · MsG

(
k − q

2
, iε

)
+ (q ↔ −q)

]

+ 1

2
kBT

∑
nk

Tr

[
q × Aq · MsG

(
k + q

2
, iεn

)
ie

h̄
AqμγμG

(
k − q

2
, iεn

)
+ (q ↔ −q)

]
, (A21)

�
(2)
Zeeman = 1

2
kBT

∑
nk

Tr

[
q × Aq · MsG

(
k + q

2
, iεn

)
q × Aq · MsG

(
k − q

2
, iεn

)
+ (q ↔ −q)

]
, (A22)

respectively. By expanding the expression for small q with the help of the Ward identity,

G(k, iεn)γμG(k, iεn) = ∂G(k, iεn)

∂kμ

, (A23)

we obtain

�
(2)
orbit = − e2

2h̄2 (q × Aq)2
z kBT

∑
nk

Tr[γxGγyGγxGγyG]

�
(2)
OZ = − ie

h̄
(q × Aq)2

z kBT
∑

nk

Tr
[
Ms

zGγxGγyG − Ms
zGγyGγxG

]

�
(2)
Zeeman = (q × Aq)2

z kBT
∑

nk

Tr
[
Ms

zGMs
zG

]
. (A24)
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FIG. 5. Feynman diagrams for the second-order deviation of the free energy �(2).

Since 2(q × Aq)2
z corresponds to B2

z , the magnetic susceptibil-
ity becomes

χ = χorbit + χOZ + χPauli, (A25)

where

χorbit = e2

2h̄2

kBT

L3

∑
nk

Tr[γxGγyGγxGγyG]

χOZ = ie

h̄

kBT

L3

∑
nk

Tr
[
Ms

zGγxGγyG − Ms
zGγyGγxG

]

χPauli = −kBT

L3

∑
nk

Tr
[
Ms

zGMs
zG

]
. (A26)

Since the Luttinger-Kohn representation is associated with
the Bloch representation by a unitary transformation [44],
the expressions in Eq. (A26) can be regarded as written in
terms of Green’s functions and current operators for the Bloch
representation.

2. 2D cases

In the derivation in the previous section, we have assumed
a 3D periodic potential. However, when the magnetic field is
applied in the z direction, the assumption of periodicity in the
z direction is unnecessary, as shown in this section. Therefore,
the same discussion as in the 3D case is applicable to 2D
systems, where electrons are confined in the z direction.

We consider the case where the elctronic potential
V (x, y, z) is periodic in the x-y plane perpendicular to the
magnetic field. Hereafter, we use bold for two-component
vectors, e.g., k = (kx, ky ). From Bloch’s theorem, the wave
function is characterized by k, which is written as

ψ̂k(x, y, z) = eikrûk(x, y, z), (A27)

where ûk(x, y, z) is a function which has the same periodicity
as V (x, y, z) in the x-y plane. Since Eq. (A27) is the solution
of the Schrödinger equation

Hψ̂k(x, y, z) = Ekψ̂k(x, y, z), (A28)

013058-7



SOSHUN OZAKI AND MASAO OGATA PHYSICAL REVIEW RESEARCH 3, 013058 (2021)

ûk(x, y, z) satisfies the equation⎡
⎣ h̄2

2m

{(
kx − i

∂

∂x

)2

+
(

ky − i
∂

∂y

)2

− ∂2

∂z2

}
+ V (x, y, z)

+ h̄2

8m2c2
∇2V + h̄2

4m2c2
σ · ∇V ×

⎛
⎝kx − i∂/∂x

ky − i∂/∂y
−i∂/∂z

⎞
⎠

⎤
⎦ûk(x, y, z) = Ekûk(x, y, z). (A29)

Since the wave function ûk(x, y, z) is defined on a region [0, L] × [0, L] × (−∞,∞) and is normalizable on the region, the
energy eigenvalues take descrete values. When V (x, y, z) gives a confinement potential in the z direction, the wave functions
are characterized by the band index in the kx-ky Brillouin zone and the subband index in the z direction. Therefore, we denote
the wave function as ûlk(x, y, z), where l represents the above two indices. Using ûlk’s, we can apply the same discussion as in
the previous section and derive a similar formula. The Luttinger-Kohn representation is modified:

ψα (x, y, z) =
∑
lkα

χlkα (x, y, z)alkα,

χlkα (x, y, z) = eikrulk0α (x, y, z). (A30)

When the magnetic field is parallel to the z direction, we can assume without loss of generarity that both the vector potential Aq

and q have only x and y components. Then, H1 is expressed in this 2D scheme as

H1 = ie

h̄
Aq ·

∑
ll ′αβk

γ (k)
(
a†

lk+ q
2 α

al ′k− q
2 β − a†

lk− q
2 α

al ′k+ q
2 β

)

− (qxAqy − qyAqx )
∑

ll ′αβk

Ms
z

(
a†

lk+ q
2 α

al ′k− q
2 β + a†

lk− q
2 α

al ′k+ q
2 β

)
, (A31)

while H0 and H2 do not change formally. We note that the spatial integrals in matrix elements Ell ′αβ , γ (k), and Ms
z are 3D

integrals. After all, we obtain a very similar formula

χorbit = e2

2h̄2

kBT

L2

∑
nk

Tr[γxGγyGγxGγyG]

χOZ = ie

h̄

kBT

L2

∑
nk

Tr
[
Ms

zGγxGγyG − Ms
zGγyGγxG

]

χPauli = −kBT

L2

∑
nk

Tr
[
Ms

zGMs
zG

]
(A32)

where the value is normalized by L2, different from the 3D case, and Tr is the trace over l and α.
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