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Modeling protein target search in human chromosomes
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Several processes in the cell, such as gene regulation, start when key proteins recognize and bind to short DNA
sequences. However, as these sequences can be hundreds of million times shorter than the genome, they are hard
to find by simple diffusion: diffusion-limited association rates may underestimate in vitro measurements up to
several orders of magnitude. Moreover, the rates increase if the DNA is coiled rather than straight. Here we model
how this works in vivo in mammalian cells. We use chromatin-chromatin contact data from Hi-C experiments to
map the protein target-search onto a network problem. The nodes represent DNA segments and the weight of the
links are proportional to measured contact probabilities. We then put forward a diffusion-reaction equation for
the density of searching protein that allows us to calculate the association rates across the genome analytically.
For segments where the rates are high, we find that they are enriched with active gene starts and have high RNA
expression levels. This paper suggests that the DNA’s 3D conformation is important for protein search times in
vivo and offers a method to interpret protein-binding profiles in eukaryotes that cannot be explained by the DNA
sequence itself.
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I. INTRODUCTION

Several processes in the cell nucleus start when proteins
bind to specific DNA sequences. For example, transcription
factors that regulate genes and the CRISPR/CAS9 complex
that edits DNA [1,2]. Because target sequences are much
shorter than the genome—a few base pairs compared to bil-
lions in humans—these proteins face a needle-in-a-haystack
problem.

Despite the large number of potential targets, measured
search times are shorter than theoretical estimates. The Lac
repressor in E. coli needs 1–5 min to find its designated site
[3] which is twice as fast as a three-dimensional (3D) diffusive
search inside the bacterium’s volume (≈ 2–11 min).1 Also,
diffusion-limited association rates—Smoluchowski’s rate—
may underestimate in vitro measurements by one to two orders
of magnitude [4]. These examples suggest that some proteins
search by other mechanisms than simple diffusion.

One mechanism that speeds up the search is offered by
the Facilitated-diffusion model [5]. In this model, the proteins
alternate between 3D diffusion and 1D diffusion along the
DNA. This lowers the search time because the proteins may
take shortcuts through the surrounding bulk to linearly distant

*ludvig.lizana@umu.se
1Diffusion-limited search time, τ = 4πaD/V where D = 0.1–0.5

μm2/s, a = 5 bp (=1.3 nm), and V = 1μm3. These values give τ =
2.1–10.7 min.
Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

DNA segments. Although criticized [6,7], the model is widely
accepted after experiments in bacteria [3,8] and in vitro [9].

Another important aspect of target finding is rebinding.
This is because proteins likely bind to a DNA segment that is
close by in 3D rather than far away. Several modeling studies
examined this aspect and found that search times change with
DNA conformation [7,9–14]. However, because these studies
treat the DNA using standard polymer models, the results
cannot be generalized beyond bacteria to eukaryotes that have
longer DNA with a more complex 3D structure.

The most widely used experimental method to study the
3D organization of the genome is Hi-C [15,16]. The Hi-C
method cross-links close by DNA fragments inside the nu-
cleus and gives a genome-wide map of the number of contacts
between fragment pairs [Fig. 1(a)] [17]. Mamalian Hi-C maps
have several interesting features where some are evolutionary
conserved [18]. For example, the blocklike structure along the
diagonal represents densely connected 3D domains. The lo-
cations of these domains correlate with protein binding sites,
active genes, and chromatin states [19–21].

Hi-C is the state-of-the-art Chromosome Conformation
Capture method that estimates the chromatin contact prob-
abilities across the genome. However, it does not provide
chromatin’s 3D structure. Going from the contact map to a
computer-generated 3D structure is difficult [22,23].

Because chromatin’s spatial organization is so complex,
there are but a few attempts to model protein search in eukary-
otes. One exception [24] represents chromatin as a crumpled
polymer globule. However, while it reproduces the average
looping probabilities measured in human the crumpled glob-
ule lacks 3D domains.

We offer a new approach to the DNA-search problem in
eukaryotes that does not rely on chromatin’s explicit 3D struc-
ture. Instead, similar to Refs. [21,25,26], we incorporate the
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FIG. 1. Modeling protein search on DNA as search on a weighted network. (a) Hi-C map: the colors represent the number contacts (in
log10) between 10 kilo-basepair (kb) DNA fragments in a part of human chromosome 21. Dark pixels indicate many contacts (dynamic range:
∼100–105). (b) Schematic representation of the model. Key parameters: jump rates between nodes i and j (ωi j), unbinding rate to the bulk
(koff ), and rebinding rate (kon). Red circles represent searching proteins. (c) Coarsed network representation of the Hi-C map in (a). Each node
represents a 160 kb fragment. The link weights vi j are proportional to the number of Hi-C contacts. We assume that ωi j ∝ vi j . Node numbering
refers to positions along the DNA.

3D structure by representing the DNA as a network in which
the nodes are DNA segments, and the link weights are the
contact probabilities measured in Hi-C. Then we put forward
a diffusion-reaction equation for the protein density on the
network that allows us to calculate the association rate—the
inverse mean-first passage time—to all nodes analytically.
Correlating these rates with genetic data in humans, we find
that easy-to-find loci, such as gene starts, reside in regions
with active transcription.

II. THE MODEL

We model the proteins’ search on chromatin as nonin-
teracting particles that move between nodes in a weighted
network that represents physically connected chromatin seg-
ments (Fig. 1). The model has three parameters. First, the
jump rate ωi j between nodes i and j (i, j = 1, . . . , N ). We
assume that ωi j equals the probability pi j to jump between
segments i and j multiplied by the frequency of a successful
jump (collision frequency) fcoll. As a proxy for pi j , we use
the number of Hi-C contacts vi j . That is, ωi j = fcollvi j , where
we treat fcoll as a free parameter setting the time-scale in our
problem.

The second parameter is the binding rate k̄on to a randomly
chosen node. Assuming that the protein bulk concentration
cbulk is constant, we may use that kon = k̄oncbulk; The third
parameter is the unbinding rate koff to the surrounding bulk.kon

and koff have the unit: time−1.
For clarity, we use population-averaged Hi-C data. As

such, we lack cell-to-cell variability and some transient loops.
In the model, we therefore envision the chromosomes as a
rigid structures where the probability to jump from one seg-
ment to another is proportional to the number of contacts.

Based on these parameters, we formulate a diffusion-
reaction equation for the protein number in node i at time t ,

ni(t ):

dni(t )

dt
=

N∑
j=1

ωi jn j (t ) − koff ni(t ) + kon. (1)

The first term represents diffusion on the network—we put
ω j j = −∑

i �= j ωi j—and the two remaining terms describe the
exchange with the bulk.

We let one node in the network, i = a, represent a target.
As we focus on what happens up until it is reached, we treat
the target as an absorbing node, na(t ) = 0, that cannot be
blocked by other searchers.

In terms of the eigenvalues λ j and eigenvectors Vi j of ωi j ,
the solution to Eq. (1) is

ni(t ) =
N∑

j=1

Vi j

{
k j

on

koff − λ j
[1 − e−(koff −λ j )t ]

+ e−(koff −λ j )t
∑
l �=a

V −1
jl nl (0)

}
, (2)

where ki
on = kon

∑N
j=1 V −1

i j and nl (0) is the initial protein
number concentration.

III. PROTEIN ASSOCIATION RATES

To calculate the association rate to target node a, Ka, we use
that the rate is one over the mean first arrival time: Ka = τ−1

a .
To obtain τa, first we calculate the number of particles that
arrived to the target up to t :

Ja(t ) =
∫ t

0
ja(t ′)dt, ja(t ) =

∑
i

ωaini(t ) + kon, (3)

where ja(t ) is the particle flux. The flux has two contributions.
The first term describes particles that find the target from
another DNA site, and the second term describes those that
reach the target from the bulk.
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Second, if Np is the initial protein number on the network
and kon = koff = 0, then Ja(t )/Np is the probability that one
protein reached the target up to time t . The probability that
the target has not been reached by any protein—the target’s
survival probability—is therefore Sa(t ) = (1 − Ja(t )/Np)Np

and τa = ∫ ∞
0 Sa(t )dt . Generalizing this argument for kon >

0, the number of proteins Np → ∞ and therefore Sa(t ) 	
exp (−Ja(t )) [27].

Finally, using ni(t ) from Eq. (2), we get

Ka = 1∫ ∞
0 exp (−Ja(t ))dt

, (4)

Ja(t ) = kont +
∑
i �=a

ωai

∫ t

0
ni(t

′)dt ′. (5)

A. Limiting cases for Ka

Depending on the unbinding rate koff , Ka has three regimes.
(i) Small koff . In this regime, most particles find the target

before they unbind. This leaves the initial density approxi-
mately unchanged, ni(0) 	 ρ0(1 − δia), where ρ0 = kon/koff .
Using this approximation in Eq. (5) leads to Ja(t ) 	 J̄at ,
where J̄a = kon + ρ0

∑N
i �=a ωai ≡ kon + ρ0Wa. Thus, Ka 	 J̄a.

(ii) Large koff . Here, the particles unbind and rebind
many times before finding the target. The protein density
is therefore approximately in steady-state ρ̄a = kon × [koff +
Wa/(N − 1)]−1 (see Appendix C 2). Using ni(t ) 	 ρ̄a and
proceeding as in (i) gives Ka 	 kon + ρ̄aWa.

To simplify our equations, we rescale all rate constants
in terms of fcoll and a constant factor that ensures that the
genome-wide average Ka is unity (see Appendix C). We de-
fine the average as 〈X 〉 = (1/NG)

∑NG
i=1 Xi, where NG  N is

the number of nodes for all chromosomes. Then we denote
the rescaled variables as K̂a = Ka/〈Ka〉, k̂on = kon/〈Ka〉, and
k̂off = koff/〈Ka〉. After rescaling, the regimes (i) and (ii) sim-
plifies k̂off � 1 and k̂off  1:

K̂a 	 k̂on + γa jVa, (6)

in which Va = ∑N
i �=a vai is the node strength, and

γa1 = 1 − k̂on

〈Va〉 , k̂off � 1, (7)

γa2 = k̂onγa1

k̂on + Vaγa1/(N − 1)
, k̂off  1. (8)

Because Hi-C matrices are large, Eq. (6) offers a huge
improvement compared to evaluating Eqs. (2), (4), and (5)
directly. In Appendix D, we show that Eq. (6) holds for a
broad range of k̂off .

(iii) Intermediate k̂off . When k̂off ∼ 1, we cannot use
Eq. (6). Instead we must evaluate Eqs. (4) and (5). In
Appendix B, we also treat the case kon = koff = 0.

B. Protein association rates depend
on chromatin’s 3D organization

Equation (6) suggests that the association rates change with
chromatin’s 3D structure because K̂a depends on the node
strength Va. To quantify by how much, we used Hi-C data
from human cell line GM12878 [28] (40 kb resolution) and

calculated K̂a (k̂off � 1) for chromosomes 1-21 (Fig. 2). We
found that K̂a varies by several orders of magnitude relative
to the genome-wide average 〈K̂a〉 = 1. Most K̂a values, how-
ever, are close to the mean: K̂a = 1 ± 0.0027 (95% confidence
interval).

Equation (6) also suggests that chromatin’s 3D structure
becomes less important as the unbinding k̂on is large, for
example if the bulk concentration is high (k̂on ∝ nbulk). We see
this for small Va where K̂a 	 k̂on (Appendix F). We interpret
this as if the particles reach the target mostly from the bulk.
However, for small k̂on, we see that K̂a ∝ Va. This means that
most particles find the target via jumps on the network and
that the 3D structure is important.

C. Chromatin regions with high association rates are enriched
with active genes

Figure 2 shows that the association rate varies across the
genome. This is important for regulatory proteins, such as
transcription factors, that look for promoters to control tran-
scription. We therefore ask: are promoter regions easier to find
than nonpromoter regions?

To answer this, we downloaded gene annotation data for
human cells [28] to extract the gene starts. We considered all
genes in the data, protein-coding and noncoding. We defined
the starts by the transcription start site (TSS) that is furthest
away from the gene’s end. We omitted alternative TSSs.

After we extracted the TSSs, we correlated their positions
with the association rates from Fig. 2. We found that the rates
grow with the number of gene starts per node (Fig. 3, pink).
In the plot, the data points represent the average association
rate to all nodes with the same number of gene starts, and
the shaded area shows the 95% confidence interval. In other
words: regions with a high density of gene starts are easy to
find.

Then we asked: because these regions harbour active and
inactive gene starts, are active gene-dense regions easier to
find than inactive ones? To see this, we grouped the gene
starts into two classes. The first group are the TSSs that reside
in transcriptionally active regions. We denote these TSSs as
“active.” The second group (“inactive”) consists of TSSs that
are in transcriptionally inactive regions. To make the classifi-
cation, we used RNA-seq data from cell line GM12878 and
averaged the RNA read count in a region ± 1kb surrounding
each TSS. We define the region as active if the average read
count is above one.

Based on this grouping, we found that nodes with many
active TSSs have even higher association rates than if we
do not separate active from inactive: gray is above pink in
Fig. 3. For nodes with inactive reagions, we find the inverse
relationship suggesting that they are hard to find: green is
below pink in Fig. 3.

Figure 3 also shows that the association rate grows slowly
beyond one or two TSSs per node: adding a few extra TSSs
does not make the node easier to find.

D. Chromatin regions with high RNA expression levels have
high association rates

Figure 3 suggests that transcription factors quickly find
highly transcribed gene starts. But how does the association
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FIG. 2. Predicted genome-wide association rates K̂a for chromosomes 1-21. K̂a vary by several orders of magnitude but the 95% confidence
interval is a few percent of the mean 〈K̂a〉 = 1 (K̂a = 1.0 ± 0.0027). We calculated K̂a from Eq. (6) (k̂off � 1) with k̂off = 0.002, k̂on = 0.001,
and ρ0 = 0.5. k̂off  1 show similar behavior, see Appendix E

rate correlate with genome-wide expression levels (including
potentially unannotated genes).

To study this, we summed the RNA expression in all nodes
in the genome and ranked them based on their RNA expres-
sion level. Then we partitioned the nodes into 20 equally
sized groups and calculated the association rate in each group.
Shown as a violin plot [Fig. 4(a)], we find that our predicted
rates vary widely but that the median (white circles) increases
with high RNA expression levels (Spearman’s correlation co-
efficient = 0.5449 [29]). This suggests that nodes with high
RNA expression levels are relatively easy to find.

To see by how much this correlation is caused by active
regions harboring genes, we made two new groups: nodes
with at least one active TSS and the rest—nodes with inactive
or no TSSs. As before, we ranked the nodes in these large
groups based on the RNA expression levels, divided them into
20 equally sized subgroups, and calculated the average asso-
ciation rate for each subgroup. Plotting the predicted average
association rate for the two large groups versus the average

FIG. 3. Nodes with many gene starts have higher predicted as-
sociation rates than nodes with few gene starts. We define the gene
starts as the Transcription Start Sites (TSSs). The curves represent
predicted association rates K̂a to nodes with active TSSs (gray), in-
active TSSs (green), and any TSS type (pink). The active TSSs have
higher K̂a than the genome-wide average (dashed), whereas nodes
with inactive TSSs (green) are below (except one data point). The
symbols represent the average K̂a (Eq. (6), k̂off  1) and the coloured
areas show the 95% confidence interval. Parameters (dimensionless,
see Appendix C): k̂off = 0.002, k̂on = 0.001, and ρ0 = 0.5. We omit-
ted data points with less than 7 TSSs per node. The k̂off  1 case has
the same trend, see Appendix E.

RNA expression level as well as the average for all nodes
[Fig. 4(a)], it is hard to discern any significant difference as all
curves nearly lie on top of each other [Fig. 4(b)]. This result
shows that it is not only the highly transcribed gene starts that
are relatively easy to find, it is any actively transcribed region.
Repeating the same analysis for another cell type (K562), we
found similar results, see Appendix G.

FIG. 4. Highly transcribed nodes are are easy to find.
(a) Genome-wide distribution of K̂a for all nodes divided into 20
groups based on their RNA expression levels. White circles: the
median; horizontal bars: the mean; the dashed line; genome-wide
average 〈K̂a〉 = 1. (b) Predicted K̂a as function of RNA expression
level for nodes with at least one active TSS (grey) and no active
TSSs (purple). Same grouping procedure as in (a). Nodes with ac-
tive TSSs tend to be above the genome-wide average (18 points
above 〈K̂a〉), while most nodes with no active TSSs are below (6
points above 〈K̂a〉). The shaded areas show the 95% confidence
interval. Parameters: k̂off = 0.002, k̂on = 0.001, and ρ0 = 0.5. We
used data for cell line GM2878 but find similar results for K562, see
Appendix G.
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FIG. 5. Association rate increases with the fraction of transcribed
DNA. This is similar to the RNA expression level which also in-
creases with the association rate. Parameters: k̂on = 0.001 and k̂off =
0.02.

Several studies show that there is experimental noise in
Hi-C data. To estimate by how much the association rates are
affected by this, we removed 25% of the weakest contacts
in each chromosome and recalculated K̂a. While the values
differ, the qualitative results are the same, see Appendix J.

Furthermore, we also checked if the K̂a values are high
because of high GC content as this is a known bias in Hi-C
experiments [30]. To this end, we downloaded the reference
genome sequence (hg19 [28]) and calculated the GC content
(in percent) in every node. We found that it has a small pos-
itive correlation with K̂a, see Appendix L. This suggests that
regions with more TSSs should have higher K̂a because gene
promoters have a high GC content. However, the green area in
Fig. 3 shows the opposite. It shows that K̂a declines with the
number of TSSs in transcriptionally inactive regions even if
the GC content grows and is comparable to the active regions
(that, admittedly, have high K̂a, see grey area). We, therefore,
conclude that any eventual GC bias in the Hi-C experiments
is not enough to explain our results.

E. Accessible chromatin regions have high association rates

Accessible chromatin regions are, in general, associated
with gene expression and regulation. We therefore asked if
regions with accessible DNA have high association rates.

As a measure of DNA accesibilty, we calculated the frac-
tion of basepairs that are associated with at least one RNA
transcript for every 40 kb region across the genome. Based on
this fraction, we divided all nodes into 20 equally sized groups
and calculated the average association rate within each one.
We show the result in Fig. 5. The figure shows a clear correla-
tion between the association rate and DNA accessibility. This
correlation is marginally higher than for RNA expression: the
Spearman’s correlation coefficient is 0.56 compared to 0.54.

In addition to the fraction of transcribed DNA, we studied
the association rates in open chromatin defined by DNase-seq
data. This data set shows regions on the DNA that are cleaved
by the DNase I enzyme. In Appendix K, we show that high
association rates tend to have high DNase-seq signals.

Based on these findings, we conclude that accessible re-
gions are easy to find.

IV. DISCUSSION AND SUMMARY

Protein-binding experiments show that association rates
change if the DNA is short, long, straight, or coiled [4,9].
This is partly explained by the facilitated-diffusion model
with simple assumptions for DNA-looping probabilities [13].
However, these assumptions are not consistent with chro-
matin’s 3D structure in eukaryotes. To remedy this, we used
Hi-C data as proxy for the 3D proximity between chromatin
segments in vivo, and constructed a DNA-contact network.
Then we formulated a diffusion-reaction equation that al-
lowed us to calculate association rates analytically. Using
human Hi-C data, we compared the predicted association rates
with RNA expression data and positions of gene starts. We
found that regions which are easy to find—measured by high
association rates—are enriched with active genes and have
high RNA expression levels.

Some of our results overlap with [31]. They found that
short regions bound by Transcription factors, known as bind-
ing hotspots, coincide with chromatin loop anchors. This
agrees with polymer simulations showing that particle den-
sities are higher close to polymer loops. Just as in our work,
this suggests that 3D conformation must be considered when
analyzing protein-binding profiles.

We consider diffusion-limited search. However, some tran-
scription factors, such as TetR [32], seem reaction-limited.
To accommodate this case in our approach we may follow
[33]: denoting the protein-DNA binding rate as kDNA, and
reinterpreting the on rate kon as an effective on rate keff.

on , we
may write 1/keff.

on = 1/kon + 1/kDNA where Ka = keff.
on + γaVa.

In this work, we consider the limit kDNA → ∞.
We did not consider chromosome-chromosome contacts.

To check this assumption, we calculated the ratio of inter-
nal versus external contacts from Hi-C data. Depending on
which chromosomes we included, we found that 75%–90%
of the contacts are internal. However, this number should
be taken with caution because of the low signal-to-noise
ratio [34].

Furthermore, we did not consider the low-copy number
regime. This could be done with the chemical master equa-
tions [35]. However, as a rule of thumb, transcription factor
concentrations are in the nanomolar range. This amounts to
100–103 proteins in bacteria and 103–106 in human cells. So
in mammals, the many-searcher limit is reasonable.

Overall, this study provides a framework to predict protein-
binding positions dictated by chromatin contact maps in the
cell nucleus. As such, it opens new ways to interpret binding
profiles of transcription factors that cannot be explained by
the DNA sequence [1,36]. Mechanistic understanding of these
profiles is essential to reach a molecular understanding of gene
regulation.
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APPENDIX A: PARTICLE FLUX THROUGH THE TARGET

The number of proteins that reached the target up to time t
is Ja(t ). For nonzero kon and koff , it reads

Ja(t ) =
∑

j

ωa j

∑
i

Vji

{
ki

on

koff − λi

[
t − 1 − e−t (koff −λi )

koff − λi

]

+1 − e−t (koff −λi )

koff − λi
ρ0

∑
l �=a

V −1
il

}
+ kont, (A1)

where λ j and Vi j are the eigenvalues and of eigenvectors ωi j .
Because λ1 = 0 is the largest eigenvalue, we can approximate
Eq. (A1) at times t  k−1

off with terms proportional to t

Ja(t ) 	 (
kon + T −1

a

)
t, T −1

a =
∑

j

ωa j n̄ j, (A2)

where the steady-state distribution is

n̄ j =
∑

i

Vjiki
on

koff − λi
. (A3)

The relation Ja(t ) 	 (kon + T −1
a )t coincides with the con-

tinuum approach in Ref. [14] for proteins that combines bulk
excursions with 1D sliding (jumping to nearest neighbours
in our model) and Lévy relocations with jump lengths x dis-
tributed like 	 |x|−1−α (0 < α < 2). Since ωi j 	 |i − j|−1−α

with 0 < α < 1—on average—we see that our model is a
network analog of Ref. [14].

APPENDIX B: PARTICLE FLUX THROUGH THE TARGET
WITHOUT BULK EXCHANGE

Here we investigate the case when proteins do not unbind
from the DNA. As kon, koff → 0, Eq. (A1) becomes

Ja(t ) =
N∑

k=1

ωak

N∑
i=2

Vki

|λi| (1 − e−t |λi|)
∑
j �=a

ρ0V
−1

i j

= Np −
N∑

k=1

ωak

N∑
i=2

Vki

|λi|e−t |λi|
∑
j �=a

ρ0V
−1

i j , (B1)

with Np = ρ0(N − 1). For large times, we know that Ja(t →
∞) = Np since by then all proteins have arrived to the
target. This leads to the simplification in the second row.
For small times t � |λN |−1—λN is the largest eigenvalue (in
magnitude)—where Ja(t ) � Np, we find the same behavior as
before, Ja(t ) ∝ t . This is seen by expanding Eq. (B1) around
t = 0.

APPENDIX C: DERIVATION OF EQS. (6)–(8)

1. Fast target finding (small koff )

When the unbinding rate koff is small compared to the
association rate Ka, the number of proteins per node is close to
its initial value ρ0 by the time of the first arrival to the target,
and we have the approximation

Ka = kon + ρ0Wa, (C1)

^

^

^

^

^

^

^

^

^

^

^ ^^ ^

FIG. 6. Comparison of the analytical approximations to the ex-
act, time-integrated association rate Eq. (D1), using Hi-C data from
chromosome 21 at 160 kb resolution. (a) The blue area represents
the fast target-search regime where k̂off � 1. The red area shows the
opposite regime, k̂off  1, where the system is close to its steady-
state and target finding is slow. We put the target in the middle of the
system a = N/2. In the two lower panels, we show the association
rates’ profile to all possible targets on chromosome 21 when k̂off � 1
(b) and k̂off  1 (c). Note the green and red circled dots in (b) and
(c), respectively. These correspond to the encircled parameter values
in panel (a).

where Wa = ∑
i �=a ωai. We may find this approximation by

expanding Eq. (A1) around t = 0 and using the inverse trans-
formation

∑
j Vi jq j (0) = ni(0) = ρ0(1 − δia).
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FIG. 7. Same as Fig. 3 in the manuscript but for large k̂off instead
of small. We recover the same trend: easy-to-find regions tend to have
many gene starts.

FIG. 8. The association rate vs the nodes’ strength Va (sum of all
link weights). (a) All data points follow the universal law K̂a = k̂on +
γa1Va [Eq. (C4)]. The density ρ0 = 0.5 is kept fixed in all four cases
as we increase kon. (b) Association rate during steady state (k̂off  1)
calculated from Eq. (C8). The behavior is not universal as it depends
on the number of nodes N for each chromosome contact network.
The dashed line represent the analytical formulas. As N , we used the
mean chromosome size.

FIG. 9. Same as Fig. 4 but for cell type K562 instead of
GM12878. The figure shows that highly transcribed nodes—in terms
of high levels of RNA expression—are are easy to find (low associa-
tion rates) even if there are active genes there or not. See the caption
of Fig. 4 in the manuscript for a more details on what the curves
represent.

Next, we rescale Eq. (C1) so that the genome-wide aver-
aged Ka is unity. Using that Wa = fcollVa, we may express fcoll

as

fcoll = 〈Ka〉 − kon

ρ0〈Va〉 (C2)

To obtain Eqs. (6) and (7) in the main text, we replace fcoll by
Eq. (C2) and use these definitions

K̂a = Ka

〈Ka〉 , k̂on = kon

〈Ka〉 , γa1 = 1 − k̂on

〈Va〉 . (C3)

This gives

K̂a = k̂on + γa1Va. (C4)

After this rescaling, the fast target-finding limit becomes
k̂off � 1.

2. Target finding in steady state (large koff )

When the unbinding rate k̂off is large compared to the
association rate K̂a, few proteins will find the target before
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leaving on a bulk excursion. In this limit, the system reaches
its steady state before the first arrival to the target. This leads
to the approximation

K̂a = k̂on + ρ̄aWa. (C5)

where ρ̄a the number of proteins per node in steady state.
To arrive at this equation we identify in Eq. (A2) that

J (t ) 	 K̂at . Then we replace the n̄ j by the approximate den-
sity ρ̄a that we find by the following argument. In steady
state, proteins bind to the DNA with rate k̂on. Except for
the absorbing target, there are N − 1 nodes available to bind.
Similarly, there are ρ̄a(N − 1) number of proteins that unbind
from the DNA with rate k̂off . Last, proteins are absorbed at the
target with rate T −1

a = ρ̄aWa. These three terms sum to zero,
and therefore

ρ̄a = k̂on

k̂off + Wa/(N − 1)
. (C6)

We may rescale Eq. (C5) as in the previous section using
Wa = fcollVa, fcoll from Eq. (C2), and the rescaled variables in
Eq. (C3). Combining these equations give

K̂a = k̂on +
k̂on

〈Ka〉−k̂on

ρ0〈Va〉 Va

k̂off + Va
N−1

〈Ka〉−k̂on

ρ0〈Va〉 Va

= k̂on + γa2Va, (C7)

where

γa2 = k̂onγa1

k̂on + Va
N−1γa1

. (C8)

APPENDIX D: VALIDATION OF APPROXIMATIONS

To better understand the validity of Eqs. (C4) and (C7), we
compare them to the exact association rate

Kexact
a =

(∫ ∞

0
exp(−Ja(t ))dt

)−1

. (D1)

Figure 6(a) shows how the association rate changes for
a specific target node—we choose a = N/2 in human chro-
mosome 21—as we change k̂off while keeping the on-rate
fixed, k̂on = 0.001, and adjusting the density ρ0 = k̂on/k̂off .
The solid grey line shows K̂exact

a and the horizontal lines rep-
resent the approximations for small and large k̂off —Eqs. (C4)
and (C7).

The blue area in Fig. 6(a) shows the large K̂a regime
(K̂a > 400k̂off ). Here, Eq. (C1) deviates only a few percent
from K̂exact

a : the deviation is 2.7%(≈ 1 − K̂a/K̂exact
a ) at the

encircled green dot. To get this number, we used k̂off = 0.002,
k̂on = 0.001 and ρ0 = 0.5—the same values that we used to
create all plots in the main text.

The pink area represents the opposite limit: small K̂a (K̂a <

k̂off/10). In this region, the approximation in Eq. (C7) is a
good match to K̂exact

a . At the red dot (k̂off = 2), the relative
error is 5.7%.

In the intermediate region (white area), we cannot use the
simple expressions because the flux J (t ) has a complicated
time-dependence. To get the association rate in this regime,
we have to evaluate Eq. (D1) directly.

In Figs. 6(b) and 6(c), we calculate the association rate for
all nodes in chromosome 21 using Eqs. (D1), (C4), and (C7)
with fixed parameters (shown in the figures). The figure shows
the limiting k̂off cases. In Fig. 6(b), the unbinding rate is small
(k̂off = 0.002), and we see that the approximation (C4) match
well with K̂exact

a whereas Eq. (C7) does not. Equation (C7)
matches better in Fig. 6(c) where the unbinding rate is large
(k̂off = 2).

APPENDIX E: GENOME-WIDE ASSOCIATION RATES
WHEN koff IS LARGE

In Fig. 2, we show the association rates when k̂off �
1. Here, we investigate the opposite limit by evaluating
Eq. (C7) and plotting the K̂a values as a genome-wide profile

(b)

(a)

FIG. 10. Genome-wide association rates K̂a at 40 kb resolution. (a) Ka for slow unbinding rates predicted by Eq. (C7). This complements
Fig. 2 showing Ka for fast unbinding rates. As in Fig. 2, most values deviate only from the average by a few percent (0.7531 ± 0.0018, 95%
confidence interval). We used these parameters: k̂off = 2, k̂on = 0.001 and ρ0 = 0.0005. (b) Ka predicted by Eq. (C7) (slow unbinding rate)
after we removed 25% of the weakest contacts. The genome-wide average is 〈K̂a〉 = 1 ± 0.0028 (95% confidence interval). We used same
parameters as in Fig. 2: k̂off = 2, k̂on = 0.001 and ρ0 = 0.0005.
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FIG. 11. (Left) A boxplot of the association rates for 40kb bins
with significant DNase-seq signal (Right) Association rates for all
40-kb bins across the genome. The y axis is cut at K̂a = 4, which
removes 13 outliers out of 66 452 data points.

[Fig. 10(a)]. We find that the curves for k̂off  1 and k̂off � 1
(Fig. 2) are almost identical, except for an offset on the y axis.

In the large k̂off limit, we also show how the number of
transcription start sites change with K̂a (Fig. 7). Compared to
Fig. 3 in the main text for small k̂off , the trend is the same as:
it is easy to find regions with many gene starts.

APPENDIX F: GENOME-WIDE ASSOCIATION RATE AS A
FUNCTION OF NODE STRENGTH

In Fig. 8(a), we show how K̂a—calculated from Eq. (C1)
(k̂off � 1)—varies with node strength Va for four different
values of k̂on with fixed ρ0 = 0.5; The symbols represent
values for individual nodes across the human genome. For
comparison, we plot the analytical prediction Eq. (C4). We
find that the search times are dominated by k̂on for weakly
connected nodes. For strongly connected nodes, we find the
universal behavior K̂a ∝ Va.

In Fig. 8(b), we show K̂a for all nodes in the other limit
k̂off  1. Here K̂a depends on the number of nodes N—via
ρ̄a in Eq. (C6)—and therefore we do not expect a universal
large-Va behavior.

APPENDIX G: ANALYSIS FOR CELL LINE K526

In the main text, we used data for cell line GM12878. Here
we explore if some of our results are cell-type specific. To
this end, we downloaded Hi-C and RNA expression data for
K562 [28] and reconstructed Fig. 4, see Fig. 9. Although there
are qualitative differences, the trend is the same for both cell
types: association rates grow with increasing RNA expression
levels.

APPENDIX H: DETERMINING TRANSCRIPTION
START SITES

From ENCODE, we downloaded the gene annotations (see
Ref. [38]). In the file, we searched for they keyword “gene”
and extracted the coordinate for the gene start. This position is
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FIG. 12. (Top) Boxplot of the gc content for 40kb bins with a
single transcription start site (TSS). The bins are separated in two
groups—active and inactive—based on the transcriptional activity
surrounding each TSS. As a reference, we show the gc content for
all Hi-C bins (“genome-wide”) (Bottom) The range of association
rates for the same three groups as to the left. The y axis is cut at
K̂a = 3 which removes about 10 outliers.

the transcription start site that is farthest away from the gene’s
end. In the data, there are alternative TSSs defined by lines
denoted by “transcript.” We omitted those in our analysis.

APPENDIX I: DETERMINING ACTIVE VERSUS
INACTIVE REGIONS

To distinguish between active and inactive regions, we use
RNA expression data (ENCODE, v.19). From the RNA read
counts, we calculated the average number of RNA reads per
base pair, n̄RNA, ±1 kb around each TSS. We defined a TSS as
transcriptionally active when n̄RNA � 1. Given this threshold
we found 32712 active and 20795 inactive TSSs.

APPENDIX J: PRUNING THE HI-C DATA

Several studies show that there is experimental noise in the
Hi-C data. To see by how much this affected the values of
our association rates, we removed weak contacts. Following
[26], we removed 25% of the weakest contacts and then
recalculated the association rates. In Fig. 10, we show the
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corresponding Fig. 2 in the main text. To quantify the differ-
ence before and after pruning, we correlated the association
rates in both cases with each other. We found that the correla-
tion is as high as 0.99986 (Spearman correlation coefficient).
In other words, removing a quarter of the weak contacts did
not change our results.

APPENDIX K: DNA ACCESSIBILITY

We used two metrics to measure accessible DNA: the frac-
tion of transcribed DNA (main text) and DNase-seq data. Here
we describe the DNase-seq analysis.

We downloaded DNase-seq peak-data from ENCODE [28].
This data is pre-processed to keep significant DNase-seq sig-
nals. Then we selected all 40 kb regions (Hi-C bins) that have
significant DNase peaks and at least one TSS. In Fig. 11, we
show a boxplot of how the association rates varies among
these regions compared to the genome. They are clearly higher
than the genome-wide average indicating that open chromatin
is easy to find.

APPENDIX L: GC BIAS

To make a fair comparison to see if our results are caused
by a GC bias, we calculated the GC content and association
rates in regions with the same gene density. To this end, we
took all 40-kb Hi-C bins with one TSS because these are most
abundant of the TSS-containing boxes. Then we downloaded
the reference genome sequence (hg19) and calculated the GC

content in all Hi-C bins across the genome that had a single
TSS. Then we separated these bins into two groups depending
on if the TSSs reside in active or an inactive regions (based
on the fraction of transcribed DNA as in Fig. 3). Then we
made a box plot for the GC content for each group [Fig. 12
(top)]. Albeit statistically significant—the Wilcox sum-rank
test rejects the hypothesis that the two groups come from
the same distribution with p = 10−12—the plot shows that
there is little difference in GC content between active and
inactive regions. In fact, these groups do not differ much from
the genome-wide GC distribution show in the rightmost box.

In the bottom panel, we show a box plot for the association
rates for the same two groups. The rates deviate more than
the GC content (the Wilcox sum-rank test gives p = 10−250

for the difference between active and inactive regions). We
also see that the box for the association rates for the inactive
regions is slightly below the box for genome-wide rates even
though the GC content is slightly higher.

We see a similar observation in Fig. 3 in the manuscript.
This figure shows how K̂a changes with the number of TSSs.
For TSSs in active regions, K̂a declines. For TSSs in active
regions, it grows. However, the GC content these groups is
not that different (indicated by Fig. 12). And furthermore, as
the number of TSS increases, so will the GC content. But for
the TSS in inactive regions, K̂a goes down. It does not go up
as it would if the GC content drives K̂a.

Altogether, these findings speak against a strong GC bias
even though it is hard to rule out with certainty.
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