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Citizen science methodologies have over the past decade been applied with great success to help solve highly
complex numerical challenges. Here, we take early steps in the quantum physics arena by introducing a citizen
science game, Quantum Moves 2, and compare the performance of different optimization methods across three
different quantum optimal control problems of varying difficulty. Inside the game, players can apply a gradient-
based algorithm (running locally on their device) to optimize their solutions and we find that these results perform
roughly on par with the best of the tested standard optimization methods performed on a computer cluster. In
addition, cluster-optimized player seeds was the only method to exhibit roughly optimal performance across
all three challenges. Finally, player seeds show significant statistical advantages over random seeds in the limit
of sparse sampling. This highlights the potential for crowdsourcing the solution of future quantum research
problems.
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I. INTRODUCTION

Despite amazing advances in the past years, it has becom-
ing increasingly clear that pattern-matching results from deep
learning algorithms alone can be surprisingly brittle [1,2].
This failure has been attributed to, among other reasons, a
lack of hierarchical learning, transfer between problems, and
common sense comprehension of real world phenomena [3].
Common sense has been defined in many different ways,
but here we refer to it as implicit and shared fundamental
assumptions that people have about the world [4]. Addition-
ally, there are indications that humans may sometimes solve
computationally hard problems quickly and near-optimally
[5,6]. However, humans just as often fail miserably [7]. Thus,
many argue that optimized synergetic systems integrating
individuals or collectives of humans and machines offer a
promising, human-in-the-loop, approach to tackle complex
problems [8–12]. One key challenge in this approach is that it
requires large-scale studies of human capacities, for example
common sense and the development of rich cognitive models
[3]. Initial steps in this direction can be taken by exploring
problems in research-relevant contexts, such as in the related
fields of citizen science and collective intelligence [9,11], and
detailed comparisons between human [6] and AI [13] perfor-
mance are becoming feasible for problems such as protein
folding.
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In this paper, we take steps toward exploring how citizen
input can be applied to the solution of relevant problems in
quantum mechanics. In particular, we consider a dynamic
quantum state transfer task (Sec. II) where the goal is to max-
imize the fidelity, 0 � F � 1, by finding appropriate control
functions {u1(t ), u2(t )} (solutions) as illustrated in Fig. 1.
These are typically identified by locally ascending seeds
(starting points) to the nearest maximum in the associated
optimization landscape. Possible seeding strategies range
from uniform random guessing (least imposed structure)
to parametrizations based on highly domain-specific expert
knowledge or heuristics (most imposed structure) as depicted
by the colored regions in Fig. 1, each with associated prob-
abilities of obtaining F ≈ 1 upon optimization. Discovering
the “good” regions of the optimization landscape can often be
very challenging. In this work, we investigate whether nonex-
pert citizen scientists may be useful in efficiently identifying
good regions by gathering their input through our game,
Quantum Moves 2 (Sec. III and Appendix A), which allows
the player to both create seeds and subsequently engage with
a local optimization algorithm embedded in the game and see
its action in real time. Each player can be considered as an
independent, adaptive seeding strategy that incorporates high-
level heuristics and complex decision-making processes into
an optimization loop which are otherwise difficult to capture
and implement programmatically. This methodology may be
used as a general means to extract features and heuristics
for a given problem which could then aid experts in further
analysis and guide the development of seeding strategies. We
analyze three distinct scientific challenges—i.e., optimization
landscapes—where the performance of the hybrid approach
(human-computer) is compared against standard methodolo-
gies from quantum optimal control and computer science. In
this sense, this work does not aim to present or promote an in-
imical competition between players and computer algorithms,
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FIG. 1. Abstract illustration of an optimization (control) land-
scape with two control parameters. Points in the plane correspond
to a particular set of functions {u1(t ), u2(t )} and the height of the
landscape is given by the associated fidelity. Only a small region of
the control space is optimal (with respect to F ≈ 1) and otherwise
contains many local “traps”—the relative efficiency of a local “hill-
climbing” optimizer is thus correlated to where it is seeded. Purple
full region: Uniform random seeding. Obtaining F ≈ 1 is possible,
but with low probability. Green smaller region: Specialized seeding.
Obtaining F ≈ 1 is possible with high probability, but not guaran-
teed. Such a region is conventionally targeted by experts through
their accumulated knowledge, problem insights, heuristics, and pro-
gramming proficiency. Nonexpert citizen scientist players may be
useful in uncovering this region without extensive prior training.

but rather, explore their possible interplay in terms of
solution strategy and the usefulness of player seeding in such
problems. Our optimization code is available at Ref. [14].

Note that a simpler game interface, Quantum Moves 1,
was previously accessible, and studies of the user experience
[15,16] and numerics of the Bring Home Water level [17,18]
were published. However, due to an error in the optimiza-
tion code [19], the quantitative comparisons presented in the
publication Ref. [18] are not valid and the article has been
retracted. The research presented in the present work, which
is broader both in terms of scope and analyses, was conducted
with a wholly new codebase, including algorithms explored in
Refs. [20,21], and free of the error that hampered the results
in Ref. [18].

To address the tenability of game-based exploration of
quantum research problems, we pose two specific questions
about the current and potential scientific contribution to quan-
tum physics and related fields:

(Q1) Can a suitable gamified interface allow citizen scien-
tists to solve quantum control problems entirely on their own,
using their own hardware to run the required computation
(e.g., using an in-game optimizer), with a quality on par with
traditional expert-driven optimization?

(Q2) Can the player-generated solutions, in combination
with concrete algorithms, provide an edge against fully algo-
rithmic solutions, and how does that depend on the type and
mathematical complexity of the problem?

If Q1 can be answered in the affirmative, then such an
interface would allow for a novel form of online, quantum
citizen science combining human problem solving with crowd
computing. In such a framework, one could imagine quantum
researchers continually feeding in optimization challenges
that are then solved efficiently by the community at no com-
putational cost to the researchers.

Before moving on to a detailed description, we provide an
overview geared toward the broader audience.

A. Overview of results and discussion

To address the questions Q1 and Q2 in a systematic manner
and to establish a baseline, we compare optimization of player
seeding to uniform random seeding (Sec. IV) across a range of
distinct problems. Our results show that these problems differ
vastly in terms of both landscape- and numerical complexity
which impacts the difficulty of locating and identifying the
optimal strategy (or strategies) corresponding to the green
region(s) of Fig. 1. Notably, in the first problem (Sec. V),
the structure in the citizen player seeds allows—while the
lack of structure in the random seeds prevents—discovery of
the exponentially gainful optimal strategy when applying a
local optimization algorithm. The second problem (Sec. VI),
however, turns out to have a very benign landscape and all
seeding strategies can successfully identify the optimal solu-
tions. The third problem (Sec. VII) exhibits, on the contrary,
a very complex landscape with an interleaved plurality of
strategies that are optimal in different regimes. Player and
random seeds probe different parts of the landscape, and, in
this case, this complementarity leads to enhanced collective
results. Outside of their respective problem-dependent capa-
bilities of discovering the optimal strategies, we find in a
separate analysis (Sec. VIII) that across all problems, player
seeds are statistically much more efficient in obtaining high-
fidelity results than random seeds when restricting the sample
size. (Performance in the limit of restricted sample size is rel-
evant when extrapolating to problems of increased numerical
complexity or when available computational resources are re-
stricted and thus effects a less dense probing of the landscape.)
Additionally, we find further significant enhancements when
sampling only from the best raw player solutions (as measured
by the fidelity) and even more advantages arise when sampling
only from the best player-optimized solutions. Such enhance-
ments are not found for the best random seeds. This indicates
that both the structure of the player seeds and their donated
computing power in “pre-optimizing” these are contributing
factors to this statistical advantage. Thus, it is suggested that
it is indeed beneficial to crowdsource the solution of, at least,
this particular suite of quantum control problems.

This broad contribution of the players stands in stark con-
trast to, e.g., citizen science projects like Foldit [22], where
only a small fraction of players provide a scientific contribu-
tion after an extensive training process. To distinguish these
two types of citizen science challenges, we assert in this work
that the Quantum Moves 2 game, to some extent, taps into
certain aspects of common sense (shared tacit knowledge of
reasonable behavior) of the player population at large. Al-
though it is not within the scope of this work to analyze the
explicit nature of this common sense, it seems reasonable
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to conjecture that the liquid analogy of the wave function
dynamics taps into the classical intuition for sloshing water,
which was also argued by Sels in his numerical analysis of
one of the problems [20]. Along similar lines, we believe that
successful generalizations of this citizen science methodology
are correlated with the interfaces devised to represent the
underlying optimization tasks. That is, the design of interfaces
that are well-suited for facilitating the strengths of—and in-
terplay between—both components of the human-computer
hybrid approach.

Based on these answers to Q1 and Q2, we suggest posing
additional questions for this line of research:

(Q3) Could citizen science games be first steps toward
playful, explorative tools for domain experts? This approach
is currently being pursued in microbiological research settings
[23] but not yet in quantum physics. As a related question,
can the citizen science experience be expanded to include
citizen contribution in more aspects of the scientific method
such as data analysis and, ultimately, hypothesis and problem
formulation? If such so-called extreme citizen science [24]
could be understood and systematically implemented, then
this would constitute a major advance in complex problem
solving, one of the most demanded skills as per the World
Economic Forum [25].

(Q4) If the games are sufficiently challenging for humans,
then can they be used for systematic studies of human problem
solving? In our group we have started to investigate this within
the setting of quantum experimental optimization [26] and by
developing cognitive science variants of quantum challenges
[27].

(Q5) If larger portions of the player base can make non-
trivial contributions to several classes of research problems
using the gamified interface, then could this contribute to
the solution of one of the major roadblocks in the path to
domain-general AI according to, e.g., the author of Ref. [3]—
that is—the crowdsourcing and algorithmization of human
common sense?

The latter two questions move well beyond the realm of
quantum physics and the scope of this paper. In terms of
generalizability outside the citizen science context, it is re-
marked that Q3 typically reframes the design goals of a given
interface as it caters to the inherently different target audience
of domain (semi)experts. In this instance, for example, classi-
cal analogies and interpretations become much less important
with focus instead on an expanded list of more advanced
concepts and flexible visualizations. We currently pursue el-
ements of Q3 in other work [28] by developing an intuitive
and visual quantum programming environment which was
originally inspired by the Quantum Moves games.

The extent to which our work may be extended to gain
broader implications for the fields of quantum research (Q3),
social science (Q4), and computer science (Q5) constitutes
interesting topics for future studies.

II. QUANTUM OPTIMAL CONTROL

In this section, we describe the context and define key goals
of Quantum Moves 2.

The hallmarks of the second quantum revolution [29] are
the exploitation and engineering of fragile, isolated quantum

objects. Quantum computing with any platform predicates
precise control of the constituent qubits and associated gate
operations. Additionally, the control must also be expedi-
tiously carried out such as to avoid decoherence and other
detrimental effects to the overall goal. Controls meeting these
criteria and more can be obtained within the well-established
theory of quantum optimal control.

A common class of quantum optimal control problems
deals with facilitating a particular initial-to-target state trans-
fer, |ψ0〉 → |ψtgt〉, for some fixed process duration T . The
manipulatory access to the state evolution is through a set
of control parameters {u1(t ), u2(t ), . . . } where each solution
[specific choice of functions ui(t )] uniquely maps to a final
state |ψ0〉 → |ψ (T )〉 (see Appendices B and C). In this con-
text, the transfer fidelity

0 � F [{u1(t ), u2(t ), . . . }; T ] = | 〈ψtgt|ψ (T )〉 |2 � 1, (1)

for each fixed T can be interpreted as a high-dimensional
optimization (or control) landscape as illustrated in Fig. 1.
Optimal controls (or solutions) can then be associated with
points in the landscape that are globally or locally maximal.
Additionally, for a given fidelity requirement, we associate a
fundamental minimal duration, T F

min, below which no maxi-
mum exceeds F . Thus, T F

min is defined as the shortest duration
at which at least one control corresponding to a maximum
can obtain the given F . Depending on the context, common
choices for threshold values are F = 0.99, 0.999, 0.9999, . . . ,
characterized by a tradeoff between F and T F

min (increased
precision leads to longer durations).

In the limit T → ∞, most problems become easy in the
sense that many global maxima with F ≈ 1 exist. As T → 0,
however, the control problem becomes increasingly difficult
as previously global maxima gradually become only locally
maximal and the control landscape becomes more rugged. The
usually unfavorable topography of the control landscape in
the T ≈ T F

min regime therefore makes uncovering global max-
ima especially difficult for the aforementioned high-fidelity
requirements.

At its core, any iterative optimization algorithm attempting
to locate global maxima must prescribe a way to traverse
the optimization landscape in a meaningful way. It must
thus strike a balance between local (exploitation) and global
(exploration) search methodologies. A common optimiza-
tion paradigm initializes an algorithm, e.g., one excelling
in finding the nearest local optimum, from many different
seeds, thereby introducing a simple global component [30].
In principle, a local optimizer maps each seed to its nearest
attractor [31]. Nonglobal local optima are often called local
traps, referring to the propensity for said optimizers to locate
these and terminate (since they are “stuck”). The effectiveness
of this paradigm is then necessarily strongly correlated to
a combination of the seeding strategy (the mechanism with
which seeds are generated) and the choice of optimization
algorithm.

Effective seeding strategies, e.g., those targeting the green
region of optimality depicted in Fig. 1, and algorithms nat-
urally become increasingly important with growing problem
complexity and this can broadly be characterized by two axes:
the computational (or numerical) complexity of the under-
lying simulations and the inherent topographical landscape
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complexity. The computational difficulty can also be inter-
preted as the amount of required resources. Below, we discuss
problems with two different degrees of computational diffi-
culty drawing upon the single particle Schrödinger equation
and the nonlinear dynamics of Bose-Einstein condensates.

III. OVERVIEW OF QUANTUM MOVES 2

In Quantum Moves 2, the player’s goal is to solve various
state transfer problems, referred to in-game as levels. Each
level concerns 1D transfers of either single particle or Bose-
Einstein condensate (BEC) wave functions ψ (x, t ) = 〈x|ψ (t )〉,
both describable by the Hamiltonian

Ĥ = − h̄2

2m

∂2

∂x2
+ V + g|ψ |2, (2)

where taking the nonlinear coupling parameter g = 0 corre-
sponds to the single-particle case. While there is no in-game
distinction in their representation, the numerics involving BEC

(g �= 0) are more intricate, and this has consequences for
the efficiency of some optimization algorithms as discussed
later. The potential has up to two controllable parameters,
V = V (u1(t ), u2(t )), depending on the level.

The main features of Quantum Moves 2 are
(1) A device-embedded algorithm that enables players op-

timize the seeds they produce.
(2) In-game tools for analyzing previous solutions.
(3) Constrained exploration to the regime near T F

min and
below with F = 0.99, 0.999.

(4) Scientific problems of various complexity.
Here we briefly describe and motivate the three main levels

in the game. Figure 2 displays their in-game representation.
See Appendix A for a more complete description of the game
interface.

Bring Home Water. A single atom resides in the ground
state of a static tweezer and must be picked up and shut-
tled back into the ground state at the original location of
the movable tweezer. This type of transfer is necessary for
implementing quantum computations in neutral atoms based
on collision gates [32].

Splitting. A BEC initially resides in the ground state of a
single-well configuration on an atom chip and must be trans-
ferred into the ground state of a double-well configuration by
deforming the potential. The split condensate can then be used
for matter-wave interferometry [33–36].

Shake Up. A BEC initially resides in the ground state of
a single-well configuration on an atom chip and must be
transferred into the first excited state by shaking the potential.
The excited state of the BEC acts as a source for twin-atom
beams [35–39].

IV. ALGORITHMS AND SEEDING STRATEGIES

In this section we specify the suite of different algo-
rithms and seeding strategies under consideration. We define a
method as a particular combination of algorithm and seeding
strategy. For example, GRAPE Pr-RS is the method that uses
the GRAPE algorithm to optimize preselected random seeds.
Further details of numerics and each algorithm are included
in Appendices B and C.

FIG. 2. The three central state transfer problems in Quantum
Moves 2. (a) Bring Home Water (single-particle), (b) Splitting (BEC),
and (c) Shake Up (BEC). The instantaneous density |ψ (x, t )|2 (red line
with shaded area) must be transferred into the target density |ψtgt (x)|2
(yellow line) without residual excitation. The trapping potential
(green line) is parametrized by the position of the round, draggable
cursor, {u1(t ), u2(t )} = { f1(xcursor (t )), f2(ycursor (t )}), which is unable
to leave the turquoise bounding box (control boundaries). The func-
tions f1 and f2 are linear. The wave function densities are offset
by the potential, |ψ (x)|2 + V (x), for illustrative purposes (e.g., the
Splitting target density represents two equally sized wave packets
trapped in a double well—the large center bump is the barrier and
two smaller bumps are the wave packets).
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A. Algorithms

GRAPE. Standard gradient-based optimization using the
L-BFGS quasi-Newton search direction with line search.
Bandwidth limitation (smoothness) is included through a
derivative-regularization cost term.

PGRAPE. Player GRAPE. The player can start and stop the
optimization. Otherwise, it is identical to GRAPE. The algo-
rithm is executed locally on the player’s device as a part of the
game.

Stochastic Ascent (SA). Gradient-free maximally greedy
time-local search. The process duration T is segmen-
ted into nb bins of equal width within which the control values
are constant. The bin values are updated in a stochastic order.
The bandwidth limitation (smoothness) is inversely propor-
tional to nb (there is no additional regularization cost term in
the current implementation).

B. Seeding Strategies

As outlined in Sec. II, seeding strategies are a fundamental
component of optimization. Drawing from random distribu-
tions provides the most generic way of seeding [40]:

Random Seed (RS). The control is assembled by in-
dependently sampling a uniform distribution within given
boundaries (Appendix B) for each control parameter,

up(t ) = uniform(umin, umax), (3)

for p = 1, 2. Subsequent control values at up(t + δt ) are
completely uncorrelated. To introduce correlations, one can
also segment T into nb bins of equal width w such that the
control value is initially constant within each bin (see also
Appendix C).

Quantum Moves 2 provides two novel seeding strategies:
Player Seed (PS). The control is assembled by mapping

the players’ cursor position during gameplay as a function of
time, (

u1(t )
u2(t )

)
=

(
f1[xcursor (t )]
f2[ycursor (t )]

)
. (4)

Player Optimized Seed (PO). This seeding strategy de-
scribes a PS seed that has been optimized by the player (i.e.,
PO ≡ PGRAPE PS),(

u1(t )
u2(t )

)
= PGRAPE

(
f1[xcursor (t )]
f2[ycursor (t )]

)
. (5)

If the optimization was stopped before convergence, then the
optimized control can be used as a seed for further optimiza-
tion. If the optimization converged, then the seed itself is
already a local optimum. From a resource perspective, these
seeds are very valuable since they come partially or fully
pre-optimized at no cost to the research team.

A heuristic extension of any seeding strategy is
preselection:

Preselection (Pr). A naïve greedy heuristic to choose which
seeds should be picked for optimization. Given a set of candi-
date seeds and their associated fidelities, optimize only the N
seeds with highest initial fidelity.

V. BRING HOME WATER

In this section we present optimization results obtained
in Bring Home Water for the different methods described
in Sec. IV. The allotted resources for the optimizations are
discussed in Appendix C. We denote by PGRAPE PS ∪ PS the
joint set of optimized and unoptimized solutions produced
solely by the players in-game [41].

Figure 3 shows the density distribution of solution infi-
delities (1 − F ) [42] as a function of process duration T
in the high-fidelity regime for various methods. For a given
method, the solution densities estimate the probability distri-
bution P (F |T ) of obtaining a particular fidelity for a given
T , since each column is individually normalized. For refer-
ence, the solid line shows the best obtained GRAPE PS results
from Fig. 4. Figure 4 shows the aggregate, monotonically
best infidelity as a function of process duration T . The green
crosses show all results produced only by players in-game,
i.e., player seeds (PS) and player-optimized seeds (PGRAPE

PS). The blue dots show the result of GRAPE PS, i.e., computer
cluster optimized player seeds (PS) only (inducing a difference
in number of seeds in Fig. 4). Lines with (without) dots show
the best results obtained by methods based on player (random)
seeds.

For the GRAPE PS density and PGRAPE PS ∪ PS results shown
in Fig. 4, we observe two clear bands of solutions that are
each described by distinct exponential behavior, which hints
at two corresponding solution strategies. This is verified and
analyzed in Sec. V A using clustering techniques. The identifi-
cation of the two exponentially-gapped solution strategies and
the relative likelihoods of different methods identifying each
strategy is the first of three main findings in this section. The
duration-dependent globally optimal strategy changes from
one to the other near T = 0.092 ms, explaining the kink in the
best result reference curve seen in Fig. 3 and the departing line
of blue dots in Fig. 4. The gap between the global and local
optimal strategies increases exponentially, leading to signifi-
cantly different minimal duration T F

min estimates (as defined in
Sec. II). Outside of these strategies, the densities are mostly
sparse but nonzero, indicating a topographically complex op-
timization landscape containing many isolated local traps or
regions with near-vanishing gradient. This is also understood
by the interspersed dot and cross distributions in Fig. 4.

We now examine GRAPE RS, where the only difference
with respect to the former methods is the seeding strategy. In
this case, we observe that only the inferior, locally optimal
strategy is discovered, with only two (out of 20 734) solutions
located in the strategy gap. Evidently, for the same optimiza-
tion algorithm, the structure of player seeds is preferable. The
deficiency of GRAPE RS is analyzed in Sec. V B.

Next, we turn our attention to SA RS variants with full
resolution (nb = nt ) and reduced resolution (nb = 40). As dis-
cussed in detail in Appendix C, SA is expected to be efficient
for linear problems (g = 0) with preferably a single control
parameter. For Bring Home Water the former is satisfied by the
problem definition and the latter can be satisfied by choosing
the tweezer amplitude control such that it is maximally deep
at all times, u2(t ) = umin

2 , as is also done in Ref. [20] and SA

thus only optimizes u1(t ) [43]. Generally, in all the optimized
GRAPE solutions, we indeed observe that the tweezer tends to
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FIG. 3. Bring Home Water solution densities for different methods. (a) GRAPE PS, (b) GRAPE RS, (c) SA RS (nb = nt ), and (d) SA RS (nb = 40).
Each density is normalized for every individual T and thus represents an estimate of the probability distribution for obtaining a particular F
for a given T [P (F |T )]. The reference curve shows the best obtained results for GRAPE PS. The crosses indicate solutions at densities lower
than 0.002.

FIG. 4. Aggregate, monotonically best optimization results (lower is better) for several methods in Bring Home Water. Solid lines with
(without) symbols show the best results obtained with (without) player influence. The scattered green crosses show all results produced by 536
players seeding on average ∼32 solutions and optimizing approximately 1/4 of these for ∼131 iterations on average. The scattered blue dots
show the same, except the optimization is carried out on all player seeds with the computational resources described in the text (i.e., no player
influence after seeding). The symbol translucency indicates the density distribution.
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attain its maximal depth whenever the tweezer is in contact
with the atom (overlap with nonzero probability density).

With these choices, SA RS (nb = nt ) is capable of discov-
ering the two distinct strategies with remarkable efficiency,
despite the structureless nature of the u1(t ) seeding mecha-
nism. Only a few low fidelity solutions occur. SA RS (nb = 40)
does not identify the globally optimal strategy (lower branch)
and instead concentrates on a broad band of solutions with a
center shifted to above the inferior strategy (upper branch).
This can be attributed to the reduced resolution of the algo-
rithm preventing it from resolving the dynamics finely enough
[44].

Both GRAPE PS and SA RS (nb = nt ) find the same estimates
T F=0.99

min ≈ 0.0973 ms and T F=0.999
min ≈ 0.1057 ms, whereas the

estimate from PGRAPE PS ∪ PS is off by less than 1%
with respect to F = 0.99. The fact that the in-game player-
optimized curve roughly matches the best results optimized
on the computer cluster represents the second main find-
ing of this section. This, coupled with similar findings for
the two remaining challenges, represents our quantitative
confirmation of Q1 (cf. Sec. I) for this range of control
problems.

GRAPE PS, PGRAPE PS ∪ PS, and SA RS (nb = nt ) are all able
to find both solution strategies, but SA RS (nb = nt ) is the most
efficient at optimizing low-fidelity solutions into high-fidelity
solutions. This cannot be attributed to the different seeding
mechanisms, since GRAPE RS fails to find the globally optimal
solution strategy. Instead, the difference is due to how the two
optimization algorithms traverse the landscape (Appendix C)
and how they respond to being near a local trap [45].

Later in Sec. VIII we provide an alternative statistical
characterization of each method, as well as the effect of the
preselection heuristic, for each of the three problems.

A. Optimal strategies—Control clustering

To extract the identified solution strategies, we apply DB-
SCAN clustering [46] to the GRAPE PS method. Based on the
results presented in the previous section, we expect the exis-
tence of distinct solution strategies, i.e., families of solutions
that have a similar functional shape and characteristics but
possibly different durations [47].

The clustering was performed only on the duration-
normalized tweezer position, u1(t/T ), justified by the fact that
the optimized u2(t ) control is, in general, maximally deep.
To simplify the clustering, all solutions were given the same
number of points by linearly interpolating on a 1000 point grid
(the original number of points was defined by T/δt). For this
analysis, we selected high-fidelity solutions F ∈ [0.95, 0.999]
with T ∈ [0.093, 0.124] ms (i.e., near T F=0.99

min and T F=0.999
min ).

We used the sklearn implementation of DBSCAN with Eu-
clidean metric, ε = 3, and a minimum number of neighbors
minsamples = 5.

After filtering out physically insignificant delays [48] we
find in Fig. 5 two major clusters (labeled 0 and 1) with
increased populations and a “cluster” (labeled −1) in which
local defects cause irreparable deviations from the two strate-

FIG. 5. Bring Home Water: Clustering of controls. (a) Each clus-
ter (0 and 1) corresponds to a strategy and the gap between them
exhibits an exponential 1 − F (T ) behavior, leading to different es-
timates of minimal durations for a given threshold. The unclassified
points (−1) are mostly populated by controls similar to either strat-
egy, except for a few local defects that makes them appear distant to
the cluster with respect to the Euclidean metric. (b) Lines correspond
to cluster means and shaded areas to the standard deviation (cluster
−1 has a dashed outline). The most populous cluster (0) corresponds
to a front-swing strategy with the tweezer immediately being placed
in front of the atom whereas the less populous cluster (1) corresponds
to a back-swing strategy with the tweezer immediately being placed
behind the atom.

gies. Each cluster exhibits a strikingly exponential tradeoff
between fidelity and duration well-described by the fits

[1 − F (T )]0 = 10−1.45−50.11·(T/ms−0.0929), (6)

[1 − F (T )]1 = 10−1.50−117.27·(T/ms−0.0929), (7)

and it is clearly seen that the strategy gap widens ex-
ponentially. Assuming these trends can be extrapolated,
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this yields T F
QSL,0/T F

QSL,1 = 1.17, 1.26, 1.33 and infidelity
ratios of 1 × 102, 3 × 103, 6 × 104 at T F

QSL,0 for F =
0.999, 0.9999, 0.99999, respectively.

Physically, the strategy corresponding to the cluster 0 be-
gins by placing the tweezer in front of the atom, providing
immediate acceleration toward the target position. We name
this the front-swing strategy. Conversely, the strategy corre-
sponding to the cluster 1 begins by placing the tweezer behind
the atom, providing immediate acceleration away from the
target position. We name this the back-swing strategy. In both
instances, there is very little deviation from the cluster mean
except during the shuttling of the atom where small deviations
are allowed.

Intuitively one might expect that the back-swing strategy
would be slower because the atom must travel an overall
longer distance compared to the front-swing strategy, but this
is evidently not the case. Instead, initially displacing the atom
onto the static well’s right side can serve as an additional
accelerating force to that of the movable tweezer. With this
analysis, we are in a position to explore in the following
section why GRAPE RS fails to locate the back-swing strategy.

B. GRAPE RS—Efficiency versus optimality

It is clear from Fig. 4 that the fine-grained GRAPE RS

(with nb = nt ) fails to find the back-swing solution where the
same optimization algorithm with PS succeeds. As shown in
Sec. V A, this strategy requires the control to be immediately
placed on the right-hand side of the static tweezer (u1 > x0)
for a time interval sufficient to displace the atom. To gain a
sense of timescales, the harmonic approximation to the fully
overlapped tweezers (u1 = x0) yields an oscillation period
of τ = 2π/ω ≈ 0.1 (in simulation units, see Appendix B).
Assuming τ/10 is a sufficient response time for meaningful
dynamics, the probability for consecutively randomly sam-
pling the corresponding number of points n = (τ/10)/δt =
10−2/(3.5 × 10−4) ≈ 29 such that they all have (u1 > x0) is
vanishingly small P(u1 > x0)n = (0.25)n = 6 × 10−18 when
successive control values are uncorrelated. Even at a much
less conservative estimate of τ/40, the probability 5 × 10−5

remains strongly suppressed. Since GRAPE traverses the land-
scape locally, it is therefore almost guaranteed that subsequent
optimization leads to the front-swing strategy. The same is not
observed for SA, since the one-dimensional exhaustive search
allows for the individual adjustment of points (u1 < x0) into
(u1 > x0).

One possible explanation for the observed difference be-
tween randomly and player-seeded behavior is thus that with
a very high time resolution the random seeds oscillate rapidly
whereas the player seeds are typically comparatively rather
smooth due to the physical limitations in the speed of the
players’ cursor movements. One might then hypothesize that
sufficiently coarse-grained piecewise constant random seeds
would also yield similarly good behavior. If this was the case,
then the player superiority would indeed be a trivial artifact of
the choice of discretization. To test this, we therefore study
the behavior of GRAPE RS optimizations when heuristically
introducing correlations in the random seed by dividing the
seed into nb � nt piecewise constant control segments (like
with SA, but in this case the subsequent optimization is not

FIG. 6. (a) GRAPE RS solution densities as a function of number
of bins nb at T = 0.1045. Each dot denotes a solution in the back-
swing strategy. The density in the right black box shows the GRAPE

PS solution density from Fig. 3 at the same duration denoted by PS

on the x axis (the duration is on the edge of one of the bin limits
and the density is therefore taken as the mean of the two neighboring
bins). (b) Histogram of the number of back-swing solutions, counted
as those with fidelity higher than the best front-swing result at nb =
nt , for GRAPE RS with variable nb (blue) and GRAPE PS (turquoise)
from Fig. 4. The total number of seeds per bin is indicated in the
parentheses.

constrained to this parametrization). This makes it increas-
ingly likely for the seed to initially begin and remain on
the right side of the atom for a sufficient amount of time.
Figure 6 shows the results of optimizing 2000 of these seeds
near T F=0.999

min as a function of nb, as well as the GRAPE PS

results from Figs. 3 and 4. In the limit nb = nt , there is a
high probability of finding solutions belonging to the front-
swing strategy with associated fidelities around 0.99. This is
consistent with the findings in Fig. 3. Only for nb � 4 is there
an appreciable albeit low probability (about 1 to 3.5%) of
identifying back-swing solutions with much higher associated
fidelities above 0.99, whereas more than 91% of the density
resides below F = 0.9. The increase in low fidelity solutions
can be attributed to the fact for, e.g., nb = 2 (that has the
highest empiric probability of finding the back-swing), there
is an increased probability of placing the control tweezer far
away from the atom and never touching the atom at all, leaving
it in the initial state and resulting in a vanishing gradient (the

013057-8



CROWDSOURCING HUMAN COMMON SENSE FOR QUANTUM … PHYSICAL REVIEW RESEARCH 3, 013057 (2021)

FIG. 7. Splitting solution densities for different methods. (a) GRAPE PS, (b) GRAPE RS, (c) SA RS (nb = nt ), and (d) SA RS (nb = 40). Each
density is normalized for every individual T and thus represents an estimate of the probability distribution for obtaining a particular F for a
given T (P (F |T )). The blue reference curve shows the best obtained results for GRAPE PS. Crosses indicate solutions at densities lower than
0.002.

gradient is proportional to 〈ψtgt|ψ (T )〉). However, the prob-
ability of GRAPE PS finding the back-swing strategy is much
larger (about 13%) with only 36% of the solutions below
F = 0.90. The nontrivial observation that player seeds, for
the same optimizer, outperform randomly generated piecewise
constant seeds at all coarseness scales represents the third
main contribution of this section.

The shapes of both optimal strategies in Fig. 5 contain
a major linear component, and this suggests prospects for
improvement by employing piecewise linear rather than piece-
wise constant seeding. That is, a figure similar to Fig. 6 with
results from GRAPE employing such seeds would results would
therefore likely yield a dramatically different picture. In par-
ticular, we note that the exclusive identification of the inferior
front-swing strategy from the presented GRAPE RS results by
itself points to the piecewise linear seeding, which, if applied
in subsequent optimization, would likely lead to the discovery
of the globally optimal back-swing strategy. This relies on
the fact that both solution strategies are captured within the
parametrization of few piecewise linear segments. In general,
such a similarity between distinct solution strategies is not
guaranteed. As an example, we find in Sec. VII that the Shake
Up problem also contains a plurality of strategies that are

related to one another in a more subtle way. Bulk analysis of
solutions from one strategy would thus not necessarily yield
a problem parametrization that also encapsulates the other
strategies. This underscores the potential usefulness of having
data sets available that have been generated with sets of basic
underlying assumptions that are as different as possible.

Our conclusion is therefore not that a standard, heuristic-
free numerical approach will fail on the problem but that it
can fail, and this result should not be taken as proof that
players can guarantee computational improvements to this
or other problems. It does, however, constitute a necessary
first demonstration of the value of examining the gamified
approach further and comparing to or integrating it with more
sophisticated expert heuristics.

VI. SPLITTING

In this section, we present optimization results obtained for
the Splitting level using the same suite of methods, conver-
gence criteria, and computational resources as in Sec. V.

The solution densities are shown in Fig. 7 and the aggregate
results are shown in Fig. 8. Looking at the solution density for
GRAPE PS we see a single, dominant band of solutions with
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FIG. 8. Aggregate, monotonically best optimization results (lower is better) for several methods in Splitting. Solid lines with (without)
symbols show the best results obtained with (without) player influence. The scattered green crosses show all results produced by 193 players
seeding on average ∼28 solutions and optimizing approximately 1/3 of these for ∼127 iterations on average. The scattered blue dots show the
same, except the optimization is carried out on all player seeds with the computational resources described in the text (i.e., no player influence
after seeding). The symbol translucency indicates the density distribution.

only a sparse population of solutions away from it. This hints
at a simple, almost trap free, easily-navigated control land-
scape containing a very broad attractor for a single optimal
strategy. Indeed, this is also understood by observing the dot
density in Fig. 8: almost all the blue dots coincide with the best
curve. A similar situation can be observed from GRAPE RS,
except for a modest increase in low fidelity solutions but with
virtually no population between these and the optimal band.
Specifically, the average total density per bin below F ≈ 0.9
is (18 ± 4)% for RS and (11 ± 5)% for PS. Player seeds are
thus slightly more likely to be within reach of the optimal
attractor. Both methods obtain estimates T F=0.99

min ≈ 0.92 ms
and T F=0.999

min ≈ 0.105 ms. The estimates from the fully player-
generated PGRAPE PS ∪ PS are off by less than 2% in both
instances.

The SA methods perform significantly worse than the
GRAPE methods on this problem because g �= 0. Even the best
SA (nb = 40) results do not reach the same fidelity, possibly
due to a combination of reduced controllability (low resolu-
tion) and the computational penalties associated with g �= 0
as described in Appendix C. The full resolution SA (nb = nt )
also fails to converge almost everywhere, except at T suf-
ficiently larger than T F=0.99

min . This reaffirms that the control
landscape topography is benign enough that even an ineffi-
cient algorithm can find the optimal strategy with appreciable
probability at these durations.

A. Optimal strategies—Control clustering

Even without a clustering analysis, the optimal strategy
was apparent. Figure 9 shows the mean of all controls within
0.02 of the globally optimal fidelity as a function of T >

0.2 ms. Performing clustering (not shown) with ε = 5 and
minsamples = 5 on the GRAPE PS or GRAPE RS results verifies

that this problem has a simple optimization landscape: 3569
of the controls were associated with a single cluster, whereas
56 controls were unclassified.

For all T , the mean takes an initially (near) maximal
control value for an extended period. This physically cor-
responds to raising the center barrier as much as possible
(where the wave function is initially localized, see Fig. 2) and
thus providing maximal acceleration to split the condensate
into two equal wave packets. At low T the mean control
exhibits a bang-bang structure that tapers off as T increases.
Near T = 0.4 ms a new bang with smoothed edges appears
roughly centered on t/T ∼ 0.5, which is then bimodally split
around T = 0.65 ms. The mean control then becomes increas-

FIG. 9. Splitting: mean of (near) optimal solutions 〈u2(t/T )〉opt,
corresponding to the height of the potential barrier. For a given T
(y axis), the color indicates the mean optimal control value at a given
t/T (x axis). Clustering analysis identified only a single cluster.
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FIG. 10. Shake Up solution densities for different methods. (a) GRAPE PS, (b) GRAPE RS, (c) SA RS (nb = nt ), and (d) SA RS (nb = 40). Each
density is normalized for every individual T and thus represents an estimate of the probability distribution for obtaining a particular F for a
given T (P (F |T )). The reference curve shows the best obtained results for GRAPE PS. Crosses indicate solutions at densities lower than 0.002.

ingly “blurry” indicating a growing departure from bang-bang
structures.

VII. SHAKE UP

In this section, we present optimization results obtained in
Shake Up for the same suite of methods, convergence criteria,
and computational resources as in Sec. V.

The solution densities are shown in Fig. 10 and the
aggregate results are shown in Fig. 11. The kinks in the
reference curve in Fig. 10 can be more apparently understood
by looking at the blue dots in Fig. 11 (corresponding to
GRAPE PS solutions). The several pronounced, staircase-like
plateaus suggest the existence of multiple strategies that are
relevant at different duration intervals. These are examined
more closely in Sec. VII A and are found to be associated
with solution strategies defined by elements of periodic
modulation. Each plateau extends over the next, meaning that
the now inferior, locally optimal strategy remains a prominent
attractor for quite some interval of duration. From looking at
the GRAPE solution densities, this evidently makes the new
globally optimal strategy much harder to find. For GRAPE PS

the density splits when crossing the kinks and one plateau in

particular remains the main attractor, obfuscating the globally
optimal strategy that coincidentally exists in the wing of
the distribution. However, the density of very low fidelity
solutions is sparse and independent of T . This occurs because
partial transfers are not difficult to achieve as the initial state
density can very quickly and easily be overlapped with one
of the lobes of the double-peaked target state density (see
Fig. 2) by a small constant displacement. Looking at the
aggregate results, we indeed observe that the blue dots are
separated from the upper, thick sea of green crosses dots.
The abundance of the latter at low-fidelity is due to players
terminating their optimization prematurely.

No single method is found to be the best for all T . This
is contrary to both Bring Home Water and Splitting, where
GRAPE PS, PGRAPE PS ∪ PS and either SA RS or GRAPE RS [49],
respectively, found the globally optimal solutions indepen-
dently. In Shake Up, however, PS seeds seem to have the upper
hand around T = 0.85 ms and after T = 0.98 ms, while the RS

seeds seem to be better between those durations. The GRAPE

RS density provides some nuance to this observation. It shows
a broader, less dense distribution of high-fidelity solutions and
the addition of many very low fidelity solutions as T increases.
In fact, near T = 1.05 ms the monotonically best results are
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FIG. 11. Aggregate, monotonically best optimization results (lower is better) for several methods in Shake Up. Solid lines with (without)
symbols show the best results obtained with (without) player influence. The scattered green crosses show all results produced by 266 players
seeding on average ∼37 solutions and optimizing approximately 1/3 of these for ∼116 iterations on average. The scattered blue dots show the
same, except the optimization is carried out on all player seeds with the computational resources described in the text (i.e., no player influence
after seeding). The symbol translucency indicates the density distribution.

due to only a few points in an otherwise empty density region.
On the contrary, for GRAPE PS, the same region has a fairly
high density and is thus the statistically superior method in
the T = 1.05 ms regime. (We provide another perspective on
these statistical performances in Sec. VIII.) This gives rise
to slightly different minimal duration estimates: T F=0.99

min ≈
0.939 ms for RS and T F=0.99

min ≈ 0.969 ms for PS, although the
point at T = 0.887 ms with F = 0.9897 comes very close
to tipping this (somewhat arbitrary) balance. Neither method
obtained an estimate for T F=0.999

min within the span of durations
present in the game. The overall behavior of PGRAPE PS ∪ PS

shows that players terminated the optimization prematurely in
this problem and therefore yields an approximately 7% worse
estimate.

For the SA RS methods, the (nb = nt ) and (nb = 40) vari-
ants both fail to find any meaningful results. Whereas the
Splitting control landscape was benign enough to compensate
for the computational difficulties associated with g �= 0, this
is clearly not the case in Shake Up.

A. Optimal strategies—Control clustering

For Shake Up, the optimized controls did not possess any
readily apparent structure. When individually plotted along-
side the corresponding position expectation value of the wave
function, however, an oscillatory structure begins to emerge.
Subtracting the expectation values, u(t ) − 〈x(t )〉, we observe
that these relative controls are dominated by low frequency
cosine components. Decomposing the relative controls as

ck = 1

T

∫ T

0
(u(t ) − 〈x(t )〉) cos(πkt/T ) dt, (8)

thus yields low-dimensional vectors �c = (c0, . . . , c5) in fre-
quency space (with corresponding number of oscillations
Nk = k/2) on which we apply clustering. We join the

GRAPE PS and GRAPE RS result sets, selected by the criteria
0.267 ms < T < 1.068 ms and F > 0.6, since the player and
random seeds were dominant in different regions. We use
ε = 0.1 and minsamples = 250. These parameters were chosen
such that a single cluster is identified per cosine component.

Figure 12 shows the clustering results. Each cluster is
labeled by its dominant coefficient corresponding to a half-
integer or integer number of oscillations, which is evident
from the cluster means when transforming back into real
space. When solutions are colored according to their cluster
membership in the aggregate plot, we uncover a clear hier-
archy of the solution strategies corresponding to the clusters:
within the full set of time intervals considered, each strategy is
sequentially globally optimal in ascending order of oscillation
number with approximately equal interval lengths. As the
globally optimal strategy transitions, the now inferior locally
optimal strategy remains a relatively broad attractor for an
appreciable interval of duration T , leading to the plateaus
observed in Fig. 11.

Based on the presented analysis, we do not believe we have
found the true best results and associated minimal durations
since (i) neither PGRAPE PS ∪ PS, GRAPE PS, or GRAPE RS

alone produce the best results, and (ii) the solution densi-
ties are shifted away from the optimal strategies with high
variances. In particular, the GRAPE PS solution at 0.887 ms in
Fig. 11 strongly suggests the existence of optimal solutions
in this vicinity from the k = 4 solution strategy shown in
Fig. 11. Their discovery, however, is evidently obfuscated
due to the other active, locally optimal solution strategies
(k = 3, 5) in this region. Based on this analysis one could
imagine alleviating this issue by developing a seeding mecha-
nism parametrized to specifically target the k = 4 strategy.

This demonstrates that this is the most challenging of the
three examined problems in terms of landscape complexity.
We have, however, successfully identified the hierarchy of
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--

FIG. 12. Shake Up clustering results. (a) Component weights ck

with colors corresponding to the different clusters. The bars denote
the mean and standard deviation whereas the different lines only
help to guide the eye. (b) Cluster means in real space color-coded
as above. (c) Fidelity distribution color-coded as above.

solution strategies that could guide further attempts at locating
the ultimate minimal durations.

VIII. STATISTICAL PERFORMANCE

Here, we provide an alternative way of characterizing the
statistical method performance, which is not based on solution
densities, and in addition assess the relative usefulness of
the preselection heuristic introduced in Sec. IV. Instead, we
compare statistics when only a restricted number of seeds are
allowed to be optimized. This emulates either the restriction
of computational resources (e.g., no cluster for parallel com-
putation is available) or an increased numerical difficulty of
the problem (i.e., operations are more expensive in wall time,
allowing fewer seeds to be optimized within the same time
frame).

Regardless of either interpretation, we estimate a mean
minimal duration 〈T fit

min〉 for F = 0.99 as a function of the
sample size, Nsamples, on the aggregate results in Figs. 4, 8,
and 11. The procedure is based on fitting randomly sampled
solutions in a specified interval T. Concretely, the procedure
runs as follows:

(1) Divide the interval T = [0.8, 1.2] · T F=0.99
min into 15

subintervals of equal width.
(2) Sample Nsamples solutions within T.
(3) Within each subinterval, select the solution with the

highest fidelity and discard the rest.
(4) Linearly fit the subset from step 3 with log10[1 −

F (T )], i.e., assume exponential behavior in T , and denote by
T fit

min the duration where the fit value corresponds to F = 0.99.
(5) If T fit

min ∈ T (interpolation), then it counts as a success.
If it lies outside T (extrapolation), then it counts as a failure.

(6) Repeat 2–5 Ntrials = 1000 times.
(7) Compute the mean value 〈T fit

min〉 over successful trials.
(8) Compute the empirical success rate (estimated proba-

bility of success) P (T
fit

QSL ∈ T) = Nsuccesses/Ntrials.
Including only the successful trials in 〈T fit

min〉 avoids skew-
ing the mean due to extreme outliers (i.e., due to too small
negative slope), and the information about these is instead
captured in P (T

fit

QSL ∈ T). Thus, for a randomly sampled set
of solutions, their T fit

min will in the mean be 〈T fit
min〉 with prob-

ability P , or fail with probability 1 − P . In the following we
denote triples of these quantities as {Nsamples, 〈T fit

min〉 ,P}.
Figure 13 shows the results for different methods in all

three levels. Taking the generic GRAPE RS method as a baseline
comparison, one finds that the average behavior of PGRAPE PS

∪ PS (in-game player seeding and player optimization) tends
to be worse in all levels: it has a comparatively high 〈T fit

min〉 and
a low P for small sample sizes, for instance {30, 1.15, 0.2} in
Bring Home Water. An exception occurs beyond Nsamples =
200 where the players in-game perform better on average, but
only in this level.

Thus player methods without additional optimization did
not yield a superior approach on average. Upon optimization,
however, GRAPE PS displays significant statistical performance
increases over GRAPE RS across all three levels (implying
also that players terminated their optimization prematurely
and thus did not themselves realize the full potential of
their seeds). This is particularly illuminating for Shake Up
as neither of the two methods was clearly shown to be bet-
ter in Sec. VII. There, O(103) seeds were optimized, and
at those sample sizes we indeed find coincidence of the
two methods’ statistical performance capacities in Fig. 13.
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FIG. 13. Estimated 〈T fit
min〉 in units of T F=0.99

min and empirical success rate (estimated probability of success) P (T
fit

QSL ∈ T) as a function of
sample size. (a), (b) Bring Home Water, (c), (d) Splitting, and (e), (f) Shake Up. Strong statistical performance is signified by low Nsamples

having simultaneously low 〈T fit
min〉 and high P .

However, as Nsamples is decreased, GRAPE PS becomes statis-
tically superior.

We now turn to the effectiveness of the preselection heuris-
tic. Preselecting (Pr) the best individual 600 PS and PO (i.e., the
output from PGRAPE PS) seeds and optimizing these we see a
significant shift in statistical performance. The GRAPE Pr-PO

and GRAPE Pr-PS methods are observed to require up to sev-
eral orders of magnitude fewer samples to produce the same
〈T fit

min〉 across all three levels compared to the baseline GRAPE

RS (without preselection). Moreover, their success rates are
significantly higher than any other method for small sample
sizes (rivaled only by SA in Bring Home Water) and only dips
below unit P in Shake Up. For the most extreme case, compare
{30, 1.135, 0.95} for GRAPE Pr-PO and {30, 1.146, 0.07} for
GRAPE RS. Obtaining the same 〈T fit

min〉 and P in GRAPE RS

occurs at much higher sample sizes ({120, 1.135, 0.70}, and
{260, 1.109, 0.95}, respectively). Similar trends are seen for
the other levels, e.g., in Bring Home Water at Nsamples = 30,
where GRAPE Pr-PO obtains {30, 0.999, 1} and GRAPE RS ob-
tains {30, 1.104, 0.688}.

Based on these findings, it might be reasonable to ex-
pect that preselection of RS seeds would lead to similar
improvements. In this case, however, much smaller relative
improvements are observed. This shows that, across all levels,
the structure of the best player seeds places them much more

prominently in the (abstract) green region of optimality of
Fig. 1 than the best random seeds.

The 〈T fit
min〉 reduction gained by increasing the sample size

for GRAPE Pr-PO is minimal and quickly saturated in Bring
Home Water and Splitting, while this is not true for Shake
Up. This reinforces the conclusion that Shake Up is the most
difficult problem overall considered in this work. The only
instance where GRAPE Pr-PO is matched in performance at
the same Nsamples occurs in Splitting. Here GRAPE Pr-RS inter-
sects near Nsamples = 200, the maximum sample size for the
preselection-based methods. However, practically the same
〈T fit

min〉 can be achieved using just Nsamples = 30 with GRAPE

Pr-PO.
Additionally, the relative difference between Pr-PO and

Pr-PS signifies roughly how valuable the in-game player op-
timizations were in terms of absolute results for a given level
(cf. statistics in captions of Figs. 4, 8, and 11). Bring Home
Water and Shake Up show a clear gain while Splitting is nearly
unaffected, lending itself again to the interpretation that it has
the least difficult landscape topography.

The SA (nb = nt ) method performs very well in Bring
Home Water (with the caveats described in Sec. V also dis-
cussed shortly). The SA (nb = 40) method is unsurprisingly
seen to have the unequivocally worst overall statistical per-
formance, even in the linear case, 〈T fit

min〉 scales comparatively
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FIG. 14. Results (lower is better) for GRAPE (dark blue), SA (nb = nt ) (turquoise), and SA (nb = 40) (mint green) using the same 100 RS

seeds at T F=0.99
min ≈ 0.0973, 0.92, 0.89 ms for the three levels, respectively. (a) Bring Home Water, (b) Splitting, and (c) Shake Up. Each line

denotes an optimization trajectory as a function of wall time. The translucency is related to the density distribution and the three dotted lines
indicate the 25%, 50%, and 75% quantiles for all active optimizations.

poorly with Nsamples. For Shake Up both these methods fail
(P = 0) for all Nsamples. The failure is, again, less severe for
Splitting.

A. Algorithmic run time

Observations on end-of-optimization results in Figs. 4, 8,
and 11 do not account for the associated computation times,
except in the time-out termination condition.

Figure 14 shows the optimization trajectories for RS meth-
ods as a function of wall time for the same 100 seeds at or
near T F=0.99

min in each level [50]. These are separate from the
previous results, and each seed had in this case a maximum
optimization time of roughly 13 min. The quantile statistics
consider only ongoing optimizations, i.e., they do not include
solutions converged at earlier times.

In Bring Home Water, we clearly see that SA (nb = 40)
rapidly improves the fidelity initially, lending merit to its
usefulness (as discussed in Appendix C). This is owed to the
speed at which a full iteration can be carried out, i.e., where all
parts of the control domain are adjusted once. The mean time
per complete iteration is 14.2 ± 1.4 s. Further speed up can
be achieved as pointed out in Appendix C. However, progress
stagnates and terminates before F = 0.99 due to the reduced
resolution. A better choice for the heuristic resolution parame-
ter 40 < nb < nt would address this issue. The full resolution
SA (nb = nt ) does not suffer from stagnation, but progress is
initially orders of magnitudes slower since control values at
successive times are completely uncorrelated and a full itera-
tion takes much longer. The mean time per complete iteration
is 219 ± 31 s. GRAPE completes an iteration in 0.27 ± 0.03 s
and performs about the same as SA (nb = nt ) until around
400s. Beyond this point SA (nb = nt ) dominates in the mean,
reflecting that GRAPE RS finds only the inferior, locally op-
timal strategy with less efficiency. Recall that, as opposed to
GRAPE, SA optimizes only u1(t ) and is not subject to derivative

regularization (smoothness criterion) [51] of the control, and
the algorithm therefore effectively solves an easier problem
in the current implementation. Inclusion of both points would
likely lead to a doubling in computation time (i.e., stretching
the turquoise and green lines by a factor 2 on the x axis in
Fig. 14) to obtain similar results to the ones presented, making
them more or less coincidental with GRAPE RS near 800 s.
However, we do not believe this would drastically change the
conclusions in terms of the overall performance in Sec. V.

In Shake Up, SA (nb = 40) and SA (nb = nt ) complete an it-
eration in 159 ± 13 s and >800 s, respectively, but never reach
high fidelities. GRAPE completes an iteration in 0.76 ± 0.08 s
and fares comparatively much better. Similar numbers are
found in Splitting.

IX. DISCUSSION

We have presented Quantum Moves 2, a citizen-science
game in which players act as seeding mechanisms and initial
optimizers for quantum optimal control problems. Selecting
three distinct problems in the game for analyses, we applied
different optimization methods (combinations of algorithms
and seeding strategies) to these. For each problem, we ex-
amined the (a) respective methods’ results and efficiencies,
(b) optimal solution strategies, (c) overall problem structures,
and (d) statistical performance capacities through a separate
random sampling procedure. Here we summarize the findings.

In Bring Home Water, a single-particle problem, we
identified two solution strategies (front- and back-swing)
characterized by an exponentially widening gap between
them. Using the same resources and a gradient-based al-
gorithm (GRAPE), the player-infused seeds uncover both
strategies efficiently whereas the random seeds only find the
inferior, locally optimal strategy at durations relevant for
high-fidelity transfers. Imposing increasingly more structure
a posteriori from physical insight on the random seeds allows
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discovery of the globally optimal strategy, albeit with signifi-
cantly reduced overall efficiency. Employing a gradient-free
stochastic ascent algorithm (SA) with random seeds and a
strong enforced behavior on one of the controls (tweezer
maximally deep at all times), we find both strategies with high
efficiency. The success of SA is explained by a combination
of the optimization landscape’s structure (many, small local
traps and a few, sufficiently broad optimal attractors), the
algorithm’s search methodology (allowing it to escape the
abundant local traps), and the linearity of the equations of mo-
tion (reducing algorithmic complexity). On an optimization
algorithmic level, the comparatively reduced efficiency of the
gradient-based algorithm is due to its inability to escape these
traps. Thus, the efficiency is due to the algorithm and not the
seeding strategy; using SA with player seeds is expected to
yield results at least as good as SA with random seeds.

In Splitting, a BEC problem, we identified a single solu-
tion strategy. This strategy was found efficiently by both the
player-infused and randomly seeded gradient-based methods.
The gradient-free algorithms with random seeds fail due to the
nonlinearity of the equations of motion (resulting in increased
algorithmic complexity), with the exception that one variant
is somewhat successful in the limit of large durations—the
optimization landscape is thus so simple that even a numeri-
cally inefficient algorithm can possibly discover the globally
optimal strategy in this regime with the allotted resources.

In Shake Up, another BEC problem, we identify four solu-
tion strategies involving low frequency oscillations around the
BEC center-of-mass. Each strategy, individually characterized
by a dominant half-integer number of oscillation periods, is
globally optimal at different durations in order of lowest to
highest number of oscillations. Outside of their respective re-
gions, each strategy remains a broad locally optimal attractor,
leading to plateaus in the optimization results. Based on these
results, neither of the gradient-based methods are found to
be the best on their own, but each exhibits exclusive regions
of dominance. In this instance, the gradient-free algorithms
completely fail. From these observations, we conclude that
the optimization landscape is very complex and we do not
believe we have found the ultimately best results. Further
efforts could, however, be guided by the identified strategies.

Through random sampling, we then found that the sta-
tistical performance of player seeds was always better than
random seeds upon cluster optimization in all the stud-
ied levels when restricting the sample size (equivalent to
increased numerical difficulty or restricted available compu-
tational resources). This could be considered a tiebreaker for
the methods’ similar absolute performances in the Shake Up
problem. Additionally, preselecting the player solutions based
on best initial fidelity significantly increases their relative
performance when optimized, whereas the same preselection
procedure improves the random seeds to a lesser comparative
extent. This can be interpreted as the best player solutions
being more likely to be located in the green region of op-
timality in Fig. 1. The benefit diminishes gradually as the
sample size is increased and the overall optimization land-
scape more densely explored. This echoes previously drawn
conclusions—given enough resources (correspondingly a
sufficiently large sample size) most combinations of algo-
rithms and seeding strategies achieve similar absolute results,

given they at least partially cover the green region of optimal-
ity.

As outlined in the introduction, we attribute the observed
advantage of player seeds over the random seeds to the use of
human common sense which presumably draws upon analo-
gies with classical fluid behavior. It remains to be seen if this
advantage could be maintained in optimization of quantum
processes involving decoherence (mixed states) or entangle-
ment or even simultaneous evolution of different possible
input states, such as in quantum gates. In the citizen science
context, we believe that the answer depends on how strong
these effects are (their effect on the state evolution) and, cru-
cially, the degree to which relevant information about the state
can be represented in an “intuitive” and meaningful graph-
ical manner. For example, entanglement between motional
degrees of freedom, as in, e.g., two interacting particles in
1D, could be visualized as a two-dimensional density distri-
bution (one dimension per particle) represented as an image
with shade/color coding of the values or even as a three
dimensional surface. Further, the multiple orthogonal states
representing unitary evolution operators, in, e.g., quantum
gates, could be displayed in parallel (on top or above each
other) while a common potential affecting them is moved
by the player. Nevertheless, ample citizen science questions
about single pure state control remain unanswered and are
prospective candidates for immediate follow up works.

We now return to the two initial citizen science related
questions Q1 and Q2 discussed in the introduction. A main
feature of Quantum Moves 2 was an in-game optimization but-
ton enabling players to store and optimize candidate solutions
on their local device. This clearly underscored the player’s
role in the search for overall, global features in solutions (that
is, locating the green region of optimality in Fig. 1), whereas
fine-grained, local optimization could be left to the optimiza-
tion algorithm. This certainly supports a sequential, “one-off,”
player-computer interaction. However, with supporting tools
(such as replay and the ghost feature, see Appendix A) the
game also enables more intertwined, hybrid human-computer
interactions in which players gain insight by examining the
output of the computer optimization and can thereby improve
their search for promising features and heuristics. Further
study of this will be left for future work.

Figures 4, 8, and 11 demonstrate that the method of
player-seeding with player-invoked local-device optimization
(PGRAPE PS ∪ PS) performs roughly on par (in terms of best
achieved results) with the best performing fully algorithmic
approaches under consideration in each problem. For the two
hardest challenges, Bring Home Water and Shake Up, this
method outperforms the randomly seeded GRAPE and SA, re-
spectively. Thus, we suggest, as proposed in Q1, that it could
indeed make sense to develop a framework, like Foldit has
done for protein folding, in which the solution of quantum
problems are outsourced to the general population. In Q2, we
ask if the game-based approach could actually yield a compu-
tational advantage. A full answer to this question should entail
comprehensive comparison to the best possible expert-driven
optimization. Here, we take first steps in that direction with a
baseline benchmark comparison to off-the-shelf optimization
with initialization that is as heuristic-free as possible. We find
that GRAPE with player seeds (GRAPE PS) is the only method
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that is roughly optimal across all three levels, the exception
being a small window in Shake Up. These results should
only be understood as a necessary baseline study and a first
demonstration for further exploration, and they should not
be taken as a guarantee that player-based seeding is advan-
tageous when comparing to increasingly complex algorithmic
strategies. However, outside of immediate performance capa-
bilities, player-generated data may show additional potential
because, similar to machine learning-generated data [52–54],
they constitute a means for researchers to address problems
that is not influenced by any expert biases. This can inform
the extraction of heuristics and insights that can subsequently
be understood, utilized, and expanded upon by the domain
expert. An indication of this was seen in the most complex
challenge, Shake Up, in which player and randomly seeded
methods were globally optimal at different durations, as they
probed different parts of the interleaved optimal strategies.
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APPENDIX A: INTERFACE

The player is faced with two main views within a level:
the dynamic view and the graph view. A simplified version
of these is shown in Fig. 15. In the dynamic play view, the
player generates a seed by dragging the round cursor (lower
solid turquoise dot) to the round target point (upper trans-
parent turquoise dot). The position of the cursor is linearly
mapped by f1 and f2 [Eqs. (4)] to the instantaneous control
function values, {u1(t ), u2(t )} = { f1(xcursor (t )), f2(ycursor (t )}),
which dynamically alter the potential (green). The instanta-
neous wave function density (dark green solid with red line)
propagates in the current potential (green line) and the goal is
to match the target state density (yellow line) without excess
excitation at the end, as the target states are stationary. The
path traced by the cursor can have any shape, but it is clamped
to remain within the control boundaries (turquoise dashed
bounding box). In the graph view, the solution is indicated
by a dot on an F (T ) graph corresponding to its final fidelity
and transfer duration. Note that the fidelity axis is nonlinear
and the T axis is normalized by an approximate reference
T F=0.99

min bound found by a conventional optimization before
the launch of the game. The T axis is divided into 12 blocks of
equal size. Each block contains three green lines of increasing
fidelity. Points are accrued within each block by placing a
solution with the highest fidelity possible relative to these.
The uppermost green line is the challenge curve, which are
reference results found by conventional GRAPE methods. The
remaining lower green lines are motivational game elements
without any scientific significance.

In either view the player can click a button to start or stop a
GRAPE optimization of the currently selected solution. During

FIG. 15. Partial screen shots of the two main views in Quantum
Moves 2. Much of the UI has been hidden for simplicity. (a) Dy-
namic play view with dynamic potential (green), instantaneous wave
function density (red line with dark green area), and target state
(yellow outline). (b) Graph view. Each solution corresponds to a
point in the graph. The duration axis is normalized by an approximate
T F=0.99

min bound and is divided into 12 blocks. The uppermost green
line (the challenge curve) corresponds to the best solution found by
conventional methods prior to the launch of the game. Any point can
be selected for optimization. (c) The player can invoke the embedded
optimization algorithm (PGRAPE) by toggling the switch.

optimization the point will climb in the graph view and the
final wave function density will become increasingly similar
to the target outline in the dynamic view. The player also
has other tools available (not shown) such as replaying the
time evolution of a solution in real time or setting a solution
as a ghost that plays along during dynamic play. This can
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help the player determines strategies by recognizing certain
high-level characteristics inspired by the solutions found by
the optimizer, or players can try to mimic certain behaviors.

APPENDIX B: NUMERICS AND CONTROL PROBLEMS

The state transfers ψ0 → ψtgt considered in this paper are
simulated and solved in the QEngine [51], our C + + software
package for quantum optimal control. On top of this library is
an interfacing code layer exposing functionality and facilitat-
ing interoperability with the Unity C# game code.

The system dynamics is governed by the Schrödinger equa-
tion ih̄ψ̇ = Ĥψ , where the Hamiltonian is parametrized by up
to two control parameters, Ĥ = Ĥ (u1(t ), u2(t )). More con-
veniently we can write the state at final time T as |ψT 〉 =
Û |ψ0〉 where Û = T exp (−i

∫ T
0 Ĥ (u1(t ′), u2(t ′))dt ′) is the

time-evolution operator and T denotes time-ordering. The
goal is thus to find a set of optimal controls {u∗

1(t ), u∗
2(t )} that

implements ψT = ψtgt (up to a global phase) or, equivalently,
maximizes the fidelity F = | 〈ψtgt|ψT 〉 |2 = | 〈ψtgt|Û |ψ0〉 |2 �
1.

The continuous time parameter is discretized on a regular
grid t ∈ {t1, t2, . . . , t j, . . . tnt } with sufficiently small spacing
δt , and the spatial dimension is similarly discretized. We may
then approximate Û ≈ ∏nt −1

j=1 Ût j = Ûtnt −1 . . . Ût1 where Ût j =
Û [u1(t j ), u2(t j )] is the local time evolution operator, ψt j+1 =
Ût j ψt j . The control functions are bounded

{
umin

1 , umin
2

}
� {u1(t ), u2(t )} � {

umax
1 , umax

2

}
, (B1)

and the control values fixed at t = 0 and t = T , depending
on the level. For optimizations only, controls and bounds are
linearly transformed into 0 � ui(t ) � 1 for i = 1, 2.

Units: For numerical purposes we obtain nondimensional-
ized [51] working equations such that effectively h̄ = m = 1
and

iψ̇ = −κ
∂2ψ

∂x2
+ V ψ + g|ψ |2ψ, (B2)

where κ is a constant that can be used to gauge the units.
SI and simulation units are related by αSI = μ[α]αsim where
μ[α] is the chosen unit for the dimension of quantity α and
αsim is the dimensionless number entering, e.g., Eq. (B2)
(the subscript is henceforth omitted for brevity and quantities
written without units imply simulation values). We take the
atomic species to be rubidium-87 atoms such that the unit of
mass is μmass = mRb = 87 amu and we take the energy unit
to be μenergy = h̄/μtime. Fixing two elements of the triplet
{κ, μlength, μtime} determines the remaining element to pro-
duce Eq. (B2).

Bring Home Water. The units are fixed by

κ = 0.5, μlength = 532 nm, (B3a)

⇒ μtime = 2μmassκμ2
length/h̄ = 0.38731 ms. (B3b)

Time steps are of size δt = 3.5 × 10−4 and x ∈ [−3, 3]
with nx = 256 grid points. The sum of the tweezer potentials,
initial control values, and bounds are given by

V (u1, u2) = u2(t ) exp

(−2[x − u1(t )]2

σ 2

)

+ A exp

(−2(x − x0)2

σ 2

)
, (B4a)

{u1(0), u2(0)} = {u1(T ), u2(T )} = {−1,−130}, (B4b)

{−2,−150} � {u1(t ), u2(t )} � {2, 0}, (B4c)

where σ = 0.5, x0 = 1, A = −130 (≈ −53.42 kHz h).
The frequency of the harmonic approximation when the

control tweezer is maximally deep and centered on x0 is
ω = √−4(A + umax

2 )/(mRbσ 2) ≈ 66.93 (≈ 436.8 kHz).
Shake Up. The units are fixed by

μlength = 1 μm, μtime = 1 ms, (B5a)

⇒ κ = h̄μtime/
(
2μmassμ

2
length

) = 0.36537. (B5b)

Time steps are of size δt = 1 × 10−3 and x ∈ [−2, 2] with
nx = 256 grid points. The atom chip potential (see Ref. [51]
and references therein), initial control values, and bounds are
given by

V (u1) =
∑

r=2,4,6

pr[x − u1(t )]r, (B6a)

u1(0) = u1(T ) = 0, −1 � u1(t ) � 1, (B6b)

with coefficients and nonlinear coupling strength

p2 = 65.8392, p4 = 97.6349, (B7)

p6 = −15.3850, g1D = 1.8299. (B8)

Splitting. The units are the same as in Eqs. (B5a)–(B5b)
with the addition of μmagnetic = 1 G = 10−4 T. Time steps are
of size δt = 1 × 10−3 and x ∈ [−3.5, 3.5] with nx = 256 grid
points. The atom chip potential for ω = 2π1.26 MHz after
nondimensionalization (see also Refs. [36,56]), initial control
values, and bounds are given by

V (u1) = p

√
(BS (x) − Bω )2 +

{
[0.5 + 0.3u2(t )]

2BS (x)
BI

}2

, (B9a)

u2(0) = 0, u2(T ) = 1, 0 � u2(t ) � 1, (B9b)

In this form, p = (μmagneticμ
BohrmF gF )/μenergy = 8794.1

is an overall factor (μmagnetic has been factored out from un-
der the square root), and mF = 2, gF = 1/2 are the internal
hyperfine state and Landé factors, respectively. Additionally,

Bω = 0.9 and BS (x) =
√

(Grx)2 + B2
I , where Gr = 0.2 is a

magnetic field gradient and BI = 1. We take g1D = 1.8299.

APPENDIX C: ALGORITHMS AND RESOURCES

Here we expand on the algorithms described in Sec. IV and
the optimization resources employed in Secs. V–VII.

Outside the game, optimizations were performed in large
batches on a computer cluster. Each seed was optimized until
it met any of the pertinent termination criteria listed in the
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following subsections. The initial minimal allotted time was
roughly 13 min per seed. To maximize resource use, excess
time for seeds that terminated due to the other criteria was
divided equally amongst the remaining seeds and added to
their minimal times.

Inside the game, PGRAPE ran locally on the player devices
until manually stopped by the player, convergence (step size
below 10−7), or F = 0.999, incurring no computational cost
for us.

1. GRAPE

Our variant of the standard GRAPE methodology includes
derivative regularization (γ = 10−6) and boundary cost terms
(σ = 2 × 103, see Ref. [51] for details).

The pertinent stopping conditions for GRAPE are: exceed-
ing the allotted optimization wall time (minimum ∼13 min),
exceeding the fidelity threshold (F � 0.999), or subceeding
the line search threshold (αk < 10−7). In the case of PGRAPE,
the wall time condition is replaced by an in-game button as
described in the text.

A single GRAPE iteration requires calculating the gradient
(2nt time steps), calculating the L-BFGS quasi-Newton search
direction (negligible cost), and performing a line search (∼5nt

time steps on average in our implementation), for a total time
step cost of 7nt . This algorithm is fully exploitative (local)
with an exploratory (global) component induced through mul-
tistarting [30].

2. (Discrete) stochastic ascent

This section reviews and expands the analysis of the
stochastic ascent algorithm from Ref. [20]. In the following,
we assume a single control parameter for simplicity. The time
axis is segmented into nb bins of equal width w which have
the same control value, such that nt = wnb. For example, for
w = 3

�u = {ut1 , ut2 , ut3

ub1

, ut4 , ut5 , ut6

ub2

, . . . , utnt −2 , utnt −1 , unt

ubnb

}.

The propagator for the first bin is Ûb1 = Ût3 Ût2 Ût1 and the
pattern continues for the other bins [57]. We then allow ubk

to assume only values from a predefined discrete set  =
{ud}nd

d=1 (this choice is discussed at the end of the section).
Using nd = 128, these values are linearly spaced from the
lower to the upper control boundary, see Eq. (B1).

Updating ubk is done by exhaustively computing the fidelity
for all possible values in  and setting ubk corresponding to
the maximal value,

ubk ← argmax
ubk ∈

F
(
ub1 , . . . , ubk−1 , ubk , ubk+1 , . . . , ubnb

)
,

while keeping the other control values fixed (discrete coordi-
nate ascent [58]). When ubk has been updated, it is not chosen
for further updates until all the remaining points have also
been updated. Updating all points once constitutes an iteration
and the sequential control update order is stochastic within
each of these. As is, bandwidth limitations are only imposed
by the choice of nb, but one could easily accommodate a
derivative regularization term as in GRAPE. The pertinent stop-

ping conditions are: exceeding the allotted optimization wall
time (minimum ∼13 min), exceeding the fidelity threshold
(F � 0.999), or when the algorithm achieves no gain in fi-
delity by changing any of the control values.

Exhaustive evaluation of the fidelity for bin k can be sped
up for the linear Schrödinger equation (g = 0),

F
(
ubk

) = ∣∣〈ψtgt

∣∣ψtnt

〉∣∣2 = ∣∣〈χbk+1

∣∣Ûbk

∣∣ψbk

〉∣∣2
, (C1)

since the forward-propagated |ψbk 〉 = ∏k−1
j=1 Ûb j |ψ0〉 and

backward-propagated |χbk+1〉 = ∏k+1
j=nb

Û†
b j

|ψtgt〉 vectors for
all times up to and after bin k, respectively, only need to
be calculated and cached once per bin update. Upon finish-
ing the evaluation, the update is applied to the control and
forward-propagated state. Additionally, the matrix representa-
tion of the time-evolution operators Ûd corresponding to every
element in  can be precomputed and cached in memory,
changing the time-stepping method to a single matrix-vector
multiplication [20] instead of the Fourier split-step method.

The first control value update requires (nt + nd ) time steps
after which the forward/backward vectors have been ini-
tialized and cached. Calculating the new forward/backward
vectors and updating for a subsequent bin at k′ requires only
w|k − k′| time steps when reusing the old vectors. If k < k′,
then the ψ cache is updated and the χ cache otherwise.

We may write the average time step distance w 〈|k − k′|〉 =
wρnb = ρnt where ρ ≈ 1/3 is found empirically. Performing
subsequent updates thus costs (nt/3 + nd ) time steps when
averaged over all bins. The average number of time steps
required to complete a full iteration is thus nb(nt/3 + nd ),
except the first iteration which costs an additional 2nt/3 due
to forward/backward vector cache initialization [59].

In the nonlinear case g �= 0, the explicit state depen-
dence has severe consequences for the algorithm’s feasibility.
First, the time evolution operators Û j cannot be precom-
puted since they depend on ψ , which changes as the control
changes. Second, it does not make sense to maintain a cache
for backward-propagated vectors; altering the control at tk
changes the ψ state trajectory from k to nt and the backward-
propagated vectors depend on these in the nonlinear case.
In this case one may just as well evaluate the fidelity at
tnt using the first equality in Eq. (C1). The ψ cache only
needs to be updated when k < k′, yielding w 〈|k − k′|〉k<k′ =
wnb/6 = nt/6. From there, evaluating the fidelity of a single
ubk ∈  requires w|nb − k| time steps which must be done
for all nd elements. Averaging over a full iteration yields
w〈 | nb − k | 〉 = wnb/2 = nt/2. Consequently, the number of
time steps needed to update a single point ubk changes as
nt/3 → nt/6 and nd → nd nt/2.

Thus roughly an additional nbnd nt/2 time steps must be
performed when g �= 0, each of which has an increased com-
putation time because Ûd cannot be cached. The differences
between the two cases is summarized in Table I.

The speed with which the stochastic (coordinate) ascent
operates comes at the cost of not being able to perform corre-
lated, simultaneous control value updates between bins. This
could easily be remedied, in principle, by updating np bins
instead of just a single one. However, such an approach is
untenable for the discrete version even for small np > 1 if one
desires exhaustive search: the update cost would then depend
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TABLE I. Summary for g = 0 and g �= 0 for SA.

Linear (g = 0) Nonlinear (g �= 0)

Caching Ûd , ψ, χ ψ

Time evolution Matrix × vector Fourier split-step
Time steps/iter nb( 1

3 nt + nd ) nb( 1
6 nt + 1

2 nt nd )

on the largest index distance between the parameters and an
exponential number of discrete combinations n

np

d .
The fast linear evaluation (g = 0) for the SA algorithm

is independent of the choice to restrict control values to a
discretized set of values. For example, it would be straight-
forward to use the same fast evaluation methodology with
derivative-based methods and perform line searches. Such a
change in update rule shifts the exploration versus exploitation
tradeoff: the discrete version is in a sense fully exploratory
(the search is globally exhaustive), but only along one axis at a
time. Obviously, discretization and fixing the remaining axes
produces a reduced representation of the underlying control
landscape with respect to which the discrete version exhibits
a mix of global- and local search properties. Abandoning

discretization and performing line searches turns the algo-
rithm into a fully exploitative one, but again only along a
single axis. This is the more standard version of coordinate
ascent [60]. In our implementation, line searching usually
requires about 5 � nd objective evaluations [61], allowing
potentially orders of magnitude fewer time steps (nd → 5
in Table I) when close to an optimum. Although such an
approach does not allow caching of the unitary time evolution
operator since the controls can take any value, the aforemen-
tioned benefits should more than compensate for this during
the local adjustment phase. In this setting, however, the ad-
vantageous convergence rates associated with derivatives and
adaptive step sizes is only with respect to the chosen axis—
there are no theoretical guarantees for convergence in the full
dimensional landscape [60]. In light of these observations,
it would be interesting to combine the three methodologies
with handover techniques, for example, starting with the most
global algorithm and ending with the most local one,

discrete SA → gradient SA → GRAPE.
The performance of such a combination would be interest-

ing to try on the different seeding strategies discussed in the
main text and is a potential subject of future work.

[1] D. Heaven, Why deep-learning AIs are so easy to fool, Nature
574, 163 (2019).

[2] S. Jiang, S. Lu, and D.-L. Deng, Vulnerability of machine learn-
ing phases of matter, arXiv:1910.13453 (2019).

[3] G. Marcus, The next decade in AI: Four steps towards robust
artificial intelligence, arXiv:2002.06177 (2020).

[4] G. J. Fletcher, Psychology and common sense, IEEE Eng.
Manage. Rev. 14, 30 (1986).

[5] S. Carruthers and U. Stege, On evaluating human problem solv-
ing of computationally hard problems, J. Probl. Solving 5, 4
(2013).

[6] B. Koepnick, J. Flatten, T. Husain, A. Ford, D.-A. Silva, M. J.
Bick, A. Bauer, G. Liu, Y. Ishida, A. Boykov et al., De novo
protein design by citizen scientists, Nature 570, 390 (2019).

[7] D. Kahneman, Thinking, Fast and Slow (Macmillan, New York,
2011).

[8] D. Dellermann, P. Ebel, M. Söllner, and J. M. Leimeister, Hy-
brid intelligence, Bus. Inf. Syst. Eng. 61, 637 (2019).

[9] P. Michelucci and J. L. Dickinson, The power of crowds,
Science 351, 32 (2016).

[10] E. Kamar, Directions in hybrid intelligence: Complementing
AI systems with human intelligence, in Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI)
(2016), pp. 4070–4073.

[11] A. Berditchevskaia and P. Baeck, Future of minds and
machines, Nesta report (2020), https://media.nesta.org.uk/
documents/FINAL_The_future_of_minds_and_machines.pdf.

[12] E. Baltz, E. Trask, M. Binderbauer, M. Dikovsky, H. Gota,
R. Mendoza, J. Platt, and P. Riley, Achievement of sustained
net plasma heating in a fusion experiment with the optometrist
algorithm, Sci. Rep. 7, 1 (2017).

[13] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T.
Green, C. Qin, A. Žídek, A. W. R. Nelson, A. Bridgland, H.
Penedones, S. Petersen, K. Simonyan, S. Crossan, P. Kohli,

D. T. Jones, D. Silver, K. Kavukcuoglu, and D. Hassabis,
Improved protein structure prediction using potentials from
deep learning, Nature 577, 706 (2020).

[14] https://gitlab.com/quatomic/quantum-moves2.
[15] A. Lieberoth, M. K. Pedersen, A. C. Marin, T. Planke, and

J. F. Sherson, Getting humans to do quantum optimization-user
acquisition, engagement and early results from the citizen cy-
berscience game quantum moves, Hum. Comput. 1 219 (2014).

[16] C. Díaz, M. Ponti, P. Haikka, R. Basaiawmoit, and J. Sherson,
More than data gatherers: exploring player experience in a
citizen science game, Qual. User Exp. 5, 1 (2020).

[17] J. J. Sørensen, M. K. Pedersen, M. Munch et al., Retraction
Note: Exploring the quantum speed limit with computer games,
Nature 584, 484 (2020).

[18] J. J. Sørensen, M. K. Pedersen, M. Munch, P. Haikka, J. H.
Jensen, T. Planke, M. G. Andreasen, M. Gajdacz, K. Mølmer,
A. Lieberoth et al., Exploring the quantum speed limit with
computer games, Nature 532, 210 (2016).

[19] A. Grønlund, Explaining the poor performance of the Kass
algorithm implementation, arXiv:2003.05808 (2020).

[20] D. Sels, Stochastic gradient ascent outperforms gamers in the
quantum moves game, Phys. Rev. A 97, 040302(R) (2018).

[21] A. Grønlund, Algorithms clearly beat gamers at quantum
moves: A verification, arXiv:1904.01008 (2019).

[22] S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen,
A. Leaver-Fay, D. Baker, Z. Popović et al., Predicting protein
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