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Scattering phase shift, as a key parameter in scattering theory, plays an important role in characterizing low-
energy collisions between ultracold atoms. In this work, we theoretically investigate the universal low-energy
behavior of the scattering phase shifts for cold atoms in the presence of spin-orbit coupling. We first construct
the asymptotic form of the two-body wave function when two fermions get as close as the interaction range, and
consider perturbatively the correction of the spin-orbit coupling up to the second order, in which new scattering
parameters are introduced. Then, for elastic collisions, the scattering phase shifts are defined according to the
unitary scattering S matrix. We show how the low-energy behavior of the scattering phase shifts is modified by
these new scattering parameters introduced by spin-orbit coupling. The universality of the scattering phase shifts
is manifested as the independence of the specific form of the interatomic potential. The explicit forms of the new
scattering parameters are analytically derived within a model of the spherical-square-well potential. Our method
provides a unified description of the low-energy properties of scattering phase shifts in the presence of spin-orbit
coupling.
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I. INTRODUCTION

Owing to their versatility, ultracold atomic gases pro-
vide ideal platform on which to study fascinating quantum
many-body phenomena in a highly controllable and tunable
way [1–3]. As a building block of interacting many-body
systems, the two-body problem is of fundamental im-
portance in ultracold atomic physics [4–6]. On the one
hand, two-body solutions determine the essential interac-
tion parameter in the many-body Hamiltonian. On the other
hand, the two-body physics even gives rise to a set of
universal relations that characterize various properties of
many-body systems, ranging from macroscopic thermody-
namics to microscopic correlation functions [7–10]. It then
opens up a new direction of studying many-body prob-
lems based on the two-body physics [11–20]. An important
feature of ultracold atomic systems is that the mean dis-
tance between atoms is usually much larger than the length
scale associated with interatomic potentials. Therefore, the
two-body scattering properties outside the interatomic po-
tential become independent of the short-range detail of
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the potential between atoms and are universally character-
ized by the so-called scattering phase shift [21]. More-
over, microscopic two-body scattering parameters, such as
the scattering length and effective range, can be defined
based on the low-energy expansion of the scattering phase
shift [22].

Recently, the successful attainment of the spin-orbit (SO)
coupling in cold atomic gases has been a remarkable break-
through [23–30]. Owing to the high controllability of cold
atoms in interatomic interaction, purity, and geometry [3,
31–34], SO-coupled cold atoms have became a manifold
platform for further researching and understanding of novel
phenomena in condensed-matter physics, such as topo-
logical insulators and superconductors [35–37]. However,
the introducing of SO coupling brings new challenges to the
few-body physics as well as many-body physics. In the
presence of SO coupling, the center-of-mass (c.m.) motions
of pairs are coupled to their relative motions [38]. Be-
sides, all the scattering partial waves are mixed, since the
orbital angular momentum of the relative motion of two
atoms is no longer conserved because of SO coupling [39].
These complications dramatically affect the theoretical de-
scription of interactions between cold atoms, and especially
modify the asymptotic behavior of the many-body wave
function when two atoms get close [40]. Then new scat-
tering parameters need to be introduced by SO coupling
besides the well-known scattering length and effective range
[41,42]. Consequently, Tan’s universal relations, governed by
the short-range behavior of the two-body physics, are also
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amended by SO-coupling. New contacts are then introduced
and additional universal relations related to SO-coupling
appear [41–46].

Two-body scattering problems in the presence of SO cou-
pling have comprehensively been studied in the past few years
[39,47–51]. However, a unified description of the low-energy
behavior of the scattering phase shift is still elusive. Since new
scattering parameters need to be introduced by SO coupling
[41,42], it is of special interest how these new scattering
parameters characterize the low-energy behavior of the scat-
tering phase shift, and whether it is universal and independent
of the specific form of interatomic potentials. It is the target
of the present work to address these issues. In this work,
we consider the two-body scattering problem of Fermi gases
in the presence of three-dimensional (3D) isotropic SO cou-
pling. We perturbatively take into account of SO coupling up
to the second-order correction and construct the short-range
asymptotic form of the two-body wave function. We show
that additional scattering parameters need to be introduced
by SO coupling, besides the scattering length (volume) and
effective range. Utilizing the unitarity of the elastic collision
between two fermions, we define the scattering phase shifts
according to the S matrix, and then represent the form of the
two-body wave function outside the interatomic potential by
the scattering phase shifts. By expanding the two-body wave
function at short distance, and comparing it with that obtained
perturbatively by introducing new scattering parameters, we
acquire the low-energy behavior of the scattering phase shifts.
The low-energy expansion of the scattering phase shifts, char-
acterizing by new scattering parameters, is found universal
and independent of the specific form of interatomic potentials.
As a simple example, we verify our results within a model of
the spherical-square-well potential. The explicit forms of new
scattering parameters introduced by SO coupling are analyti-
cally derived, which show excellent agreement with previous
numerical calculations near the s-wave resonance [39].

The paper is arranged as follows: To warm up, we briefly
review our method in Sec. II to construct the short-range
asymptotic form of the two-body wave function in the pres-
ence of SO coupling and take into account of the second-order
corrections of SO coupling. In Sec. III, the scattering phase
shifts are defined according to the unitary S matrix for elastic
collisions based on the exact two-body solution outside the in-
teratomic potential. Then the asymptotic form of the two-body
wave function represented by the scattering phase shifts is
obtained. By comparing this short-range form of the two-body
wave function with that obtained perturbatively by introduc-
ing new scattering parameters, the low-energy behavior of
the scattering phase shifts is then acquired in Sec. IV. The
explicit forms of the new scattering parameters introduced by
SO coupling are derived and verified by using the model of a
spherical-square-well potential in Sec. V. Finally, the remarks
and conclusions are summarized in Sec. VI.

II. MODEL AND TWO-BODY WAVE FUNCTION

To generalize our previous results [41,42], we briefly
review the introducing of new parameters in handling two-
body scattering problems with SO coupling and construct
the short-range form of the two-body wave function up to

the second-order corrections of SO coupling. Let us consider
two spin-1/2 fermions in the presence of 3D isotropic SO
coupling, and the single-particle Hamiltonian takes the form
of Refs. [39,41,51]

Ĥ1 = h̄2k̂2

2M
+ h̄2λ

M
k̂ · σ̂ + h̄2λ2

2M
, (1)

where k̂ = −i∇ and σ̂ are respectively the single-particle
momentum and spin operators, λ > 0 denotes the strength of
SO coupling, M is the atomic mass, and h̄ is Planck’s constant
divided by 2π . For two fermions, by introducing the c.m.
and relative coordinates R = (r1 + r2)/2 and r = r1 − r2 as
usual, the two-body Hamiltonian can formally be written as
Ĥ2 = Ĥcm + Ĥr with

Ĥcm = h̄2K̂2

4M
+ h̄2λ

2M
K̂ · (σ̂1 + σ̂2), (2)

Ĥr = h̄2k̂2

M
+ h̄2λ

M
k̂ · (σ̂1 − σ̂2) + h̄2λ2

M
+ V (r), (3)

which describe the c.m. motion with total momentum K̂
and relative motion with momentum k̂ = (k̂1 − k̂2)/2, re-
spectively. Here, V (r) is the short-range interaction potential
between two fermions. As discussed in Ref. [39], the total
angular momentum J of two fermions as well as their total
momentum K is conserved. We may conveniently focus on the
scattering problem in the subspace of K = 0 and J = 0. In this
case, the two-body Hamiltonian Ĥ2 is simply reduced to Ĥr ,
and only s- and p-wave scatterings are involved. Moreover,
the subspace of K = 0 and J = 0 is spanned by two angular
orthogonal basis {�0(r̂),�1(r̂)} [39,41,42]:

�0(r̂) = Y00(r̂)|S〉, (4)

�1(r̂) = − i√
3

[Y1−1(r̂)|↑↑〉 + Y11(r̂)|↓↓〉 − Y10(r̂)|T 〉],

(5)

where Ylm(r̂) with angular variable r̂ = (θ, ϕ) for the relative
motion of two fermions are the spherical harmonics, and
|S〉 = (| ↑↓〉 − | ↓↑〉)/

√
2 and {| ↑↑〉, | ↓↓〉, |T 〉 = (| ↑↓〉 +

| ↓↑〉)/
√

2} are the singlet and triplet spin states for two
fermions, respectively. Then the two-body wave function in
this subspace can generally be written in the form of

�(r) = ψ0(r)�0(r̂) + ψ1(r)�1(r̂), (6)

and ψi(r) (i = 0, 1) denotes the radial part of the wave
function.

The existence of SO coupling dramatically changes the
short-range behavior of the two-body wave function [40].
However, for a realistic interaction potential V (r) with a short
range ε, the SO-coupling strength λ as well as the relative
momentum k between two fermions is usually much smaller
than ε−1 in current experiments of cold atoms [24,25]. In this
case, we may perturbatively construct the asymptotic form of
the two-body wave function when two fermions approach as
close as ε, i.e.,

�(r) ≈ φ(r) + k2F (r) − λG(r) + k4X (r)

− λk2Y (r) − λ2Z (r). (7)
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To generalize our previous results [41,42], here we
take into account of the second-order corrections of
(k2, λ). Later we will see that these second-order correc-
tions modify the low-energy expansion of the scattering
phase shifts.

Substituting Eq. (7) into the two-body Schrödinger
equation Ĥ2�(r) = E�(r), following the similar route as that
in Ref. [41,42], and after some straightforward algebra, we
obtain the general form of the two-body wave function at short
distance (see Appendix for detail):

�(r) = α0

[
1

r
+

(
− 1

a0
+ b0k2

2
+ α1

α0
uλ − α1

α0
hλk2 − c0λ

2

)
−

(
k2

2
+ α1

α0
λk2 + 3λ2

2

)
r

]
�0(r̂)

+α1

[
1

r2
+ 1

2

(
k2 + 2λ

α0

α1
− λ2

)
+

(
− 1

3a1
+ b1k2

6
+ α0

α1
vλ − α0

α1
qλk2 − c1λ

2

)
r

]
�1(r̂)

+ O
(
r2

)
, (8)

for r � ε, where a0, b0 (a1, b1) are the well-known s-wave
(p-wave) scattering length (volume) and effective range, u, v

are the new scattering parameters resulting from the first-order
correction of SO coupling, and h, q, c0, c1 are those introduced
by the second-order correction of SO coupling. Here, α0

and α1 are two complex superposition coefficients. Near the
s-wave resonance, the contribution of the p-wave scattering
could be ignored and we have α1 ≈ 0. The short-range form
of the two-body wave function reduces to (up to a constant α0)

�0(r) =
[

1

r
+

(
− 1

a0
+ b0k2

2
− c0λ

2

)
− 1

2
(k2 + 3λ2)r

]
×�0(r̂) + λ[1 + (v − qk2)r]�1(r̂) + O(r2), (9)

which recovers the modified Bethe-Peierls boundary condi-
tion of Ref. [40] by noticing that we expand the wave function
up to order r at short distances and the second-order terms
of λ are retained. We can see that a considerable p-wave
component is involved because of SO coupling, even near
the s-wave resonance. In like manner, near the p-wave res-
onance, the contribution of the s-wave scattering is small
and could be ignored (α0 ≈ 0). Subsequently, the form of the
two-body wave function at short distance reduces to (up to a
constant α1)

�1(r) = λ[(u − hk2) − k2r]�0(r̂)

+
[

1

r2
+ 1

2

(
k2 − λ2) +

(
− 1

3a1
+ b1k2

6
− c1λ

2

)
r

]
×�1(r̂) + O(r2). (10)

Similarly, an s-wave component is induced by SO coupling
even near the p-wave resonance.

III. THE S MATRIX AND SCATTERING PHASE SHIFTS

The range ε of interaction potentials between neutral atoms
is usually much smaller than the inverse of the relative mo-
mentum k as well as that of the SO-coupling strength λ. The
two-body wave function outside the potential in the pres-
ence of SO coupling can easily be obtained by solving the
Schrödinger equation with V (r) = 0 for r > ε [51],

�(r) = A�
(in)
− (r) + B�

(in)
+ (r) + C�

(out)
− (r) + D�

(out)
+ (r),

(11)

with

�
(in)
± (r) = k±

[
h(2)

0 (k±r)�0(r̂) ± h(2)
1 (k±r)�1(r̂)

]
, (12)

�
(out)
± (r) = k±

[
h(1)

0 (k±r)�0(r̂) ± h(1)
1 (k±r)�1(r̂)

]
, (13)

k± = k ± λ, and k = (ME/h̄2)1/2. Here, h(1)
ν and h(2)

ν de-
note the νth-order spherical Hankel functions of the first and
second kinds, respectively, and A, B, C, D are superposition
coefficients. The physical meaning of the solution (11) is
apparent: due to unique properties of the single-particle dis-
persion relation [39,51], the incident wave with energy E is
an arbitrary superposition of two spherical waves with two
different magnitudes of momenta k± (corresponding to the
spherical Hankel function of the second kind h(2)

ν ); scattered
elastically by the interatomic potential V (r), the outgoing
wave becomes a different superposition of the same two
spherical waves (corresponding to the spherical Hankel func-
tion of the first kind h(1)

ν ).
Using the time-dependent Schrödinger equation

ih̄∂�(r, t )/∂t = Ĥ2�(r, t ), and noticing �(r, t ) =
ψ0(r, t )�0(r̂) + ψ1(r, t )�1(r̂), we easily obtain the following
continuity equation:

∂ρ

∂t
+ d j

dr
= 0, (14)

where ρ = r2(|ψ0|2 + |ψ1|2) is the radial probability
density, and

j(r) = ih̄

M
r2

[
1∑

i=0

(
ψi

dψ∗
i

dr
− ψ∗

i

dψi

dr

)

− 2λ(ψ∗
0 ψ1 − ψ0ψ

∗
1 )

]
(15)

is the radial probability current density. For the stationary state
of the system, the radial probability density ρ is obviously
independent of time, and thus the radial probability current
density j(r) is a constant. Moreover, we have j(r) = 0 at
r = 0, which in turn indicates that j(r) should be zero every-
where. Inserting the scattering solution Eq. (11) into Eq. (15)
and using j(r) = 0, we easily obtain

|A|2 + |B|2 = |C|2 + |D|2. (16)
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This means that the outgoing wave is different from the inci-
dent wave only up to a unitary transformation, i.e.,[

C
D

]
= S

[
A
B

]
, (17)

and S is a unitary 2 × 2 matrix determined by the specific
form of the short-range interaction potential. The unitarity of
the matrix S was confirmed by using a spherical-square-well
model of Ref. [51]. Here, we emphasize that this property is
obviously universal for any short-range interaction potential in
the presence of SO coupling, which is a natural consequence
of the probability conservation during elastic collisions.

The unitary S matrix can formally be diagonalized as

W †SW =
[

ei2δ0 0
0 ei2δ1

]
(18)

by

W =
[
ω0− ω1−
ω0+ ω1+

]
, (19)

where [ω0−, ω0+]T and [ω1−, ω1+]T are two eigenvectors of S
corresponding to different eigenvalues ei2δ0 and ei2δ1 . We can
see that δ0,1 are the new scattering phase shifts characterizing
the scattering effect in the presence of SO coupling. Inserting
Eq. (17) into Eq. (11), we may represent the solution �(r)
outside the interatomic potential by using eigenvectors and
eigenvalues of the S matrix, i.e.,

�(r) = α0�0(r) + α1�1(r), (20)

with

�i(r) = ωi−�
(in)
− + ωi+�

(in)
+ + ei2δi

(
ωi−�

(out)
− + ωi+�

(out)
+

)
,

(21)

and αi = ω∗
i−A + ω∗

i+B for i = 0, 1. Substituting Eqs. (12) and
(13) into Eq. (21), we arrive at

�i(r) = 2eiδi cos δi

1∑
ν=0

∑
η=±

ηνωiηkη[ jν (kηr)

− nν (kηr) tan δi]�ν (r̂) (22)

for i = 0, 1, where jν and nν are the νth-order spherical Bessel
functions of the first and second kind, respectively.

IV. LOW-ENERGY EXPANSION OF SCATTERING
PHASE SHIFTS

For ultracold atoms, the low-energy behavior of the scatter-
ing phase shift gives rise to some key microscopic scattering
parameters, such as the scattering length (volume) and effec-
tive range. In the presence of SO coupling, the low-energy
expansion of the scattering phase shift is expected to be mod-
ified. Then we may consider such modification perturbatively,
since the energy scale of the SO-coupling strength is usu-
ally much smaller than that corresponding to the range of
interatomic potentials. This can be done by simply compar-
ing the short-range expansion of Eq. (22) with those of Eqs.
(9) and (10).

Near s-wave resonances, we may expand Eq. (22) with i =
0 at small r and obtain

�0(r) =
(

1

r
+ k + ω0λ

tan δ0
− k2 + λ2 + 2ω0λk

2
r

)
�0(r̂)

+
[
ω0k − λ

k2 − λ2

1

r2
+ ω0k + λ

2
+ ω0(k2 + λ2) + 2λk

3 tan δ0
r

]
×�1(r̂) + O(r2) (23)

for r ∼ ε+, where we have omitted an overall factor 2(ω0+ +
ω0−)eiδ0 sin δ0 and introduced ω0 ≡ (ω0+ − ω0−)/(ω0+ +
ω0−). Comparing the corresponding terms between Eq. (23)
and Eq. (9), we find

k cot δ0 ≈ k2

k2 + λ2

(
− 1

a0
+ b0

2
k2 − c0λ

2

)
, (24)

which recovers that of Ref. [39] if we keep the terms in tan δ0

up to λ2 and notice b0 ≈ 0 near broad s-wave resonances. It
is apparent that δ0 is the counterpart of the s-wave scattering
phase shift in the absence of SO coupling, and then Eq. (24)
reduces to the well-known effective-range expansion of the s-
wave scattering phase shift, i.e., k cot δ0 = −1/a0 + b0k2/2 +
O(k4). In the presence of SO coupling, the new scattering
parameter c0 is involved, which modifies the low-energy be-
havior of the s-wave scattering phase shift.

Near p-wave resonances, we again expand Eq. (22) with
i = 1 at small r and obtain [up to an overall constant
2(ω1+/k+ − ω1−/k−)eiδ1 sin δ1]

�1(r) =
[
ω1(k2 − λ2)

k − ω1λ

1

r
+ (k2 − λ2)(ω1k + λ)

(k − ω1λ) tan δ1
− ω1(k4 − λ4) + 2λk3 − 2λ3k

2(k − ω1λ)
r

]
�0(r̂)

+
[

1

r2
+ (k2 − λ2)(k + ω1λ)

2(k − ω1λ)
+ k2 − λ2

3(k − ω1λ)

k2 + λ2 + 2ω1λk

tan δ1
r

]
�1(r̂) + O(r2) (25)

for r ∼ ε+, and ω1 ≡ (ω1+ + ω1−)/(ω1+ − ω1−). In like
manner, comparing the corresponding terms of Eq. (25) with
Eq. (10), we easily obtain

k3 cot δ1 ≈ k4

k4 − λ4

(
− 1

a1
+ b1

2
k2 − 3c1λ

2

)
. (26)

It recovers that of Ref. [39] near p-wave resonances
[52]. We can see that the SO-coupling induced scattering
parameter c1 is involved in characterizing the scatter-
ing phase shift δ1. Obviously, the scattering phase shift
δ1 is the counterpart of the p-wave scattering phase
shift in the absence of SO coupling. It reduces to the
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well-known effective-range expansion of the p-wave scat-
tering phase shift without SO coupling, i.e., k3 cot δ1 =
−1/a1 + b1k2/2 + O(k4).

V. A SPHERICAL-SQUARE-WELL POTENTIAL MODEL

Till now, we have discussed the introducing of new scat-
tering parameters in the short-range asymptotic behavior of
the two-body wave function and considered how these new
scattering parameters characterize and modify the scattering
phase shifts at low energy. To demonstrate that these new
scattering parameters c0 and c1 are not artificially introduced

by our perturbation method and are in fact physically deter-
mined by real interatomic potentials, in the following, we
consider a two-body scattering problem within a model of the
spherical-square-well potential, i.e.,

V (r) =
{−V0, 0 � r � ε

0, r > ε,
(27)

with the depth V0 > 0. By solving the Schrödinger equation
inside and outside the potential, respectively, and utilizing the
continuity of the two-body wave function at r = ε as well as
its first-order derivative, we obtain (see Appendix)

c0

ε
= −1 + Ṽ0

3
[√

Ṽ0 − tan
(√

Ṽ0

)]2 + 1

Ṽ0 −
√

Ṽ0 tan
(√

Ṽ0

) , (28)

c1ε = −
Ṽ0

[(−15 + Ṽ0
)√

Ṽ0 cos
(√

Ṽ0

)
+ 3

(
5 − 2Ṽ0

)
sin

(√
Ṽ0

)]
5
[
−3 + Ṽ0 + 3

√
Ṽ0 cot

(√
Ṽ0

)]2[√
Ṽ0 cos

(√
Ṽ0

)
− sin

(√
Ṽ0

)] , (29)

and Ṽ0 = Mε2V0/h̄2.

We present c0 as a function of the reduced depth Ṽ0 of
the potential near the s-wave resonance in Fig. 1. The new
parameter c0 introduced by SO coupling characterizes the
second-order correction of λ to the scattering phase shift
δ0 and has been numerically evaluated in Ref. [39] near
the s-wave resonance. Our analytical result, i.e., Eq. (28),
shows accurate agreement with the numerical calculation of
Ref. [39]. The scattering phase shift δ0 involves all short-
range information of the interatomic potential and governs the
s-wave scattering properties outside the potential r > ε. The

FIG. 1. The new scattering parameter c0/ε, characterizing the
second-order correction of λ to the scattering phase shift δ0, evolving
with the depth of the potential Ṽ0 = Mε2V0/h̄2. The red dashed line
indicates the s-wave resonance in the absence of spin-orbit coupling,
and the blue numerical data is from Ref. [39]. The inset shows the
position of s-wave scattering resonance changing with the spin-orbit-
coupling strength.

resonance position is determined by δ0 = π/2, which yields
the well depth Ṽ0 = π2/4 at the resonance in the absence of
SO coupling, as indicated by the red dashed line in Fig. 1.
When the SO coupling is gradually turned on, the resonance
position is dramatically shifted by SO coupling because of
considerable value of c0, as shown in the inset of Fig. 1.
For the same consideration, we plot c1 as a function of the
reduced depth Ṽ0 near the p-wave resonance in Fig. 2, which
characterizes the second-order correction of λ to the p-wave
scattering phase shift δ1. Unlike the case of the s-wave scat-
tering, we can see that c1 is extremely small near the p-wave

FIG. 2. The new scattering parameter c1ε, characterizing the
second-order correction of λ to the scattering phase shift δ1, evolving
with the depth potential Ṽ0 = Mε2V0/h̄2. The red dashed line indi-
cates the p-wave resonance in the absence of spin-orbit coupling. The
inset shows the position of p-wave scattering resonance changing
with the spin-orbit-coupling strength.
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resonance without SO coupling, which means the correction
from the SO coupling to the p-wave scattering phase shift
is negligibly small. Consequently, the resonance position is
nearly unchanged when the SO coupling is gradually turned
on as shown in the inset of Fig. 2.

VI. CONCLUSIONS

In this work, we investigate the two-body scattering prob-
lems of Fermi gases in the presence of the three-dimensional
isotropic spin-orbit coupling. Since the energy scale corre-
sponding to the spin-orbit-coupling strength is much smaller
than that corresponding to the range of interatomic potentials,
we perturbatively construct the asymptotic behavior of two-
body wave function when two fermions approach as close
as the interaction range. To generalize our previous results
[41,42], we consider up to the second-order correction of
the spin-orbit-coupling strength to the two-body wave func-
tion, and additional new scattering parameters are introduced.
Furthermore, the scattering phase shifts are defined based on
the unitary S matrix for an elastic collision. The low-energy
behavior of the scattering phase shifts is discussed, which is
modified by the new scattering parameters in the presence
of spin-orbit coupling. Our results naturally reduce to the
well-known effective-range expansions of the scattering phase
shifts without spin-orbit coupling. Within the model of a
spherical-square-well potential, our analytical results are ver-
ified and agree well with previous numerical calculations near
the s-wave resonance [39]. To simplify the presentation of this
work, we focus our discussions on the subspace of zero center-
of-mass momentum and zero total angular momentum of two
fermions, and then only s- and p-wave scatterings are in-
volved. The advantage of our method is that the correction of
the spin-orbit coupling to the two-body wave function at short
distance may perturbatively be considered order by order, as
well as to the scattering phase shifts at low energy. There-
fore, it is straightforward for the generalization to the case
of nonzero center-of-mass momentum and nonzero total an-
gular momentum. Then more scattering partial waves should
be involved, and additional scattering parameters would be
introduced to characterize the short-range behavior of the
two-body wave function as well as the low-energy expansion
of the scattering phase shifts. Our method provides a unified
description of the low-energy properties of scattering phase
shifts in the presence of spin-orbit coupling.
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APPENDIX: SCATTERING UNDER A
SPHERICAL-SQUARE-WELL POTENTIAL

In this Appendix, we present the derivation detail of the
short-range behavior of the two-body wave function (8) and
calculate the specific forms of the new scattering parameters

for a spherical-square-well potential. Substituting the ansatz
Eq. (7) into the two-body Schrödinger equation Ĥ2�(r) =
E�(r) and comparing the corresponding coefficients of the
terms (k2, λ, k4, λk2, λ2) on both sides, we obtain the follow-
ing coupled equations:[

−∇2 + MV (r)

h̄2

]
φ(r) = 0, (A1)

[
−∇2 + MV (r)

h̄2

]
F (r) = φ(r), (A2)[

−∇2 + MV (r)

h̄2

]
G(r) = Q̂(r)φ(r), (A3)[

−∇2 + MV (r)

h̄2

]
Y (r) = Q̂(r)F (r) + G(r), (A4)[

−∇2 + MV (r)

h̄2

]
Z (r) = φ(r) − Q̂(r)G(r), (A5)

with Q̂(r) = k̂ · (σ̂1 − σ̂2). The corresponding expressions of
functions φ(r), F (r), G(r), Y (r), and Z (r) outside the poten-
tial for r � ε can easily be obtained by solving these coupled
equations:

φ(r) = α0

(
1

r
− 1

a0

)
�0(r̂) + α1

(
1

r2
− 1

3a1
r

)
�1(r̂)

+ O(r2), (A6)

F (r) = α0

(
1

2
b0 − 1

2
r

)
�0(r̂) + α1

(
1

2
+ b1

6
r

)
�1(r̂)

+O(r2), (A7)

G(r) = −α1u�0(r̂) − α0(1 + vr)�1(r̂) + O(r2), (A8)

Y (r) = α1(h + r)�0(r̂) + α0qr�1(r̂) + O(r2), (A9)

Z (r) = α0

(
c0 + 3

2
r

)
�0(r̂) + α1

(
1

2
+ c1r

)
�1(r̂)

+ O(r2). (A10)

Inserting these functions into the two-body wave function (7),
we arrive at Eq. (8). Obviously, the derivation here is indepen-
dent of the specific form of the interatomic potential, and new
scattering parameters are introduced in the short-range form
of the two-body wave function.

To determine the new scattering parameters in the two-
body wave function, let us consider a specific model of the
spherical-square-well potential. Outside the potential, i.e.,
V (r) = 0, we have already obtained the form of the two-body
wave function as shown in Eqs. (A6) to (A10). While inside
the potential, we have V (r) = −V0, and the corresponding
specific forms of these functions inside the potential are ob-
tained by solving the Schrödinger equation. By using the
continuity of the two-body wave function at r = ε as well as
its first-order derivative, all the scattering parameters are then
be determined. To simplify the presentation, we only show
the specific forms of c0 and c1 in Eqs. (28) and (29), which
characterize the second-order corrections of SO coupling to
the scattering phase shifts.
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