
PHYSICAL REVIEW RESEARCH 3, 013048 (2021)

Large-scale thermalization, prethermalization, and impact of temperature
in the quench dynamics of two unequal Luttinger liquids

Paola Ruggiero ,1 Laura Foini,2 and Thierry Giamarchi 1

1Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
2IPhT, CNRS, CEA, Université Paris Saclay, 91191 Gif-sur-Yvette, France

(Received 29 June 2020; accepted 24 November 2020; published 14 January 2021)

We study the effect of a quantum quench between two tunnel coupled Tomonaga-Luttinger liquids (TLLs)
with different speed of sound and interaction parameter. The quench dynamics is induced by switching off the
tunneling and letting the two systems evolve independently. We fully diagonalize the problem within a quadratic
approximation for the initial tunneling. Both the case of zero and finite temperature in the initial state are
considered. We focus on correlation functions associated with the antisymmetric and symmetric combinations of
the two TLLs (relevant for interference measurements), which turn out to be coupled due to the asymmetry in the
two systems’ Hamiltonians. The presence of different speeds of sound leads to multiple light cones separating
different decaying regimes. In particular, in the large time limit, we are able to identify a prethermal regime
where the two-point correlation functions of vertex operators of symmetric and antisymmetric sector can be
characterized by two emerging effective temperatures, eventually drifting towards a final stationary regime that
we dubbed quasithermal, well approximated at large scale by a thermal-like state, where these correlators become
time independent and are characterized by a unique correlation length. If the initial state is at equilibrium at
nonzero temperature T0, all the effective temperatures acquire a linear correction in T0, leading to faster decay
of the correlation functions. Such effects can play a crucial role for the correct description of currently running
cold atoms experiments.
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I. INTRODUCTION

The out-of-equilibrium physics of low-dimensional many-
body quantum systems has witnessed important theoretical
advances in recent times [1–8]. Several longstanding ques-
tions about the relaxation dynamics and phenomena such
as equilibration, thermalization, emergence of statistical
mechanics from microscopics [9–13], as well as lack or gen-
eralized forms of thermalization have been addressed both in
clean and disordered models [14–20]. Remarkably, a large
number of such predictions have been confirmed in cold atoms
experiments [21,22], which allowed us to engineer quantum
many-body Hamiltonians reproducing models of theoretical
interest [23–36].

Among the different experimental setups, an interest-
ing example is offered by matter-wave interferometry [37],
using pairs of split one-dimensional Bose gases [38–45].
Effectively, such systems consist of two tunnel-coupled
one-dimensional (1D) interacting tubes, whose low-energy
physics maps to a pair of independent TLLs [46–49], plus a
coupling resulting from the tunneling (a schematic represen-
tation is given in Fig. 1).
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In the theoretical description, it is often assumed that the
two TLLs are identical, meaning they are characterized by
equal sound velocities and Luttinger parameters. In this case,
the theory consists of a quantum sine-Gordon model and a
free boson [50,51], describing, respectively, the antisymmetric
and symmetric combinations of the phase fields (see Sec. II
for proper definitions). Importantly, as a consequence of the
symmetry between the two TLLs, these two sectors are not
coupled and thus can be treated as isolated systems. In particu-
lar, time-dependent correlation functions of the antisymmetric
sector (directly related to interference measurements [52])
after a sudden change in the tunneling strength (a so-called
quantum quench [13]) have been widely studied [53]. They
have been obtained by relying, for example, on a simple har-
monic approximation [54–57] and, more recently, on a refined
self-consistent version of it [58,59]. Exact results have been
further obtained at the Luther-Emery point [55], by means
of techniques such as integrability [51,60,61] and semiclas-
sical methods [62,63]. A truncated conformal approach was
considered in Refs. [64,65], while a combination of analytic
(based on Keldysh formalism [66]) and numerical methods
was used in Ref. [67]. Finally, an effective model for the
relative degrees of freedom was recently derived in Ref. [68].
In these studies the existence of a prethermal regime was
demonstrated.

Much less attention has been devoted so far to the effect
of introducing an imbalance between the two systems. On
the theory side such a case is interesting since, due to the
presence of two velocities, one can expect multiple light cones
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FIG. 1. Schematic picture of the system studied in this paper. It
consists of two unequal Luttinger liquids, with sound velocities ui

and Luttinger parameters Ki (i = 1, 2). We quench the system by
switching off the tunneling g, starting from a nonzero value (both
ground state and finite temperature thermal states are considered as
initial states). This corresponds to suddenly raising the barrier of the
double well potential separating the two sides.

to emerge, separating different decaying regimes (as opposed
to the single light-cone effect [13,29] usually observed in
systems of identical TLLs [31,57]). Because of the coupling
between the modes one can also expect that the prethermal
regime evidenced in the antisymmetric sector to decay into
another final regime. Whether such a regime could be charac-
terized by a single temperature despite the integrable nature of
the underlying model [17,18] is an interesting question. How-
ever, due to the complexity of such a situation the asymmetric
case has been much less studied. Noteworthy exceptions are
provided by Refs. [69,70], where, relying on a phenomenolog-
ical approach for the quench (especially concerning the initial
state), the authors consider different forms of imbalance for
two examples of systems described by LLs.

Given the importance of the physical effects in the asym-
metric situation, it would thus be highly desirable: (i) to have a
full theoretical derivation of the quench of two different TLLs;
(ii) to allow for all possible sources of imbalance between
them and disentangle the effects coming from unequal sound
velocities ui from the ones related to different Luttinger pa-
rameters Ki (i = 1, 2). Such a study is the goal of the present
paper.

The paper is organized as follows. In Sec. II we introduce
the model and the quench dynamics we focus on. Sections III
and IV discuss the Bogoliubov transformation, which di-
agonalize the Hamiltonian at initial time and introduce the
correlation functions of interest, respectively. In Sec. V a de-
tailed analysis of the dynamics when starting from the ground
state (i.e., at zero temperature) of the initial Hamiltonian is
carried out. The same analysis is extended to quenches start-
ing from a thermal state in Sec. VI. A discussion of the results,
also in connection with previous literature, is left to Sec. VII.
Conclusions and future perspectives are finally collected in
Sec. VIII. Details regarding the calculations are reported in
the Appendixes.

II. SETTING OF THE QUENCH

We consider two different Luttinger liquids, which are
initially tunnel coupled and then evolve independently: this

is one of the simplest situations one can look at, since the
evolution is the one of two free (compactified) bosons, while
the coupling between the two is only in the initial state. This
protocol has also the advantage to be easily implementable in
a controlled way in cold atom experiments.

Microscopically, the system corresponds to two interacting
1D Bose gases, represented by bosonic fields �i (i = 1, 2) of
mass Mi and short-ranged two-body interactions that can be
represented by a delta function of strength Ui. We are going to
work with their phase θi(x) and the fluctuation of the densities
ni(x), related to the original field via the bosonization formula
[3,48,49]

�i(x) =
√

ρi + ni(x)eiθi (x), (1)

with [ni(x), θ j (x′)] = ih̄δ(x − x′)δi, j and ρi is the average den-
sity of the ith tube. In terms of these variables, the system is
supposed to be prepared in the ground state (or in a thermal
state) of the (generalized) Sine-Gordon Hamiltonian

HSG
initial = H1 + H2 − g

2π

∫
dx cos (θ1(x) − θ2(x)), (2)

where Hi are the Luttinger liquid Hamiltonians [49]

Hi = h̄

2π

∫
dx

[
uiKi(∇θi )

2 + ui

Ki
(πni )

2
]
, (3)

and the cosine term originates from the tunneling (�†
1�2 +

H.c.), with strength tuned by g. In (3) Ki is the Luttinger liquid
parameter, which encodes the interaction of the system and
ui is the speed of sound. They are related to the microscopic
parameters. Such relations are known analytically in the weak
interaction regime

Ki = h̄π

√
ρi

MiUi
, ui =

√
Uiρi

Mi
, (4)

and can be extracted numerically otherwise [3]. Therefore one
can get unequal TLLs in many different settings, depending on
the values of Mi,Ui, and ρi.

Hereafter we will set h̄ = 1. At time t = 0 the interaction
between the two systems is switched off and the final Hamil-
tonian simply reads

Hfinal = H1 + H2. (5)

As the study of the initial Hamiltonian (2) is particularly in-
volved, we resort to a semiclassical (harmonic) approximation

HSC
initial = H1 + H2 + g

4π

∫
dx [θ1(x) − θ2(x)]2. (6)

Note that in our quench the approximation is only in the
initial state, while the dynamics can be obtained exactly. Such
approximation is expected to hold as long as the cosine term
in (2) is highly relevant in a renormalization group (RG) sense
(in the case of identical TLLs, this corresponds to K large
enough [49], while the same RG analysis is missing for the
more generic case considered here; note, however, that in
the experiments involving bosons with contact interactions
we can safely assume that we are in the relevant regime).
Remarkably, for identical TLLs, it has been shown by means
of exact calculations that the dynamics starting from (6) is
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qualitatively the same as from the Luther-Emery point where
the full cosine term can be taken into account [55].

The fields θi and ni admit a decomposition in normal modes

θi(x) = i√
L

∑
p�=0

e−ipx
√

π

2Ki|p| (b†
i,p − bi,−p) + 1√

L
θi,0 (7)

ni(x) = 1√
L

∑
p�=0

e−ipx

√
|p|Ki

2π
(b†

i,p + bi,−p) + 1√
L

ni,0, (8)

where L is the system size. In the rest of the paper we will
only focus on the thermodynamic limit (TDL), namely infinite
system size. Finite-size effects will be discussed elsewhere.
In terms of these bosons the final Hamiltonian is diagonal,
namely

Hfinal = u1

∑
p�=0

|p|b†
1,pb1,p + u2

∑
p�=0

|p|b†
2,pb2,p, (9)

where the zero modes (i.e., θi,0, ni,0) have been neglected.
The Hamiltonian HSC

initial, instead, is quadratic but needs to be
diagonalized via a Bogoliubov transformation (see Sec. III
below).

To highlight the difference with the case of two identical
systems it is useful to introduce the symmetric (+) and anti-
symmetric (−) modes

θ±(x) = 1√
2

[θ1(x) ± θ2(x)]

n±(x) = 1√
2

[n1(x) ± n2(x)], (10)

which satisfy canonical commutation relations. In terms of
these variables the final Hamiltonian reads

Hfinal = 1

2π

∫
dx{uK[(∇θ+)2 + (∇θ−)2]

+ u

K
[(πn+)2 + (πn−)2]}

+ 1

π

∫
dx{�θ∇θ+∇θ− + �nπ

2n+n−} (11)

with

u

K
= 1

2

(
u1

K1
+ u2

K2

)
, uK = 1

2
(u1K1 + u2K2) (12)

�θ = 1

2
(u1K1 − u2K2), �n = 1

2

(
u1

K1
− u2

K2

)
. (13)

Therefore we see that in the case of two identical systems
the final Hamiltonian display decoupling between symmetric
and antisymmetric sectors and the quench occurs only in the
antisymmetric one.

The situation that we consider in this work is more involved
as this decoupling is not possible and to study correlation
functions of θ−, which are usually those of experimental in-
terest, one has to consider the dynamics of θ1 and θ2, which
are correlated via the initial condition.

III. BOGOLIUBOV TRANSFORMATION FOR TWO
SPECIES OF BOSONS

In order to characterize the evolving state we aim at diago-
nalizing the initial Hamiltonian HSC

initial and write it as

HSC
initial =

∑
p�=0

λm,pη
†
m,pηm,p +

∑
p�=0

λ0,pη
†
0,pη0,p, (14)

up to an unimportant overall constant, which we neglect. The
meaning of the subscripts m, 0 will be clearer in the following:
they emphasize that, as we are going to show, the two diagonal
modes above are massive (m) and massless (0), respectively.

The transformation bringing the Hamiltonian in the form
(14) amounts to a Bogoliubov rotation of a four-component
vector, mixing the modes (p,−p) of the two initial species of
bosons. Specifically, we introduce the vectors of bosons of the
initial and the final Hamiltonian, η†

p = (η†
m,p ηm,−p η

†
0,p η0,−p)

and b†
p = (b†

1,p b1,−p b†
2,p b2,−p). These two are related by

a matrix multiplication bp = B(ϕ̂p)ηp with B(ϕ̂p) depend-
ing on the set of parameters ϕ̂p = {ϕ1,p, ϕ2,p,�p, φp} and
parametrized as follows [71]

B(ϕ̂p) =
[

B2(ϕ1,p) cos φp B2(ϕ2,p − �p) sin φp

−B2(ϕ1,p + �p) sin φp B2(ϕ2,p) cos φp

]

(15)

with

B2(ϕ) =
[

cosh ϕ sinh ϕ

sinh ϕ cosh ϕ

]
. (16)

Details on the derivation are reported in Appendix A.
The parameters of the matrix B(ϕ̂p) in (15) have the
following interpretation: ϕ1,p and ϕ2,p define Bogoliubov
rotations associated to the two bosons, separately. φp is
the mixing angle between them. Finally, �p exists only
when the Bogoliubov rotation and the mixing of different
bosons appear at the same time [71]. Explicitly, they are
given by

ϕ1,p = 1

2
log

(
λm,p

u1|p|
)

, ϕ2,p = 1

2
log

(
λ0,p

u2|p|
)

, �p = � = 1

2
log

(
u1

u2

)

φp = arctan

⎡
⎣

√
ε2

1,p − (u1 p)2
√

ε2
2,p − (u2 p)2

(
ε2

1,p − ε2
2,p

) +
√(

ε2
1,p + ε2

2,p

)2 − [
(u2 p)2ε2

1,p + (u1 p)2ε2
2,p − (u1 p)2(u2 p)2

]
⎤
⎦ (17)

in terms of (for i = 1, 2)

εi,p =
√

ui|p|
(

ui|p| + g

2Ki|p|
)

, (18)
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and the eigenvalues of the Hamiltonian (14) (for k = m, 0)

λk,p = 1√
2

√
ε2

1,p + ε2
2,p ±

√(
ε2

1,p + ε2
2,p

)2 − 4
[
(u2 p)2ε2

1,p + (u1 p)2ε2
2,p − (u1 p)2(u2 p)2

]
. (19)

where the + (−) sign is associated to the m (0) mode. Note
that, at the leading order in p → 0, the eigenvalues (19) read

λm,p = m0, λ0,p = a|p|, (20)

with

m0 =
√

gu

K
, a =

√
u1u2

K1K2
K (21)

in terms of the parameters in (12). Therefore, as anticipated,
they describe a massive and a massless mode. Note also that,
in the limit of equal TLLs, they would coincide with the
antisymmetric and the symmetric modes, respectively.

IV. CORRELATION FUNCTIONS AFTER THE QUENCH

We will be mostly interested in the correlation functions of
vertex operators

C±(x, t, T0) ≡ 〈ei
√

2[θ±(x,t )−θ±(0,t )]〉T0

= e−〈[θ±(x,t )−θ±(0,t )]2〉T0 , (22)

where the expectation value 〈·〉T0 is on the initial state, which
we choose to be either the ground state (T0 = 0) or a finite
temperature (T0 �= 0) equilibrium state of the initial Hamilto-
nian HSC

initial.
While the function C−(x, t, T0) is of clear experimental

relevance and has been directly measured using matter-wave
interferometry [30–32,45], observables within the symmetric
sector as C+(x, t, T0) have not been measured so far. Nonethe-
less, very recently, it was pointed out that correlation functions
in the symmetric sector also contribute to the measured den-
sity after time of flight [72], thus giving hope for their future
measurements.

Note that in our approach, due to the absence of decoupling
between symmetric and antisymmetric variables, θ± are not
anymore the preferable variables to work with (as it was the
case in the symmetric quench [56,57]). Instead, we will stick
to the initial fields, θ1 and θ2. In terms of those variables, the
one (two) point function of the symmetric or antisymmetric
fields is recast into a two (four) point function.

We start by defining the parameters ε̂p = {u1|p|, u2|p|} en-
tering in the definition of the time evolution operator

U (ε̂p, t ) ≡

⎡
⎢⎢⎢⎢⎣

e−iu1|p|t 0 0 0

0 eiu1|p|t 0 0

0 0 e−iu2|p|t 0

0 0 0 eiu2|p|t

⎤
⎥⎥⎥⎥⎦ (23)

and the matrices

P± ≡
∑

i j

(±1)i+ j

4KiKj

[
δi1δ j1 δi1δ j2

δi2δ j1 δi2δ j2

]
⊗
[

1 −1

−1 1

]
, (24)

where ⊗ denotes the Kronecker product.

For a generic quench starting from a thermal state of (6)
at temperature T0, Eq. (22) takes the compact form (see Ap-
pendix B for details)

C±(x, t, T0) = exp

[
−
∫ ∞

0
d p e−α2 p2 2

p
(1 − cos px)

×
(

W ±
22cotanh

(
λm,p

2T0

)
+W ±

44cotanh

(
λ0,p

2T0

))]
.

(25)

For convenience we have introduced an ultraviolet cutoff α−1.
We further denoted by W ±

μν the elements of the matrices

W ± ≡ B†(ϕ̂p)U †(ε̂p, t )P±U (ε̂p, t )B(ϕ̂p). (26)

Note that only two elements of the whole matrices are needed
to fully characterize the correlation functions (25). More-
over, thanks to the quadratic approximation in the initial
Hamiltonian, they can be written explicitly [see Eq. (65) in
Appendix B].

In order to define effective temperatures for C±, we are
going to compare these postquench correlations with the equi-
librium ones at finite temperature T

Ceq
± (x, t, T ) = exp

[
−
∫ ∞

0
d p e−α2 p2

(1 − cos px)
1

2p

×
[

1

K1
cotanh

(
u1|p|
2T

)
+ 1

K2
cotanh

(
u2|p|
2T

)]]
,

(27)

which present an exponential decay in space with (inverse)
correlation length

ξ−1
T = π

2

(
1

u1K1
+ 1

u2K2

)
T . (28)

V. QUENCH FROM THE GROUND STATE

We consider here the quench from the ground state (T0 =
0) of the Hamiltonian (6) and we defer the solution of the
dynamics from a thermal state at temperature T0 to Sec. VI. In
this section, expectation values over the ground state will be
simply denoted as 〈·〉.

A. Eigenmodes dynamics

An important observation is that in the limit T0 → 0, we
have cotanh(λk,p/(2T0)) → 1 in Eq. (25), and it turns out that
the leading order as p → 0 of C± is captured uniquely by the
first term, namely by the massive mode. The main contribu-
tion is better characterized by introducing the dynamics of
the modes of phase and density. In particular, by using the
following decomposition:

θi(x, t ) =
∑

p

e−ipxθi(p, t ), (29)
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one finds that

θi(p, t ) = cos(ui|p|t )θi(p, 0) − αi,p sin(ui|p|t )ni(p, 0)
(30)

with αi,p = π
Ki|p| . The expectation value of the two point func-

tion over the ground state simplifies to

〈θi(p, t )θ j (−p, t )〉
= cos(ui|p|t ) cos(uj |p|t )〈θi(p, 0)θ j (−p, 0)〉

+ sin(uj |p|t ) sin(u j |p|t )αipα j−p〈ni(p, 0)n j (−p, 0)〉
(31)

for i, j = 1, 2, namely the initial correlations between θi and
n j do not enter in the eigenmodes’ dynamics.

By plugging in the asymptotic expressions (20), one can
further check that at the leading order in p → 0 it holds

〈θi(p, 0)θ j (−p, 0)〉 � π

4a|p|
u1u2

K1K2

K

u
(32)

〈ni(p, 0)n j (−p, 0)〉 � (−1)i+ j

2π

√
KiKjmimj

uiu j
, (33)

where we defined m1 = m0 cos φ2
0 , m2 = m0 sin φ2

0 , and φp �
φ0 = arctan

√
K1
K2

u2
u1

. Note the initial anticorrelations between

the densities of the two systems, which will have a role in the
evolution of the phase.

To evaluate Eq. (25) at large scale and times, the strategy is
to proceed order by order in powers of p, which successively
lead to exponential and power-law decay of correlations. The
leading divergence as p → 0 in the integrand of C±(x, t ) ≡
C±(x, t, T0 = 0) [cf. Eq. (25)] comes from the initial density
fluctuation while the part coming from the phase is negligible
[this is due to the term αi,pα j,−p ∝ 1/p2 in the eigenmodes’
dynamics (31)]. Notice that since the sound velocity a appears
only in the phase fluctuations, at this order the massless mode
will not play any role in the correlation functions, consistently
with what is anticipated from Eq. (25).

If we define the building block of the correlations (25) as

ci j (x, t ) ≡ 〈[θi(x, t ) − θi(0, t )][θ j (x, t ) − θ j (0, t )]〉 (34)

such that

ln C± = 1
2 (c11 + c22 ± 2c12), (35)

then from (31) and (33) we have

ci j (x, t ) � 1

2

∫ ∞

0
d p e−α2 p2

[1 − cos(px)]
(−1)i+ j

p2

×
√

mimj

KiKjuiu j
[cos ((ui − u j )pt )

− cos ((ui + u j )pt )]. (36)

If we neglect the cutoff, the integrals (36) can be analytically
evaluated. They are of the form∫ ∞

0
d p [1 − cos(px)] cos(upt )

1

p2

=
{π

2 (−|tu| + |x|) if |x| > |ut |
0 if |x| < |ut | . (37)

This shows explicitly the emergence of (sharp) light cones,
associated to each velocity u within the correlation functions.
Note that the light cones are smoothened out (as physically
expected) by reintroducing the cutoff.

Correlations like those in Eq. (36) appear in the exponent
of C±. Therefore, we expect the approximation (36) (whose
integrand behaves as 1/p2) to capture only their exponential
decay. A careful analysis should take into account possible
power-law corrections, which come from the next-to-leading-
order correction (corresponding to an integrand ∝ 1/p). These
can be computed explicitly as follows:∫ ∞

0

d p

p
[1 − cos(px)] cos(upt ) = 1

2
ln

∣∣∣∣1 − x2

u2t2

∣∣∣∣ (38)

and therefore grow unbounded at large distances. As we are
going to discuss, these terms are actually important, especially
for the dynamics of C+: in fact, there are regimes where
the exponential behavior vanishes and power laws become
leading.

B. Two-point function: Transient, prethermal,
and stationary state

By looking at Eq. (36), we can read the leading terms in the
two-point function (22), which presents a very rich behavior.
Without loss of generality, we may assume u1 > u2. Then, we
find

ln C±(x, t ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− π
16

m0K
u

[
1

K2
1
2u1t + 1

K2
2
2u2t ∓ 2

K1K2
((u1 + u2)t − |u1 − u2|t )

]
x > 2u1t (39a)

− π
16

m0K
u

[
1

K2
1
x + 1

K2
2
2u2t ∓ 2

K1K2
((u1 + u2)t − |u1 − u2|t )

]
2u1t > x > (u1 + u2)t (39b)

− π
16

m0K
u

[
1

K2
1
x + 1

K2
2
2u2t ∓ 2

K1K2
(x − |u1 − u2|t )

]
(u1 + u2)t > x > 2u2t (39c)

− π
16

m0K
u

[
1

K2
1

+ 1
K2

2
∓ 2

K1K2

]
x ∓ π

16
m0K

u
2

K1K2
|u1 − u2|t 2u2t > x > |u1 − u2|t (39d)

− π
16

m0K
u

[
1

K2
1

+ 1
K2

2

]
x |u1 − u2|t > x (39e)

We stress that the expression above only captures the ex-
ponential decay of C±, while power-law corrections are not
included. In particular, within this approximation Eq. (39a)

shows no spatial dependence: this does not mean that it does
not decay at all, but that the next-to-leading term should be
taken into account. By computing it, the corrected expression
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for C+ in the large distance regime now reads

Ccorrect
+ (x � 2u1t, t )

∝ |x|− K
a u

u1u2
K1K2 e

− π
16

m0K
u [ 1

K2
1

2u1t+ 1
K2

2
2u2t− 2

K1K2
((u1+u2 )t−|u1−u2|t )]

.

(40)

This result is easy to understand from a physical point of view
since before the quench θ− is a massive mode, which does not
decay to zero, while θ+ is massless with leading power-law
correlations. In the regime of large distances and short times
therefore we find the memory of such initial condition.

Moreover, from (39a) and its refined version (40), mak-
ing use of the cluster property, limx→∞〈O(x, t )O(0, t )〉 =
〈O(t )〉2, we can read the behavior of the one-point function

A±(t ) ≡ 〈ei
√

2θ±(0,t )〉 = e−〈θ2
±(0,t )〉. (41)

For the antisymmetric sector we obtain the exponential decay

A−(t ) � e
− π

16
m0K

u [ 1
K2

1
u1+ 1

K2
2

u2+ 1
K1K2

((u1+u2 )−|u1−u2|)]t
. (42)

Note that for the symmetric quench (K1 = K2 = K and u1 =
u2 = u) we obtain the results of Refs. [13,73,74] with the
scaling dimension of θ− equal to h = 1/(4K ). Contrarily,
for the symmetric sector, due to the power-law correction in
(40), we find a vanishing one-point function at all times, i.e.,
A+(t ) = 0.

From Eq. (39e) we see that C± reaches a stationary state
at short length scales (large times). Note also that the next-
to-leading-order terms in 1/p, such as integrals of the form
(38) do not lead to important time corrections in the limit
of large times and that formally one expects the limit of
t → ∞ to be really time independent as all the oscillating
factors die out. From (39e), one can therefore read off an
associated correlation length

ξ−1
Q = π

16

m0K

u

(
1

K2
1

+ 1

K2
2

)
, (43)

equal for both the symmetric and the antisymmetric mode,
signaling that the correlations between the system one and
two are lost. Comparing with (28) this defines an effective
temperature

T eff = m0

4

(
K1

K2
+ K2

K1

)
u1u2

4u2
. (44)

We dub this regime quasithermal, to emphasize that in spite of
the integrable nature of the system, the final stationary state is
well described in the large-scale limit by a unique correlation
length, as in an equilibrium system. We will come back to the
precise characterization of such state and on the meaning of
the temperature later in the discussions. Then, if u1 ≈ u2, we
have u1 + u2 ≈ 2u1 ≈ 2u2 � |u1 − u2|, and from Eq. (39d),
we see that one can define a quasistationary prethermal state
with correlation length and thus effective temperature differ-
ent for the symmetric and the antisymmetric mode

T eff
± = m0

4

(
K1

K2
+ K2

K1
∓ 2

)
u1u2

4u2
. (45)

This is the regime to which the system relaxes in the limit of
u1 = u2 and thus in particular for the symmetric quench. One

can indeed check that for the symmetric quench (u1 = u2 = u
and K1 = K2 = K) we recover the results T eff

− = m0/4 and
T eff

+ = 0 as expected from Refs. [4,56] and from the decou-
pling of the modes.

In Fig. 2 we show the logarithm of the correlation functions
C±(x, t ) after a quench from the ground state of the Hamilto-
nian (6) (T0 = 0) as a function of distance x and time t . The
exact expressions (left panels), numerically computed from
Eq. (25), are compared with the small momenta approxima-
tion derived in Eq. (39) (right panels). The position of the
light cones are also shown. While C− is well approximated
by its exponential decay only in x and t [according to (39)],
for a correct description of C+ power-law correction must be
included, as is clearly visible by looking at a time slice in
Fig. 2 (right panels). Note that for the parameters chosen,
we are in the regime u1 ≈ u2. This is the reason why the
regimes in (39b), (39c), and (39d), shown as dashed lines in
the figure, are not well separated. Finally, the dot-dashed line
corresponds to the last light cone at x ≈ |u1 − u2|t , separating
prethermal and final quasithermal regime.

We then focus on the spatial decay of C+(x, t ) and C−(x, t ),
for different (fixed) times. In Fig. 3 we compare this decay
with the equilibrium correlation functions at temperatures T eff

and T eff
+ for C+(x, t ) and T eff and T eff

− for C−(x, t ), which
capture the first two exponentially decaying regimes. In fact,
for both correlations the longest time (short distance) shows
the crossover between the fully stationary and the prether-
mal regime at distances around |u1 − u2|t . After this decay
C+(x, t ) is characterized by a nonmonotonic behavior in the
intermediate regimes. At large distances, differently as com-
pared with C−(x, t ), it does not saturate but it slowly decreases
due to the power-law corrections. The shortest times (long
distance) of C−(x, t ) instead show a light-cone-like behavior
toward a constant value for large distances. For the choice of
parameters in the figure, the first three light cones in (39) are
not separately visible in C−(x, t ) because they are very close
[in C+(x, t ) they correspond to the nonmonotonic behavior].
The presence of the cutoff in (25) also tends to smear out the
sharp transitions in (39), as anticipated.

In Fig. 4 we compare the spatial decay of C−(x, t ) and
C+(x, t ) in the quasithermal and in the prethermal regime,
comparing also with the thermal correlations at temperature
T eff , T eff

− and T eff
+ . The plot shows that the correlation length

of the two quantities coincides in the first (quasithermal)
regime and is also compatible with the equilibrium decay at
temperature T eff . From this analysis therefore, the last regime
can be thought (at the leading order) as a thermal regime,
at least for the observables considered here. However, as we
discuss in Sec. V C the more robust thermodynamic interpre-
tation of the stationary state is in terms of two temperatures,
one for the first system and one for the second, which com-
bined give rise coherently to Eq. (44). At larger distances
the two correlations C± depart from the thermal regime and
from each other, and agree with an equilibriumlike behavior
at temperature T eff

− and T eff
+ , respectively (here we explicitly

see a dependence on the observable chosen).

C. Interpretation as a two-temperature system

The final Hamiltonian (5) has clearly two extensive and
different conserved quantities: the energy of each subsystem.
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FIG. 2. Logarithm of the correlation functions C+(x, t ) [top row: (a), (b), (e)] and C−(x, t ) [bottom row: (c), (d), (f)] after a quench from
the ground state of the Hamiltonian (6) (T0 = 0), as a function of distance x and time t . The exact expressions from Eq. (25) [left panels: (a),
(c)] are compared with the approximation in Eq. (39) [central panels: (b), (d)]. The parameters used are u1 = 6, u2 = 5, K1 = 20, K2 = 10,
g = 40, and α = 1. The position of the light cones derived in Eq. (39) are also shown. The dashed lines correspond to the light cones at
x = 2u1t, (u1 + u2)t, 2u2t (in the chosen regime u1 ≈ u2 they are close to each other), separating the transient from the prethermal regime. The
dot-dashed line corresponds to the last light cone at x = |u1 − u2|t , separating prethermal and final quasithermal regime. In the right panels
(e),(f) we show a slice of the plots at time t = 10 comparing the exact numerical results with Eq. (39) (with an arbitrary amplitude) and for
C+(x, t ) the expression corrected by a power law decay in x as in (40).

Therefore we expect to be able to define an effective tempera-
ture associated to each of them from the expectation values
of the energy densities of the modes 〈εi,p〉 ≡ ui|p|〈b†

i,pbi,p〉
with i = 1, 2 separately. In the limit of small momenta the
expectation of each mode is dominated by a constant term
equal for all the modes. Thanks to a classical equipartition
approximation this allows us to interpret such constant as the
effective temperature of the two systems [57]. In particular we
have

〈ε1,p〉 � m1

4
= m0

8

u1

K1

K

u
≡ T eff

1 ,

〈ε2,p 〉 � m2

4
= m0

8

u2

K2

K

u
≡ T eff

2 . (46)

Note that

〈ε1,p〉 + 〈ε2,p〉 = m0

4
, (47)

as for the symmetric quench [4,56]. However, contrary to the
symmetric limit where all the energy is stored in the antisym-
metric sector (being isolated from the symmetric one), in the
general case part of it is shared with the symmetric mode as
well.

Note that if one supposes the two systems equilibrated at
different temperatures, the correlation length associated to the
decay of Ceq

± turns out to be

ξ−1
T1,T2

= π

2

(
T1

u1K1
+ T2

u2K2

)
, (48)

thus generalizing the expression (28). This is perfectly consis-
tent with the effective temperatures (46) and the postquench
correlation length (43). Specifically, the unique effective tem-
perature, which we can read off from C± at large times, is
related to the ones in (46) through

T eff =
(

T eff
1

u1K1
+ T eff

2

u2K2

)/(
1

u1K1
+ 1

u2K2

)
. (49)

The two-temperature interpretation is further sustained by an
FDT (fluctuation-dissipation theorem [75–78]) argument, an-
alyzing the correlation and the response functions associated
to the Green’s functions of the two systems—in the limit of
small ω and small p (see Appendix C). Note, however, that,
while this interpretation is definitely more robust, it still is
an approximation of the true underlying generalized Gibbs
ensemble (GGE) [17,18]. Moreover, this analysis requires
more attention when trying to generalize to all observables
(see Sec. VII).

We close this section with an interesting remark. Knowing
that in our quench (when u1 �= u2) the correlations between
the two systems are lost in the stationary regime, one can
expect the quasithermal state to which the system evolves to
coincide with the final state reached by the same system of two
bosons but after two independent quenches with initial ener-
gies (or initial masses, equivalently) fixed by (46). As main
difference, in this simpler quench, correlations are absent also
in the initial state. If fact, since each Hi (i = 1, 2) describes
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FIG. 3. Space decay of (a) C+(x, t ) and (b) C−(x, t ) from (25)
after a quench from the ground state of the Hamiltonian (6) (T0 =
0), at different times t = 10, 20, 100, compared with the equilibrium
correlations at temperature T eff and T eff

+ for C+(x, t ) and T eff and
T eff

− for C−(x, t ). The parameters used are u1 = 6, u2 = 5, K1 = 20,
K2 = 10, g = 40, and α = 1.

a conformally invariant system, one can directly apply the
results of Refs. [13,73] for the correlation functions to see that
at largest times

〈ei
√

2(θ±(x,t )−θ±(0,t ))〉m1,m2

= 〈ei(θ1(x,t )−θ1(0,t ))〉m1〈e±i(θ2(x,t )−θ2(0,t ))〉m2

� e− π
2 ( h1m1

u1
+ h2m2

u2
)x = e− π

8 ( m1
u1K1

+ m2
u2K2

)x
. (50)

FIG. 4. Space decay of C−(x, t ) and C+(x, t ) from (25) after a
quench from the ground state of the Hamiltonian (6) (T0 = 0), at time
t = 100, compared with the equilibrium correlations at temperature
T eff , T eff

− , and T eff
+ . The parameters used are u1 = 6, u2 = 5, K1 = 20,

K2 = 10, g = 40, and α = 1.

The expectation value 〈·〉m1,m2 in the first line is taken on a
factorized state characterized by mass mi for the ith system,
which, therefore, simply splits in expectation values over the
two systems (second line). The results of Refs. [13,73] have
been applied to each 〈·〉mi . In the last step, we used the explicit
form hi = 1/(4Ki ) for conformal dimensions of the (primary)
operators e±iθi (x,t ) [79]. We stress, however, that, even if the
result (50) is consistent with the last regime with associ-
ated effective temperature (49), the transient and prethermal
regime are not captured by this simple picture.

VI. QUENCH FROM A THERMAL STATE: CORRECTIONS
DUE TO THE INITIAL TEMPERATURE

If the initial state is prepared at finite temperature T0, the
full expression for the correlation function is still the one
in Eq. (25). Now, however, one sees that, differently from
the quench from the ground state, the leading contribution
as p → 0 includes a term coming from the massless mode.
One can in principle carry a similar analysis as the one of
the Sec. V [notice in particular that Eq. (31) remains true
also when starting from a thermal state], leading to different
regimes during the evolution. In particular in Appendix D we
sketch the derivation of the leading-order term contributing
to C±(x, t, T0) showing that the same light cones as for T0 = 0
appear, with different correlation lengths and coherence times.
Here, however, we focus on the last two regimes (at large
times), being the most relevant for the relaxation dynamics.
As before, indeed, they allow for a definition of a prethermal
and a quasithermal correlation length, for both the symmetric
and the antisymmetric mode. The associated prethermal effec-
tive temperatures now read

T eff
± = m0

4

(
K1

K2
+ K2

K1
∓ 2

)
u1u2

4u2
cotanh

(
m0

2T0

)

+
(

(1 ± 1)
u1u2K1K2

4u2K2
+ 1

8

(u1 ± u2)2

u2

)
T0. (51)

For the symmetric quench we recover T eff
− = m0

4 cotanh( m0
2T0

) as

in Ref. [80] and T eff
+ = T0, as expected from the decoupling of

the modes. A crucial observation here is that in this symmetric
limit, the antisymmetric sector is almost unaffected by the true
temperature of the system: in fact T eff

− � m0/4, namely it is
independent of T0 (as long as it is low), while the thermal fluc-
tuations are present only in the symmetric mode, as reflected
by its effective temperature. The reason is that, while θ1 and
θ2 are subject to thermal fluctuations, those cancel out in their
difference (namely in θ−), while remaining present in their
sum (i.e., in θ+) [33]. Importantly, this picture completely
changes as soon as an asymmetry is induced in the parameters
ui, Ki associated with the two tubes. In fact, Eq. (51) clearly
shows a correction linear in T0 for the effective temperature.
To be more precise, for such linear correction to be present
in the antisymmetric mode as well, different sound velocities,
i.e., u1 �= u2, are needed (while a difference in the Luttinger
parameters Ki does not seem to play a main role here). In
this case, the initial temperature plays a crucial role in the
decay of all correlation functions. Specifically, since the term
proportional to T0 in (51) is always positive, it leads to a faster
decay of C±.
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FIG. 5. Space decay of C−(x, t, T0 ) from (25) with T0 = 0.5,
at different times t = 10, 20, 100, compared with the equilibrium
correlations at temperature T eff and T eff

− . The parameters used are
u1 = 6, u2 = 5, K1 = 20, K2 = 10, g = 40, and α = 1.

The final regime is instead described by

T eff = m0

4

(K1

K2
+ K2

K1

)u1u2

4u2
cotanh

( m0

2T0

)

+
(

u1u2K1K2

4u2K2
+ 1

8

u2
1 + u2

2

u2

)
T0, (52)

which also shows a term depending linearly on the initial
temperature, leading to faster decaying correlations.

We mention that the limit of shallow quench m0 → 0
(which amounts to doing nothing to the system) does not
reproduce the equilibrium result T eff = T0. This signals that
the limit of small momenta p → 0 used in deriving T eff in
(52) does not commute with the limit m0 → 0.

In Fig. 5 we show how the effective temperatures derived
above capture the main decay of the correlation functions, also
in this quench starting from a thermal state. In particular, it
shows the spatial decay of C−(x, t ) starting from a thermal
state at temperature T0 = 0.5 and different times. The correla-
tion lengths in the quasithermal and in the prethermal regime
are compared with the one at equilibrium at temperature T eff

−
from (51) and T eff from (52). The plateau attained at large
distances (short times) is instead a property of the (massive)
initial condition.

In Fig. 6 we plot the same correlator as a function of time.
The top panel shows the time dependence of C−(x, t ) again
starting from a thermal state at temperature T0 = 0.5 and dif-
ferent points in space. In the bottom panel, instead, the inverse
correlation length at fixed distance is shown, as obtained from
the spatial derivative of the exponent in Eq. (25). We see
that in the regime u1, u2 � |u1 − u2| there is an intermediate
prethermal regime where the correlation length is compatible
with the equilibrium one at temperature T eff

− . At later times
this quantity crosses over towards the asymptotic regime,
compatible with the equilibrium one at temperature T eff .

VII. DISCUSSIONS

Let us make some comments about the results obtained in
the previous sections, also in comparison with previous works.
To start with, since in our analysis we considered the generic
case of different ui and Ki (i = 1, 2), it is worth stressing the

FIG. 6. (a) Time dependence of C−(x, t ) from (25) with T0 =
0.5, at different points in space x = 50, 100, 150. (b) Inverse cor-
relation length [obtained as the spatial derivative of the exponent of
Eq. (25)] at distance x = 100 as a function of the time, compared
with the equilibrium correlation length at temperature T eff and T eff

− .
The parameters used are u1 = 6, u2 = 5, K1 = 20, K2 = 10, g = 40,
and α = 1.

different role that these two parameters play in the dynamics.
In fact, while we saw that in the Hamiltonian (5), which
governs the evolution after the quench, a coupling between
symmetric and antisymmetric sector is present as soon as
the systems one and two differ in either of the parameters
[cf. Eq. (11)], the consequences of having different Ki or
different ui separately are not the same. If u1 = u2, then the
correlation functions (39) are much simplified and only one
light cone appears, with the dynamics never reaching the final
regime (39e). This means that in this case symmetric and anti-
symmetric sectors show different effective final temperatures.
Moreover the linear correction of the effective temperature of
the antisymmetric sector (51) due to the initial temperature
T0 vanishes. Such observations further suggest that a sort of
decoupling between different sectors still exists. In fact, in
the final Hamiltonian (5), one could rescale the field θi by√

Ki and ni by 1/
√

Ki in such a way to respect canonical
commutation relations and end up in a system of effectively
identical TLLs, allowing for additional conservation laws than
those associated to H1 and H2 (as for the symmetric quench).
On the other hand having different ui but same Ki does not
modify the generic (richer) picture outlined in (39), which
is characterized by the presence of multiple light cones and
regimes. And, in fact, in this second case, the difference in
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the two tubes can not be reabsorbed in a rescaling of the
variables similar to the one above. One peculiarity of this
limit, however, is the fact that the effective temperature of the
symmetric mode in the prethermal regime (45) is zero.

Let us now turn to the final stationary regime reached by
the dynamics. As we discuss in Sec. V C and Appendix C,
such regime for many observables and in an RG sense (namely
at large scales), is compatible with an equilibriumlike result
associated to the two systems thermalized at temperatures
T eff

1 and T eff
2 , in accordance with the classical equipartition

theorem and the FDT in its classical (low-frequency) ap-
proximation. While this appears as a generalization to a two
temperature equilibrium state of previous results [13,30,56],
it might sound surprising given that the underlying dynamics
conserves the energy of each mode. In fact, a GGE [17,18]
would rather appear from Eq. (25), if we would take into
account the full dependence on the momenta p in the inte-
grals. However, as we have seen, the dynamics of the vertex
operators of the antisymmetric mode (see the bottom panels
of Fig. 2) and the stationary part of the symmetric one (see
the regime within the first light cone at short distances in the
top panels of Fig. 2) are well captured by the leading-order
term in p → 0 of the integrands which gives the expres-
sions (39) and in particular (39e). This fact by itself is quite
remarkable since this is not usually the case for quenches
in the LL (see Ref. [81] as main reference), where the un-
derlying GGE describing the steady state is not thermal at
all. Given a GGE of the form ρGGE = exp (−∑

p β(p)n(p))
[with n(p) the conserved charges and β(p) the associated
temperatures, labeled by momentum p], this might or might
not be well approximated by a thermal ensemble, depend-
ing on the behavior of the (inverse) temperatures β(p) as a
function of p. In particular, if we focus on the large-scale
limit, the modes that matter are the low-energy ones and their
behavior is indeed what makes our quench in the tunneling
strength very different from the one in the interaction studied
in Ref. [81]. Nonetheless, an example where the nonthermal
behavior clearly emerges also in our setup is given by the
density-density correlations. In this case the leading term at
large scale seems related to the first singularity in the small
p expansion (rather than a simple small p expansion), giving
rise to a power-law decay. From the GGE point of view this
means that the first term in the small p expansion of β(p) is
not enough to capture the leading behavior. Physically, this
contribution can be traced back to the presence of the massless
mode, which now becomes leading. A complete analysis of
this kind of correlation will be given elsewhere, from a differ-
ent perspective [82].

Moreover, in our discussion we referred to the regime
(39d) (at least in the limit of u1 � u2) as a prethermal one,
in analogy with the work [30] (note, however, that, given the
relaxation to a GGE discuss above, rather than a true ther-
malization, the term prerelaxation, which already appeared
in literature [83,84], would be more appropriate). More gen-
erally, prethermalization has been discussed in many works
and it is often associated to a slow evolving intermediate
state attained by the system before a complete relaxation
takes place, as it happens in integrable systems in presence
of a small integrability breaking perturbation [33,85–89] or
in other more exotic scenarios as in Ref. [90]. In this sense,

the fact of considering different ui can be seen as a symme-
try breaking mechanism that removes the degeneracy of the
Hamiltonian driving the dynamics. In fact, from Fig. 6 (par-
ticularly if focusing on the inverse correlation length, bottom
panel) one clearly sees the presence of a first rapid transient
regime, followed by a quasistationary one for a relatively
large time (divergent in the limit u1 → u2) and later evolving
towards its asymptotic value. Note, however, that in order for
the final state to be reached, the prethermal plateau cannot be
really time independent and this is in fact clearly visible when
looking at the correlation function C− itself (the top panel of
the same figure), which shows a slow ramp towards the final
stationary regime. Note that this ramp can be increasing or
decreasing according to the sign of T eff

− − T eff , which can be
tuned upon varying T0.

About the main experimental implications of our results,
one of the most surprising effects of considering two TLLs
with different parameters is the (positive) linear correction
in T0 to the effective temperature T eff

− of the antisymmetric
sector, in contrast to the insensitivity of the same in the sym-
metric scenario [30]. This implies faster decaying correlations
and it might be a non-negligible effect in the dynamics, given
the relative high temperature at which experiments are carried
out. For example, we would expect a similar correction to
take place in the experiment discussed in Ref. [91]: there,
in principle, the very same analysis can be carried out, while
for now a theoretical understanding of the observed effective
dissipation mechanism is still missing [58,59,92] (see also
Ref. [93] where the same problem is studied but within a
different geometrical setup).

Remarkably, the phenomenological description of the un-
balanced splitting protocol of Ref. [69] for two bosonic tubes
at different densities agrees in many aspects with the overall
picture emerging from our general analysis of the quench
dynamics in unbalanced TLLs coupled by tunneling. There,
in particular, the transition from a prethermal to a thermal
regime, both characterized by an exponential decay of cor-
relation functions, with a multi-light-cone dynamics signaling
the sharp transition between different correlation lengths was
found, as well as an additive correction proportional to the
initial true temperature T0 to the final effective temperature,
shared by both the symmetric and the antisymmetric sector.
Such effects are indeed a consequence of the form of the
initial correlations (fixed by phenomenological reasoning in
Ref. [69], while derived in our case), whose leading term be-
haves as p−2 [see Eqs. (D1) and (D2)]. Moreover, the relation
T eff = (T eff

− + T eff
+ )/2 in [69], connecting the prethermal and

the thermal effective temperatures, is found to hold in our
more general setting [cf. Eqs. (51) and (52)].

There are, however, some interesting differences. In par-
ticular the case of density imbalance, ρ1 �= ρ2, studied in
Ref. [69], leads to the vanishing of the n± mixing term in (11)
[i.e., �n = 0 in (13)], while more general imbalances (com-
ing, for example, from different 1D interactions Ui) would
allow for the presence of such a term. Moreover, due to the
difference in the two protocols (namely, the starting point of
Ref. [69] is an imbalanced splitting of a single tube, while
we start directly from two different tubes with nonzero tun-
neling), our temperatures show a different dependence on the
density as one can easily check by substituting the parameters
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(4) in our expressions. In particular, note that in our protocol,
if the imbalance is just in the densities and in the limit T0 → 0,
we get that the temperatures of the two systems given in (46)
are the same, i.e., T eff

1 = T eff
2 , and therefore they also coincide

with the final temperature of the symmetric and antisymmetric
sectors. This, however, is not the case anymore at finite tem-
perature T0 �= 0, and a linear correction in T0 appears also to
the prethermal temperature T eff

− of the asymmetric sector, due
to the difference between the two velocities.

Some of the effects mentioned above were also analyzed
in Ref. [70], which was considering a two spin mixture,
analogous to our two leg ladder system, and thus discuss a
quench for a similar Hamiltonian. However, in their case the
initial state is chosen to be a factorized state of the symmetric
and antisymmetric parts. For our quench this is not the case
and the initial state does not simply factorize, thus leading to
different time evolutions.

It would be very interesting to test the previously high-
lighted features, displaying strong differences as compared to
the equal TLLs scenario. This could be done, e.g., in exper-
iments similar to the ones of the Vienna group [30–32,45].
Given the importance played by the sound velocities in the
dynamics, the presence of the harmonic confinement potential
(where the gas is trapped) leading to a spatially dependent ve-
locity is clearly a highly unwanted complication. Fortunately,
however, the recent realization of boxlike potentials in such
experiments [94] shows great promise that the features ana-
lyzed in the present paper could be tested in a near future. Note
that although here we mainly focused on vertex correlators,
our analysis gives a full diagonalization of the problem, so in
principle other correlation functions are also easily accessible.

VIII. CONCLUSIONS

In this work we have studied a quench in the tunnel-
ing strength of two TLLs with different parameters, under a
quadratic approximation for the initial tunnel coupling term.
Our results show that the fact of considering two unequal
systems leads to a much richer physics than the one observed
in the symmetric scenario. This is manifested, for instance, in
the emergence of multiple light cones. Moreover, under this
dynamics, the prethermal regime discussed in Ref. [30] is fol-
lowed by a final stationary state, that we dubbed quasithermal,
where symmetric and antisymmetric sectors display the same
effective temperature (spatial decay). Due to the coupling be-
tween the symmetric/antisymmetric sectors, one observes also
an important effect of the initial temperature on the correlation
length (effective temperature) measured via the decay of the
antisymmetric mode, which otherwise would be only slightly
modified in the limit of large initial masses.

Our prediction could be tested in experiments similar to
the ones performed [30–32,45] for the symmetric quenches.
Beyond the current work the generalized Bogoliubov trans-
formations developed in this paper allow us to address also
different settings and a natural sequel of this work would
be to consider the opposite quench, namely from a massless
(uncoupled) initial condition to a massive (coupled) dynamics
[95]. Another interesting direction to pursue is to understand
the solution of the dynamics outlined in this work from the
perspectives of a conformal field theory (CFT) approach [82],

generalizing the ideas of Refs. [4,13,73] to the quench of two
independent CFTs coupled by a (conformal) initial condition.
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APPENDIX A: BOGOLIUBOV TRANSFORMATION

We want to diagonalize the Hamiltonian (6). To this aim,
we go to Fourier space, where it can be decomposed as

HSC
initial =

∑
p�=0

b†
pHpbp, (A1)

with b†
p = (b†

1,p b1,−p b†
2,p b2,−p). Above, Hp is of the form

⎡
⎢⎢⎢⎣

w1,p + D1,p −D1,p −Cp Cp

−D1,p w1,p + D1,p Cp −Cp

−Cp Cp w2,p + D2,p −D2,p

Cp −Cp −D2,p w2,p + D2,p

⎤
⎥⎥⎥⎦

and (i = 1, 2)

wi,p = ui|p|
2

, Di,p = g

8

1

Ki|p| , Cp = √
D1,pD2,p. (A2)

The problem is thus reduced to the diagonalization of the
4 × 4 matrix Hp. This can be achieved via a Bogoliubov
transformation [96,97], which is a linear transformation B on
the bosons bp. Restricting to real transformations, it has 16
free parameters. However, it has to satisfy some constraints
[71]. First of all, the four bosonic modes defining bp are not
independent, but are instead related (in pairs) by p → −p.
This reduces the free parameters to eight, and constrains the
corresponding Bogoliubov matrix to be of the form

B ≡
(

α β

γ δ

)
, α =

(
α1 α2

α2 α1

)
(A3)

and the same for β, γ , δ. Moreover, we want B to preserve
canonical commutation relations, i.e.,

[bp,μ, b†
p,ν] = Jμν, J ≡

⎡
⎢⎣

1
−1

1
−1

⎤
⎥⎦ (A4)

where μ, ν = {1, 2, 3, 4}. This requirement leads to the con-
dition

BJBt=J, (A5)
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namely B must be a symplectic matrix. Equation (A5) is
equivalent to (

α2
1 − α2

2

) + (
β2

1 − β2
2

) = 1(
γ 2

1 − γ 2
2

) + (
δ2

1 − δ2
2

) = 1

α1γ1 − α2γ2 + β1δ1 − β2δ2 = 0

α1γ2 − α2γ1 + β1δ2 − β2δ1 = 0.

If we take (α2
1 − α2

2 ) � 0 and the same for β, γ , δ, the so-
lutions can be parametrized by a Bogoliubov matrix of the
form given in Eq. (15), with B ≡ B(ϕ̂p) depending on a set of
four parameters ϕ̂p = {ϕ1,p, ϕ2,p,�p, φp}. Finally, their value
is uniquely fixed by the requirement for B to diagonalize
Hp. Note that this is not a standard diagonalization problem,
because of the symplectic nature of B. The standard procedure
[98,99] amounts to finding the spectrum of Hp, by introduc-
ing the matrix HpJ . This one can now be diagonalized in a
standard way, meaning via a unitary transformation T as

T −1(HpJ )T = �pJ,

with �p diagonal [the corresponding spectrum in our case is
given by Eq. (19) in the main text]. Eventually, one imposes
BtHpB = �p. This fixes the parameters ϕ̂p to be of the form
given in Eq. (17).

APPENDIX B: DERIVATION OF C±(x, t, T0), EQ. (25)

We start by considering the logarithm of C±(x, t, T0) de-
fined in (22), i.e.,

〈[θ±(x, t ) − θ±(0, t )]2〉T0 . (B1)

If we expand the square inside the expectation value, it is the
sum of four terms of the form

〈θ±(x, t )θ±(y, t )〉T0 = 1

2

∑
i, j=1,2

(±1)i+ j〈θi(x, t )θ j (y, t )〉T0 .

(B2)

The problem is thus reduced to the evaluation of correlation
functions of θi(x, t ) (i = 1, 2). This can be achieved, as in
Sec. V A, by looking at the dynamics of θi(p, t ). An alterna-
tive way, however, it to use the expansion of the fields θi(x, t )
in terms of the creation/annihilation operators bp,i(t ) [at t = 0
it is given by Eq. (7) in the main text, with bi,p ≡ bi,p(0)],
which evolve freely under the evolution operator U (ε̂p, t ), as
defined in (23). Still, expectation values are to be taken on a
thermal state of the Hamiltonian (14), which is diagonal in the
operators ηi,p [cf. Eq. (14)]. Initial and final bosonic operators
are related by the following sequence of transformations:

bp(t )
U (ε̂p,t )−→ bp(0)

B(ϕ̂p)−→ ηp(0), (B3)

equivalent to

bp(t ) = Up(t )B(ϕ̂p)ηp(0). (B4)

These considerations allow us to write

〈θi(x, t )θ j (y, t )〉 =
∑

p,q �=0

e−i(px−qy)W ±
μν〈η†

p,μ(0)ηq,ν (0)〉,

(B5)

where the sum over the dumb indices μ, ν = {1, 2, 3, 4} is un-
derstood and the matrices W ± have been defined in Eq. (26).
Next, we observe that

〈η†
p,μ(0)ηq,ν (0)〉 = δp,q[Fβ (p)μν + (δμ2δν2 + δμ4δν4)],

(B6)
where we further defined the matrix

Fβ (p) = diag
(

f β
m , f β

m , f β

0 , f β

0

)
(B7)

and f β

k ≡ f β

k (p) = 1
eβλk,p−1

(k = m, 0) is the Bose function
[and λk,p in Eq. (19)]. Finally, by using (63) in Eq. (62), and
(59) in Eq. (58), the exact expression of C± in Eq. (25) is easily
obtained. The two matrix elements of W ± explicitly appearing
in the final expression, can be evaluated directly from (26)
and, in terms of the parameters ϕ̂p defining the Bogoliubov
transformation, they read

W ±
22 =

{
cos2 φp

4K1
[cosh(2ϕ1,p) − cos(2u1|p|t ) sinh(2ϕ1,p)] + sin2 φp

4K2
(cosh (2(� + ϕ1,p)) − cos(2u2|p|t ) sinh(2(� + ϕ1,p)))

± sin 2φp

4
√

K1K2
[− cos ((u1 − u2)|p|t ) cosh(� + 2ϕ1,p) + cos ((u1 + u2)|p|t ) sinh(� + 2ϕ1,p)]

}
,

W ±
44 =

{
cos2 φp

4K2
[cosh(2ϕ2,p) − cos(2u2|p|t ) sinh(2ϕ2,p)] + sin2 φp

4K1
(cosh(2(ϕ2,p − �)) − cos(2u2|p|t ) sinh(2(ϕ2,p − �)))

± sin 2φp

4
√

K1K2
[cos((u1 − u2)|p|t ) cosh(2ϕ2,p − �) − cos((u1 + u2)|p|t ) sinh(2ϕ2,p − �)]

}
. (B8)

APPENDIX C: TWO-TIME CORRELATIONS AND
FDT IN THE STATIONARY STATE

Here we study different Green’s functions of system one
and two after a thermal quench and we discuss their relation.
In particular the Keldysh, the retarded, and the advanced
Green’s functions of system i = 1, 2 are defined, respectively,

as follows:

GK
i (p, t2, t1) = 〈{bi,p(t1), b†

i,p(t2)}〉T0 ,

GR
i (p, t2, t1) = θ (t1 − t2)〈[bi,p(t1), b†

i,p(t2)]〉T0 ,

GA
i (p, t2, t1) = −θ (t2 − t1)〈[bi,p(t1), b†

i,p(t2)]〉T0 , (C1)
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where for completeness we consider the expectation value
over a thermal state. These functions turn out to be time
translational invariant and depend only on the difference t =
t1 − t2, immediately after the quench. Moreover the response
function (retarded correlator) does not depend on the initial
condition. In particular, at the leading order in p → 0 they
read

GK
1 (p, t ) � 1

2u1|p|e−iu1|p|t
[

mT0
1 +

(
u2

K2

K

u
+ K1u1

uK

)
T0

]

GK
2 (p, t ) � 1

2u2|p|e−iu2|p|t
[

mT0
2 +

(
u1

K1

K

u
+ K2u2

uK

)
T0

]

GR\A
i (p, t ) = ±θ (±t ) e−iui |p|t for i = 1, 2 (C2)

with mT0
i = mi cotanh(m0/2T0). Fourier transforming such

functions in the frequency domain, one obtains

GK
i (p, ω) = 2T T0,eff

i

ω

[
GR

i (p, ω) − GA
i (p, ω)

]
, (C3)

with effective temperatures

T T0,eff
1 = mT0

1

4
+
(

u2

K2

K

u
+ u1K1

uK

)
T0

4
� 〈ε1,p〉T0

T T0,eff
2 = mT0

2

4
+
(

u1

K1

K

u
+ u2K2

uK

)
T0

4
� 〈ε2,p〉T0 , (C4)

which are the generalization of (46) to finite tempera-
ture quenches. Equation (68) is the celebrated fluctuation-
dissipation theorem (FDT) in the limit of small frequencies
(or classical limit) [66], which states a fundamental relation
between correlation and response functions in equilibrium
systems.

APPENDIX D: LEADING ANALYTIC EXPRESSIONS
OF C±(x, t, T0) AFTER A THERMAL QUENCH

In this section we provide a derivation of the equations that
give the leading order of the correlation functions C±(x, t, T0)
and the effective temperatures (51) and (52) after a thermal
quench. As we mentioned in the main text, Eq. (31) still holds,
also at finite temperature. The expectation values of the phase
and density fluctuations at time t = 0, however, are modified,
in particular by the massless mode. These read

〈θi(p, 0)θ j (−p, 0)〉 � π

2a2 p2

u1u2

K1K2

K

u
T0 = 1

p2

π

2uK
T0 (D1)

〈ni(p, 0)n j (−p, 0)〉 � 1

2π

√
KiKj

uiu j

[
(−1)i+ j

√
mT0

i mT0
j

+
√

uk1 �=iuk2 �= j

Kk1 �=iKk2 �= j

K

u
T0

]
, (D2)

with mT0
i = micotanh( m0

2T0
) and k1, k2 = 1, 2. Therefore, in a

thermal quench, both phase and density fluctuations con-
tribute. The building blocks (34) become

ci j (x, t ) � 1

2

∫ ∞

0
d p e−α2 p2

(1 − cos(px))
1

p2

{[
(−1)i+ j

√
mT0

i mT0
j

KiKjuiu j
+ T0

uK

(
K2

K1K2

√
uk1 �=iuk2 �= j

uiu j
+ 1

)]
cos((ui − u j )pt )

−
[

(−1)i+ j

√
mT0

i mT0
j

KiKjuiu j
+ T0

uK

(
K2

K1K2

√
uk1 �=iuk2 �= j

uiu j
− 1

)]
cos((ui + u j )pt )

}
. (D3)

Note that this structure gives rise to the same light cones as for the quench from T0 = 0. From this we can read the final correlation
length (in the case u1 �= u2)

(
ξ

T0
Q

)−1 = π

8

[
m0

2

K

u

(
1

K2
1

+ 1

K2
2

)
cotanh

(
m0

2T0

)
+ T0

uK

(
K2

K1K2

u2
1 + u2

2

u1u2
+ 2

)]
, (D4)

which is compatible with the temperature (52). Note that this expression has a simple interpretation in terms of a two temperature
system with temperatures given in (69), and generalizing Eqs. (46) to a thermal quench.

In addition, the prethermal correlation length of the symmetric and the antisymmetric mode (which can be deduced setting
u1 = u2 in the limit of large times) reads

(ξT0± )−1 = π

8

[
m0

2

K

u

(
1

K2
1

+ 1

K2
2

∓ 2

K1K2

)
cotanh

(
m0

2T0

)
+ T0

uK

(
K2

K1K2

(u1 ± u2)2

u1u2
+ (2 ± 2)

)]
, (D5)

which gives the effective temperatures (51).
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