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The analysis of charge noise based on the Bloch-Redfield treatment of an ensemble of dissipative two-level
fluctuators generally results in a violation of the fluctuation-dissipation theorem. The standard Markov approx-
imation (when applied to the two-level fluctuators coupled to a bath) can be identified as the main origin of
this failure. The resulting decoherence rates only involve the bath response at the fluctuator frequency, and thus
completely neglect the effects of frequency broadening. A systematic and computationally convenient way to
overcome this issue is to employ the spectator-qubit method: by coupling an auxiliary qubit to the two-level
fluctuator ensemble, an analytical approximation for S(ω) fully consistent with the fluctuation-dissipation
theorem can be obtained. We discuss the resulting characteristics of the noise which exhibits distinct behavior
over several frequency ranges, including a 1/ f to 1/ f 2 crossover with a T 3 temperature dependence of the
crossover frequency.
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I. INTRODUCTION

Random fluctuations of physical quantities in a qubit or
its surrounding environment lead to decoherence limiting
qubit performance. Common noise sources for superconduct-
ing qubits arise from fluctuating background charge [1,2],
magnetic flux [3,4], critical current [5], or quasiparticle poi-
soning [6]. In widely used circuits such as the transmon [7]
and fluxonium qubits [8], noise in different frequency ranges
plays distinct roles in limiting coherence times: while de-
phasing rates are typically governed by low-frequency noise
(e.g., 1/ f noise), relaxation processes are usually dominated
by high-frequency noise (e.g., Nyquist noise).

This situation is altered in recent proposals for a new
generation of qubits with intrinsic protection against noise,
such as heavy fluxonium [9,10], the 0-π qubit [11–14], and
the current-mirror qubit [15,16]. Qubits of this type are pre-
dicted to exhibit remarkably long coherence times due to
the exponential suppression of transitions among the compu-
tational qubit states, achieved by localizing wave functions
in separate regions of configuration space (disjoint support).
Under these circumstances, depolarization is dominated by
excitation processes producing leakage into higher qubit states
beyond the computational subspace. The transition rates for
such excitation processes, which involve energy transfer from
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the noise source to the qubit, are proportional to the noise
spectral density S(ω), evaluated at negative frequencies [17].
Thus, the study of negative-frequency noise is crucial for
understanding the depolarization of qubits with intrinsic
protection.

Here, we are particularly interested in the behavior of
charge noise. While the microscopic origin of this noise
has not been conclusively established [18], a number of
theoretical studies have proceeded to consider an ensem-
ble of two-level fluctuators (TLFs) as the cause of charge
noise [19–22]. The predictions presented in these references
for the positive-frequency noise are consistent with a number
of experimental observations [2,23–27]. However, inspection
of the noise spectral density derived from Bloch-Redfield
theory reveals violations of the fluctuation-dissipation theo-
rem [28]. This theorem directly relates the negative-frequency
part of S(ω) to its positive-frequency counterpart, or equiva-
lently, the symmetrized spectral density to the imaginary part
of a response function. To overcome this issue, we abandon
Bloch-Redfield theory and instead extract S(ω) by computing
the depolarization rate of an auxiliary qubit weakly cou-
pled to the noise source. This spectator-qubit method was
first introduced in the context of noise studies for single-
electron transistors [29,30]. The results thus derived for the
charge-noise spectral density manifestly obey the fluctuation-
dissipation theorem.

The paper is organized as follows. We describe the model
of a single TLF weakly coupled to a thermal bath, and derive
the corresponding spectral density in Sec. II. We then show in
Sec. III that results obtained from the Bloch-Redfield theory
are inconsistent with the fluctuation-dissipation theorem. Our
main results addressing this issue are presented in Secs. IV
and V, where we derive noise spectral densities first for a sin-
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gle TLF and then for an ensemble of TLFs. A crossover from
1/ f to 1/ f 2 and further to Ohmic or white-noise behavior is
predicted for positive frequencies, along with a corresponding
exponentially suppressed negative-frequency component. We
share our conclusions and outlook in Sec. VI, and provide
additional details in the subsequent appendices.

II. TWO-LEVEL FLUCTUATOR COUPLED TO
A THERMAL BATH

We start with a single TLF, and defer the case of an ensem-
ble of TLFs to Sec. V. The Hamiltonian of a TLF coupled to
a bosonic bath is

ĤTLF-bath = − 1
2 (ε �̂z + ��̂x ) + Ĥdiss, (1)

where {�̂i} is the set of Pauli operators associated with the
TLF. Here, we adopt the notation commonly used for tunnel-
ing among the two lowest levels in an asymmetric double-well
potential, with � the tunneling amplitude, and ε the energy
asymmetry. In principle, the TLF couples to the environment
through both �̂z and �̂x. However, the coupling via �̂x is
expected to be much smaller compared to the longitudinal
coupling, and may be neglected [31–33]. This leads to the
Hamiltonian

Ĥdiss = �̂z

∑
λ

(gλâλ + g∗
λâ†

λ) +
∑

λ

ωλâ†
λâλ (2)

describing the bath and its coupling to the TLF. Here, the λth
mode of the bosonic bath has energy ωλ, and couples to the
TLF with coupling strength gλ, through the ladder operators
âλ, â†

λ. To characterize the effect of Ĥdiss, it is best to diago-
nalize the TLF Hamiltonian with the transformation

�̂z = cos(θ ) σ̂z − sin(θ ) σ̂x, (3)

�̂x = sin(θ ) σ̂z + cos(θ ) σ̂x. (4)

The Pauli operators {σ̂i} refer to the eigenbasis of the TLF,
and θ is defined by tan(θ ) = �/ε. The term proportional to σ̂z

generally introduces pure dephasing of the TLF. However, for
the cubic bath spectral function considered throughout this pa-
per, the pure-dephasing rate actually vanishes. Consequently,
we may restrict our discussion to the case of purely transverse
coupling [34]. Then, Eq. (1) further simplifies to

ĤTLF-bath = −1

2
ωtσ̂z − �

ωt
σ̂x

∑
λ

(gλâλ+ g∗
λâ†

λ)+
∑

λ

ωλâ†
λâλ,

(5)
where ωt = √

ε2 + �2 is the eigenenergy of the TLF.
Within the master-equation formalism, used in later sec-

tions, the strength of dissipation is governed by the bath
correlation function. In the Heisenberg picture, the bath op-
erator coupling to the TLF is given by

B̂(t ) = − �

ωt

∑
λ

(gλâλe−iωλt + g∗
λâ†

λeiωλt ). (6)

In equilibrium, the correlation function is

〈B̂(t )B̂(0)〉 =�2

ω2
t

∑
λ

|gλ|2{[nB(ωλ)+ 1]e−iωλt + nB(ωλ)eiωλt },

(7)

where nB(ω) = (eβω − 1)−1 is the Bose-Einstein distribution.
Taking the Fourier transform of the correlation function, we
obtain

γ (ω) =
∫ +∞

−∞
dt eiωt 〈B̂(t )B̂(0)〉

= 2π
�2

ω2
t

∑
λ

|gλ|2{[nB(ωλ) + 1]δ(ω − ωλ)

+ nB(ωλ)δ(ω + ωλ)}. (8)

Using the definition of the bath spectral function J (ω) =∑
λ |gλ|2δ(ω − ωλ), the correlation function is

γ (ω) = 2π
�2

ω2
t

{
J (ω)[nB(ω) + 1], ω � 0
J (−ω)nB(−ω), ω < 0 . (9)

The positive- and negative-frequency components of the cor-
relation function can be interpreted as the Fermi’s golden rule
transition rates for the bath absorbing and emitting energy
|ω|, respectively. As expected, their magnitudes obey detailed
balance:

γ (−ω) = γ (ω)e−βω. (10)

Due to the coupling to the bath, a given TLF quantity F̂
will undergo fluctuations. These fluctuations may be charac-
terized by quoting the spectral density which is obtained as
the Fourier transform of the autocorrelation function:

s(ω) =
∫ +∞

−∞
dt eiωt [〈F̂ (t )F̂ (0)〉 − 〈F̂ 〉2]. (11)

Here, F̂ (t ) denotes the Heisenberg representation, and 〈· · · 〉
refers to the quantum-mechanical expectation value in thermal
equilibrium. We are interested in the fluctuations of the dipole
moment of the TLF, p�̂z [35], which we will relate to charge
noise in Sec. V. Taking F̂ to be �̂z, the spectral density in
Eq. (11) can be rewritten as

s(ω) = cos2(θ )szz(ω) + sin2(θ )sxx(ω), (12)

where

sαα (ω) =
∫ +∞

−∞
dt eiωt [〈σ̂α (t )σ̂α (0)〉 − 〈σ̂α〉2], (13)

with α = x, z. Note that the cross-correlations between σ̂z and
σ̂x vanish for the TLF-bath coupling given in Eq. (5).

III. RESULTS FROM BLOCH-REDFIELD THEORY

We first follow Refs. [19,21] to calculate the spectral
density of a TLF using Bloch-Redfield theory [36,37]. The
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evolution of the expectation values of {σ̂i} is governed by

d

dt
〈σ̂x(t )〉 = ωt〈σ̂y(t )〉 − γ2〈σ̂x(t )〉, (14)

d

dt
〈σ̂y(t )〉 = −ωt〈σ̂x(t )〉 − γ2〈σ̂y(t )〉, (15)

d

dt
〈σ̂z(t )〉 = −γ1(〈σ̂z(t )〉 − 〈σ̂z〉eq), (16)

with γ1 = γ (ωt ) + γ (−ωt ) denoting the depolarization rate,
γ2 = [γ (ωt ) + γ (−ωt )]/2 the dephasing rate, and 〈σ̂z〉eq =
(γ↑ − γ↓)/(γ↑ + γ↓) the equilibrium polarization. For t > 0,
the solution to this system of differential equations is

〈σ̂x(t )〉 = e−γ2t [〈σ̂y(0)〉 sin(ωtt ) + 〈σ̂x(0)〉 cos(ωtt )],

〈σy(t )〉 = e−γ2t [〈σ̂y(0)〉 cos(ωtt ) − 〈σ̂x(0)〉 sin(ωtt )],

〈σ̂z(t )〉 = e−γ1t [〈σ̂z(0)〉 − 〈σ̂z〉eq] + 〈σ̂z〉eq.

Employing the quantum regression theorem [38], we further
obtain the correlation functions

〈σ̂x(t )σ̂x(0)〉 = e−γ2t [cos(ωtt ) − i〈σ̂z〉eq sin(ωtt )], (17)

〈σ̂z(t )σ̂z(0)〉 = e−γ1t
(
1 − 〈σ̂z〉2

eq

) + 〈σ̂z〉2
eq. (18)

For the evaluation of the spectral density, all expectation val-
ues and correlators above should be evaluated with respect
to the equilibrium state. In this case, one finds 〈σ̂x(0)〉 =
〈σ̂y(0)〉 = 0, and 〈σ̂z(0)〉 = 〈σ̂z〉eq. The negative-time coun-
terparts to Eqs. (17) and (18), required for the calcula-
tion of the spectral density, follow from 〈Â1(−t )Â2(0)〉 =
〈Â1(t )Â2(0)〉∗ [38]. The spectral density of a single
TLF [19,21] can now be obtained via the correlation func-
tions, and using Eq. (13) along with a Fourier transform:

sBR
xx (ω) = 1 + 〈σ̂z〉eq

2

2γ2

(ω − ωt )2 + γ 2
2

+ 1 − 〈σ̂z〉eq

2

2γ2

(ω + ωt )2 + γ 2
2

, (19)

sBR
zz (ω) = (

1 − 〈σ̂z〉2
eq

) 2γ1

ω2 + γ 2
1

. (20)

Here, the superscript BR refers to Bloch-Redfield theory.
The spectral density sBR

zz (ω) is a Lorentzian centered at
ω = 0 with linewidth γ1. By contrast, sBR

xx (ω) is a sum of two
Lorentzians, centered at ω = ±ωt. The corresponding peak
amplitudes are given by (1 ± 〈σ̂z〉eq)/2. Although the ratio of
the peak heights can be confirmed to satisfy detailed balance,

1 + 〈σ̂z〉eq

1 − 〈σ̂z〉eq
= eβωt , (21)

the overall profiles of sBR
xx (ω) and sBR

zz (ω) actually violate the
fluctuation-dissipation theorem:

sBR
αα (ω) + sBR

αα (−ω) 	= [
sBR
αα (ω) − sBR

αα (−ω)
]

coth(βω/2),

with α = x, z. In particular, the right-hand side of the above
equation vanishes for sBR

zz (ω). Since this asymmetric part of
the spectral density is directly related to the imaginary part
of a Kubo response function [17], the Bloch-Redfield method
fails to describe the response of the TLF correctly. The origin
of this failure can be understood as follows. As a result of the

Markov approximation applied to the TLF-bath system, the
rates of the bath-induced TLF depolarization and dephasing
are determined by the bath correlation function exclusively
evaluated at the system frequency ±ωt. However, due to the
TLF-bath interaction, the system frequency is actually broad-
ened, which suggests that additional frequency components
of γ (ω) in the vicinity of ±ωt may play a role. Includ-
ing these frequency components turns out to be crucial in
order to obtain a spectral density that obeys the fluctuation-
dissipation theorem. The spectator-qubit method employed in
the following sections applies the Markov approximation to
an enlarged system. This explicitly introduces the missing
frequency components, and thus succeeds in restoring the
fluctuation-dissipation theorem.

IV. SPECTATOR-QUBIT METHOD

A more suitable method for obtaining the quantum noise
spectral density consists of relating S(ω) to the dissipative
dynamics of an auxiliary system weakly coupled to the noise
source of interest. The simplest choice is a qubit acting as a
noise spectrometer [39]. This description is of interest as an
experimental protocol, but is here employed exclusively as a
convenient tool for computing the spectral density [29,30].
Since the qubit fulfills the passive role of probing the noise
source, we refer to this approach as the spectator-qubit
method. Within this approach, the TLF spectral density is
derived from the depolarization rate of the spectator qubit.
Applying a Markov approximation to the enlarged system of
TLF and spectator qubit induces contributions from a larger
set of bath-correlator frequency components, which are no
longer limited to the TLF frequency. As discussed in Sec. III,
this enables us to steer clear of the issues plaguing the Bloch-
Redfield theory, and derive results manifestly obeying the
fluctuation-dissipation theorem. While the presence of the
spectator qubit is key to this method, we emphasize that the
resulting noise spectral density is a property of the TLF only,
and independent of the spectator qubit. The spectator qubit
merely probes the noise spectral density of the TLF, and does
not alter it.

To implement the spectator-qubit method (Fig. 1), we cou-
ple a TLF operator φ̂(t ) in the Heisenberg picture transversely
to the qubit, as described by the Hamiltonian

Ĥ = − 1
2ωqτ̂z + κτ̂xφ̂(t ). (22)

Here, ωq is the qubit energy and {τ̂i} is the set of qubit
Pauli operators. The coupling between the qubit and TLF is
parametrized by κ . The spectral density sφφ (ω) of the noise
can be extracted from the relaxation and excitation rates of
the qubit. For κ/ωq 
 1, Fermi’s golden rule yields

sφφ (+ωq) = κ−2�↓, sφφ (−ωq) = κ−2�↑, (23)

where �↓ and �↑ are the qubit relaxation and excitation rates.
In particular, we are interested in the spectral densities szz(ω)
and sxx(ω), for φ̂ = σ̂z, σ̂x [see Eq. (12)]. In the following, we
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FIG. 1. An ensemble of TLFs coupled to a bath. The ensemble
and bath jointly act as a noise source that can be probed by an
auxiliary qubit serving as a noise spectrometer.

first calculate the qubit depolarization rate, and then analyze
the noise spectral density resulting from Eq. (23).

A. Depolarization rate of a qubit coupled with a TLF

Depolarization of the qubit arises from coupling to the
TLF. The Hamiltonian for qubit, TLF, and bath is ĤS + ĤI +
ĤB, where ĤS = − 1

2ωqτ̂z + κτ̂xφ̂ − 1
2ωtσ̂z describes the com-

bined system of qubit and TLF, ĤB = ∑
λ ωλâ†

λâλ captures the
bath modes, and ĤI = − �

ωt
σ̂x
∑

λ(gλâλ + g∗
λâ†

λ) denotes the
TLF-bath interaction. To model the depolarization dynamics
of the qubit, we derive a suitable master equation. While we
largely follow the standard derivation [38], there are several
crucial differences discussed in the following [40].

a. Markov approximation in the Schrödinger picture. The
Markov approximation is commonly applied to convert a
time-nonlocal equation to a time-local one, where the density
matrix at retarded time is replaced with that at the present
time [38]. This replacement is appropriate if the system dy-
namics is slow compared to the bath correlation time. It
is important to note that the dynamical time scales present
in the dynamics of the density matrix crucially depend on
whether we employ the Schrödinger or interaction picture.
Here the dynamics of interest is governed by the depolar-
ization of the qubit. While the Schrödinger picture directly
reveals this process, the interaction picture leads to a com-
bination of depolarization and fast oscillatory behavior (see
Appendix A). Therefore, in this specific case, we perform the
Markov approximation in the Schrödinger picture instead of
the interaction picture, as is the most common choice [38].

b. Omitting the secular approximation. Usually, the secular
approximation is invoked next in order to cast the master
equation into Lindblad form [38]. This strategy does not suc-
ceed here: application of the Markov approximation in the
Schrödinger picture (rather than the interaction picture) in-
variably leads to a non-Lindblad master equation. As a result,
there is no advantage in applying the secular approximation,
and we hence choose not to apply it and retain all contribu-
tions.

With the Markov approximation in the Schrödinger picture
and in the absence of the secular approximation, the master

equation takes the form of

d

dt
ρ̂(t ) = −i[ĤS, ρ̂(t )]

+
∑

i j

1

2
γ (−εi j )[�̂iσ̂xρ̂(t )�̂ j σ̂x − σ̂x�̂iσ̂xρ̂(t )�̂ j

+ σ̂x�̂ j ρ̂(t )σ̂x�̂i − �̂ j ρ̂(t )σ̂x�̂iσ̂x]. (24)

Here, ρ̂(t ) is the system density matrix, �̂i is a projector
onto the ith eigenstate of ĤS, εi j is the energy difference
between the ith and jth eigenstates, and γ (ω) is the Fourier
transform of the bath correlation function defined in Eq. (8).
Comparison of the master equation (24) with the Lindblad
master equation from Bloch-Redfield theory shows that the
spectator-qubit method indeed produces damping terms that
involve additional frequency components of the bath corre-
lation function, specifically γ (±ωt ± ωq). To keep notation
compact, we introduce the following abbreviations for the
rates:

γ (ωt ) = γ↓, γ (−ωt ) = γ↑,

γ (ωq) = γ +, γ (−ωq) = γ −,

γ (ωt − ωq) = γ −
↓ , γ (−ωt + ωq) = γ +

↑ ,

γ (ωt + ωq) = γ +
↓ , γ (−ωt − ωq) = γ −

↑ . (25)

Since we are only interested in the limit of weak coupling
between spectator qubit and TLF (i.e., κ → 0), we only need
to solve for the depolarization dynamics of the qubit perturba-
tively. We denote the quantum numbers of the qubit by {g, e},
and those of the TLF by {0, 1}. It is convenient to convert the
reduced density matrix of the combined system

ρ̂ =

⎛
⎜⎝

ρee11 ρee10 ρeg11 ρeg10

ρee01 ρee00 ρeg01 ρeg00

ρge11 ρge10 ρgg11 ρgg10

ρge01 ρge00 ρgg01 ρgg00

⎞
⎟⎠, (26)

into coherence vector form |ρ). In this way, the master equa-
tion can be written as

d

dt
|ρ) = �|ρ), (27)

where � is a 16 × 16 matrix. Treating the coupling between
qubit and TLF perturbatively, we expand the evolution matrix
in powers of κ:

� = �0 + κ�1 + κ2�2 + O(κ3). (28)

The dynamics of the uncoupled system is determined by �0,
the explicit form of which is given in Appendix B. The sta-
tionary states of the system are given by the two zero modes
of �0

ρ̂g =
(

0 0
0 1

)
⊗
(

peq
1 0
0 peq

0

)
, (29)

ρ̂e =
(

1 0
0 0

)
⊗
(

peq
1 0
0 peq

0

)
, (30)

which place the qubit in the ground or excited state. The
TLF occupies the equilibrium state, characterized by the
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probabilities

peq
0 = γ↓

γ↑ + γ↓
, peq

1 = γ↑
γ↑ + γ↓

. (31)

Second-order perturbation theory in the qubit-TLF cou-
pling induces transitions between the two zero modes. To
facilitate the degenerate-perturbative calculation, we define
the projector onto the degenerate subspace [41]:

P = |ρg)(φg|
(φg|ρg)

+ |ρe)(φe|
(φe|ρe)

. (32)

Here (φg| and (φe| are the two left eigenvectors of �0

with eigenvalue zero. Since �1 vanishes in the degenerate
subspace, P�1P = 0, there is no first-order correction. The
leading corrections are hence of second order, and arise from
both �1 and �2. As shown in Appendix C, the perturbative
treatment leads to an effective evolution matrix:

�m = P�2P − P�1(1 − P)�−1
0 (1 − P)�1P. (33)

Both terms in the above equation act on states in the de-
generate subspace. While the first term simply applies �2,
the second term involves an intermediate projection 1 − P
onto the complementary subspace, after applying �1. The
operator �−1

0 plays an analogous role as (Ĥ − E )−1 which
generates the energy denominators in ordinary perturbation
theory. Employing �m, the relaxation and excitation rates can
be obtained via

�↓ = κ2(φg|�m|ρe), �↑ = κ2(φe|�m|ρg). (34)

Note that the matrix �m depends on the TLF operator φ̂ that
couples to the qubit [see Eq. (22)]. For the case φ̂ = σ̂z, the
transition rates are

�z
↑ = κ2

4
(
peq

1 γ −
↓ + peq

0 γ −
↑
)

ω2
q + (γ +

↓ + γ −
↓ + γ +

↑ + γ −
↑ )2/4

, (35)

�z
↓ = κ2

4
(
peq

1 γ +
↓ + peq

0 γ +
↑
)

ω2
q + (γ +

↓ + γ −
↓ + γ +

↑ + γ −
↑ )2/4

. (36)

For the case φ̂ = σ̂x, the transition rates are then

�x
↑ = κ2 4ω2

t γ
−(

ω2
q − ω2

t

)2 + ω2
q(γ + + γ −)2

, (37)

�x
↓ = κ2 4ω2

t γ
+(

ω2
q − ω2

t

)2 + ω2
q(γ + + γ −)2

. (38)

B. Noise spectral density of a single TLF

To obtain the noise spectral density of a single TLF, we
need to calculate szz(ω) and sxx(ω), respectively [see Eq. (12)].
These spectral densities can be calculated from the depolariza-
tion rates derived above, using Eq. (23).

1. Noise spectral density szz(ω) of a TLF

First, we calculate szz(ω). Employing Eq. (23), the values
of the spectral density at ±ωq are obtained from depolariza-
tion rates Eqs. (35) and (36):

szz(+ωq) = 4
(
peq

1 γ +
↓ + peq

0 γ +
↑
)

ω2
q + (γ +

↓ + γ −
↓ + γ +

↑ + γ −
↑ )2/4

, (39)

szz(−ωq) = 4
(
peq

1 γ −
↓ + peq

0 γ −
↑
)

ω2
q + (γ +

↓ + γ −
↓ + γ +

↑ + γ −
↑ )2/4

. (40)

By treating the qubit frequency ωq as a sweeping parameter,
all positive- and negative-frequency components of the noise
spectral density are obtained. Equations (39) and (40) can be
further combined into one compact expression valid for both
positive and negative ω [43]:

szz(ω) = 4
(
peq

1 γ +
↓ + peq

0 γ +
↑
)

ω2 + (γ +
↓ + γ −

↓ + γ +
↑ + γ −

↑ )2/4
. (41)

Recall that the rates γ ±
↑↓ depend on ω [see Eq. (25)] and

obey detailed balance [Eq. (10)]. As a result, we find
that szz(−ω) = szz(ω)e−βω, so there is no violation of the
fluctuation-dissipation theorem. To distinguish this spectral
density from sBR

zz (ω) obtained in Sec. III, we refer to Eq. (41)
as sSQ

zz (ω) in the following, where the superscript SQ stands
for spectator-qubit method.

To evaluate and compare sSQ
zz (ω) and sBR

zz (ω), the bath spec-
tral function J (ω) entering the rates γ ±

↑↓ must be specified.
Here, we consider a cubic spectral function with exponential
cutoff [44]:

J (ω) = J0 ω3 e−ω2/2ω2
D , (42)

where J0 characterizes the interaction strength between the
bath and the system, and ωD denotes the high-frequency
cutoff. Figure 2(a) shows an example comparing the re-
sulting two spectral densities. While sBR

zz (ω) has the shape
of a symmetric Lorentzian, sSQ

zz (ω) exhibits an asymmetric
profile, consistent with the requirement from the fluctuation-
dissipation theorem. Figure 2(a) also plots the asymmetric-in-
frequency part of the quantum noise spectral density. Using
standard linear response theory, this is equal to the negative
imaginary part of the Kubo susceptibility χzz[ω] (up to a factor
1/2), where

χzz(t ) ≡ −iθ (t )〈[σ̂z(t ), σ̂z(0)]〉. (43)

This susceptibility describes the linear response of 〈σ̂z(t )〉
to a time-varying perturbation that couples to σ̂z. Thus, the
quantum part of our spectral density is directly related to
the out-of-phase response of our system to a time-varying
perturbation. This dissipative response is maximal when ω

approximately matches the total TLF relaxation rate, a phe-
nomenon that is well known in other contexts (e.g., in the
Zener model of anelasticity [45]).

More significant deviations between sBR
zz (ω) and sSQ

zz (ω)
emerge when inspecting the behavior of the noise spectral
density at different temperatures [see Fig. 2(b)]. While sBR

zz (ω)
is uniformly suppressed when lowering the temperature,
sSQ

zz (ω) shows a richer behavior as a function of temperature.
Specifically, we observe that all curves rapidly converge to a
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FIG. 2. (a) Comparison between noise spectral densities szz(ω)
for a single TLF, calculated in two different ways. The solid black
curve represents the results from the qubit-as-spectrometer approach.
For comparison, the dashed curve shows szz(ω) computed via the
Bloch–Redfield theory. The inset shows the asymmetric parts of the
spectral densities. (b) Noise spectral density sSQ

zz (ω) for a single TLF,
evaluated at different temperatures. While the low-frequency part
is strongly suppressed, the high-frequency part is insensitive to the
lowering of the temperature. This behavior can be explained by an
analysis of the underlying perturbative processes. The inset shows
temperature dependence of sBR

zz (ω) obtained from the Bloch–Redfield
theory. [Parameters used: T = 40 mK in (a), k2

BJ0�
2/ω2

t = 6.25 K−2,
ωD/kB = 470 K, and ωt/kB = 0.08 K.]

single asymptote ∝ 1/ω3 in the high-frequency limit ω � ωt,
indicating a strong suppression of temperature dependence
in this regime. In the low-frequency region of the spectrum
(ω < ωt), decreasing the temperature strongly suppresses the
central peak, intermediately producing a double-peaked shape
before reducing again to a single peak. In order to elucidate
this temperature dependence, we first introduce the perturba-
tive processes induced by the TLF-qubit coupling [46] and
then analyze their frequency and temperature dependence.

The relevant set of perturbative processes depends cru-
cially on the nature of the coupling κÂqubitB̂TLF. In the
framework of employing the spectator-qubit method, the qubit
coupling operator is fixed to Âqubit = τ̂x, while the TLF opera-
tor is chosen according to the noise spectral density of interest,
namely, B̂TLF = σ̂z for szz(ω) and B̂TLF = σ̂x for sxx(ω). We
first focus on szz(ω), in which case the perturbative treatment
of the coupling results in four different processes involving
excitation and relaxation of TLF and/or qubit. The energy

mismatch between qubit and TLF is compensated by addi-
tional energy emission or absorption due to the bath, leading
to a total of six processes shown in Fig. 3 [47]. The positive-
frequency behavior of the noise spectral density [Fig. 2(b)] is
determined by the processes II, III, and VI (i.e., right column
of Fig. 3) which involve energy transfer from the qubit to the
TLF. In the following, we study the frequency and temperature
dependence of those processes.

a. Frequency-dependent switching between processes. Not
all three processes are active for all positive frequencies.
While process VI leading to TLF relaxation occurs for all
positive frequencies, processes II and III causing TLF exci-
tation are mutually exclusive. Process II takes place whenever
ω = ωq < ωt, in which case qubit relaxation does not provide
sufficient energy for exciting the TLF (red wiggly line in II,
Fig. 3), and the bath has to provide the required additional
energy ωt − ωq (blue dashed line in II). By contrast, process
III occurs in the opposite situation ω = ωq > ωt when qubit
relaxation leads to an energy excess that is absorbed by the
bath. (Similar threshold behavior is found in the context of
noise from a single-electron transistor [30,42].)

b. Temperature dependence. The temperature dependence
of the rates for these processes differs characteristically.
Processes II and VI are both suppressed as temperature is
lowered: II requires thermal emission from the bath and is
accompanied by a thermal factor of nB(ωt − ωq); VI neces-
sitates initial population of the TLF which is associated with a
Boltzmann factor of e−ωt/kBT . On the other hand, process III is
only weakly dependent on temperature, since it requires nei-
ther emission from the bath nor thermal excitation of the TLF.

Considering both aspects of frequency-dependent switch-
ing and temperature dependence of processes and their
associated rates, one concludes the following. For low fre-
quencies ω < ωt, the two active processes II and VI both
undergo strong suppression with decreasing temperature, ex-
plaining the suppression of the central peak in szz(ω < ωt )
as temperature is lowered. At higher frequencies ω > ωt and
temperatures kBT < ωt, process III dominates over VI. To-
gether with the weak temperature dependence of process III,
this explains the convergence of szz(ω > ωt ) at different tem-
peratures to a common asymptote.

2. Noise spectral density sxx(ω) of a TLF

The second contribution to the TLF noise spectral density
is given by sxx(ω). Following the same procedure as in the
previous subsection, but now employing Eqs. (37) and (38)
instead of Eqs. (35) and (36), we find that the noise spectral
density at positive and negative ω is given by

sxx(ω) = 4ω2
t γ

+(
ω2 − ω2

t

)2 + ω2(γ + + γ −)2
, (44)

where the rates γ ± are ω dependent. As one can verify, this
expression obeys the condition

sxx(−ω) = sxx(ω)e−βω (45)

dictated by the fluctuation-dissipation theorem. Again, to dis-
tinguish this spectral density from sBR

xx (ω) in Sec. III, we refer
to Eq. (44) as sSQ

xx (ω) in the following. In Fig. 4(a), we show
the comparison between sSQ

xx (ω) and sBR
xx (ω), using the same
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FIG. 3. Relevant leading-order processes contributing to the positive-frequency (right column) and negative-frequency (left column) noise
spectral density. Each process involves the transition of the TLF (|0〉 → |1〉 or |1〉 → |0〉), which is correlated with qubit absorption (downward
red wiggly arrow) or emission (upward red wiggly arrow). Note that the qubit frequency here resembles the external frequency entering the
bubble diagram, when calculated diagrammatically [42]. The bath provides (upward blue dashed arrow) or receives (downward blue dashed
arrow) the energy mismatch between the qubit and TLF.

bath spectral function as before [Eq. (42)]. While sBR
xx (ω)

consists of two Lorentzians centered at ±ωt, sSQ
xx (ω) exhibits

additional asymmetry in each of the two peaks, as required
by Eq. (45). The temperature dependence observed for sSQ

xx (ω)
and sBR

xx (ω) [Fig. 4(b)] differs qualitatively from that of szz(ω).
The height of the local maximum of sxx close to ω ≈ −ωt

is exponentially suppressed as temperature is lowered, ac-
cording to nB(ωt ). At the positive-frequency peak close to
ω ≈ ωt [48], the opposite occurs: here, the peak height in-
stead increases as temperature is lowered. This is similar to
the Purcell effect [49] in the near-resonant case, and can be
interpreted in terms of the quantum Zeno effect [50]: The
reduced temperature lowers the decay rate from the TLF to the
bath, which results in an increase of the hybridization between
the TLF and qubit, and further leads to an enhanced decay rate
of the qubit. The tail of the peak at ω > ωt shows only very
weak temperature dependence, for reasons analogous to those
discussed for szz(ω). Namely, based on the coupling κτ̂xσ̂x

relevant for sxx(ω), one finds only one perturbative process
involving TLF dephasing and simultaneous qubit relaxation.
Since the emitted energy from the qubit is absorbed by the
bath, this process is relatively temperature insensitive, thus
explaining the weak temperature dependence of sSQ

xx (ω).

3. Resulting noise spectral density of a single TLF

The full noise spectral density is now easily obtained as
a linear combination [Eq. (12)] of the longitudinal and trans-
verse contributions sSQ

zz (ω) and sSQ
xx (ω):

s(ω) = cos2(θ )
4
(
peq

1 γ +
↓ + peq

0 γ +
↑
)

ω2 + (γ +
↓ + γ −

↓ + γ +
↑ + γ −

↑ )2/4

+ sin2(θ )
4ω2

t γ
+(

ω2 − ω2
t

)2 + ω2(γ + + γ −)2
. (46)

This quantity represents the noise from a single TLF. In order
to describe charge noise, we consider the combined noise
from an ensemble of TLFs with given probability distribu-
tions for the TLF parameters ε and �. (These, in turn affect
both θ = tan−1(�/ε) and ωt = √

�2 + ε2 in the expression
above.) The purpose of the next section is to compute the
charge noise S(ω) from an ensemble average of s(ω).

V. CHARGE-NOISE SPECTRAL DENSITY OF AN
ENSEMBLE OF TWO-LEVEL FLUCTUATORS

The combined effect of many TLFs can describe some
of the experimentally observed properties of charge noise,
given an appropriate choice of the underlying distributions
for the TLF parameters ε, �, and the nature of the TLF-bath
coupling strength. Borrowing from the approach in Ref. [33],
we model the TLF-bath interaction with the cubic spectral
function typical of a phonon bath:

J (ω) = J0ω
3e−ω2/2ω2

D . (47)

Here, we take the coupling parameter J0 = 0.047 ps2 and the
Debye frequency ωD = 470 K, estimated for TLF-phonon
interaction in SiO2 [21]. In the usual model of tunneling inside
a double-well potential [33], the tunneling amplitude � is
given by � ∝ e−δ . Here, δ primarily depends on the height
and width of the barrier between the wells. It is common to
assume a uniform distribution for δ [27,51], which results in
a log-uniform distribution for �. Distributions used for the
bias energy (asymmetry of the double-well potential) ε vary
throughout the literature: A linear distribution [19] yields the
Ohmic spectral density observed for frequencies ω > kBT in
Ref. [2]. On the other hand, a uniform distribution [21] is
used to reproduce the constant spectral density observed in
Ref. [25] for frequencies ω/2π > 10 MHz. To account for
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FIG. 4. (a) Comparison between noise spectral densities sxx (ω)
for a single TLF, calculated in two different ways. The solid black
curve represents the results from the qubit-as-spectrometer approach.
For comparison, the dashed curve shows sxx (ω) computed via the
Bloch–Redfield theory. (b) Noise spectral density sSQ

xx (ω) for a sin-
gle TLF, evaluated at different temperatures. The negative peak is
exponentially suppressed as temperature is lowered. Away from the
peak, the positive-frequency spectral density is insensitive to the
lowering of temperature. When close to the peak, sSQ

xx (ω) is enhanced
due to the Zeno effect. The inset shows temperature dependence
of sBR

xx (ω) obtained from the Bloch–Redfield theory. [Parameters
used: T = 40 mK in (a), k2

BJ0�
2/ω2

t = 6.25 K−2, ωD/kB = 470 K,
ωt/kB = 0.08 K.]

both possibilities, we consider the following normalized prob-
ability distribution of TLF parameters:

P(ε,�) = N (α)B(ε,�)
εα

�
, (48)

where α ∈ {0, 1} describes the two possible distributions.
The boundary function B(ε,�) equals unity for εm < ε <

εM and �m < � < �M, and vanishes otherwise. The param-
eter ranges εm/kB = 0, εM/kB = 4 K, �m/kB = 2 μK, and
�M/kB = 4 K are taken from Ref. [21], and the normalization
factor is given by

N (α)−1 =
(εM + εm

2

)α

(εM − εm) ln

(
�M

�m

)
. (49)

The spectral density of an ensemble of TLFs is then obtained
through

S(ω) = NTLF

∫∫
R2

dε d� P(ε,�)s(ω), (50)

where s(ω) is the spectral density of a single TLF [Eq. (46)]
and NTLF is the number of TLFs. For instance, the sample
in Ref. [21] with dimensions 400 × 40 × 800 nm3 and a den-
sity of states nTLF ≈ 1045 J−1m−3 contains NTLF ≈ 103 TLFs.
The presence of such TLFs induces fluctuating charges Q̂ =
(p/L)�̂z. Here, p represents the electric dipole moment of a
single TLF, and L denotes a sample-dependent characteristic
length scale. As a result, S(ω) is related to charge noise via
SQ(ω)/e2 = (p/eL)2S(ω), with p/eL ≈ 10−4 obtained from
parameters consistent with Ref. [21].

In Fig. 5, we present plots of SQ(ω) for the two choices of
probability distributions (i.e., α = 0, 1), for a temperature of
10 mK. The results calculated via the Bloch-Redfield theory
are shown for comparison. In the following two subsections
we discuss the distinct properties for positive and negative
frequencies, respectively.

A. Noise spectral density at positive frequencies

The noise spectral density at positive frequencies exhibits
three regimes with qualitatively different characteristics [see
Figs. 5(a) and 5(b)].

(1) At low frequency, we observe a crossover from 1/ f to
1/ f 2 behavior.

(2) At high frequency, an Ohmic noise spectrum is obtained
for the linear-ε probability [Fig. 5(a)], whereas the spectrum
becomes white for the uniform-ε distribution [Fig. 5(b)].

(3) An intermediate region exhibiting a local minimum
in the noise spectral density connects the low- and high-
frequency parts.

A comparison with the calculation from Sec. III shows
that the Bloch-Redfield method works well in the low- and
high-frequency regimes, but leads to a significantly shallower
local minimum in the intermediate region (note the logarith-
mic scale).

To shed light on the crossover between 1/ f and 1/ f 2

behavior, we approximate the integral in Eq. (50) semian-
alytically and estimate the crossover frequency ω∗. At low
frequencies, s(ω) is dominated by szz(ω), and it is appropriate
to use the expression from Eq. (19), obtained via the Bloch-
Redfield theory, as an approximation:

s(ω) ≈ cos2(θ )szz(ω) = cos2(θ )
(
1 − 〈σ̂z〉2

eq

) 2γ1

ω2 + γ 2
1

. (51)

Here, the depolarization rate is given by

γ1 = 2πJ0ωt�
2 coth

( ωt

2kBT

)
. (52)

The average over TLF parameters ε and �, required in
Eq. (50), can be converted to an average over γ1 and ωt, with
underlying joint distribution

P(γ1, ωt ) ∝ ωt

2γ1
(ωt

√
1 − γ1/γM )α−1, (53)

and cutoffs inherited from ε and �, i.e., ωm = √
�2

m + ε2
m,

ωM =
√

�2
M + ε2

M, γm(ωt ) = 2πJ0ωt�
2
m coth(ωt/2kBT ), and

γM(ωt ) = 2πJ0ω
3
t coth(ωt/2kBT ). Taking the average of s(ω)
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FIG. 5. Charge-noise spectral density of an ensemble of TLFs
at 10 mK, with different distributions P(ε,�) ∝ ε/� in (a) and
P(ε, �) ∝ 1/� in (b). In each case, the spectral density is cal-
culated in two ways. The solid black curve represents the results
from the spectator-qubit method. For comparison, the gray dashed
curve shows S(ω) computed via the Bloch-Redfield theory. Their
difference is highlighted as the shaded region. The dashed lines help
to visualize the crossover from 1/ f to 1/ f 2 in low frequency and
the Ohmic (a) or white noise (b) in high frequency. Normalized by
the number of TLFs, S(ω)/NTLF shown on the right vertical axis
supplements the extensive quantity SQ(ω)/e2.

in Eq. (51) leads to (see details in Appendix D)

∫ ωM

ωm

dωt

∫ γM(ωt )

γm(ωt )
dγ1P(γ1, ωt )s(ω) ∝

⎧⎨
⎩

ω−1, ω 
 ω∗

ω−2, ω � ω∗
,

with the crossover frequency

ω∗ ≈

⎧⎪⎨
⎪⎩

93ζ (5)

2 ln(2)
(kBT )3J0, P(ε,�) ∝ ε/�

π4

3
(kBT )3J0, P(ε,�) ∝ 1/�

. (54)

FIG. 6. Temperature dependence of the frequency where the
crossover between 1/ f and 1/ f 2 occurs. Black circles and diamonds
are numerical results extracted from the calculations of SQ(ω), with
P(ε,�) ∝ ε/� and ∝ 1/�, respectively. The analytical expressions
for the crossover frequency are in excellent agreement with the data
points obtained from numerical calculation.

We compare this approximation with numerical results as fol-
lows. We obtain S(ω) via numerical integration of Eq. (50). A
straight line in the log-log scale is generated and extrapolated
to larger frequency, by connecting two points of S(ω) in the
1/ f regime. Likewise, another straight line connecting points
in the 1/ f 2 regime is produced and extrapolated to the lower
frequency. The intersection of the two lines is extracted as the
crossover frequency ω∗. The above process is repeated for
a range of temperature. The crossover frequencies obtained
in this way for the linear-ε and uniform-ε distributions are
shown in Fig. 6 as circles and diamonds, respectively. Our
analytical approximation for the crossover frequency is in
excellent agreement with the numerical results.

In the low-frequency and high-frequency regimes, our
results match the 1/ f , Ohmic, and white-noise behavior dis-
cussed in Refs. [19,21]. However, the intermediate region
exhibiting a local minimum in the crossover from 1/ f to white
noise was not captured in Ref. [21]. This can be traced back
to the use of a fixed Lorentzian linewidth γ1/2 [rather than
an appropriate distribution in Eq. (53)] in the calculation of
sxx(ω) [21]. Our prediction of a crossover from 1/ f to 1/ f 2

is consistent with experimental data by Ithier et al. [52], but
was not discussed in Refs. [19,21]. A 1/ f to 1/ f 2 crossover
was also mentioned in Ref. [53], albeit for a different model
including mean-field interactions among TLFs.

B. Noise spectral density at negative frequencies

Considering the noise spectral density obtained from the
spectator-qubit method at negative frequencies, we observe
that S(ω) is approximately symmetric for small |ω/kBT |,
as required by the fluctuation-dissipation theorem. In par-
ticular, the crossover from 1/ f to 1/ f 2 is also visible on
the negative-frequency side. However, for negative frequen-
cies of large magnitude, |ω| � kBT , the spectral density
is exponentially suppressed relative to the counterpart on
the positive-frequency side, consistent with the fluctuation-
dissipation theorem. This exponential suppression, combined
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with the nonmonotonic behavior of S(ω) in the positive-
frequency range, is at the origin of the additional local
maximum found in the negative-frequency tail of S(ω).

Comparison of the noise spectral density obtained from the
spectator-qubit method with the one obtained via the Bloch-
Redfield theory shows qualitatively different behavior of the
negative-frequency tails. The latter noise spectral density does
not exhibit any local extrema for negative frequencies, and the
suppression of the negative-frequency tail is much weaker.
The latter is related to the aforementioned violation of the
fluctuation-dissipation theorem.

VI. CONCLUSIONS

In summary, we have identified violations of the
fluctuation-dissipation theorem in the conventional modeling
of charge noise, and traced this issue to the missing relevant
frequency components of the bath correlation function in the
Bloch-Redfield theory. By using the spectator-qubit method
(i.e., coupling an auxiliary qubit to the noise source), we
recover the relevant frequency components of the bath cor-
relation function, and derive a charge-noise spectral density
compatible with the fluctuation-dissipation theorem. Based
on this treatment, we find that S(ω) exhibits distinct be-
havior across different frequency ranges: a crossover from
1/ f to 1/ f 2 at low frequencies, a local minimum at inter-
mediate frequencies, and Ohmic or white-noise behavior at
high frequencies. In line with the fluctuation-dissipation the-
orem, the negative-frequency part of the spectrum mirrors its
positive-frequency counterpart with the necessary exponential
suppression factor. Our results highlight that the simple model
of an ensemble of TLFs generates a noise spectral density
with rich behavior in terms of frequency and temperature
dependence. For both we present concrete predictions that can
be tested in future experiments on charge noise.
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APPENDIX A: MARKOV APPROXIMATION IN THE
SCHRÖDINGER VS INTERACTION PICTURE

The Markov approximation is commonly applied to con-
vert a time-nonlocal master equation into a time-local one.
The former involves a time integral of the form

∫ t
0 ds F [ρ̂(s)].

Assuming that the system density matrix ρ̂ undergoes dy-
namics that is slow compared to the fast equilibration of the
bath, one may approximate that integral by replacing ρ̂(s) →
ρ̂(t ), i.e., the system density matrix at the present time.
This Markov approximation can be applied within either the
Schrödinger or the interaction picture, and each choice gener-
ally leads to a different master equation and a corresponding
system evolution. Depending on the specific dynamics (e.g.,
oscillation mode, relaxation mode, etc.), one choice may be

more appropriate than the other. To illustrate this point, we
discuss two representative examples in the following.

1. Dephasing dynamics: Markov approximation in the
interaction picture

In the first case, we consider a two-level system coupled
longitudinally to a thermal bath. After performing the Markov
approximation in either of the two pictures, the evolution of
the density matrix in the Schrödinger picture follows:

ρ̂(t ) =
(

ρee(0) ρeg(0)e−iω0t−γ t

ρge(0)eiω0t−γ t ρgg(0)

)
. (A1)

Here, ω0 is the frequency of the two-level system, and γ

denotes the dephasing rate. (We note that the value of γ

will generally depend on whether the Markov approximation
is applied inside the Schrödinger picture or the interaction
picture.) Equation (A1) describes dephasing dynamics, with
diagonal elements remaining constant, but off-diagonal ele-
ments undergoing exponentially damped oscillations. When
transformed into the interaction picture (denoted by a tilde),
the same evolution takes on the form

˜̂ρ(t ) =
(

ρee(0) ρeg(0)e−γ t

ρge(0)e−γ t ρgg(0)

)
. (A2)

As opposed to Eq. (A1), the interaction-picture evolution
does not show any oscillatory behavior for the off-diagonal
elements. Given that γ 
 ω0, this implies that the dynamics
is significantly faster in the Schrödinger picture as compared
to the interaction picture. As a result, the evolution described
by Eq. (A2) is more suitable for the slow-dynamics assump-
tion that underlies the Markov approximation. Hence, in this
example, one should expect to obtain more accurate results
when employing the Markov approximation in the interaction
picture.

2. Relaxation dynamics: Markov approximation in the
Schrödinger picture

For the second example, we consider the setup described
in Sec. IV A, where a thermal bath is transversely coupled to
a TLF, which in turn couples to an auxiliary qubit. Here, we
are particularly interested in the relaxation dynamics of the
qubit. After performing the Markov approximation in either
of the two pictures, the reduced density matrix of the qubit
undergoes relaxation dynamics. In the Schrödinger picture
this takes the form

ρ̂(t ) = ρ̂eq +
(

a b
b∗ −a

)
e−γ t , (A3)

where ρ̂eq denotes the equilibrium density matrix, a and b are
constants forming a traceless coefficient matrix, and γ is the
relaxation rate. Transformed into the interaction picture, the
same evolution is described by

˜̂ρ(t ) = ρ̂eq +
(

a b eiωqt

b∗ e−iωqt −a

)
e−γ t , (A4)

where ωq is the qubit frequency. Contrasting the latter expres-
sion with Eq. (A3) reveals that the absence of oscillations in
the Schrödinger picture renders the dynamics slow compared
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to the interaction picture. As a result, the Markov approxima-
tion is here more appropriate within the Schrödinger picture
for a more accurate description of the qubit’s relaxation dy-
namics.

APPENDIX B: EXPRESSION FOR THE EVOLUTION
SUPEROPERATOR �0

The evolution superoperator �0 [Eq. (28)] becomes block
diagonal when expressed in the basis formed by the eigen-
states of the combined qubit-TLF system:

�0 = diag(M1, M1, M2 − iωq, M2 + iωq, M3 − iωtσz,

M3 − iωtσz, M4 − iωq − iωtσz, M4 + iωq − iωtσz ),

with the definitions

M1 =
(−γ↑ γ↓

γ↑ −γ↓

)
,

M2 = 1

2

(−γ −
↑ − γ +

↑ −γ −
↓ − γ +

↓
−γ −

↑ − γ +
↑ −γ −

↓ − γ +
↓

)
,

M3 = −γ (0)

(
1 −1

−1 1

)
,

M4 = −γ − + γ +

2

(
1 1
1 1

)
.

APPENDIX C: DERIVATION OF QUBIT RELAXATION
AND EXCITATION RATES IN EQ. (34) FROM

DEGENERATE PERTURBATION THEORY

Here we derive the qubit relaxation and excitation rates
induced by the coupling to the noise source (TLF and bath).
Treating the coupling between qubit and TLF perturbatively,
we expand the evolution matrix in Eq. (27) in powers of κ:

� = �0 + κ�1 + κ2�2 + O(κ3). (C1)

When the coupling is absent (i.e., κ = 0), each of the two
eigenvectors of �0 with eigenvalue zero [Eqs. (29) and (30)]
is a product state with the TLF in equilibrium and the qubit
occupying either the ground or the excited state. In the pres-
ence of the coupling, the twofold degeneracy is lifted, which
results in one stationary state and one mode describing the
qubit depolarization. The relevant dynamics is governed by

d

dt
|ρ(t )) = �|ρ(t )). (C2)

In general, the solution to the above equation for an initial
state |ρ(0)) has the form of

|ρ(t )) =
∑

j

|� j )(ϕ j |ρ(0))eχ j t , (C3)

where |� j ) and (ϕ j | are the right and left eigenvectors of
non-Hermitian matrix � with eigenvalue χ j . To extract the
relaxation rate, we initialize the qubit in the excited state (with
TLF in equilibrium), and monitor the population increase of

the ground state:

(φg|ρ(t )) =
∑

j

(φg|� j )(ϕ j |ρe)eχ j t . (C4)

In the following, we use index j = 0, 1 to denote the zero
mode and depolarization mode of �, which reduce to the two
zero modes of �0 as κ → 0. It is expected that the amplitude
(φg|� j )(ϕ j |ρe) is of order κ0 for j = 0, 1, and of order κ2 for
j � 2, respectively. Hence, Eq. (C4) can be approximated by

(φg|ρ(t )) ≈
∑
j=0,1

(φg|� j )(ϕ j |ρe)eχ j t . (C5)

Expanding this population for times t small compared to the
depolarization time |χ1|−1, we obtain

d

dt
(φg|ρ(t )) ≈ (φg|�1)(ϕ1|ρe)χ1. (C6)

Hence, we identify the relaxation rate as

�↓ ≈ (φg|�1)(ϕ1|ρe)χ1. (C7)

Similarly, the excitation rate is obtained by initializing the
system in a state with the qubit in the ground state:

�↑ ≈ (φe|�1)(ϕ1|ρg)χ1. (C8)

To further evaluate these expressions, it is necessary to diag-
onalize � in the degenerate subspace of �0. In the following,
we calculate the eigenvalues and eigenvectors of � up to
second order in κ using degenerate perturbation theory.

We start from the eigenvalue equation

�|� j ) = χ j |� j ). (C9)

Similar to Eq. (C1), we expand eigenvectors and eigenvalues
of � up to second order in κ:

χ j = χ
(0)
j + κχ

(1)
j + κ2χ

(2)
j + O(κ3), (C10)

|� j ) = ∣∣�(0)
j

) + κ
∣∣�(1)

j

) + κ2
∣∣�(2)

j

) + O(κ3), (C11)

where |�(0)
j ) and χ

(0)
j are the eigenvectors and eigenvalues

of �0. For diagonalization in the degenerate subspace, it is
convenient to decompose the vector space V spanned by all
right eigenvectors of �0 into a direct sum of the degenerate
subspace D and its complementary subspace D, such that
V = D ⊕ D. Similarly, we define W = B ⊕ B as the vec-
tor space spanned by left eigenvectors of �0, along with
B the degenerate subspace and its complementary subspace
B. The notation for eigenvalues and eigenvectors of �0 is
summarized in Table I. The eigenvectors |� j ) of � can thus

TABLE I. Notation for eigenvalues and eigenvectors of �0.

Eigenvalue Eigenvector Eigenvector
of �0 of �0 of �†

0

Degenerate
subspaces D, B
Complementary
subspaces D, B

λα

λμ

⎫⎬
⎭χ

(0)
j

|ρα )

|ρμ)

⎫⎬
⎭∣∣�(0)

j

) (φβ |

(φν |

⎫⎬
⎭(ϕ (0)

j

∣∣
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be expanded in the eigenbasis of �0 as follows:

|� j ) =
∑

α

c jα|ρα ) +
∑

μ

d jμ|ρμ) + O(κ3), (C12)

with |ρα ) ∈ D, and |ρμ) ∈ D. In the following, we focus
on the eigenvectors which reduce to the two zero modes of
�0, i.e., we consider j = 0, 1. Comparing with Eq. (C11),
it follows that the coefficients c jα and d jμ are of order κ0

and κ1, respectively [54]. Substituting |� j ) [Eq. (C12)] and
χ j [Eq. (C10)] into the eigenvalue equation [Eq. (C9)] yields∑

α

c jα
( − κχ

(1)
j − κ2χ

(2)
j + κ�1 + κ2�2

)|ρα )

+
∑

μ

d jμ
(
λμ − κχ

(1)
j + κ�1

)|ρμ) + O(κ3) = 0,

(C13)

where λμ is the eigenvalue associated with |ρμ). Project-
ing (C13) onto the states (φβ | ∈ B and (φν | ∈ B yields

κ
∑

μ

d jμ(φβ |�1|ρμ) + κ2
∑

α

c jα (φβ |�2|ρα )

= c jβ
(
κχ

(1)
j + κ2χ

(2)
j

)
, (C14)

κ
∑

α

c jα (φν |�1|ρα ) + κ
∑

μ

d jμ(φν |�1|ρμ)

= d jν
( − κχ

(1)
j − λν

)
, (C15)

which holds up to (and including) order κ2. Note that the terms
proportional to (φβ |�1|ρα ) vanish, since �1 is off diagonal
in the qubit subspace. Moreover, Eq. (C14) shows that χ

(1)
j

is zero, by comparing orders of κ and recalling that d jμ ∼
O(κ ). Since eigenvectors in the degenerate subspace are only
associated with c jα , we proceed as follows. Solving Eq. (C15)
for d jμ results in an expression in terms of c jα which can then
be substituted into Eq. (C14). Since the term involving d jμ

in (C14) carries a factor of κ , it is sufficient to retain only
O(κ ) terms for d jμ, which yields

d jν = − κ

λν

∑
α

c jα (φν |�1|ρα ). (C16)

Upon substitution back into Eq. (C14), we find

c jβχ
(2)
j =

∑
α

c jα (φβ |�2|ρα )

−
∑

α

c jα

∑
μ

λ
−1
μ (φβ |�1|ρμ)(φμ|�1|ρα ).

Note that this is an eigenvalue equation for χ
(2)
j involving the

matrix �m defined by

�m = P�2P − P�1(1 − P)�−1
0 (1 − P)�1P, (C17)

where P is the projector onto the degenerate subspace
[Eq. (32)]. Thus, we obtain χ

(2)
j and {c jβ} by solving the

above eigenvalue equation. Since both χ
(0)
j and χ

(1)
j are zero

( j = 0, 1), κ2χ
(2)
j approximates the eigenvalue χ j of � up to

O(κ2). Moreover, {c jβ} determines the approximate eigenvec-
tors of � in the degenerate subspace of �0 [see Eq. (C12)].

Plugging the approximate eigenvalue and eigenvector into
Eqs. (C7) and (C8) yields the relaxation and excitation rates.
Note that a compact form of these rates can be derived by
employing the eigendecomposition of �m:

κ2�m ≈ |�0)(ϕ0|χ0 + |�1)(ϕ1|χ1. (C18)

Using the fact that one eigenvalue of �m is zero yields

κ2(φe|�m|ρg) ≈ (φe|�1)(ϕ1|ρg)χ1. (C19)

Therefore, the excitation and relaxation rates in Eqs. (C7)
and (C8) can be rewritten as

�↓ ≈ κ2(φg|�m|ρe), �↑ ≈ κ2(φe|�m|ρg). (C20)

APPENDIX D: DERIVATION OF THE CROSSOVER
FREQUENCY IN EQ. (54)

1. Case: Linear distribution in ε

The low-frequency part of S(ω) is dominated by szz(ω),
and can be approximated by

S(ω) ≈
∫ ωM

ωm

dωt

∫ γM(ωt )

γm(ωt )
dγ1P(γ1, ωt )szz(ω) cos2(θ ).

The joint probability distribution is

P(γ1, ωt ) = N1
ωt

2γ1
, (D1)

where N1 is a normalization factor. At low frequency, it is
appropriate to use the expression from Eq. (19) for szz(ω),
obtained via the Bloch-Redfield theory, as an approximation:

szz(ω) ≈ (
1 − 〈σ̂z〉2

eq

) 2γ1

ω2 + γ 2
1

, (D2)

where 〈σ̂z〉eq = tanh(ωt/2kBT ). After converting

cos2(θ ) = 1 − �2

ω2
t

= 1 − γ1

γM
, (D3)

we obtain S(ω) as follows:

S(ω) =
∫ ωM

ωm

dωt

∫ γM(ωt )

γm(ωt )
dγ1 N1ωt

1 − 〈σ̂z〉2
eq

ω2 + γ 2
1

(
1 − γ1

γM

)

=N1

∫ ωM

ωm

dωt ωt

{
1

ω

[
tan−1

(γM

ω

)
− tan−1

(γm

ω

)]

− 1

2γM
ln

(
γ 2

M + ω2

γ 2
m + ω2

)}(
1 − 〈σ̂z〉2

eq

)
.

For γm 
 ω 
 γM, the above expression simplifies to

S(ω) ≈ N1

∫ ωM

ωm

dωt ωt
1

ω

π

2

(
1 − 〈σ̂z〉2

eq

)
. (D4)

For ω � γM, we obtain

S(ω) ≈ N1

∫ ωM

ωm

dωt ωt
γM

2ω2

(
1 − 〈σ̂z〉2

eq

)
. (D5)
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Note that both γM and γm depend on ωt:

γm(ωt ) = 2πJ0ωt�
2
m coth

( ωt

2kBT

)
, (D6)

γM(ωt ) = 2πJ0ω
3
t coth

( ωt

2kBT

)
. (D7)

In short the low-frequency part of S(ω) calculated using linear-ε distribution can be approximated by

S(ω) ≈ N1

∫ ωM

ωm

dωt ωt
(
1 − 〈σ̂z〉2

eq

) ·

⎧⎪⎨
⎪⎩

π

2ω
, γm 
 ω 
 γM

γM

2ω2
, ω � γM

.

Now we evaluate the integration over ωt. When ω is suffi-
ciently small such that the 1/ f noise is dominant, the integral
can be approximated by

S(ω)1/ f ≈N1

∫ ∞

0
dωt ωt

[
1 − tanh2

(
ωt

2kBT

)]
π

2ω

= N1
π

2ω
(2kBT )2 ln(2). (D8)

When ω is large enough such that the 1/ f 2 noise is dominant,
the integral can be approximated by

S(ω)1/ f 2 ≈N1

∫ ∞

0
dωt ωt

[
1 − tanh2

(
ωt

2kBT

)]
γM

2ω2

=N1
2πJ0

ω2
(2kBT )5 93

64
ζ (5). (D9)

The crossover frequency of S(ω)1/ f and S(ω)1/ f 2 is then iden-
tified as

ω∗ = 93ζ (5)

2 ln(2)
(kBT )3J0. (D10)

2. Case: Uniform distribution in ε

In this case, the joint probability distribution is

P(γ1, ωt ) = N0
1

2γ1

(
1 − γ1

γM

)−1/2

, (D11)

where N0 is the normalization factor. Similar argument leads
to the following approximated S(ω):

S(ω) ≈
∫ ωM

ωm

dωt

∫ γM(ωt )

γm(ωt )
dγ1 N0

1 − 〈σ̂z〉2
eq

ω2 + γ 2
1

√
1 − γ1

γM

= N0

∫ ωM

ωm

dωt
(
1 − 〈σ̂z〉2

eq

)

× 2

ω
Im

[√
1 + iω

γM
tan−1

(√
γM − γm

γM + iω

)]
.

For γm 
 ω 
 γM, the above expression simplifies to

S(ω) ≈ N0

∫ ωM

ωm

dωt
1

ω

π

2

(
1 − 〈σ̂z〉2

eq

)
. (D12)

For ω � γM, we obtain

S(ω) ≈ N0

∫ ωM

ωm

dωt
2γM

3ω2

(
1 − 〈σ̂z〉2

eq

)
. (D13)

In short the low-frequency part of S(ω) calculated using
constant-ε distribution can be approximated by

S(ω) ≈ N0

∫ ωM

ωm

dωt
(
1− 〈σ̂z〉2

eq

) ·

⎧⎪⎨
⎪⎩

π

2ω
, γm 
 ω 
 γM

2γM

3ω2
, ω � γM

.

Now we evaluate the integration over ωt. When ω is suffi-
ciently small such that the 1/ f noise is dominant, the integral
can be approximated by

S(ω)1/ f ≈N0

∫ ∞

0
dωt

[
1 − tanh2

( ωt

2kBT

)] π

2ω

=N0
π

2ω
2kBT . (D14)

When ω is large enough such that the 1/ f 2 noise is dominant,
the integral can be approximated by

S(ω)1/ f 2 ≈N0

∫ ∞

0
dωt

[
1 − tanh2

( ωt

2kBT

)]2γM

3ω2

=N0
2πJ0

ω2
(2kBT )4 π4

96
. (D15)

The crossover frequency of S(ω)1/ f and S(ω)1/ f 2 is then iden-
tified as

ω∗ = π4

3
(kBT )3J0. (D16)

[1] Y. Nakamura, Y. A. Pashkin, T. Yamamoto, and J. S. Tsai,
Charge Echo in a Cooper-Pair Box, Phys. Rev. Lett. 88, 047901
(2002).

[2] O. Astafiev, Y. A. Pashkin, Y. Nakamura, T. Yamamoto, and
J. S. Tsai, Quantum Noise in the Josephson Charge Qubit, Phys.
Rev. Lett. 93, 267007 (2004).

[3] F. Yoshihara, K. Harrabi, A. O. Niskanen, Y. Nakamura, and
J. S. Tsai, Decoherence of Flux Qubits Due to 1/ f Flux Noise,
Phys. Rev. Lett. 97, 167001 (2006).

[4] P. Kumar, S. Sendelbach, M. A. Beck, J. W. Freeland, Z.
Wang, H. Wang, C. C. Yu, R. Q. Wu, D. P. Pappas, and R.
McDermott, Origin and Reduction of 1/ f Magnetic Flux Noise

013045-13

https://doi.org/10.1103/PhysRevLett.88.047901
https://doi.org/10.1103/PhysRevLett.93.267007
https://doi.org/10.1103/PhysRevLett.97.167001


YOU, CLERK, AND KOCH PHYSICAL REVIEW RESEARCH 3, 013045 (2021)

in Superconducting Devices, Phys. Rev. Applied 6, 041001
(2016).

[5] D. J. Van Harlingen, T. L. Robertson, B. L. T. Plourde,
P. A. Reichardt, T. A. Crane, and J. Clarke, Decoherence in
Josephson-junction qubits due to critical-current fluctuations,
Phys. Rev. B 70, 064517 (2004).

[6] J. M. Martinis, M. Ansmann, and J. Aumentado, Energy Decay
in Superconducting Josephson-Junction Qubits from Nonequi-
librium Quasiparticle Excitations, Phys. Rev. Lett. 103, 097002
(2009).

[7] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from the
Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[8] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret,
Fluxonium: Single cooper-pair circuit free of charge offsets,
Science 326, 113 (2009).

[9] N. Earnest, S. Chakram, Y. Lu, N. Irons, R. K. Naik, N. Leung,
L. Ocola, D. A. Czaplewski, B. Baker, J. Lawrence, J. Koch,
and D. I. Schuster, Realization of a � System with Metastable
States of a Capacitively Shunted Fluxonium, Phys. Rev. Lett.
120, 150504 (2018).

[10] L. B. Nguyen, Y.-H. Lin, A. Somoroff, R. Mencia, N. Grabon,
and V. E. Manucharyan, High-Coherence Fluxonium Qubit,
Phys. Rev. X 9, 041041 (2019).

[11] P. Brooks, A. Kitaev, and J. Preskill, Protected gates for super-
conducting qubits, Phys. Rev. A 87, 052306 (2013).

[12] P. Groszkowski, A. D. Paolo, A. L. Grimsmo, A. Blais, D. I.
Schuster, A. A. Houck, and J. Koch, Coherence properties of
the 0-π qubit, New J. Phys. 20, 043053 (2018).

[13] A. D. Paolo, A. L. Grimsmo, P. Groszkowski, J. Koch, and
A. Blais, Control and coherence time enhancement of the 0–π

qubit, New J. Phys. 21, 043002 (2019).
[14] A. Gyenis, P. S. Mundada, A. Di Paolo, T. M. Hazard, X.

You, D. I. Schuster, J. Koch, A. Blais, and A. A. Houck,
Experimental realization of an intrinsically error-protected su-
perconducting qubit, arXiv:1910.07542 (2019).

[15] A. Kitaev, Protected qubit based on a superconducting current
mirror, arXiv:cond-mat/0609441 (2006).

[16] D. K. Weiss, A. C. Y. Li, D. G. Ferguson, and J. Koch, Spectrum
and coherence properties of the current-mirror qubit, Phys. Rev.
B 100, 224507 (2019).

[17] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and
R. J. Schoelkopf, Introduction to quantum noise, measurement,
and amplification, Rev. Mod. Phys. 82, 1155 (2010).

[18] C. Müller, J. H. Cole, and J. Lisenfeld, Towards understanding
two-level-systems in amorphous solids: Insights from quantum
circuits, Rep. Prog. Phys. 82, 124501 (2019).

[19] A. Shnirman, G. Schön, I. Martin, and Y. Makhlin, Low-
and High-Frequency Noise from Coherent Two-Level Systems,
Phys. Rev. Lett. 94, 127002 (2005).

[20] J. Schriefl, Y. Makhlin, A. Shnirman, and G. Schön, Decoher-
ence from ensembles of two-level fluctuators, New J. Phys. 8, 1
(2006).

[21] M. Constantin, C. C. Yu, and J. M. Martinis, Saturation of two-
level systems and charge noise in Josephson junction qubits,
Phys. Rev. B 79, 094520 (2009).

[22] C. Müller, J. Lisenfeld, A. Shnirman, and S. Poletto, Interacting
two-level defects as sources of fluctuating high-frequency noise
in superconducting circuits, Phys. Rev. B 92, 035442 (2015).

[23] P. Dutta and P. M. Horn, Low-frequency fluctuations in solids:
1/ f noise, Rev. Mod. Phys. 53, 497 (1981).

[24] M. B. Weissman, 1/ f noise and other slow, nonexponen-
tial kinetics in condensed matter, Rev. Mod. Phys. 60, 537
(1988).

[25] J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M.
Ansmann, K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W.
Simmonds, and C. C. Yu, Decoherence in Josephson Qubits
from Dielectric Loss, Phys. Rev. Lett. 95, 210503 (2005).

[26] O. Astafiev, Y. A. Pashkin, Y. Nakamura, T. Yamamoto, and
J. S. Tsai, Temperature Square Dependence of the Low Fre-
quency 1/ f Charge Noise in the Josephson Junction Qubits,
Phys. Rev. Lett. 96, 137001 (2006).

[27] E. Paladino, Y. M. Galperin, G. Falci, and B. L. Altshuler, 1/ f
noise: Implications for solid-state quantum information, Rev.
Mod. Phys. 86, 361 (2014).

[28] H. B. Callen and T. A. Welton, Irreversibility and generalized
noise, Phys. Rev. 83, 34 (1951).

[29] A. A. Clerk, S. M. Girvin, A. K. Nguyen, and A. D. Stone,
Resonant Cooper-Pair Tunneling: Quantum Noise and Mea-
surement Characteristics, Phys. Rev. Lett. 89, 176804 (2002).

[30] R. J. Schoelkopf, A. A. Clerk, S. M. Girvin, K. W. Lehnert, and
M. H. Devoret, Qubits as spectrometers of quantum noise, in
Quantum Noise in Mesoscopic Physics, edited by Y. V. Nazarov
(Springer, New York, 2003), pp. 175–203.

[31] B. I. Halperin, Can tunneling levels explain the anomalous
properties of glasses at very low temperature? Ann. N. Y. Acad.
Sci. 279, 173 (1976).

[32] S. Hunklinger and A. K. Raychaudhuri, Chapter 3: Thermal and
Elastic Anomalies in Glasses at Low Temperatures, Prog. Low
Temp. Phys. 9, 265 (1986).

[33] W. A. Phillips and A. Anderson, Amorphous Solids: Low-
Temperature Properties, Topics in Current Physics, Vol. 24
(Springer-Verlag, Berlin, Heidelberg, 1981).

[34] In general, longitudinal coupling will modify the linewidth
of sxx (ω) in Eq. (12). The latter is responsible for the high-
frequency regime of S(ω) calculated in Sec. V. Assuming that
the TLFs are underdamped [19], we have confirmed numeri-
cally that inclusion of longitudinal coupling does not lead to
qualitative changes in the behavior of S(ω).

[35] L. Faoro and L. B. Ioffe, Quantum Two Level Systems
and Kondo-Like Traps as Possible Sources of Decoherence
in Superconducting Qubits, Phys. Rev. Lett. 96, 047001
(2006).

[36] F. Bloch, Generalized theory of relaxation, Phys. Rev. 105, 1206
(1957).

[37] A. G. Redfield, On the theory of relaxation processes, IBM J.
Res. Dev. 1, 19 (1957).

[38] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University, New York, 2002).

[39] In principle, other systems such as a harmonic oscillator may be
used as a probe. However, this would unnecessarily complicate
the calculation of interest, and require additional considerations,
e.g., of leakage into neighboring levels and varying matrix ele-
ments for different levels. Since the probe system here is merely
a calculational tool, its particular nature is not of intrinsic in-
terest and we thus choose the simplest possible system, i.e., a
qubit.

[40] The same approach applied to the problem of a single-electron
transistor [30] generates a spectral density that is identical to

013045-14

https://doi.org/10.1103/PhysRevApplied.6.041001
https://doi.org/10.1103/PhysRevB.70.064517
https://doi.org/10.1103/PhysRevLett.103.097002
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1126/science.1175552
https://doi.org/10.1103/PhysRevLett.120.150504
https://doi.org/10.1103/PhysRevX.9.041041
https://doi.org/10.1103/PhysRevA.87.052306
https://doi.org/10.1088/1367-2630/aab7cd
https://doi.org/10.1088/1367-2630/ab09b0
http://arxiv.org/abs/arXiv:1910.07542
http://arxiv.org/abs/arXiv:cond-mat/0609441
https://doi.org/10.1103/PhysRevB.100.224507
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1088/1361-6633/ab3a7e
https://doi.org/10.1103/PhysRevLett.94.127002
https://doi.org/10.1088/1367-2630/8/1/001
https://doi.org/10.1103/PhysRevB.79.094520
https://doi.org/10.1103/PhysRevB.92.035442
https://doi.org/10.1103/RevModPhys.53.497
https://doi.org/10.1103/RevModPhys.60.537
https://doi.org/10.1103/PhysRevLett.95.210503
https://doi.org/10.1103/PhysRevLett.96.137001
https://doi.org/10.1103/RevModPhys.86.361
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRevLett.89.176804
https://doi.org/10.1111/j.1749-6632.1976.tb39704.x
https://doi.org/10.1016/S0079-6417(08)60015-3
https://doi.org/10.1103/PhysRevLett.96.047001
https://doi.org/10.1103/PhysRev.105.1206
https://doi.org/10.1147/rd.11.0019


POSITIVE- AND NEGATIVE-FREQUENCY NOISE FROM … PHYSICAL REVIEW RESEARCH 3, 013045 (2021)

the result obtained by a much more intricate calculation based
on Keldysh diagrammatics [42].

[41] D. C. Brody, Biorthogonal quantum mechanics, J. Phys. A
Math. Theor. 47, 035305 (2014).

[42] G. Johansson, A. Käck, and G. Wendin, Full Frequency
Back-Action Spectrum of a Single-Electron Transistor
during Qubit Readout, Phys. Rev. Lett. 88, 046802
(2002).

[43] The form of the obtained spectral density in Eq. (41) is analo-
gous to szz(ω) for a single-electron transistor [30,42]. While the
bath interacting with the single-electron transistor is fermionic,
the relevant excitations are electron-hole pairs characterized by
a Bose-Einstein distribution. It is thus plausible that the two
cases lead to similar expressions.

[44] For a cubic bath spectral function, the TLF’s pure-dephasing
rate vanishes, γ (0) = 0.

[45] C. Zener, Elasticity and Anelasticity of Metals (University of
Chicago, Chicago, 1948).

[46] Equation (24) is not in the Lindblad form, which in principle
disables the unravelling of the master equation with quantum
trajectory theory. However, the notion of processes can still be
established from the more complicated diagrammatic approach;
see Ref. [42] for example.

[47] Two of the eight possible combinations are ruled out by energy
conservation.

[48] If the shift δω of the spectral density’s maxima is small, then a
first-order expansion around ω = ωt can be used to obtain the
approximation as δω = γ (ωt )

γ ′ (ωt )
( 2√

4+γ ′ (ωt )2
− 1) .

[49] E. A. Sete, J. M. Gambetta, and A. N. Korotkov, Purcell effect
with microwave drive: Suppression of qubit relaxation rate,
Phys. Rev. B 89, 104516 (2014).

[50] W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland,
Quantum Zeno effect, Phys. Rev. A 41, 2295 (1990).

[51] W. A. Phillips, Tunneling states in amorphous solids, J. Low
Temp. Phys. 7, 351 (1972).

[52] G. Ithier, E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve, F.
Chiarello, A. Shnirman, Y. Makhlin, J. Schriefl, and G. Schön,
Decoherence in a superconducting quantum bit circuit, Phys.
Rev. B 72, 134519 (2005).

[53] A. Shnirman, G. Schön, I. Martin, and Y. Makhlin, 1/ f noise
and two-level systems in Josephson qubits, in Electron Cor-
relation in New Materials and Nanosystems, edited by K.
Scharnberg and S. Kruchinin (Springer, New York, 2007),
pp. 343–356.

[54] For j 	= 0, 1, similar observation shows that c jα and djμ are of
order κ1 and κ0, respectively.

013045-15

https://doi.org/10.1088/1751-8113/47/3/035305
https://doi.org/10.1103/PhysRevLett.88.046802
https://doi.org/10.1103/PhysRevB.89.104516
https://doi.org/10.1103/PhysRevA.41.2295
https://doi.org/10.1007/BF00660072
https://doi.org/10.1103/PhysRevB.72.134519

