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Goldstino spectrum in an ultracold Bose-Fermi mixture with explicitly broken supersymmetry
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We theoretically investigate a supersymmetric collective mode called the Goldstino in a Bose-Fermi mixture.
The explicit supersymmetry breaking, which is unavoidable in cold-atom experiments, is considered. We derive
the Gell-Mann–Oakes–Renner (GOR) relation for the Goldstino, which gives the relation between the energy
gap at zero momentum and the explicit breaking term. We also numerically evaluate the gap of the Goldstino
above the Bose-Einstein condensation temperature within the random phase approximation (RPA). While the
gap obtained from the GOR relation coincides with that in the RPA for the mass-balanced system, there is a
deviation from the GOR relation in the mass-imbalanced system. We point out that the deviation becomes large
when the Goldstino pole is close to the branch point, although it is parametrically a higher order with respect to
the mass-imbalanced parameter. To examine the existence of the Goldstino pole in realistic cold atomic systems,
we show how the mass-imbalance effect appears in 6Li - 7Li, 40K - 41K, and 173Yb - 174Yb mixtures. Furthermore,
we analyze the Goldstino spectral weight in a 173Yb - 174Yb mixture with realistic interactions and show a clear
peak due to the Goldstino pole. As a possibility to observe the Goldstino spectrum in cold-atom experiments,
we discuss the effects of the Goldstino pole on fermionic single-particle excitation as well as the relationship
between the GOR relation and Tan’s contact.

DOI: 10.1103/PhysRevResearch.3.013035

I. INTRODUCTION

Supersymmetry is symmetry with respect to an interchange
between bosons and fermions [1–3]. While the existence of
supersymmetry is expected in the context of particle physics,
evidence or any indications of it have not yet been observed
in high-energy experiments [4]. However, apart from whether
or not supersymmetric partners such as squarks exist in our
world, it is a really interesting problem to explore the conse-
quences of supersymmetry using fermions and bosons, which
are well established in condensed matter physics.

An ultracold atomic gas is currently one of the most
useful systems for investigating quantum many-body phe-
nomena, due to the controllability of physical parameters such
as interaction, density, temperature, and quantum statistical
properties of atoms by use of isotopes [5–7]. In particular, the
Feshbach resonance [8] enables us to investigate this atomic
system from the weak-coupling to the strong-coupling limit
in a systematic manner. In this regard, the supersymmetric
properties of this system have been extensively discussed
theoretically [9–16].
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Recently, Bose-Fermi mixtures with a small mass imbal-
ance between bosons and fermions such as 6Li - 7Li [17–19],
39K - 40K [20], 40K - 41K [21], 84Sr - 87Sr [22], 87Rb - 87Sr
[23], 161Dy - 162Dy [24], and 173Yb - 174Yb [25,26] have been
experimentally realized. The boson-boson or boson-fermion
interactions in some of the mixtures can be tuned due to
the magnetic Feshbach resonance [18,21,23,27–29]. In this
sense, examining supersymmetry in such cold atomic systems
is promising.

A remarkable feature of supersymmetry in a Bose-Fermi
mixture is the emergence of a Nambu-Goldstone (NG) mode
called the Goldstino [30–34]. While the usual NG mode
propagates as a bosonic mode, the Goldstino behaves as a
fermionic mode. Such a fermionic collective excitation has
also been predicted in quantum electrodynamics as well as
quantum chromodynamics [35–37]. Observation of this col-
lective mode is really important for seeing the supersymmetric
properties in a Bose-Fermi mixture that are realized in a table-
top experiment. Since the Goldstino is a fermionic collective
mode associated with broken supersymmetry, it becomes a
gapless mode when the system possesses exact supersymme-
try. However, explicit supersymmetry breaking such as the
mass imbalance between fermions and bosons is unavoidable
in cold-atom experiments. In this case, the Goldstino has a
finite energy gap associated with the explicit breaking param-
eters. If one can observe the gapped Goldstino and its spectral
properties agree with the results of theoretical analysis, this
should be evidence for the existence of supersymmetry in
these systems. Indeed, the first example of NG bosons in
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particle physics was pions, which are also gapped modes due
to the explicitly broken chiral symmetry associated with the
current quark mass [38].

In this work, we theoretically examine the energy gap
of the Goldstino in a Bose-Fermi mixture with explic-
itly broken supersymmetry. We focus on a few candidates
for nearly supersymmetric Bose-Fermi mixtures, namely,
6Li - 7Li, 40K - 41K, and 173Yb - 174Yb mixtures. We determine
the thermodynamic properties of weakly interacting mixtures
within the Hartree-Fock mean-field approximation above the
Bose-Einstein condensation (BEC) temperature. By devel-
oping a gap formula for the Goldstino, which corresponds
to the Gell-Mann–Oakes–Renner (GOR) relation in quantum
chromodynamics [39], based on the memory function formal-
ism [40], we show how the explicit supersymmetry-breaking
terms affect the Goldstino gap in these systems. By comparing
it with the numerical results of the random phase approxi-
mation (RPA), we clarify that the effects of the branch point
are significant in the presence of the mass imbalance between
fermions and bosons. Furthermore, we discuss how to observe
the Goldstino gap from the single-particle spectral function
of a Fermi atom. While the previous work done by two of
the authors is dedicated to the two-dimensional system [14]
and the three-dimensional one in the BEC phase [15] with
ideal situations such as supersymmetric interactions, in this
paper we discuss the three-dimensional system with realistic
physical parameters above the Bose-Einstein condensation
temperature TBEC. Furthermore, we consider the case with a
mass imbalance where the fermionic mass is slightly lighter
than the bosonic one. In this case, the effects of the branch
point are more important. We show that, even when the mass
imbalance is small, the peak of the Goldstino disappears and
it is buried in the continuum spectrum if the interaction is too
weak. We also note that there is a work which considered a
mass-imbalanced Bose-Fermi system [13] in which a Bose-
Fermi mixture trapped on an optical lattice was considered,
and the species of atoms were not specified. These points are
improved in this paper.

This paper is organized as follows: In Sec. II, we introduce
our model and the formulation for thermodynamic quantities
and the Goldstino gap within the GOR and RPA. In Sec. III,
we show and discuss our numerical results within the RPA
on the Goldstino gap in a few Bose-Fermi mixture systems.
Section IV is devoted to discussion of how the Goldstino pole
can affect the fermionic single-particle spectrum, in order to
suggest the possibility of detecting the Goldstino in experi-
ments. We summarize our studies in Sec. V. In Appendix A,
we show the detailed derivation of the GOR relation based on
the memory function formalism. We calculate the Goldstino
spectral function in the free limit in Appendix B to check
the absence of numerical artifacts. In Appendix C, we discuss
the cutoff dependence of the fermionic single-particle spectral
function.

II. FORMALISM

A. Model

We consider a nonrelativistic Bose-Fermi mixture de-
scribed by the Hamiltonian

H =
∫

d3rψ†
b (r)

(
− ∇2

2mb
− μb

)
ψb(r)

+
∫

d3rψ†
f (r)

(
− ∇2

2m f
− μ f

)
ψ f (r)

+ Ubb

2

∫
d3rψ†

b (r)ψ†
b (r)ψb(r)ψb(r)

+ Ub f

∫
d3rψ†

b (r)ψb(r)ψ†
f (r)ψ f (r), (1)

where ψb( f ) is the field operator of a boson (fermion) with
mass mb( f ) and chemical potential μb( f ). Ubb(b f ) is the cou-
pling constant of a boson-boson (boson-fermion) interaction,
which is assumed to be a contact type. These coupling con-
stants are related to the scattering length abb(b f ) as Ubb =
(4πabb)/mb and Ub f = (2πab f )/mr , respectively, where mr =
1/(1/m f + 1/mb) is the reduced mass. In this paper, we
measure the interaction strength by using the dimensionless
parameters kbabb and kbab f , where kb = (6π2Nb)1/3 is a mo-
mentum scale for the boson density Nb. In general, there is
a non-s-wave fermion-fermion interaction such as the dipole-
dipole interaction given by

Vf f = 1

2

∫
d3rψ†

f (r)ψ†
f (r′)Uf f (r − r′)ψ f (r′)ψ f (r). (2)

Although it is negligible in several Fermi atoms such as 6Li
and 40K far away from higher partial-wave Feshbach reso-
nances like a p-wave resonance [41] at low temperature, the
scattering in these higher partial waves would be important at
high enough temperatures [42]. Moreover, the dipole-dipole
interaction would become significant in a 161Dy - 162Dy mix-
ture with large magnetic dipole moments [24]. In this work,
we consider the case in which these interactions are negligible
for simplicity. We note that the intercomponent interaction
Ub f involves a factor 2, in contrast to the intracomponent
interaction Ubb [43]. When m f = mb, μb = μ f , and Ubb =
Ub f , there is a supersymmetry corresponding to interchange
between bosons and fermions: ψb → ψ f and ψ f → ψb. The
corresponding Noether charges are

Q =
∫

d3rq(r), Q† =
∫

d3rq†(r), (3)

which commute with the Hamiltonian, [H, Q] = [H, Q†] = 0.
Here, q(r) = ψ f (r)ψ†

b (r) is the local operator that creates the
boson and annihilates the fermion [10]. Unlike the supersym-
metry in relativistic systems, the anticommutation relation
between supercharges is not the Hamiltonian but the total
particle number operator:

{Q, Q†} =
∫

d3rψ†
f (r)ψ f (r) +

∫
d3rψ†

b (r)ψb(r). (4)

In this sense, the supersymmetry in a nonrelativistic Bose-
Fermi mixture is a different type from that in relativistic
theories. The order parameter of supersymmetry breaking
is the total number density, 〈{Q, q†(r)}〉 = 〈ψ†

b (r)ψb(r)〉 +
〈ψ†

f (r)ψ f (r)〉, which is always broken in a finite-density
system. For a spontaneous breaking of bosonic continuous
symmetry, if the order parameter is expressed as the expec-
tation value of the commutation relation between a charge

013035-2



GOLDSTINO SPECTRUM IN AN ULTRACOLD BOSE-FERMI … PHYSICAL REVIEW RESEARCH 3, 013035 (2021)

and a charge density, the breaking pattern is called type B
[44–49]. On the other hand, if no such order parameter exists,
the breaking pattern is called type A. The NG modes corre-
sponding to type B typically exhibit a quadratic dispersion.
A typical example of a type B NG mode is the magnon in
a ferromagnet, in which the order parameter is expressed as
the expectation value of the commutation relation between
spins. Replacing the commutator with the anticommuta-
tor, we can identify the supersymmetry breaking pattern as
type B. As in an ordinary symmetry breaking, the supersym-
metry breaking leads to a gapless excitation. If the excitation
can be identified as a single-mode excitation, it is called
the Goldstino. In general, the excitation may be located at a
branch point where a two- or multiparticle continuum starts.
This is especially the case for the noninteracting system,
where there is no Goldstino. The excitation is the particle-hole
one. The interaction plays an important role in the existence
of the Goldstino. In the following analysis, we assume the
existence of Goldstino excitation, and we numerically check it
in the RPA in Sec. III. Since the order parameter is expressed
as the expectation value of the anticommutation relation of
the supercharge and its density, the Goldstino belongs to the
type B mode [44–49], which typically has a quadratic disper-
sion.

In a realistic situation, the supersymmetry is explicitly
broken because all parameters cannot be exactly tuned in ex-
periments. The effect of the explicit breaking can be expressed
as the commutation relation between the Hamiltonian and the
supercharge,

[H, Q] =
∫

d3rψ†
b (r)

(
χ

∇2

2mr
+ �μ

)
ψ f (r)

− �U
∫

d3rψ†
b (r)ψ†

b (r)ψb(r)ψ f (r), (5)

where we define

�μ ≡ μ f − μb, (6)

χ ≡
( 1

m f
− 1

mb

)
mr = mb − m f

mb + m f
, (7)

�U ≡ Ub f − Ubb. (8)

These explicit breakings cause a finite gap of the Goldstino,
whose formula is shown in the next subsection.

B. Gell-Mann–Oakes–Renner relation

Pions are the NG bosons associated with the spontaneous
breaking of chiral symmetry in quantum chromodynamics.
The GOR formula relates the pion mass and the current quark
mass that explicitly breaks chiral symmetry [39]. We can gen-
eralize the GOR relation to that of Goldstino in a Bose-Fermi
mixture. For this purpose, we employ the memory function
formalism [40], which is a different formalism from the one
used in the original derivation [39]. The derivation is slightly
technical, so that here we show the only result. For readers
who are interested in the derivation, see Appendix A.

We consider the retarded Goldstino propagator, defined as

�R(r, t ) ≡ iθ (t )〈{q(r, t ), q†(0, 0)}〉. (9)

After Fourier transformation, we obtain

�R(p, ω) = i
∫ ∞

−∞
dt

∫
d3reiωt−ip·rθ (t )〈{q(r, t ), q†(0, 0)}〉.

(10)
The energy gap is obtained from the pole of �R(p, ω)
in the complex ω plane. Since we are interested in the
zero-momentum gap of Goldstino, hereafter we take p = 0.
The memory function formalism systematically decomposes
�R(ω) into the form

�R(ω) = −N

ω + 	 + i
(ω)
, (11)

where N = 〈ψ†
f (r)ψ f (r)〉 + 〈ψ†

b (r)ψb(r)〉 is the total number
density. 
(ω) and 	 = 〈{[H, Q], q†(0, 0)}〉/N are called the
dynamic and static parts of the memory function. We do not
show the explicit form of 
(ω); the important point is that

(ω) is parametrically higher oder compared with 	 with
respect to the explicit breaking term (see Appendix A for
more details). Therefore, at the leading order of the explicit
breaking term, the energy gap ωG is expressed as

ωG = ωGOR
G ≡ − 1

N
〈{[H, Q], q†(0, 0)}〉. (12)

We emphasize that this formula works for any supersymmetric
Hamiltonian with a small explicit breaking term and local
interactions because we have not employed the specific form
of the Hamiltonian. The gap is linearly proportional to the
explicit breaking term, whose property can be understood as
type B breaking [44–49]. In contrast, type A breaking predicts
that the gap is proportional to the square root of the explicit
breaking term. We note that although the dynamic part 
(ω)
is higher order, it might not be small if there is a singularity in

(ω). As shown later, this is the case when the branch point
is close to ωGOR

G .
For the Hamiltonian, (1), that we employ in the present

paper, using Eq. (5), we obtain

{[H, Q], q†(r, 0)} = χ

2mr
[{∇2ψ

†
b (r)}ψb(r) + ψ

†
f (r)∇2ψ f (r)]

+ �μ[ψ†
b (r)ψb(r) + ψ

†
f (r)ψ f (r)]

− �U [ψ†
b (r)ψ†

b (r)ψb(r)ψb(r)

+ 2ψ
†
b (r)ψb(r)ψ†

f (r)ψ f (r)]. (13)

Therefore, the Goldstino gap in the present model is given by

ωGOR
G = −�μ − χ

2mrN
[〈{∇2ψ

†
b (r)}ψb(r) + ψ

†
f (r)∇2ψ f (r)〉]

+ �U

N
[〈ψ†

b (r)ψ†
b (r)ψb(r)ψb(r)〉

+ 2〈ψ†
b (r)ψb(r)ψ†

f (r)ψ f (r)〉]

= −�μ + χ〈E〉 + 2�U

U
〈V 〉, (14)

where U ≡ (Ub f + Ubb)/2. Here 〈E〉 and 〈V 〉 are the average
kinetic and interaction energy of one particle per volume:

〈E〉 = 1

N

〈
ψ

†
b (r)

−∇2

2mr
ψb(r) + ψ

†
f (r)

−∇2

2mr
ψ f (r)

〉
, (15)
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〈V 〉 = 1

N

〈
U

2
ψ

†
b (r)ψ†

b (r)ψb(r)ψb(r)

+Uψ
†
b (r)ψb(r)ψ†

f (r)ψ f (r)

〉
. (16)

Here, we take the limits of χ → 0 (mb → m f ) and �U → 0
(Ubb → Ub f ) to suppress the higher-order breaking terms be-
ing proportional to χ2 and �U 2 when we define 〈E〉 and 〈V 〉
in Eqs. (15) and (16). These parameters can also be expressed
by the pressure P(T, μ, m f , mb,Ubb,Ub f ) as a function of T ,
μ, m f , mb, Ubb, and Ub f :

〈E〉 = 1

mr

(
m2

f

∂P

∂m f
+ m2

b

∂P

∂mb

)
, (17)

〈V 〉 = −U

(
∂P

∂Ub f
+ ∂P

∂Ubb

)
. (18)

We note that this result is correct up to first order in
explicit symmetry breaking, and we did not use any
approximations such as the RPA in its derivation. We
also note that the expectation values of the local opera-
tor 〈ψ†

b (r)ψ†
b( f )(r)ψb(r)ψb( f )(r)〉 in zero-range models are

known to be associated with the so-called Tan’s contact
Cbb(b f ) [50–53] as

〈V 〉 = U

N

[
Cb f

(4πab f )2
+ Cbb

(4πabb)2

]
. (19)

The universal relations with respect to this quantity are ex-
pected to hold even in the weakly repulsive case [54,55].
Indeed, Cbb is analytically obtained within the mean-field Bo-
goliubov theory at T = 0 in Refs. [54] and [56]. The GOR
relation is therefore rewritten as

ωGOR
G = −�μ + χ〈E〉 + 2

�U

N

[
Cb f

(4πab f )2
+ Cbb

(4πabb)2

]

= −�μ + χ〈E〉 + 1

2πN

( ab f

2mr
− abb

mb

)(
Cb f

a2
b f

+ Cbb

a2
bb

)
.

(20)

Since Tan’s contact can be observed precisely, this rela-
tion is also useful to address the Goldstino properties in
recent experiments. However, a strong repulsive interaction
beyond the present weak-coupling mean-field approximation
generally involves an effective range correction acting as a
momentum cutoff to avoid an ultraviolet divergence in a
three-dimensional system [57,58]. In this case, one has to
extend Eq. (20) to a relation with the effective ranges of the
interactions. It is particularly important to develop the relation
between the GOR relation and the high-momentum tails of the
distribution functions [51], which is left for future work. In
this paper, we restrict ourselves to the weak-coupling regime.
Since we assume a homogeneous case with translational sym-
metry, we can take r → 0 taking ∇2 in the terms in 〈E〉.
We also note that the GOR relation derived in this paper is
valid both below and above the Bose-Einstein condensation
temperature TBEC. To address the BEC phase below TBEC, one
has to take the mean-field term associated with the condensate
into account [59]. In this paper, we consider the normal phase
above TBEC for simplicity.

C. Mean-field approximation

In this paper, we employ the weak-coupling mean-field
approximation to calculate the Goldstino gap by using the
GOR relation, (14). At a weak coupling, the thermal aver-
age with respect to the interaction term in Eq. (14) can be
approximated as

〈ψ†
b (r)ψ†

b (r)ψb(r)ψb(r)〉 	 2N2
b , (21)

〈ψ†
b (r)ψb(r)ψ†

f (r)ψ f (r)〉 	 NbNf , (22)

where the particle number densities Nb( f ) are obtained as

Nb =
∫

d3q
(2π )3

nb(ξ b
q ), (23)

Nf =
∫

d3k
(2π )3

n f (ξ f
k ), (24)

where nb( f )(x) = 1/(exp(x/T ) ∓ 1) is the Bose (Fermi) distri-
bution function. Here we have defined ξ b

q = q2/(2mb) − μb +
H

b and ξ
f

k = k2/(2m f ) − μ f + H
f . The Hartree shift H

b( f )
is given by

H
b = 2UbbNb + Ub f Nf , (25)

H
f = Ub f Nb. (26)

Substituting Eqs. (23) and (24) into Eq. (14), one obtains

ωGOR
G = −�μ + χ〈E〉HF + 2Nb�U . (27)

Here, we have defined

〈E〉HF ≡ 1

N

∫
d3k

(2π )3

[
nb

(
ξ b

k

) + n f
(
ξ

f
k

)] k2

2mr
. (28)

In particular, in the mass-balanced case (mb = m f ) relevant
for a 87Sr - 87Rb mixture, one finds

ωGOR
G = −�μ + 2Nb�U . (29)

Our result agrees with the result in Ref. [12] obtained in a
tight-binding model. We note that Eq. (29) obtained in the
normal phase is different from the result in Ref. [16], which
considered the BEC phase at zero temperature. We also note
that in the mean-field approximation one can obtain Tan’s
contacts as Cb f = 16π2a2

b f NbNf and Cbb = 16π2a2
bbN2

b . One
can reproduce Eq. (27) by substituting them into Eq. (20).

D. Random phase approximation

We compare the results of the GOR relation with the RPA
calculation to see the effects of continuum and higher-order
correction in the explicit breaking term. In Ref. [13], it is
reported that the imbalance of the hopping amplitude in the
lattice model (which corresponds to the mass imbalance in
the present case) generates the continuum mode in addition to
the Goldstino pole, within the RPA. In this work, we address
how the GOR relation works in the presence of such a con-
tinuum. We consider the series of fermion-boson bubble �

diagrammatically described in Fig. 1. The explicit form of the
Goldstino propagator �R reads

�R(p, ω) = �(p, ω)

1 + Ub f �(p, ω)
, (30)
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FIG. 1. Feynman diagrams for the Goldstino propagator � con-
sisting of RPA series of boson-fermion bubble �. The solid (dashed)
line and the black dot represent the fermion (boson) propagator and
the boson-fermion interaction Ub f , respectively.

where

�(p, ω) = −
∫

d3k
(2π )3

n f
(
ξ

f
k

) + nb
(
ξ b

k−p

)
ω + iδ + ξ b

k−p − ξ
f

k

(31)

is a bubble diagram with respect to the fermion-boson ex-
change. Here δ is an infinitesimally small value. In the
numerical calculations, δ is taken to be 10−3εb in this paper.
Here εb = (6π2Nb)2/3/(2mb) is the energy scale associated
with the boson density Nb. We note that the continuum is
generated when the kinematics of 1 to 2 scattering is possible
for multiple ω due to multiple k:

ω + ξ b
k−p = ξ

f
k . (32)

For p = 0 and χ > 0, the branch point is located at
ωBP = ξ

f
0 − ξ b

0 = −�μ + 2�UNb − Ub f N . There is a con-
tinuum spectrum for ω � ωBP. Since ωBP can be written as
ωBP = ωGOR

G − χ〈E〉HF − Ub f N , ω = ωGOR
G is always in the

continuum for χ > 0. In contrast, when χ < 0, the contin-
uum spectrum exists for ω � ωBP. Thus, ω = ωGOR

G is in the
continuum when Ub f N � −χ〈E〉HF.

The Goldstino gap is obtained by the zero point of the
denominator of �R(0, ω), i.e., 1 + Ub f �(0, ω) = 0. In the
mass-balanced case, one can analytically estimate the Gold-
stino gap from

0 = 1 + Ub f �(0, ωG)

= 1 − Ub f

∫
d3k

(2π )3

n f
(
ξ

f
k

) + nb
(
ξ b

k

)
ωG + iδ + �μ − 2�UNb + Ub f N

= ωG + �μ − 2�UNb

ωG + iδ + �μ − 2�UNb + Ub f N
, (33)

and therefore

ωG = −�μ + 2Nb�U . (34)

We note that the k dependence completely vanishes from
Eq. (32) at p = 0, and therefore the width of the continuum
becomes 0. Equation (34) coincides with the GOR relation
given by Eq. (29) [13–15]. Beyond the RPA, there will be
corrections coming from interactions between quasiparticles.
Since the differences in chemical potentials and interactions
simply induces a shift of the Goldstino pole, the supersym-
metric collective mode can be confirmed experimentally by
checking the interaction and chemical potential dependences
of the gap in a weakly interacting mass-balanced mixture.

On the other hand, in the presence of the mass imbalance
between bosons and fermions, there is a correction to the GOR
relation, which is parametrically higher order in the explicit
breaking term. However, the correction may not be small if

the branch point is close to ωGOR
G . To see this, we parametrize

the denominator of �R(0, ω) as

1 + Ub f �(0, ω) = 1

Ub f N

[
ω − ωGOR

G − 
̃(ω)
]
, (35)

where


̃(ω) = 1

N

∫
d3k

(2π )3

[
n f

(
ξ

f
k

) + nb
(
ξ b

k

)]

× [ω + �μ − χk2/(2mr ) − 2�UNb]
2

ω + iδ − χk2/(2mr ) − ωBP
. (36)


̃(ω) plays a role similar to that of the dynamic part of
the memory function defined in Eq. (A12), although the
definition is different. At ω = ωGOR

G , 
̃(ωGOR
G ) is explicitly

proportional to χ2:


̃
(
ωGOR

G

) = χ2 1

N

∫
d3k

(2π )3

[
n f

(
ξ

f
k

) + nb
(
ξ b

k

)]

× [k2/(2mr ) − 〈E〉HF]
2

ωGOR
G − ωBP − χk2/(2mr ) + iδ

. (37)

From this expression, the correction in the χ2 order is
evaluated as


̃
(
ωGOR

G

) 	 χ2

Ub f N

1

N

∫
d3k

(2π )3

[
n f

(
ξ

f
k

) + nb
(
ξ b

k

)]

×
(
〈E〉HF − k2

2mr

)2
. (38)

We can estimate the scale of 
̃(ωGOR
G ) as χ2〈E〉2

HF/(Ub f N ),
where the integral of (〈E〉HF − k2/2mr )2 is estimated to be
〈E〉2

HF. Since χ〈E〉HF ∼ ωGOR
G and ωBP ∼ Ub f N for a small

explicit symmetry-breaking case, we obtain


̃(ωGOR
G ) ∼ ωGOR

G

∣∣∣∣ωGOR
G

ωBP

∣∣∣∣. (39)

Similarly, we can estimate the nth order in χ as of or-
der ωGOR

G |ωGOR
G /ωBP|n−1. This expansion breaks down if

|ωGOR
G /ωBP| is not small even though χ � 1.
When χ > 0, there is a contribution from the imaginary

part of 
̃(ωGOR
G ) to the dispersion relation, which can be

analytically evaluated as

−Im
̃
(
ωGOR

G

) = χ2 π

N

∫
d3k

(2π )3

[
n f

(
ξ

f
k

) + nb
(
ξ b

k

)]

×
(

k2

2mr
− 〈E〉HF

)2

× δ

(
ωGOR

G − ωBP − χ
k2

2mr

)

= Ub f

4π

(
2mrUb f N

χ

) 3
2

√
1 + χ

〈E〉HF

Ub f N

× [
n f

(
ξ

f
k̃

) + nb
(
ξ b

k̃

)]
, (40)

where k̃ =
√

2mr (ωGOR
G − ωBP)/χ =√

2mr〈E〉HF + 2mrUb f N/χ . We see that the factor χ−3/2
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FIG. 2. Ratio between fermionic and bosonic number densities
Nf /Nb with different interactions as functions of the temperature T
in (a1) 6Li - 7Li, (b1) 40K - 41K, and (c1) 173Yb - 174Yb Bose-Fermi
mixtures with �μ = �U = 0. (a2), (b2), and (c2) show the bosonic
chemical potential μb in systems corresponding to (a1), (b1), and
(c1), respectively. In these plots, μb is divided by the energy scale εb

characterizing Nb as εb = k2
b/(2mb), where kb = (6π 2Nb)

1
3 . TBEC is

the BEC temperature.

appears in contrast to the previous order estimate

̃ ∼ χ2. If the ωGOR

G is far from ωBP, more precisely, if
(ωGOR

G − ωBP)  χT , the imaginary part is exponentially
small by the factor exp[−(ωGOR

G − ωBP)/(χT )], so the order
estimate 
̃ ∼ χ2 is still valid.

Since the mass-imbalance effect is generally unavoidable
in actual cold-atom experiments, in the following we focus
on the mass-imbalanced effect on the gap by taking μ f = μb

and Ub f = Ubb, unless otherwise specified. As realistic can-
didates, we consider 6Li - 7Li, 40K - 41K, and 173Yb - 174Yb
mixtures. Even in these systems, it is generally difficult to
control Ub f and Ubb independently. However, in the case of
6Li - 7Li and 40K - 41K mixtures, the boson-boson scattering
length abb = (mbUbb)/(4π ) can be tuned due to the magnetic
Feshbach resonance [28,29], while the boson-fermion one
ab f = (mrUb f )/(4π ) is almost independent of the magnetic
field (noting that ab f = 2.16 nm [18] and ab f = 5.13 nm
[20] in 6Li - 7Li and 40K - 41K mixtures, respectively). In
173Yb - 174Yb mixtures, two scattering lengths are precisely
determined as ab f = 7.34 nm and abb = 5.55 nm [60].

III. NUMERICAL RESULTS

A. Thermodynamic quantities

First, we discuss when the system explicitly breaks the
supersymmetry with respect to only the mass imbalance,
namely, Ub f = Ubb and μ f = μb but mb �= m f . Figure 2 shows

the fermionic number density Nf and the chemical potential
μb = μ f for three cases with a fixed bosonic number density
Nb at which the two conditions above are realized. The Bose-
Einstein condensation temperature TBEC is identified by the
Hugenholtz-Pines relation [61]

μb − b = μb − 2UbbNb(T = TBEC)

− Ub f Nf (T = TBEC) = 0. (41)

We see that Nf is smaller than Nb at low T . The qualita-
tive temperature dependence of these quantities is unchanged
among 6Li - 7Li, 40K - 41K, and 173Yb - 174Yb mixtures. While
the chemical potential can be precisely obtained through the
density profile measurement in recent cold atomic experi-
ments [62–64], it is not in every case. These results on number
densities would be helpful for one trying to realize a nearly
supersymmetric mixture.

This behavior can be understood as follows: In the nonin-
teracting case, μb = 0 at TBEC and μb is negative above TBEC.
In the presence of interactions, the chemical potential is effec-
tively shifted to μ̄ f (b) ≡ μ f (b) − H

f (b) due to the Hartree shift.
As μ̄b is fixed from Nb and T , which is negative, μb becomes
larger as the interaction strength increases and eventually
becomes positive. On the other hand, μ f is positive in the
low-temperature regime even in the absence of repulsions due
to the Fermi-Dirac statistics. Therefore, in the weak-coupling
case, μ f = μb would take a positive and small value. As Nf is
an increasing function of μ̄ f , which is proportional to μ f , Nf

needs to be much smaller than Nb in order to realize μ f = μb.
This situation is similar to that of so-called Bose polarons
[65–71], where impurity atoms (which correspond to fermions
in the present case) are immersed in a bosonic medium. If
we increase the interaction, Nf becomes larger and finally
exceeds Nb.

We note that at stronger coupling, the system may be un-
stable against phase separation [72]. At T = 0, the mixture

is expected to become unstable when kbabb � π mb
mb+m f

( Nb
Nf

)
1
3

at Ubb = Ub f in Ref. [72]. Since the parameter regimes we
consider in this paper are 0.3 <∼ Nf /Nb <∼ 1.2 (see Fig. 2) and
7

13 � mb
m f +mb

� 174
347 , this stability condition can be estimated

as kbabb <∼ 1.6. Furthermore, as usual, such an instability is
weakened at finite temperature due to thermal fluctuations.
Therefore, although we do not explicitly address this condi-
tion, we assume that the homogeneous phase is realized.

B. Spectral properties of the Goldstino

Using the thermodynamic quantities shown in Fig. 2 and
the GOR relation given by Eq. (27) and the RPA equation,
(30), we calculate the Goldstino gap above TBEC as shown in
Fig. 3. In the RPA calculation, we have defined ωRPA

G as the
energy where the Goldstino spectral weight AG(p = 0, ω) has
a maximum, where

AG(p, ω) = Im�R(p, ω), (42)

so that it can be defined in the case where the pole has a finite
imaginary part. In the case of 40K - 41K and 173Yb - 174Yb
mixtures at kbabb = 0.2, one can find that the GOR pre-
dictions show good agreement with the RPA calculation.
In fact, one can check that the values of the expansion
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FIG. 3. The Goldstino gap ωG calculated by the GOR (solid
lines) and RPA (dashed lines) with �U = �μ = 0. For 6Li - 7Li
mixtures, we plot ωG at different interaction strengths, kbabb = 0.2,
0.4, and 0.8. We also show ωG in 40K - 41K and 173Yb - 174Yb mixtures
at kbabb = 0.2.

parameter estimated in Eq. (39) are small: |ωGOR
G /ωBP| =

9.6 × 10−2 and |ωGOR
G /ωBP| = 2.2 × 10−2 in 40K - 41K and

173Yb - 174Yb mixtures, respectively, at T = TBEC. Also, we
see that ωGOR

G /εb is quite small. This behavior can be quali-
tatively understood in the following way: The second term in
Eq. (27) gives the term which is proportional to χ〈E〉HF/εb,
in ωGOR

G /εb. Assuming that the factor 〈E〉HF/εb is not far from
unity, one can make an order estimate of ωGOR

G /εb by checking
χ . Indeed, the values χ = 1.2 × 10−2 and χ = 2.9 × 10−3

in 40K - 41K and 173Yb - 174Yb mixtures explain the order of
magnitude for ωGOR

G /εb.
Although we do not show the numerical results explicitly

at stronger supersymmetric couplings, this agreement is un-
changed in these mixtures. In this regard, we conclude that
the mass-imbalance effect in these systems is negligibly small
in this temperature region. To confirm the existence of the
Goldstino, exploring the interaction and density dependences
of the Goldstino gap given by Eq. (29) is suitable. We note
that thermodynamic quantities such as the chemical potential
were observed precisely within a relative error of less than 4%
in a recent cold-atom experiment [62–64].

On the other hand, the mass-imbalance effect on the Gold-
stino gap in 6Li - 7Li mixtures with χ = 1/13 is not so small
compared to the other two systems. In fact, the values of
the expansion parameter, |ωGOR

G /ωBP| = 0.621, 0.308, and
0.151, for kbabb = 0.2, 0.4, and 0.8 at T = TBEC are not small
compared with those in 40K - 41K and 173Yb - 174Yb mixtures.
We note that the difference between the GOR and the RPA
is accidentally small at kbabb = 0.2. This is just a coinci-
dence caused by the singular behavior of the branch point.
Figure 4 shows the RPA spectral weight AG(p, ω) of the Gold-
stino at T = TBEC, kbabb = 0.2, and finite momentum. While
AG(p, ω) in 40K - 41K and 173Yb - 174Yb mixtures exhibits
a sharp peak associated with the supersymmetric collective
mode around ω = 0, this peak in a 6Li - 7Li mixture is greatly
broadened due to the branch point at weak coupling. We note
that the Goldstino spectrum merges with the continuum at

FIG. 4. Calculated Goldstino spectral weight AG(p, ω)εb/Nb

within the RPA in (a) 6Li - 7Li, (b) 40K - 41K, and (c) 173Yb - 174Yb
Bose-Fermi mixtures at T = TBEC. Parameters are set at kbabb = 0.2
and �U = �μ = 0.

finite momenta even in 40K - 41K and 173Yb - 174Yb mixtures.
Figure 5(a) shows AG(p = 0, ω) at zero momentum in a
6Li - 7Li mixture at T = 1.16TBEC. With increasing supersym-
metric interaction kbabb (= mb

2mr
ab f since we take Ubb = Ub f ),

one can see the crossover from the regime where the singular-
ity associated with ωBP is dominant to the coexistence of the
sharp Goldstino pole and continuum plateau. It is possible to
check the sharp Goldstino peak also at finite momentum, from
the spectral function at kbabb = 0.8 plotted in Fig. 5(b). While
in the noninteracting case (kbabb = 0) a kink structure can be
found around ω = 0, it originates mainly from the tip of the
continuum, as one can see in Appendix B. We note that the
contribution at ω < 0 in the noninteracting case is an artifact
associated with the small imaginary part iδ = 10−3εbi. We
also note that some of the analysis above in a tight-binding
model was done in Ref. [13], but this is the first time that
we got results for gases of realistic Bose-Fermi mixtures.
Figure 6(a) shows a comparison of the Goldstino gap from the
GOR relation vs the RPA calculation (corresponding to Fig. 5)
in a 6Li - 7Li mixture at T = 1.16TBEC. If we increase kbabb

(and simultaneously kbab f such that Ub f = Ubb), one finds
that the two results approach each other around kbabb >∼ 0.6.
In this regime, as shown in Fig. 5, a sharp Goldstino peak
appears since the branch point is separated from the pole. We
also plot 
̃(ωGOR

G )/ωGOR
G given by Eq. (37) in Fig. 6(b). Since


̃(ωGOR
G ) represents the higher-order corrections included in
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FIG. 5. (a) Goldstino spectral weight AG(p = 0, ω) at zero mo-
mentum in a 6Li - 7Li mixture at T = 1.16TBEC and �μ = �U = 0
with kbabb = 0, 0.2, 0.4, 0.6, and 0.8. (b) Contour plot of AG(p, ω) at
kbabb = 0.8.

the RPA, the GOR relation is expected to be valid in the region
where 
̃(ωGOR

G )/ωGOR
G is small. In this sense, one can obtain

the strong intensity of the Goldstino pole even in 6Li - 7Li
mixtures in the presence of relatively strong interactions. Such
a condition in this case can be expressed as χ〈E〉 � Ub f N .
From Fig. 6(b), one can confirm that the coincidence of ωGOR

G

and ωRPA
G at kbabb 	 0.2 in Figs. 3 and 6(a) is accidental due

to Re
̃(ωGOR
G ) = 0. We note that the Lee-Huang-Yang correc-

tions may become important in the relatively strong repulsive
regime [73]. Indeed, this leading quantum correction on μb/εb

is known to be proportional to (kbabb)
5
2 in a single-component

Bose gas at T = 0. A self-consistent framework beyond the
present mean-field approximation would be required to obtain
the Goldstino gap quantitatively at kbabb >∼ 1.

Furthermore, in Fig. 7 we plot AG(0, ω) in a 173Yb - 174Yb
mixture with realistic interactions given by ab f /abb =
7.34/5.55 [60], at T = TBEC and μ f = μb. A sharp peak in
the Goldstino pole emerges at a positive energy, whereas
there is a small peak in the continuum in the negative-energy
region. The continuum is quite small compared to the case of
the 6Li - 7Li mixture shown in Fig. 5. We have checked that
the GOR relation shows excellent agreement with the pole
position in this case. If we increase Nb [namely, the coupling
parameter kbabb = (6π2Nb)

1
3 abb with fixed abb], the Goldstino

pole becomes distinct since the continuum goes to the lower-

FIG. 6. (a) Comparison of the Goldstino gap ωG between the
GOR and the RPA and (b) 
̃(ωGOR

G )/ωGOR
G given by Eq. (37) in a

6Li - 7Li mixture at T = 1.16TBEC and �μ = �U = 0.

energy region. This result indicates that observation of the
Goldstino gap in 173Yb - 174Yb mixtures is quite promising.

FIG. 7. Calculated Goldstino spectral weight AG(p = 0, ω)εb/Nb

within the RPA in a 173Yb - 174Yb Bose-Fermi mixture at T = TBEC

and �μ = 0. Interaction parameters are chosen to reproduce the
experimental ratio ab f /abb = 7.34/5.55 [60]. The sharp peaks at
positive energy are the Goldstino poles.
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FIG. 8. Self-energy diagram for supersymmetric fluctuations as-
sociated with the RPA Goldstino propagator �. Solid (dashed) lines
represent fermion (boson) propagators GH

b( f ) with the Hartree shift
H

f (b). Black dots show the boson-fermion coupling Ub f .

IV. FERMIONIC SINGLE-PARTICLE SPECTRUM

In this section, in addition to the Tan’s contacts shown
in Sec. II, we discuss how to detect the Goldstino gap in
cold-atom experiments. One promising way is via the single-
particle excitation spectrum of a fermion as discussed in the
BEC phase [15]. In the normal phase, we consider the self-
energy  f (p, iω�) diagrammatically drawn in Fig. 8, where
ω� = (2� + 1)πT is the Matsubara frequency of fermions.
The explicit form of  f (p, iω�) is given by

 f (p, iω�) = −U 2
b f T

∞∑
n=−∞

∫
d3k

(2π )3
�(k, iωn)

× GH
b (p − k, iω� − iωn), (43)

where GH
b (p, iω̃k ) = 1/(iω̃k − ξ b

p ) is the Hartree Green’s
function of a boson. Here, ω̃k = 2kπT is the Matsubara
frequency for bosons. We obtain the single-particle Green’s
function G f (p, iω�) as

G f (p, iω�) = 1

iω� − ξ
f
p −  f (p, iω�)

. (44)

The fermionic single-particle spectral function is obtained as
A f (p, ω) = − 1

π
ImG f (p, iω� → ω + iδ).

Figure 9 shows the calculated A f (p → 0, ω) in a
173Yb - 174Yb mixture at T = TBEC with realistic interactions,
that is, kbabb = 0.3 and ab f /abb = 7.34/5.55 [60]. One finds
that A f (p → 0, ω) contains a double-peak structure due to
the self-energy correction. In the absence of such a correc-
tion, only a single fermionic pole is located at ω = ξ

f
p→0 ≡

−(μ f − Ub f Nb). In the numerical calculation, we take a finite
momentum cutoff, � = 2kb, in Eq. (43). We note that the
double-peak structure in A f (p → 0, ω) is left qualitatively
unchanged by the value of � (see also Appendix C). We
examine the qualitative structure of A f (p, ω) by focusing on
the Goldstino pole and using an approximate form of � as

�(k, iωn) 	 ZG

iωn − Ek
, (45)

where Ek = k2/(2mG) + ωG is the Goldstino dispersion. ZG

and mG are the wave-function renormalization and the ef-
fective mass of the Goldstino, respectively. Their analytical
expressions are obtained in the supersymmetric case at T =
0 [15]. By using this expression, we can analytically per-
form the summation of the fermion Matsubara frequency in

FIG. 9. Fermionic single-particle spectral function Af (p →
0, ω) at the zero-momentum limit in a 173Yb - 174Yb mixture at

T = TBEC with kbabb = 0.3 and ab f /abb = 7.34/5.55 [60]. In the
numerical calculation, we take the momentum cutoff � = 2kb. Dot-
ted and dashed vertical lines represent the fermionic pole position
ξ

f
p→0 = −(μ f − Ub f Nb) within the mean-field theory and the Gold-

stino gap ωRPA
G obtained from the RPA analysis.

 f (p, iω�) as

 f (p, iω�) = U 2
b f ZG

∫
d3k

(2π )3

1 − n f (Ep−k) + nb
(
ξ b

k

)
iω� − Ep−k − ξ b

k

. (46)

Furthermore, near T = TBEC it was suggested that one can use
the so-called static approximation where nb(ξ b

k ) has a dom-
inant contribution at ξ b

k = 0 [74]. For qualitative illustrative
purposes, we use this approximation and obtain

 f (p, iω�) 	 U 2
b f ZGNb

iω� − Ep
. (47)

Finally, the fermionic spectral function A f (p → 0, ω) at the
zero-momentum limit reads

A f (p → 0, ω) = α+δ(ω − E+) + α−δ(ω − E−), (48)

where

E± = ωG − μ f + Ub f Nb

2

±
√(ωG + μ f − Ub f Nb

2

)2

+ U 2
b f ZGNb (49)

and

α± = 1

2

⎛
⎝1∓ ωG + μ f − Ub f Nb√

(ωG + μ f − Ub f Nb)2 + 4U 2
b f ZGNb

⎞
⎠. (50)

This double-peak structure is due to the level repulsion be-
tween the one-particle fermion excitation and the Goldstino
pole in A(p → 0, ω). This level repulsion enlarges the sep-
aration between the fermionic pole −(μ f − Ub f Nb) and the
Goldstino pole ωRPA

G . One can estimate ωG from E± and α±.
Indeed, in cold-atom experiments, radio-frequency spectro-
scopies are employed to observe single-particle excitations
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[75]. If the interaction and chemical potential dependences of
the low-momentum excitation spectra are observed, one can
estimate ωG from them.

We note that, while we have employed the RPA diagram
associated with the fermion-boson bubble resummation given
in Fig. 8, fermion-boson ladder diagrams with a many-body
T matrix may also appear at the same order [76]. Indeed, the
latter diagrams play a crucial role in Bose polarons with at-
tractive interspecies interactions [67] and show an ultraviolet
divergence (see Appendix C). This beyond-mean-field correc-
tion would be important to predict more quantitative features
of fermionic single-particle excitations in the presence of the
Goldstino. However, since we consider the repulsive interac-
tions, the ladder diagram in our model does not involve a sharp
pole, which is associated with two-body bound molecules in
the strongly attractive case, as shown in Refs. [57] and [58] for
repulsively interacting two-component Fermi gases. Thus, we
expect that our results would correctly capture the qualitative
structure of A f (p → 0, ω).

V. SUMMARY

To summarize, we have theoretically investigated the
gapped Goldstino mode in an ultracold atomic Bose-Fermi
mixture with explicitly broken supersymmetry. We have
shown the gap formula for the Goldstino (GOR relation) by
using the memory function formalism. Using this relation, we
calculate the Goldstino gap at the first order of the explicit
symmetry breaking and compare it with the numerical re-
sults obtained within the RPA. We have confirmed that in the
absence of a mass imbalance between fermions and bosons,
the Goldstino gap obtained by the GOR relation coincides
with that in the RPA. We have also discussed the relationship
between the derived GOR relation and the Tan’s contact. At
the current stage, a 173Yb - 174Yb mixture is the strongest can-
didate for detecting the Goldstino. Indeed, using experimental
values of scattering lengths and mass ratio, we show that the
Goldstino pole has a strong intensity in this mixture. While the
mass-imbalance effect in 40K - 41K and 173Yb - 174Yb mixtures
is negligibly small even in the weak-coupling regime, that in
a 6Li - 7Li mixture induces broadening of the Goldstino pole
due to the singularity around the branch point in fermion-
boson bubbles through the infinite sum of bubbles in the
RPA. However, if we increase the interactions, the Goldstino
pole becomes sharp even in this case since the branch point
is well separated from the Goldstino pole. Finally, we have
discussed the possibility of observing the Goldstino gap from
the single-particle excitation of a Fermi atom. We show the
qualitative structure of the spectral function near T = TBEC

and predict the modification of the dispersion due to the cou-
pling between the free branch and the Goldstino pole at low
momenta.

To further address realistic experimental situations, it is an
important problem to investigate the radio-frequency spectra
and the momentum-resolved photoemission spectra of the
Fermi atom in the present mixtures. In this case, we have
to consider the inhomogeneity due to the trap potential. In
addition, exploring other approaches to seeing the Goldstino
gap, such as nonequilibrium dynamics [77,78], is also an
interesting future direction.
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APPENDIX A: MEMORY FUNCTION FORMALISM

In this Appendix, we show the detailed derivation of
Eq. (11) based on the memory function formalism [40]. This
formalism is useful to describe the Langevin dynamics of slow
variables such as the hydrodynamic degrees of freedom. We
would like to obtain the equation of �R(ω) with the form

(ω + 	 + i
(ω))�R(ω) = −N, (A1)

where 	 and N are constants, and 
(ω) is a function of ω.
In the language of the memory function formalism, K (ω) =
i	 − 
(ω) is called the memory function; i	 and 
(ω) are
the static and dynamical parts of the memory function. The
corresponding generalized Langevin equation reads

(∂t − i	)Q(t ) +
∫ t

0
dt ′
(t − t ′)Q(t ′) = R(t ), (A2)

where we have introduced the noise R(t ) that satisfies
〈Q(t )R(t ′)〉 = 0. We do not give the explicit relation between
Eq. (A1) and Eq. (A2), which can be shown by using the
projection operator method [79,80]. Equation (A1) has a sim-
ilar form to the Schwinger-Dyson equation in quantum field
theory. Roughly speaking, 	 + i
(ω) corresponds to the self-
energy, and 	 and 
 give the gap and dissipation, respectively.
The purpose here is to express 	, N , and 
(ω) by correla-
tion functions. For this purpose, we introduce the Liouville
operator L as Lq ≡ [H, q] such that we can express q(r, t )
as q(r, t ) = eiLt q(r, 0). This enables us to rewrite Eq. (10)
at p = 0 as

�R(ω) = i〈{r(ω)Q, q†(0, 0)}〉, (A3)

where r(ω) = −i/(ω + L). Using the identity −iωr(ω) =
1 + iLr(ω), we obtain

−iω�R(0, ω) = iN + i〈{r(ω)iLQ, q†(0, 0)}〉, (A4)

where

N = 〈ψ†
f (r)ψ f (r)〉 + 〈ψ†

b (r)ψb(r)〉 (A5)

is the total number density. We now introduce the memory
function K (z) such that

K (ω)�R(0, ω) = i〈{r(ω)iLQ, q†(0, 0)}〉. (A6)

By construction, this satisfies (ω − iK (ω))�R(ω) = −N . We
would further like to decompose K (ω) into the static part i	,
which is responsible for the gap, and the dynamic one 
(ω),
which is responsible for the dissipation. Multiplying Eq. (A6)
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by −iω and using Eq. (A4) and −iωr(ω) = 1 + iLr(ω),
we obtain

K (ω)[iN + i〈{r(ω)iLQ, q†(0, 0)}〉]
= i〈{iLQ, q†(0, 0)}〉 + i〈{r(ω)(iL)2Q, q†(0, 0)}〉. (A7)

From Eq. (A6), the left-hand side of Eq. (A7) can be
written as

iNK (ω) + i
i

�R(0, ω)
〈{r(z)iLQ, q†(0, 0)}〉2. (A8)

Substituting Eq. (A8) into Eq. (A7), we obtain K (ω) =
i	 − 
(ω) with

i	 = 1

N
〈{iLQ, q†(0, 0)}〉, (A9)


(ω) = − 1

N
〈{r(ω)(iL)2Q, q†(0, 0)}〉

+ 1

N

i

�R(0, ω)
〈{r(ω)iLQ, q†(0, 0)}〉2. (A10)

Noting the relation

〈{iLA, B}〉 = i

tre−βH
tre−βH {[H, A], B}

= −i

tre−βH
tre−βH {A, [H, B]} = −〈{A, iLB}〉,

(A11)

we can express the dynamic part as


(ω) = 1

N
〈{r(ω)iLQ, iLq†(0, 0)}〉

+ 1

N
〈{r(ω)iLQ, q†(0, 0)}〉

× i

�R(0, ω)
〈{r(ω)Q, iLq†(0, 0)}〉. (A12)

In summary, the retarded Green function satisfies Eq. (A1),
which corresponds to the generalized Langevin equation,
(A2). The coefficients and function are given by Eqs. (A5),
(A9), and (A12).

Let us check the order of 	 and 
(ω) with respect to the
explicit breaking term. Since both static and dynamic parts are
proportional to iLQ = i[H, Q], K (ω) vanishes if the super-
symmetry is exact. Therefore, ω = 0 becomes the pole. When
the supersymmetry is explicitly broken by a small parameter,
[H, Q] ∼ ε, the static part is i	 ∼ ε, while the dynamic part
is 
(ω) ∼ ε2 as shown in Eq. (A12). Therefore, at leading
order in ε, we can neglect 
(ω). We note that we also as-
signed [H, q†(x, t )] ∼ ε. Precisely speaking, there is the other
contribution of order 1, the divergence of the supersymmetric
current ∇ · j in [H, q†(x, t )]. This vanishes in the correlation
function at p = 0. At leading order in ε, we find the pole, (12).

APPENDIX B: ANALYTICAL RESULTS IN A
NONINTERACTING MIXTURE

To check that the numerical procedure to include the in-
finitesimal imaginary part iδ in the analytic continuation does
not cause a serious numerical artifact, we investigate the Gold-
stino spectral function in the free limit. In the noninteracting

FIG. 10. Comparison of AG,0(0, ω) in a noninteracting
6Li - 7Li mixture at T = 1.38TBEC with μb = μ f obtained from
Eq. (B2) (dashed curve) and the numerical result with δ = 10−3εb

(solid curve).

case, the spectral weight AG,0(p = 0, ω) reads

AG,0(0, ω) = −Im
∫

d3k
(2π )3

nb
(
ξ b

k

) + n f
(
ξ

f
k

)
ω + �μ + iδ − χk2/2

=
∫ ∞

0

k2dk

2π

[
nb

(
ξ b

k

) + n f
(
ξ

f
k

)]

× δ

(
ω + �μ − χ

k2

2

)
(δ → 0). (B1)

By performing momentum integration, we can obtain the an-
alytical expression of AG(0, ω) as

AG,0(0, ω) = 1√
2πχ

3
2

θ (ω)
√

ω

×
[

1

e( ω
mbχ

−μb)/T − 1
+ 1

e

(
ω

m f χ
−μ f

)
/T + 1

]

(B2)

at �μ = 0. If we take χ → 0, AG,0(0, ω) diverges at only ω =
0, which indicates that the continuum has vanishing width at
zero momentum.

It can be understood also from the sum rule [14,15],∫
dωAG(p, ω)/π = N : At finite ω, AG,0 vanishes at χ → 0,

due to the exponential factor. Therefore, to satisfy the sum
rule, the existence of divergence at ω = 0 is implied.

In Fig. 10 we show a comparison between Eq. (B2) and the
numerical result with δ = 10−3 in a noninteracting 6Li - 7Li
mixture at T = 1.38TBEC. From this, we find that the effect
of δ is small for the maximum of AG,0(0, ω). While the finite
contribution at ω < 0 in the numerical calculation originates
from the finite δ, we confirmed that this also does not affect
our main results.
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FIG. 11. Fermionic single-particle spectral function Af (p → 0,

ω) at different momentum cutoffs, �/kb = 1.5, 2, 2.5, and 3. Other
parameters are the same as in Fig. 9.

APPENDIX C: ULTRAVIOLET CUTOFF DEPENDENCE OF
THE FERMIONIC SINGLE-PARTICLE SPECTRAL

FUNCTION

The fermionic self-energy  f (p, iωn → ω + iδ) analyti-
cally continued to the real frequency reads

 f (p, ω + iδ) = U 2
b f

∫ |k|�� d3k
(2π )3

∫ ∞

−∞
dzAG(k, z)

× 1 − n f (z) + nb(ξ b
p−k)

ω + iδ − z − ξ b
p−k

. (C1)

Figure 11 shows the calculated A f (p → 0, ω) with dif-
ferent cutoffs �. One can see that the lower sharp peak
is quantitatively shifted toward the lower-energy side with
increasing �. We emphasize, however, that the double-
peak structure is qualitatively unchanged by the value
of �.

On the other hand, the particle-particle ladder diagram,
which is not considered in this work, is known to exhibit an
ultraviolet divergence. The many-body T matrix responsible
for this scattering process is given by

TMB(k, iωn) = Ub f

1 + Ub f L(k, iωn)
, (C2)

where

L(k, iωn) = −
∫ |p|�� d3 p

(2π )3

1 − n f
(
ξ

f
p+k/2

) + nb
(
ξ b
−p+k/2

)
iωn − ξ

f
p+k/2 − ξ b

−p+k/2

(C3)

is the lowest-order particle-particle correlation function.
TMB(k, iωn) and mixing of the ladder and bubble diagrams
may appear in the self-energy corrections in addition to
Eq. (43). One can see that Eq. (C3) involves an ultraviolet
divergence. In this case, the relation between Ub f and ab f is
replaced by

mr

2πab f
= 1

Ub f
+ mr�

π2
. (C4)

Here, the cutoff �, which is proportional to an inverse effec-
tive range [58], should be finite to reproduce the finite ab f .
These ladder and finite-range corrections remain as future
work for more quantitative descriptions of A f (p, ω).
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