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Heterogeneous impact of a lockdown on inter-municipality mobility
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Without a vaccine, the fight against the spreading of the coronavirus has focused on maintaining physical
distance. To study the impact of such measures on inter-municipality traffic, we analyze a mobile dataset with
the daily flow of people in Portugal in March and April 2020. We find that the reduction in inter-municipality
traffic depends strongly on its initial outflow. In municipalities where the mobility is low, the outflow reduced by
10–20% and this decrease was independent of the population size. Whereas, for municipalities of high mobility,
the reduction was a monotonic increasing function of the population size and it even exceeded 60% for the largest
municipalities. As a consequence of such heterogeneities, there were significant structural changes on the most
probable paths for the spreading of the virus, which must be considered when modeling the impact of control
measures.
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I. INTRODUCTION

In response to the coronavirus pandemic, many govern-
ments imposed lockdowns, closing several public places, such
as, schools, restaurants, sport centers, and shopping malls
[1]. Companies and public services have opted for giving
employees the choice to work from home [2]. These nonphar-
macological interventions are believed to be responsible for a
significant slowdown of the spreading in different countries
[3–10]. However, one still lacks an understanding on how
the mobility patterns have changed and how such changes
affect the most probable pathways for the spread of the
virus.

With digitalization and advancements in global data collec-
tion, the public expectations for knowledge-based strategies
to control the spreading of the coronavirus have been high.
Daily, the public is swamped with statistics about new in-
fections, deaths, and recoveries around the world [11,12].
Models and metrics are being proposed and further developed
to turn data into actionable insights [13]. But statistics of de-
mographic variations of the impact of a virus are not enough.
An extensive body of research on recent public health threats,
such as the 2013 MERS-CoV, 2014 Ebola, and 2016 Zika
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viruses, has shown that to estimate the spread and implement
efficient actions for controlling it, one needs to rigorously
investigate the mobility patterns [14–17]. Depending on the
level of granularity, mobility data might be obtained from civil
aviation statistics [18,19], national censuses [19,20], public
transit ridership [21–23], or mobile phone tracking [20,24].
By May 2020, there were more than 60k travel restrictions
issued around the world to control inter- and intra-country
traveling [25]. The mobility patterns today are very different
from the ones in February 2020, and these publicly available
datasets are no longer representative.

Epidemic spreading is a network-driven process
[24,26–28]. To understand the complex spatiotemporal
spreading dynamics, one needs to replace the traditional
view based on geographical distance by a probabilistically
motivated effective distance computed from the flux of people
[29]. With such a change of paradigm, one can identify the
set of most probable paths for the spreading of the virus
and the relative arrival times of epidemics, which are both
independent of the epidemic parameters. Thus, the role of
a municipality on the global dynamics depends on its daily
flow and effective distance to other municipalities.

Here, we study this impact by analyzing mobile phone data
for the inter-municipality daily flow of people in Portugal in
March and April 2020. The first confirmed case of COVID-19
in Portugal was reported on March 2, 2020. Ten days later,
the total number of cases added up to 78 and the government
announced a first set of control measures, which included
school closures from March 14 onward. With a total of 642
identified cases, on March 19, the government decided to de-
clare the state of emergency to impose more drastic measures
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FIG. 1. Effect of the lockdown in the mobility pattern of residents and nonresidents in Portugal. The relative mobility is calculated as the
total number of people that moved between two different municipalities on that day divided by the average between March 2 and 6 (see Sec. IV
for further details). The first control measures were announced in March 12, and the state of emergency was declared on March 18. We see
that during the lockdown the mobility of residents and nonresidents decreased to about 20% and 45% of the baseline. The maps show the
spatial distribution of the relative mobility for three specific days (March 9, March 19, and April 23), for residents (R1, R2, and R3) and for
nonresidents (N1, N2, and N3).

of mobility restriction and social distance. We show that the
impact of the different measures was neither instantaneous
nor homogeneous throughout the country. It extended over
several days and the relative impact was strongly dependent
on the population size of the municipality. We also analyze
how the changes in mobility impacted on the distances. We
show that the effective distances changed differently for each
municipality. The structure of the set of most probable paths
and relative arrival times also changed, with a significant
impact on the spreading dynamics.

II. RESULTS

We analyze a national-scale mobile dataset provided by
NOS, a Portuguese telecommunication company. This dataset
contains the daily number of people that moved within and
between municipalities in Portugal in March and April 2020,
obtained from the mobile recurrent usage of residents and
nonresidents (see Sec. IV for further details). The nonresi-
dents are defined as users with a SIM card from a foreign
mobile network. A user is registered in the dataset if they stay
for, at least, 60 minutes within the boundaries of a municipal-
ity (see Sec. IV for further details).

To quantify the inter-municipality mobility, we measure
the daily number of users moving within and between munic-
ipalities and define relative mobility as this number rescaled
by the average mobility from March 2 to 6 (baseline), which
is a period before any control measure. In Fig. 1, we show
the time dependence of the relative mobility averaged over
all municipalities for residents and nonresident users. Even
before the declaration of the state of emergency (March 18),
with the first set of control measures (March 12), the mobility
started to decrease. However, this change in mobility was not
instantaneous, it occurred over several days and only reached
a steady level after March 21, with a decrease of about 20%
for residents and 45% for nonresidents. The periodic structure
observed in the steady regime corresponds to the expected

weekday (Monday to Friday) and weekend (Saturday to
Sunday) differences, with a clear decrease in mobility during
the weekends. In the same figure, we show also the spatial
distribution of the relative mobility for three different days
(March 9, March 19, and April 23). One sees that the impact of
the control measures was heterogeneous throughout the coun-
try. To characterize these heterogeneities, in what follows, we
analyze the inter-municipality mobility. Since only 3.3% of
the users are nonresidents, for simplicity, we consider only
the resident one.

The origin-destination matrix (OD) is defined such that
each element Pi j (d ) is the fraction of users that, in day d ,
stayed for more than 60 minutes in both municipalities i and
j (see Sec. IV). From the OD matrix, we obtain the mobility
network, which is a weighted directed graph, where the nodes
are the municipalities and the weight of the link i j is Pi j .
Note that, in general, Pi j �= Pji, as the total number of users in
each municipality is different (see Sec. IV for further details).
The mobility network sets the stage for the propagation to
other municipalities. As shown in Ref. [29], further insight
into the propagation dynamics is obtained from the mobility
network if we compute the effective distance Deff between
nodes, defined as follows. For each pair of nodes i and j,
we defined the length of the link as �i j = 1 − log(Pi j ). Thus,
the most probable path between two nodes i j is the shortest
path between the two, defined as the one that minimizes the
sum of all � along the path. The effective distance Di j

eff is
then the value of such sum [29]. For every municipality i,
we can obtain the shortest-path tree, consisting of the set
of the most probable paths to all the other municipalities,
where the central node is the origin i. In Fig. 2, we show
three examples of the shortest-path trees, for Fig. 2(a) Lisbon,
Fig. 2(b) Braga, and Fig. 2(c) Campo Maior, using an OD
matrix obtained from the average mobility from March 2 to
6. All nodes are placed at a distance from the central node
proportional to their effective distance to it. For the sake of
comparison, the color of a node is given by the geographic
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FIG. 2. Shortest-path trees and effective distances before the lockdown. Shortest-path trees from (a) Lisbon, (b) Braga, and (c) Campo
Maior (central nodes). Each node is a different municipality and the distance to the central node is proportional the effective distance Deff , as
defined in Sec. IV. The effective distances are calculated from the origin-destination matrix of the average mobility between March 2 and 6.
The nodes are colored according to the geographical distance to the central node. In the bottom row are the country maps, where the color of
each municipality is given by the effective distance from the corresponding central municipality marked by a black circle.

distance from the central node. The size of the node is given by
the value of the betweenness centrality, which is defined as the
number of shortest paths that go from the central node to any
other node on the tree through that node. In the figure, below
each tree, we also show a color map displaying the spatial
distribution of effective distances from each center. It is clear
that some municipalities can be geographically far from the
central municipality, but have a small value of effective dis-
tance, indicating that the relation between effective distances
and geographic distances are nontrivial.

Since the change in mobility was heterogeneous through-
out the country, as shown in Fig. 1, it is expected that both
the effective distances and structure of the shortest-path trees
changed. To illustrate such changes, we show in Fig. 3(a) the
time evolution of the shortest-path tree for Lisbon. We dis-
cover a change from a star-like structure to a more branched
structure. Figure 3(b) shows the time evolution of the aver-
age effective distance 〈Deff〉 to all other municipalities for
Lisbon, Braga, and Campo Maior. With the lockdown, 〈Deff〉
increased, consistent with a much slower propagation dy-
namics. The maximum on the Easter holidays (gray region)
is reflective of a set of additional measures imposed by the
Portuguese government for those days to avoid the traditional
family gatherings, which included severe restrictions to the
inter-municipality mobility. For each day d , we calculated
the Spearman’s correlation between the effective distance
Deff (d ) and the initial effective distance Deff , obtained from
the average mobility network from March 2 to 6 (before the

lockdown). The Spearman’s correlation r for the entire set of
municipalities is defined as

r = cov
(
rkd, rk

)

σ (rkd)σ
(
rk

) , (1)

where rkd is the rank of Deff (d ), rk is the rank of Deff ,
cov(rkd, rk) is the covariance of the rank, and σ (rk) is the
standard deviation. An r = 1.0 means that the rank of effec-
tive distances has not changed, while r = 0 corresponds to a
new rank that is uncorrelated from the original one. The daily
evolution of r is shown in Fig. 3(c). For the three municipali-
ties, r decreased with the lockdown. This result suggests that
the hierarchical organization of municipalities in a spreading
process was affected significantly by the lockdown.

Figure 3(d) depicts the evolution of the degree k of the cen-
tral node (Lisbon, Braga, and Campo Maior), corresponding
to the number of municipalities that are directly connected to
the central node in the shortest-path tree. Before the lock-
down, Lisbon was connected by a single edge to 90% of
the municipalities. With the lockdown, Lisbon, on average,
became only connected directly to 55% of the municipalities.
This is in line with a change from a star-like to a branched
structure, as observed in Fig. 3(a). We see a similar behavior
for Braga, starting with the fraction of municipalities con-
nected directly, decreasing from 58% to 33%, and for Campo
Maior, where the drop is from 23% to 15%.

In Fig. 4, we compare the outflow before and during the
lockdown. The outflow is defined as the total number of
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FIG. 3. The effect of the lockdown on the mobility network. (a) Shortest-path tree from Lisbon for three different days. The position of
the nodes is given by the Fain Hu layout [30], designed to distribute symmetrically the nodes and minimize edge crossing. The color of each
node is given by the effective distance from Lisbon. (b) Time dependence of the average effective distance in the shortest-path trees shown
in Fig. 2. Before the lockdown, for these three municipalities, Lisbon had the shortest average distance to the rest of the country, followed
by Braga and Campo Maior. With control measurements, the three average effective distances increased, reaching a maximum in the Easter
holidays, when the Portuguese government imposed more severe mobility restrictions to inter-municipality travels. (c) Spearman’s correlation
coefficient r between the effective distance from the average origin-destination matrix from March 2 to 6, and all the days of March and April.
With the lockdown, the rank of the effective distances have changed as shown. (d) Time evolution of the node degree k (number of edges) for
Lisbon, Braga, and Campo Maior, for the shortest-path trees shown in Fig. 2. Initially, Lisbon was connected directly to more than 90% of the
municipalities. With the lockdown, the k decreases reaching a minimum at the Easter holidays, with only less than 50% of the municipalities
connected with Lisbon by only one edge.

resident users of a municipality that were also identified in
a different municipality during the day (see Sec. IV). The
values before the lockdown are averages from March 2 to
6 and during the lockdown from April 20 to 24. We find
that, although the control measures were the same for the
entire country, their impact on the outflow strongly depends
on the initial value of the outflow. For municipalities with
low values of outflow, we observe a linear relation between
the outflows before and after, which suggests that the rela-
tive impact is the same. However, for the municipalities with
higher values of the outflow, we observe a sublinear relation
between the two. As we show in the Supplemental Material
[31], for the same period in 2019, the relation between the
two outflows is linear, discarding any seasonal effects. The
larger the initial value of the outflow the stronger is the impact
of the control measures. Since the outflow of a municipality
correlates strongly with the population size [33], in the inset
of Fig. 4, we plot the relative decrease in outflow as a function
of the population size. For municipalities with less than 18 000
users, the outflow decreased by 10–20%, without a clear de-
pendence on the population size. For larger municipalities, the

relative decrease in the outflow scales logarithmically with
the population size (black dashed line) and it exceeds 60%
for the largest municipality (Lisbon). Another variable that
could explain the variation on the relative outflow is the spatial
extension of the municipalities. However, as we show in the
Supplemental Material [31], the area is not enough to explain
the impact of the lockdown on mobility.

III. CONCLUSION

Human mobility sets the stage for global spreading phe-
nomena [19,27,29,34,35]. Across the world, the most relevant
nonpharmacological interventions to hinder the spreading of
the coronavirus have been related to closing borders and
restricting the intra- and inter-country mobility, which has
affected the mobility patterns [9]. The change in the mobility
patterns could lead to different responses on the propagation
of a virus, as shown in Spain [36,37], however, the mobility
reduction was shown to be, in general, correlated with an
effective reduction of the contagion [5,38]. Here, we stud-
ied the impact of such mobility restrictions in the inter-
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FIG. 4. The impact of the lockdown depends on the mobility
pattern of the municipality. Outflow of each municipality before and
during the lockdown. To reduce the statistical noise, the outflow
corresponds to averages over five days: before any control measure-
ments, we considered March 2 to 6, and for during the lockdown
April 22 to 26. We show in the Supplemental Material [31] that
a similar result is obtained when averaging over 10 days. Each
colored circle is a municipality and the black solid line is a guide
for the eyes and corresponds to a linear relation between the two.
The color of each data point represents the population size of the
municipality, following the log-spaced bins shown in the inset. We
can see that the effect of the lockdown is not homogeneous across the
country, municipalities with large values of mobility at the beginning
of March showed a large reduction in April. In the inset is the
relative change on outflow of each municipality (cyan circles) as a
function of its population size. The relative change is calculated by
the outflow difference between March and April divided by the one
in March. The colors are given by the average relative change on
outflow in log-spaced bins (based on the population size). The gray
dashed line shows the average value of the relative outflow for the
smaller municipalities (<18 00 people), and the dashed black line
is the best fit for a logarithmic dependence of the relative outflow
(RO) on the population size (P) for large municipalities (>18 000
people) RO = 0.27 log10(P) − 1.02, while for smaller municipalities
the best fit is RO = −0.06 log10(P) + 0.33. The population for each
municipality was obtained from Ref. [32].

municipality flow of people in Portugal, in March and April of
2020. From a large dataset of mobile phone users, we obtained
the origin-destination matrix and the shortest-path trees from
all municipalities. While local mobility and social activity
are important to understand the growth of the epidemic, the
shortest-path trees between municipalities are what define the
time sequence of municipalities affected and capture the most
probable paths for the spread of the virus, starting at a given
municipality [24,29,39]. We find that the relative decrease in
mobility correlates with the population size of a municipality.
For small municipalities, with less than 18 000 mobile users,
the outflow is decreased by about 10–20%, regardless of the
size of the municipality. However, for larger municipalities,
the relative decrease in the outflow depended strongly on
the population size and it even exceeds 60% for the largest
municipalities. The change in the mobility network demon-
strates that not only does the lockdown promote a delay in

the virus propagation, but also deeply affects the structure of
the shortest-path trees and, therefore, changed the temporal
sequence of affected municipalities.

To circumvent the absence of accurate data for mobility,
models were developed to artificially generate them, as, for
example, the gravity and radiation models [33,40], or to ac-
count for mobility restrictions in the models [28,41,42]. From
our findings, it is now possible to extend these models to
account for the dependence on the size and mobility of a
municipality. This heterogeneous response is an important
ingredient to consider in epidemic models, such as the ones
developed in Refs. [28,41–49], so that governments can re-
spond to the spread more accurately.

IV. MATERIALS AND METHODS

A. Mobility matrix from mobile phones records

The mobile data was obtained from NOS cellular network
and its volume goes up to about 8 Terabytes of events, col-
lected from the network interfaces in March and April 2020.
Each record in the dataset refers to a unique subscriber id,
General Data Protection Regulation (GDPR) compliant re-
garding Personal Identifiable Information (PII) [50], and it
includes the date/time-stamp of each respective event and the
geographic coordinates of the respective network cell cover-
age centroid where each event occurred. Such a dataset can
thus provide an abstraction of subscriber physical displace-
ments over time.

The process to compute the mobility matrices is composed
of several steps: from data event aggregation and location
estimation to trip count aggregation. Within the data event
aggregation part, the events are aggregated in a 10 minute
sliding window with detection counts for each subscriber id
performed by cell. The location for each subscriber id is
estimated based on the most frequent cell algorithm. Once
the location trips are extracted, the process to derive origin-
destination flows between geographic areas is the following.
(i) The geographic area under analysis is divided into mu-
nicipalities. (ii) The origin and destination municipalities,
together with starting time, are extracted for each subscriber
id. (iii) Trips with the same origin, destination, and time frame
are grouped together. The result is a matrix whose element
represents the number of trips from origin i to destination j,
starting within the time frame. We used the 308 municipal
areas in Portugal for the regions and the time frame of 6 am
and 8 pm. The level of municipality was considered because,
to tackle health inequalities, policy interventions are often
mandated from national governments to each municipality
[51,52].

It was observed that the mobile data are a good proxy for
the mobility matrix: although there is a tendency to over-
estimate the number of commuters, the calculation of the
shortest-path tree is preserved when compared with census
data [24].

From the mobility matrix, the extrapolation process is
carried out to represent the whole population in study. The
extrapolation algorithm takes into consideration local as well
as international market shares (in 2020, the company holds
26% of the market share in Portugal), besides wholesale
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agreements between parties. After extrapolation, the transfor-
mation process takes place to extract features from residents
and nonresidents, segmenting the data between flows from
region i to j, and the ones that do not move within that time
window, which is the same as saying that i is equal to j. At
the end, compliance with the data privacy rules (GDPR) are
applied and trips with counts under six are omitted.

B. Shortest-path trees

For the network analysis, we only considered the move-
ment of residents, i.e., in the mobility matrix F(d), Fi j (d ) is
the number of resident users who were identified at both mu-
nicipality i and j within the day d . To measure the combined
number of individuals from i to j, we considered the undi-
rected mobility network using the standard symmetrization
operation F = F + FT , where FT is the transposed matrix of
F [29].

Each element of the origin-destination matrix P is cal-
culated as Pi j = Fi j/

∑
n Fin, where the sum is over all

municipalities, and quantifies the mobility network, where the
nodes are the municipalities and the edges between i and j
have a weight Pi j . If we define the distance �i j = 1 − log(Pi j )
for each edge, the most probable paths are the ones that min-
imize the total sum of � [29]. For each node, one can define a
shortest–path tree (see Fig. 2) and the effective distance Deff

from a node i to j as the length of the shortest path between
these two nodes.
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