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High-resolution spectroscopy of a quantum dot driven bichromatically by two strong coherent fields
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We present spectroscopic experiments and theory of a quantum dot driven bichromatically by two strong
coherent lasers. In particular, we explore the regime where the drive strengths are substantial enough to merit
a general nonperturbative analysis, resulting in a rich higher-order Floquet dressed-state energy structure. We
show high-resolution spectroscopy measurements with a variety of laser detunings performed on a single
InGaAs quantum dot, with the resulting features well explained with a time-dependent quantum master equation
and Floquet analysis. Notably, driving the quantum dot resonance and one of the subsequent Mollow triplet
sidepeaks, we observe the disappearance and subsequent reappearance of the central transition and transition
resonant with detuned laser at high detuned-laser pump strengths and additional higher-order effects, e.g.,
emission triplets at higher harmonics and signatures of higher-order Floquet states. For a similar excitation
condition but with an off-resonant primary laser, we observe similar spectral features but with an enhanced
inherent spectral asymmetry.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) provide an excellent
solid-state platform for the coherent control of quantum light-
matter interactions. In particular, optically active excitons
(electron-hole pairs) can behave as mesoscopic two-level sys-
tems, allowing for controlled emission of radiation for various
forms of quantum information processing protocols, including
the generation of single photons [1–8] and entangled photon
pairs [9–14]. Coherent control of quantum systems via contin-
uous wave or pulsed lasers allows for additional tailoring of
the emitted photon spectrum by enabling engineered quantum
evolution under strong-field interaction, which can manifest
in strong-field observables such as the Mollow triplet, Ramsey
interference, and Rabi oscillations [15–20].

To provide further control of the dressed-state spectrum,
two or more coherent drives can be introduced into the exci-
tation scheme, with potential applications including enhanced

*These authors contributed equally to this paper.
†cgustin@stanford.edu
‡lukas.hanschke@wsi.tum.de
§Present address: Toshiba Research Europe Limited, Cambridge

Research Laboratory, Cambridge CB4 0GZ, UK.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

phonon reservoir squeezing [21], suppression of the resonant
spontaneous emission spectral line (which can overlap with
the scattered laser) [22], spectral line narrowing [23], and
gain without population inversion [24]. Periodic driving of
quantum systems also can suppress decoherence via contin-
uous dynamical decoupling and the coherent destruction of
tunneling [25–27]. The specific case of two-level systems
driven by two coherent drives of differing frequencies (bichro-
matic), initially motivated by amplitude-modulated driving,
has been theoretically studied (e.g., see Refs. [28–32]), as well
as experimentally using QDs [22,24,33], atoms [34,35], and
superconducting qubits [36]. Experiments on bichromatically
driven QDs have studied certain regimes of two-color excita-
tion (including “doubly dressed” states), and have revealed an
interference-based suppression of the spectral emission line
resonant with the exciton frequency, when driven with a strong
resonant laser and a second laser detuned to one of the side-
bands of the resultant Mollow triplet, as well as a multiphoton
AC stark shift of subharmonic resonances [22,37].

In this work, we explore the regime where both laser drives
are strong enough to create a significant component of the
Hamiltonian which is, even in any rotating frame, periodic in
time, resulting in a rich Floquet dressed-state energy struc-
ture, where a general nonperturbative analysis is warranted.
We provide high-resolution spectroscopy measurements, the
results of which are well replicated with a time-dependent
master equation approach, nonperturbative in the coherent
drive strengths with respect to the periodicity of the Hamilto-
nian, which is conceptually straightforward and can easily be
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generalized to include, e.g., exciton-phonon interactions. We
also elucidate how the manifold of bichromatically dressed
states which arise from the time-periodic Hamiltonian can
be calculated to arbitrary order in harmonic expansion with
a Floquet approach, and show an excellent agreement in
the transitions it predicts with the full calculations and
experiments.

Our experiments reveal (i) the higher-order effect of the
resonant spectral line reemergence at high detuned-laser pump
strengths [31]; and (ii) the disappearance and subsequent
reappearance of the spectral line resonant with the secondary
laser with increasing secondary laser power, both for the
specific excitation scenario of a resonant primary laser and
a secondary laser detuned to a Mollow sidepeak of the pri-
mary laser. We also confirm suppression of spectral lines due
to quantum interference and coupling to subharmonic reso-
nances which has already been observed by He et al. [22]
and observe additional features of the fluorescence spectrum,
including the formation of triplets centered at higher mul-
tiples of the Rabi energy of the driving laser. Furthermore,
by driving the QD under a similar excitation scenario but
with an off-resonant primary laser, we observe similar spectral
features as the resonant case but with heightened inherent
spectral asymmetry, in contrast to the (pure-dephasing-free)
monochromatic case [38].

The rest of this paper is organized as follows: in Sec. II
we outline the theory of our time-dependent master equa-
tion approach. We describe our high-resolution spectroscopy
measurements in Sec. III, and detail the experimental and
theoretical results in Sec. IV. In Sec. V we conclude. We
also include three appendices: in Appendix A, we describe
our semianalytical Floquet method for calculating the posi-
tion of potential spectral lines, as well as include an energy
level diagram and perturbative analytical calculations for the
specific case of a weak secondary drive dressing a sidepeak
of a Mollow triplet created by a strong primary laser; in
Appendix B, we present data of experimental characterization
of the QD; and in Appendix C, we provide single coher-
ent drive experiments and extract from them an estimate of
the phonon coupling strength, which allow us to verify that
electron-phonon coupling is qualitatively insignificant in the
bichromatic driving regimes studied in the main text.

II. QUANTUM MASTER EQUATION
AND INCOHERENT SPECTRA

In this section we provide the theory of bichromatic driving
in the strong-field regime, using a quantum master equation
with a time-dependent drive.

We model a bichromatically driven QD as a two-level
system, with ground |g〉 and exciton |x〉 states. The QD is co-
herently driven by two lasers at frequencies ω1 and ω2, treated
semiclassically, with Rabi energies �1 and �2, respectively.
The first laser is detuned from the exciton frequency (ωx)
by �1 = ωx − ω1, and the second laser is detuned by �2 =
ωx − ω2. After making the rotating-wave approximation with
respect to the dipole-field interaction term, our system Hamil-
tonian is periodic with frequency � = �1 − �2 = ω2 − ω1,

and in a frame rotating at ω1, is (letting h̄ = 1 throughout)

H (t ) = �1σ
+σ− + 1

2 [(�1 + �2e−i�t )σ+ + H.c.], (1)

with the Pauli operators σ− = |g〉 〈x|, σ+ = |x〉 〈g|. For QDs,
our two-level approximation is justified if we assume the
detunings to be small enough as to be far off from any res-
onances involving multiexciton states—a requirement easily
satisfied here. For convenience, we also define the ratio of
Rabi energies as αc = �2/�1.

We incorporate spontaneous emission at rate γ into the
model with an open-system Lindblad master equation for the
density operator ρ:

dρ

dt
= −i[H (t ), ρ] + γ

2
L[σ−]ρ + γ ′

2
L[σ+σ−]ρ, (2)

where L[A]ρ = 2AρA† − A†Aρ − ρA†A; we have also in-
cluded a phenomenological pure-dephasing rate γ ′, to capture
linewidth broadening, as well as effects including charge noise
[39], and, notably, electron-phonon coupling. While electron-
phonon scattering has important effects on the dynamics of
optically excited QDs [40–50], for the drive strengths and
detunings considered in this work, these effects are small and
can be accurately approximated at low temperatures as a pure-
dephasing rate. Considering the simple case of a single laser
drive on resonance with the exciton, this rate is approximately
[51]

γ ′
ph ≈ πkBT α�2, (3)

where α is the phonon coupling strength, kB is Boltzmann’s
constant, and T is the temperature. Even at the relatively
high drive strength of � = 100 μeV, for a phonon cou-
pling rate of α � 0.1 ps2 (which is extracted from single
drive measurements as shown in Appendix B), and temper-
ature T = 4.2 K, this pure-dephasing rate γ ′

ph � 2.7 μeV is
similar to what could be expected from other background
dephasing sources, and thus we can neglect phonon cou-
pling beyond this phenomenological treatment for this work
(which we have verified numerically by comparing with a
full time-dependent polaron-transform model [52,53]). Sim-
ilar observations have also been made recently in studying
a QD driven monochromatically with two distinguishable
drives [54]. We calculate the emitted incoherent resonance
fluorescence spectrum1 from the QD in terms of the two-time
correlation function:

Si(ω) = Re

[∫ ∞

0
dτ ei(ω−ω1 )τ

∫ ∞

0
dt〈σ+

δ (t )σ−
δ (t + τ )〉

]
, (4)

where σ±
δ = σ± − 〈σ±〉. As the bichromatically driven sys-

tem dynamics continually oscillate, the two-time correlation
function must be time-averaged over t , for at least the peri-
odicity of the Hamiltonian, 2π/|�|. Furthermore, this should
be done in the steady-state condition, namely, once any tran-
sient phenomena have decayed to zero (i.e., for t � 1/γ ).

1The coherent part of the spectrum corresponds formally to Dirac
delta functions at the laser frequencies, as well is removed from
the experimental spectra from polarization filtering; thus we do not
include it.
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Also note that the integration period of the τ integral is
determined not by the periodicity of the Hamiltonian, but
by the decay time of the two-level system. To make this
calculation more manageable and/or obtain analytical re-
sults, incoherent spectra for bichromatically driven systems
have historically typically been calculated using Floquet ex-
pansions [22,24,28,29,33]; however, we calculate the full
correlation function from the master equation solution via
the quantum regression theorem, and average directly over t ,
which is more computationally intensive but has the benefit
of simplicity and generalizability and avoids some of the sub-
tleties involved with averaging over expansions of correlation
functions [55].

In addition to the full numerical calculation of the res-
onance fluorescence spectrum with the quantum master
equation, it is also useful to extract the doubly dressed states
of the system (the frequencies of which determine the spectral
lines seen in the spectrum) by calculation of the Floquet ener-
gies of the periodic Hamiltonian (1). In Appendix A, we show
how to calculate the Floquet energy states for the system,
and use them to derive analytical expressions for the spectral
resonances for the specific case of a weak laser dressing a
sidepeak of a Mollow triplet created by a strong primary laser,
as well as show a simplified energy level diagram for this
setup.

III. EXPERIMENTS

Experimentally, we perform measurements on InGaAs
QDs grown via molecular beam epitaxy with the Stranski-
Krastanov mode in a GaAs matrix. We include 17 pairs of
alternating GaAs/AlAs layers forming a distributed Bragg
reflector below the QD layer to increase the extraction effi-
ciency of the emitted photons. An embedded n-doped GaAs
layer 35 nm below the quantum dots forms a Schottky diode
together with a semitransparent 5-nm-thick titanium layer
evaporated on the surface of the sample. By applying an
external voltage, the resulting electric field in the vicinity of
the QDs reduces the charge noise. Furthermore, it allows us
to deterministically charge the QD and tune the transition
of interest in perfect resonance with the excitation laser via
the quantum-confined Stark effect [56,57]. Further details are
given in Appendix B.

The measurements are performed at 4.2 K in a dip stick
setup with a confocal microscope, while cross-polarized fil-
tering allows resonant excitation by suppressing the scattered
laser in the detection path [58]. To avoid the influence of
higher excited states and have a clean two-level system as a
basis, we investigate the negatively charged exciton transition
which lacks a fine structure splitting compared to the neutral
exciton transition [59], while higher excited states involve the
p-shell states which are several tens of meV detuned. For the
high-resolution spectroscopy of the dressed states, we employ
a scanning Fabry-Pérot cavity with a free spectral range of
30 GHz (124 μeV) and a resolution of 300 MHz (1.24 μeV)
where the transmitted signal is recorded with an avalanche
photodiode. The exciton resonance of the investigated QD is
at ωx = 1362.04 meV, with a lifetime of 455 ps (decay rate
1.44 μeV) (see Appendix B).

FIG. 1. Theoretical log-scale spectrum calculated with the mas-
ter equation [Eq. (2)], with γ = γ ′ = 1 μeV, �1 = 30 μeV, �1 = 0,
and �2 = 30 μeV. Floquet transitions up to order (a) N = 1 and
(b) N = 3 (the minimum number to see complete agreement with the
observed spectral lines) are shown as dash-dotted lines. The location
of the second laser at ω2 is shown as a white vertical dashed line.

IV. RESULTS

In Fig. 1, we plot the theoretically calculated emission
spectrum from the bichromatically driven QD, where one
laser is held fixed on resonance (with the QD exciton), and
the other is detuned to the frequency of the lower energy
peak of the resulting Mollow triplet. We also show here the
transitions predicted by the Floquet theory overlaid on top,
showing excellent agreement with the full numerical calcula-
tions of the master equation. The potential Floquet transitions
are shown for both N = 1 and N = 3 (which is the lowest
integer required to see full agreement with the exact numerical
solution), highlighting the higher-order perturbative nature of
this pumping regime with respect to αc = �2/�1, as well as
the rich complexity of the Floquet eigenstructure. This exci-
tation condition, for small αc, gives rise to “doubly dressed
states”; for low values of αc, each of the Mollow triplet peaks
at ω1, ω1 ± �1 are split by approximately ±�2/2, creating
eight total peaks (the center line being suppressed) [35]. As
�2 is increased with �1 held fixed, the center transition line
disappears due to destructive interference from transition am-
plitudes [22] and subsequently reappears at higher secondary
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laser strengths with transition probability having a leading
term fourth order in αc [31]; furthermore, the transition at
ω = ω2 also disappears and reappears as αc is increased.

Additionally, higher-order effects (in αc) lead to additional
triplets forming at integer multiples of �1 from the center ex-
citon frequency [31]. Specifically, the leading order transition
probabilities for transitions occurring at triplets centered at
ω = ω1 ± n�1, where n is an integer greater than 1, scale
with α2(n−1)

c [31]. This can be understood as a nonlinear
multiphoton effect between the two detuned driving fields and
the exciton. In contrast to analytical calculations perturbative
with respect to αc [31], which predict a symmetric spectrum
about ω = ω1, our results show the inherent asymmetry in
the spectrum, even for αc < 1, and we note this asymmetry
persists even if we take γ ′ = 0. For αc � 1, the structure of
this excitation condition changes; it is preferable to not con-
sider this system as a second laser doubly dressing a Mollow
sidepeak, but rather as an off-resonant Mollow triplet centered
at ω = ω2, dressed by a weaker resonant laser.

Figure 2 shows the theoretical and experimental emis-
sion spectra for the same scenario of one resonant laser
plus a second with frequency resonant to the Rabi side-
peak induced by the first laser. Here both a red-detuned and
a blue-detuned second laser are considered. Note that, in
the theoretical spectrum, flipping the sign of � is formally
equivalent to a sign change in ω − ω1 (mirroring the spec-
trum) for this master equation; by considering Eqs. (2) and
(4) and using the quantum regression theorem, it can be
shown that � → −� is equivalent to 〈σ+

δ (t )σ−
δ (t + τ )〉 →

〈σ+
δ (t )σ−

δ (t + τ )〉∗, which has the same effect in Eq. (4) as
taking ω − ω1 → −(ω − ω1). We observe, in both theory and
experiment, the disappearance and subsequent reappearance
of the center (at ω = ω1) resonance fluorescence transition
line as a function of secondary drive power �2—a higher-
order effect in αc. We also observe the disappearance and
subsequent reappearance of the spectral line at ω = ω2, with
increasing αc. The additional triplets centered at plus (minus)
twice the Rabi energy �1 for a blue- (red-) detuned second
laser resulting from higher-order effects are also clearly visi-
ble in the experimental and theoretical spectra. They are most
pronounced for equal Rabi energies of both lasers. Note that
we have made no specific effort to fit the decay and pure-
dephasing rates γ , γ ′ to match experiment. Anomalously, we
observe a crossing of spectral lines at ω − ω1 ≈ 15 μeV in
(c), and ω − ω1 ≈ −15 μeV in (d), which correspond to Flo-
quet transitions in our models, but are not reproduced by the
full calculations.

In Figs. 3(a) and 3(c), we plot the theoretical and exper-
imental emission spectra for fixed drive strengths, with the
first laser resonant and varying detuning of the second laser.
In agreement with measurements by He et al. [22], we observe
suppression of the central transition when the second laser
is in resonance with the sideband of the Mollow triplet at
� = 35 μeV or one of its subharmonics �1/m for integer
m up to 3. This process can be associated with destructive
quantum interference for the case where the second laser is
resonant with the sideband, or a multiphoton quantum in-
terference for the resonance with a subharmonic [22,31,37].
Here, the second laser can couple via m photons to the system.
In addition to suppression of spectral transitions, a series of

FIG. 2. Emission spectrum of a QD dressed by a resonant (�1 =
0) laser with drive strength �1 = 30 μeV, as well as a second laser
with detuning �2 = −� = 30 μeV for (a), (c), and �2 = −30 μeV
for (b), (d), and varying drive strength �2. (a), (b) show the theoreti-
cal calculation with γ = 1.66 μeV and γ ′ = 2 μeV, and (c), (d) are
experimental data. The location of the second laser at ω2 is shown
as a blue vertical dashed line. (e) and (f) give the data (black) and
simulation (orange) for specific values of �2 for (a), (c) and (b), (d),
respectively. At the far ends of the spectra, the Fabry-Pérot setup
leads to a replication of spectral lines separated by the free spectral
range.

triplets evolves separated by �1/m. For the first subharmonic
m = 2 at � ≈ 17.5 μeV, a doublet at the center, a triplet at
the low energy side, and two at higher energies are visible. The
second subharmonic resonance m = 3 at � ≈ 11.7 μeV is not
as pronounced, but a similar spectrum is observable. In the
limit � = �2 = 0, besides their drive strengths, both lasers
are only distinguishable by their relative phase, resulting in a
modified Mollow triplet with plateaulike sidebands [22].

To investigate a wider regime of the bichromatically ex-
cited QD, we also look at the case of a sideband dressed by
the second laser again, while the first laser remains resonant
with the exciton transition [Figs. 3(b) and 3(d)]. With an
initially smaller Rabi energy of �1 = 15 μeV, we allow the
drive strength to increase into the regime where αc � 1. For
the case where both lasers have similar strength �1 ≈ �2 the
same features as in Fig. 2 are observable. As a wider range
of the spectrum is analyzed here, triplets at higher multiples
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FIG. 3. (a), (c) Theoretical and experimental log-scale spectra of
a QD dressed by a resonant (�1 = 0) laser with fixed drive strengths
(for the simulated spectra, �1 = 35 μeV and �2 = 15 μeV), where
the detuning of the second laser � = −�2 = ω2 − ω1 is varied.
(b),(d) Theoretical and experimental spectra of a QD dressed by reso-
nant drive �1 = 15 μeV, with the second laser detuned � = 15 μeV
and allowed to vary in strength, revealing a Mollow triplet forming
centered at ω − ω2 for �2 � �1. For both theoretical calculations,
γ = 1.66 μeV and γ ′ = 2 μeV. The location of the second laser at
ω2 is shown as a thin blue dashed line. In (d), the Fabry-Pérot setup
leads to a replication of spectral lines separated by the free spec-
tral range, seen in the regions ω − ω1 < −45 μeV and ω − ω1 >

75 μeV.

of the Rabi energy �1 × m are visible in both theoretical
and experimental spectra. They are centered at m = −2, 2, 3.
So far, only one emission triplet at twice the Rabi energy
has been observed, in a bichromatically driven atom [35].
For stronger drive strength of the second laser, the transition
back to the Mollow excitation regime can be seen, where a
dominant triplet begins to form centered around the second
laser frequency ω2; the sidebands shift linearly away from
ω = ω2 with increasing drive strength �2.

In Fig. 4, we plot the theoretical and experimental emission
spectra for a detuned primary laser (�1 = 10 μeV), where
again the second laser dresses the sidepeak. As expected, with
increasing drive strength of the second laser, similar spectra
compared to the resonant scenario are observed, including the
disappearance and subsequent reappearance of spectral peaks
resonant with the laser frequencies, while the asymmetry for
small αc is increased. In contrast to the single drive off-
resonant Mollow triplet, which is symmetrical in the absence
of pure dephasing, there is a strong inherent asymmetry in the
Mollow-like spectrum for small but nonzero αc, which persists
in our simulations even with γ ′ = 0 (not shown) [38]. While
dephasing generically broadens spectral peaks, it will also in
general affect the relative spectral weights of differing peaks;
pure dephasing in a bare-state basis appears as nonradiative

FIG. 4. Theoretical and experimental log-scale spectra of a QD
dressed by a primary laser with strength �1 = 31.6 μeV and (red)
detuning �1 = 10 μeV, and a second laser with varied power dress-
ing the red sideband (� = −√

�2
1 + �2

1). The locations of potential
Floquet transitions are faintly overlaid in (a) as dashed white lines,
and we use γ = 1.66 μeV and γ ′ = 2 μeV. The location of the
second laser at ω2 is shown as a blue vertical dashed line.

dissipation when viewed in the system (Floquet) eigenbasis,
which can violate the principle of detailed balance and thus
generically changes the distribution of spectral weights (peak
areas) [38]. Specifically, for the regimes studied in this work,
we do find in our simulations that dephasing will slightly
change the distribution of spectral weights, but this effect is
generally insignificant to qualitatively affect our plots, and
largely serves to broaden the spectral linewidths.

V. CONCLUSIONS

In conclusion, we have presented high-resolution spec-
troscopy measurements of a single QD dressed simultane-
ously by two coherent laser drives in general nonperturbative
regimes with respect to the laser drive strengths and detunings.
These measurements are reproduced with excellent accuracy
by a time-dependent Lindblad master equation model which
can be easily generalized to incorporate different environmen-
tal couplings (e.g., cavity, phonon scattering). The transition
lines are identifiable using semianalytic Floquet theory, with
higher-order harmonics required for accurate location of the
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spectral lines, which is indicative of the regime with two
strong components of the bichromatic field.

For the excitation scenario of one laser resonant with the
QD, and one resonant to a sidepeak of the resulting Mollow
triplet, further evidence of the regime of excitation with two
strong fields can be seen in the formation of additional spectral
triplets at two and three times the central laser Rabi energy,
the disappearance and subsequent reemergence of the central
spectral peak as well as the peak resonant with the secondary
laser, and the transition to a detuned Mollow triplet centered
around the second laser as its drive strength is increased well
beyond the first laser strength.

We also have considered a similar excitation scenario, but
with both lasers off-resonant, and observed an enhanced in-
herent spectral asymmetry relative to the resonant primary
laser case, in contrast to the monochromatic case where the
spectrum is completely symmetric in the absence of additional
dephasing mechanisms. All of these features are very well
reproduced by theoretical calculations. These results reveal
broad potential for spectral and density of optical states en-
gineering using Floquet Hamiltonians (multicolor coherent
excitation) which is highly general and rich in structure and
optical physics.

A natural extension of this work could be to study three-
color (trichromatic) driving, either by three coherent lasers
or use of an amplitude-modulated drive (which is equivalent
to a bichromatic drive), where the phase coherence between
different drives has an effect on the emission spectra, and
could be (for example) used to destroy or restore spectral
symmetry.
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APPENDIX A: FLOQUET THEORY ANALYSIS

In this Appendix, we show how to calculate the Floquet
energy states of the system, which give the manifold of poten-
tial optical transitions seen in the spectrum (see Ref. [60]).
By exploiting the discrete time-translational symmetry of
the Hamiltonian H (t + nT ) = H (t ) for n ∈ Z, where T =
2π/|�|, we construct a simple unitary Floquet model which
neglects dissipation to identify the resonances of the system.

For the general time-dependent problem i d
dt |ψ〉 =

H (t ) |ψ〉, the solution is given formally by |ψ (t )〉 =
U (t, t0) |ψ (t0)〉, where U (t, t0) = τ̂ exp [−i

∫ t
t0

H (t ′)dt ′] and τ̂

is the time-ordering operator. The essential utility of Floquet

theory is the transformation of this time-dependent problem
to a time-independent one given by an infinite matrix deduced
by Fourier expansion of |ψ (t )〉. This result is possible by
Floquet’s theorem [61,62], which states that there exists a
complete set of states |ψλ(t )〉 indexed by λ that satisfy

|ψλ(t )〉 = e−iελt |φλ(t )〉, (A1)

where ελ denotes a real Floquet quasienergy, and |φλ(t )〉 has
periodicity T .

This immediately yields the eigenvalue problem:

HF |φλ〉 = ελ|φλ〉, (A2)

with the Floquet Hamiltonian operator HF = H (t ) − i d
dt . Al-

though time dependent, the Floquet states |φλ(t )〉 form a
complete basis for any value of t , and as such the general
solution to the Schrödinger equation can be given as

|ψ (t )〉 =
∑

λ

cλe−iελt |φλ(t )〉, (A3)

where the cλ are time-independent complex coefficients. As
the states |φλ〉 are periodic, Eq. (A3) suggests that energies
in Floquet systems are only conserved modulo �, and it can
be shown the transition resonances of the system occur at
differences between Floquet energies [61,62].

For our two-level model, we can expand |φλ〉 =
cg,λ(t ) |g〉 + cx,λ(t ) |x〉, where cg,λ(t ) and cx,λ(t ) are periodic
with period T . We expand them as Fourier series, c(t ) =∑∞

m=−∞c(m)eim�t , where m is an integer, and insert the result
into Eq. (A2):

∞∑
m=−∞

∑
β=g,x

(HF − ελ)c(m)
β,λeim�t |β〉 = 0. (A4)

Taking the inner product with 〈α|,∑
m,β

[Hα,β +m�δα,β ]c(m)
β,λeim�t =

∑
m

ελc(m)
α,λeim�t , (A5)

with Hα,β = Hα,β (t ) = 〈α| H (t ) |β〉. Multiplying by
e−in�t/T , where n is an integer, and integrating from 0
to T , then

∑
m,β

[
1

T

∫ T

0
dt Hα,βei(m−n)�t +n�δα,βδm,n

]
c(m)
β,λ =ελc(n)

α,λ.

(A6)

Equation (A6) is an eigenvalue equation for the eigen-
vector of Fourier coefficients c(n)

α,λ and eigenvalue ελ, with
matrix elements specified by the row indexed by (α, n) and
column indexed by (β, m), and equal to the quantity in square
brackets—the matrix representation of HF . This matrix can be
realized computationally by truncating the number of integers
n, m considered, and letting each combination of (n, m) cor-
respond to a 2-by-2 block of elements corresponding to the
matrix elements of the two-level Hilbert space Hamiltonian,
plus n� on the diagonal elements.

To extract the frequencies of the spectral lines that
show up in the emitted spectrum, the eigenvalues of
Eq. (A6) can be found numerically for a given truncation of
integers n, m, and the potential transitions are given by the
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Floquet-dressed resonant frequencies ω̃λ,λ′ = ω1 + (ελ − ελ′ ),
where λ ∈ {1, 2, . . . , M}, and M = 2(2N + 1). Here, N is
the order of the harmonics considered in the Floquet matrix
(i.e., n, m = 0,±1, . . . ,±N). Thus, considering up to order
N yields M2 potential transitions, although not all these
transitions need be driven, and thus may not all show up in
the spectrum. Many will also be degenerate. Increasing the
Floquet order increases the accuracy of the locations of the
spectral lines, as well as increasing the amount of spectral
resonances that can be identified.

We now show explicitly how the eigenvalues can be ex-
tracted from the matrix representation of HF to a certain
harmonic order. Note that as the time-dependent component
of the Hamiltonian becomes appreciable relative to the other
timescales of the system (for the Mollow regime, this corre-
sponds to the magnitude of αc), higher harmonic orders must
be included in the matrix for accurate results.

As an example, if we consider transitions up to order
N = 1 in the harmonic expansion, we can represent HF from
Eq. (A6) in the basis (1, 0,−1):

HF =
⎡
⎣M1,1 M1,0 0

M†
1,0 M0,0 M1,0

0 M†
1,0 M−1,−1

⎤
⎦, (A7)

where we let bold denote 2-by-2 matrices in the two-level sys-
tem basis (x, g), and we have made use of the fact that, clearly,
Mn,m = M†

m,n and Mm,m∓1 = Mm±1,m. Furthermore, elements
with |n − m| > 1 vanish due to the form of the Hamiltonian
in Eq. (1). Evaluating the matrix elements explicitly, to order
N = 1, then

HF = 1

T

∫ T

0
dt

⎡
⎣H + �1 He−i�t 0

Hei�t H He−i�t

0 Hei�t H − �1

⎤
⎦

= 1

2

⎡
⎢⎢⎢⎢⎢⎣

2(�1+�) �1 0 0 0 0
�1 2� �2 0 0 0
0 �2 2�1 �1 0 0
0 0 �1 0 �2 0
0 0 0 �2 2(�1−�) �1

0 0 0 0 �1 −2�

⎤
⎥⎥⎥⎥⎥⎦,

(A8)

the eigenvalues of which give the energy spectrum of the field-
dressed Floquet states in the frame of the laser with frequency
ω1 (to harmonic order N = 1).

The eigenvalues of this matrix are found from the charac-
teristic equation

g(ω̃)

{
f (ω̃)[1 − 4(�̃ − ω̃)(�̃1 + �̃ − ω̃)]

+ 4α2
c [β(ω̃) + ω̃](�̃1 + �̃ − ω̃)

}
= 0, (A9)

where

g(ω̃) = (
1 + �̃2

1

) − 4
(
ω̃ + �̃ − 1

2 �̃1
)2

, (A10)

f (ω̃) = 1 + 4[β(ω̃) + ω̃](�̃1 − ω̃), (A11)

and

β(ω̃) = α2
c

(ω̃ + �̃)

g(ω̃)
, (A12)

with ω̃ = ω/�1, �̃1 = �1/�1, and �̃ = �/�1. To this order,
two of the energy levels are independent of αc and can be

found immediately as 1
2 �̃1 − �̃ ± 1

2

√
1 + �̃2

1, from which it
follows why the location of transitions separated by integer

multiples of
√

�2
1 + �2

1 remain unaffected by the second laser
drive strength when αc � 1.

While exact solutions are not typically available for the
other four energy values, one can use perturbation the-
ory to calculate the Floquet energies in certain regimes.
For example, for αc = �̃1 = 0, we have the eigenval-
ues {ω̃} = {±1/2, �̃ ± 1/2,−�̃ ± 1/2}. To compare with
the full calculation in Fig. 1, we can take �̃ = −1,
and seek a perturbation expansion in αc � 1. We find a
shift of energy levels {ω̃} = { 1

2 + 3
64α2

c ± 1
4αc,− 1

2 − 3
64α2

c ±
1
4αc,±( 3

2 + 3
32α2

c )} + O(α3
c ), which agrees with the N = 1

transition lines of Fig. 1(a) up to roughly �2 ≈ 20 μeV. This
perturbative regime corresponds to the simple explanation in
the main text of doubly dressed states, where the second laser
further splits the singly dressed laser-QD states, as well as
a Bloch-Siegert-like shift due to the α2

c terms. Neglecting
the highest and lowest energy states (which predominantly
effect the higher-order harmonic peaks at ω − ω1 ≈ ±�1),
the splitting in the Mollow triplet’s three peaks is (to order
αc) ±�2

2 , in agreement with previously known results [22,31].
In Fig. 5 we provide a simplified energy level diagram for
the case of resonant excitation. However, note that this result
is only valid in this perturbation regime αc � 1; for larger
second laser strengths, in addition to the analytic perturbative
solution breaking down, the higher Floquet harmonics are
furthermore clearly needed to describe the dynamics accu-
rately. Indeed, even for very small αc, the spectral lines at
ω − ω1 ≈ ±�1 require higher-order Floquet harmonics for
accurate characterization. Thus, the regimes studied in this
work require generic numerical techniques.

We can also consider the case where the primary laser is
detuned from the two-level system resonance, and the second
laser again dresses a sideband. As an example, we study the
configuration shown in Fig. 4, where we have the detuning

�̃ = −
√

1 + �̃2
1, and �̃1 > 0. The energy levels for αc = 0

are ω̃
(m)
0 = 1

2 �̃1 + 2m−3
2

√
1 + �̃2

1, m = 0, 1, 2, 3. Once again
we seek a perturbative solution to Eq. (A9) in terms of αc.
To order αc, we find ω̃(0) = ω̃

(0)
0 , ω̃(3) = ω̃

(3)
0 , and we have a

degeneracy splitting in ω̃(1) and ω̃(2):

ω̃
(1)
0 → ω̃

(1)
± = ω̃

(1)
0 ± 1

4ηαc, (A13)

ω̃
(2)
0 → ω̃

(2)
± = ω̃

(2)
0 ± 1

4ηαc, (A14)

where

η = 1 − �1√
�2

1 + �2
1

. (A15)

013044-7



CHRIS GUSTIN et al. PHYSICAL REVIEW RESEARCH 3, 013044 (2021)

Ω1

ω1 ω2ωx

Ω2

2

FIG. 5. Simplified schematic of relevant doubly dressed QD en-
ergy levels for the case of resonant excitation with a strong primary
drive. Exciting the exciton transition resonantly with a laser of Rabi
energy �1 and frequency ω1 = ωx (left) results in a coupled system
of laser and two-level system with a manifold of doublet states split
by �1 and separated by ω1 (middle). The Mollow triplet is formed
in this singly dressed system by the transitions shown in blue, green
(degenerate), and red lines. Introducing a weaker second laser with
Rabi energy �2, here resonant with the sideband at lower energy,
each peak of the singly dressed Mollow triplet itself splits into a
new triplet, with peaks separated by �2/2 (right), with the central
transition at ω1 suppressed due to quantum interference. The second
laser is assumed to be much weaker than the first (αc � 1), such
that the relevant spectral lines from the manifold of Floquet states
can be identified by considering only two manifolds, separated by
ω1, as shown on the right. For larger αc, additional triplets appear
at higher integer multiples of the singly dressed system splitting, the
ninth center peak reappears, and the location of each of the peaks
changes due to effects associated with higher-order Floquet states
and the breakdown of perturbation theory.

Here, the splitting from each (singly dressed) peak of the
off-resonant Mollow triplet is ± η�2

2 for small αc, which agrees
with experiment and full simulation in Fig. 4 (η ≈ 0.70), as
well as the fully quantum mechanical dressed-state model
from Ref. [31].

APPENDIX B: QUANTUM DOT CHARACTERIZATION

To study the excitonic transitions of the single QD, we
excite the system in the wetting layer with a continuous-wave
laser diode with 850 nm wavelength. Generated charge carri-
ers can be trapped by the QD and thermalize nonradiatively to
the energetically lowest state before recombining by emission
of a single photon. The fabricated Schottky diode structure
leads to a built-in electric field which can be additionally con-
trolled by applying an external voltage. Thus, we can adjust
the bending of the band structure and therefore the relative
difference between the Fermi level of the n-doped GaAs layer
and the quantized states of the QDs.

Figure 6(a) shows photoluminescence measurements of the
quantum dot as a function of the applied voltage. For low
external voltage [Fig. 6(a), left], the built-in field is strong
enough for all charge carriers to tunnel to the contacts be-
fore recombining radiatively, as their decay rate is larger
than the tunneling rate. For increasing voltage the bands flat-
ten, making it possible to trap excitons in the quantum dot,
which decay radiatively. Increasing the voltage further, a sharp
crossover to a new emission line can be observed. In this
regime the band alignment allows tunneling of an electron
from the n-doped layer into the quantum dot. Thus we observe
luminescence from the negatively charged trion transition as
is shown in Fig. 6(c) which is shifted in emission energy
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FIG. 6. (a) Voltage-dependent photoluminescence series of a QD excited in the wetting layer with an 850 nm (≈1.46 eV) laser diode.
The observed charge plateaus correspond to the neutral and negatively charged exciton transition. The emission spectrum at 0.375 V is shown
below (c). Resonant excitation (b), (d) of the trion transition suppresses other decay channels, thus a clean emission spectrum with a single
peak is observed.
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FIG. 7. Measured radiative decay of the negatively charged
exciton state. Fitting the data (red solid line) yields a lifetime of
455 ps.

due to the Coulomb interaction. Resonant excitation of the
two-level system (trion transition) suppresses the generation
of excess charge carriers in the wetting layer, resulting in one
clean and sharp emission line [Fig. 6(d)]. Tuning the voltage
[Fig. 6(b)] allows for fine-tuning of the emission frequency
via the quantum-confined Stark effect, which allows us to
bring the excitation laser and transition frequency into exact
resonance.

In addition, we perform a lifetime measurement of the
single quantum dot to investigate the radiative decay rate of
the negatively charged trion. For that purpose, the system is
excited with a short resonant laser pulse and the emission is
recorded time-resolved as a histogram (Fig. 7). The decay
describes spontaneous emission as a function of time. By
fitting the data while taking the instrument-response function
into account, we obtain a value for the lifetime of the excited
state of T1 = 1/γ = 455 ps.

APPENDIX C: RESONANCE FLUORESCENCE UNDER A
SINGLE STRONG COHERENT DRIVE

To determine the regime in which pump-induced electron-
phonon interactions become significant, we study the res-
onance fluorescence spectrum of a QD driven by a single
resonant coherent drive, where the drive strengths are large
enough to enter a regime in which electron-phonon scattering
is appreciable. For theoretical calculations, we use the polaron
transform model from Ref. [53], with a time-independent
resonant drive on a two-level system without a cavity mode.
The phonon scattering is characterized by the phonon spec-
tral function J (ω) = αω3 exp [− ω2

2ω2
b
], with phonon coupling

strength α and phonon cutoff frequency ωb. We let ωb =
0.9 meV, consistent with previous experiments [63]. By curve
fitting the data of Fig. 8 (described below) with reference to
Eq. (3), we find parameters α = 0.1 ps2 and γ ′ = 10 μeV;
Eq. (4) remains valid for calculation of the incoherent spec-
trum, but the t integral becomes trivial in the steady-state
condition. We use a decay rate of γ = 1.66 μeV. Note that
here we include the full phonon sideband that arises from
the polaron solution [64]. To account for heating of the QD
sample induced by the large drive strengths, which results in

0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25
0

50

100

FIG. 8. (a) Fitted FWHM of red (shown as red) and blue (shown
as blue) Mollow sidepeaks for experimental data (points), and the-
oretical curves at temperatures T = 7 K (dash-dotted lines), T =
4.2 K (dashed lines), and T = 1.5 K (solid lines). (b) Ratio of
the integrated intensities of blue- and red-detuned sidebands as a
function of the Rabi energy. Experimental data are shown as black
points, and theoretical curves are given for various temperatures.

an exciton resonant frequency shift in the experimental data,
we sweep the laser detuning to find the resonant condition for
each of the power-dependent measurements.

Under resonant excitation, the incoherent resonance flu-
orescence spectrum exhibits the well-known Mollow triplet
shape, and by curve fitting to Lorentzian functions (for
�′ � γ , γ ′, where �′ denotes the polaron-renormalized Rabi
energy [53], such that the peaks are separated and well repre-
sented by Lorentzians), we extract values of the full width(s)
at half maximum (FWHM) and spectral weight. In Fig. 8(a),
we plot the fitted FWHM for the Mollow sidepeaks as a
function of the square of the drive amplitude. The parameters
α = 0.1 ps2 and γ ′ = 10 μeV were found by curve fitting to
Eq. (3) (with � → �′) with an additional offset determined
by γ ′; note that here we are simply using γ ′ as a crude substi-
tute for peak broadening that occurs over long timescales—we
use a much smaller value in the main text as pure dephas-
ing in the general case should correspond to processes that
occur on the timescales of the excitation dynamics. As one
cannot rule out other dephasing processes which scale with
the laser power, more precisely, these measurements suggest
α � 0.1 ps2. Indeed the difference in the theoretical red and
blue curves (which is minimal in the experimental data) is
much less visible for smaller values of α (e.g., α = 0.06 ps2,
consistent with Ref. [63]), indicating this is likely the case.

In Fig. 8(b), we plot the ratio of red and blue Mollow side-
bands as a function of drive amplitude. Our simulations (not
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shown) reveal that the sideband ratio is nearly independent
of phonon parameters α and ωb, with the vast majority of its
dependency coming from the temperature. This is understood
by recalling that temperature is what determines the amount
of phonons available in the thermal bath, which is the origin
of this asymmetry. Making a direct comparison of experiment
and theory is complicated because of the bump in the experi-
mental data at �′ ≈ 0.3 meV, which may be due to confined
phonon effects [63], and because the high laser powers used
in these single-drive experiments are large enough to induce
heating in the sample, resulting in a power-dependent tem-
perature. However, by analysis of the slope of the data, the
effective temperatures can be constrained to T � 7 K, with the
theoretical curve at T = 4.2 K being in excellent agreement
with experimental data for small values of �′. Note that if
we use α ∼ 0.05 ps2, the experimental data of the ratio of the
sidepeaks as a function of drive strength lines up much more
closely with the T = 1.5 K curve, indicating that 0.05 ps2 �
α � 0.1 ps2, in accordance with our discussion of Fig. 8(a).
Note that we have not fitted the phonon cutoff frequency ωb,

but this parameter does not enter into the low-drive dephasing
rate in Eq. (3) and thus has a smaller influence in this regime,
and as well it is constrained by the size of the QD.

Comparison of theory and experiment for both these plots
suggests that a temperature of between T = 4.2 K and T =
7 K gives the closest agreement between the two results. Al-
though in the absence of a drive the sample is measured to be
at T = 4.2 K, the strong laser powers in these measurements
cause a power-dependent heating which is not observably
present for the bichromatic measurements. Thus, these results
suggest that a polaron transform phonon model at T = 4.2 K,
using α � 0.1 ps2, is very likely appropriate for the main
results of this paper. As discussed in Sec. II, these parame-
ters are expected to give negligible phonon effects (beyond
pure dephasing) for the strengths of the bichromatic drives
used in this work, further justifying the phenomenological
pure-dephasing treatment of the electron-phonon interaction.
Note that without any phonon coupling in the simulations,
the functions in these plots become trivially identically equal
to 1.
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