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Spin and lattice dynamics in the two-singlet system Tb3Ga5O12
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We address the issue of the origin of the phonon thermal Hall effect in Tb3Ga5O12, an intriguing property
presumed to originate from magnetoelastic properties, and magnified in this compound by the non-Kramers
nature of Tb3+ ions. Using neutron scattering, we have explored both the spin and lattice dynamics of Tb3Ga5O12.
Our experimental results show that the transition toward the magnetic ground state, below TN = 280 mK,
is driven by the softening of an exciton, as expected in a two-singlet system like Tb3Ga5O12. Low-energy
excitations in the ordered phase are still excitons, whose dispersion throughout the Brillouin zone is driven
by magnetic interactions. We have also discovered a mixing between specific phonon and exciton modes,
this hybridization being evidenced through an intensity anomaly of the transverse acoustic phonons, as they
cross low-energy crystal field excitations. Those experimental results can be comprehended by random phase
approximation calculations, involving a Hamiltonian based on crystal electric field, dipolar interactions, and a
coupling between phonons and the quadrupolar 4 f electronic density.
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I. INTRODUCTION

The phonon thermal Hall effect (PTHE), an enigmatic ther-
mal analog of the electronic Hall effect, is characterized by a
heat flow in a direction perpendicular to both an applied mag-
netic field and a thermal gradient. It was actually discovered
more than a decade ago, in the paramagnetic insulator garnet
Tb3Ga5O12 [1,2]. In this very case, it was proposed to rely
on a large magnetoelastic coupling, that is, on the interaction
between an elastic strain and the electronic distribution of the
4 f orbital moments [3]. However, the scope of this result was
very quickly recognized and extended to other cases, leading
to an extensive exploration of the heat-carrying properties of
nontrivial excitations in a variety of other systems, such as in-
sulating quantum magnets [4], frustrated magnetic insulators
[5], spin-liquid candidates [6–8], or multiferroics [9].

Among the several possible origins for the PTHE in
Tb3Ga5O12 (TbGG) that have been proposed and discussed,
one has invoked a Raman-type interaction between phonons
and large spins (spin-phonon coupling) [10–12], a Berry
curvature of phonon bands [13,14], or resonant skew scatter-
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ing of phonons [15]. All those mechanisms involve a large
magnetoelastic coupling [16,17], a property which has been
repeatedly inferred from a variety of experiments in TbGG,
through the softening at low temperature of its longitudinal
and transverse elastic constants [16], an acoustic Faraday ef-
fect [16,18,19], or a strong scattering of acoustic phonons by
Tb3+ ions [20,21].

Surprisingly, although magnetoelastic coupling is arguably
a cornerstone for a proper understanding of the PTHE in
TbGG, there has not been any direct microscopic evidence for
it yet. Furthermore, TbGG is well known to be a two-singlet
system [22], yet, despite this nonmagnetic ground state, it
orders magnetically at TN ≈ 0.28 K [23,24]. The magnetic
order is thus expected to be of the “induced moment” type
[23,25,26], a feature which remains to be seen experimentally
in TbGG.

This motivates the present neutron scattering study, whose
aim is a comprehensive description of both the spin and lattice
dynamics in this compound. Our experimental results show
that the transition toward the magnetic ground state is driven
by the softening of an exciton, as expected in a two-singlet
system like TbGG. The spin dynamics can be reasonably well
modeled by random phase approximation (RPA) calculations,
involving a Hamiltonian based on crystal electric field and
dipolar interactions. Furthermore, focusing on lattice dynam-
ics, we have discovered that TbGG hosts hybrid phonon and
exciton modes, this hybridization being evidenced through an
intensity anomaly of the transverse acoustic phonons, as they
cross low-energy crystal field excitations. We contend this
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FIG. 1. Evolution of the ordered magnetic moment of Tb3+ in
polycrystalline Tb3Ga5O12 versus time (left axis; from Rietveld
refinements of low-statistic data). The corresponding temperature
sequence (versus time) is pictured by red horizontal bars (right axis).
Each horizontal bar corresponds to a time period in which the tem-
perature is constant (i.e., outside a ramp).

anomaly to be the microscopic signature of a magnetoelastic
coupling. This conclusion is further supported by including
a phonon-quadrupole coupling term in the RPA calculations.
These findings should prove elemental in the understanding of
the macroscopic properties of Tb3Ga5O12 and more generally
of the PTHE.

II. EXPERIMENTAL METHODS

A. Sample preparation

The Tb3Ga5O12 (TbGG) powder was synthesized from
a mixture of stoichiometric amounts of Tb2O3 and Ga2O3,
previously dried at 500 ◦C, pressed into pellets and heated
up to 1200 ◦C for 48 h, with regular regrindings. Formation
of the pure phases was confirmed by laboratory x-ray pow-
der diffraction. The sample crystallizes in the expected cubic
space group Ia3̄d, with a ≈ 12.35 Å in agreement with litera-
ture results [27]. The single TbGG crystal (Ø = 10 × 20 mm)
was bought from Northrop Grumman, USA.

B. Neutron powder diffraction

Neutron powder diffraction (NPD) versus temperature
was performed on the G4.1 diffractometer (λ = 2.426 Å)
at LLB-Orphée (France). Diffractograms were recorded be-
tween 45 mK and 290 mK, in a dilution fridge environment.
To ensure proper thermalization of the sample at subkelvin
temperatures, the sample was set in a dedicated vanadium
cell filled with 4 bars 4He gas and left for 6 hours at 45 mK
before the start of the experiment. The temperature sequence
is illustrated in Fig. 1 (right axis), and corresponds to a dozen
temperature steps, increasing T from 45 mK to 288 mK, be-
fore cooling down to base temperature (45 mK) again (with
the neutron beam always on). Between six and eight 15-min
diffractograms were recorded during each temperature plateau

FIG. 2. (a) Rietveld refinement profile of the TbGG neutron
diffraction pattern at 45 mK, using the magnetic space group Ia3̄d.
(Experimental: empty red circles, calculated: black line, Bragg posi-
tions (crystal + magnetic contributions): green ticks. The difference
between the experimental and calculated profiles is displayed at the
bottom of the graph as a blue continuous line. (b) Reduced tem-
perature evolution of the Tb3+ ordered magnetic moment, obtained
from Rietveld refinements of the neutron diffraction data (open red
symbols). The dotted line shows the corresponding calculation, based
on the singlet-singlet model described in the main text. Inset of (b):
Multiaxis AFA magnetic order, with the three magnetic sublattices
having moments parallel or antiparallel to the cubic axis (a, b, c in
yellow, blue, and red, respectively).

to provide high-statistic data [such as shown in Fig. 2(a)] for
subsequent Rietveld analysis. As illustrated in Fig. 1, the or-
dered magnetic moment extracted from the 15-min NPD data
follows the temperature sequence perfectly, thus confirming
the proper thermalization of the sample.

Rietveld refinements were performed with the FullProf
program [28]. Symmetry analysis was carried out using
the FullProf Suite software and the Bilbao Crystallographic
Server [29,30]. No sign of partial substitution of Tb on the Ga
octahedral site (and vice versa) or deviation from the nominal
oxygen stoichiometry was evidenced within the resolution of
the experiment (�3%).
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C. Inelastic neutron scattering

Inelastic neutron scattering (INS) measurements were
performed on the thermal triple-axis 2T spectrometer (LLB-
Orphée, France). Standard conditions were used, with PG002
as monochromator and analyzer, using a fixed constant wave
vector k f = 2.662 Å−1, along with an 8-cm-thick PG filter on
the scattered beam to eliminate harmonics. Experiments were
carried out with open collimations, in combination with a
vertically and horizontally bent monochromator and analyzer,
to optimize the flux at the sample position. This setup yields
an energy resolution �E ≈ 1.2 meV. The TbGG powder sam-
ple was put inside an aluminum holder. The single-crystal
sample was wrapped in an aluminum foil, aligned with the
[11̄0] direction vertical, and attached to the cold finger of a
closed-cycle cryostat.

Time-of-flight (TOF) INS experiments were also per-
formed on the TbGG single crystal, using the cold spectrom-
eter IN6-SHARP (ILL, France). The incident wavelength was
λ = 5.12 Å, providing an instrumental resolution of 50 μeV
at the elastic line. The single crystal was oriented with (110)-
(001) as the horizontal reciprocal plane, wrapped in a copper
foil (to ensure proper thermalization) and placed in a dilution
insert inside a cryostat [31]. Special care was taken to ensure
proper thermalization of the sample, and the experiment was
started after a 6-hour wait at base temperature (50 mK). Data
were recorded between 50 mK and 5 K. To get the full data
set as a function of Q and E, the sample was rotated in steps
of 1 degree and the counting time was about 10 minutes per
sample position. The data were then processed to subtract a
constant background and to convert the time of flight, sample
rotation, and scattering angle into energy transfer and Q wave
vectors (see Appendix A).

III. RESULTS

A. Magnetic structure

In TbGG, because of the orthorhombic (D2) electric field
on the 24c Wyckoff site of the Ia3̄d garnet crystal structure
[32], the degeneracy of the 7F6 multiplet of the free Tb3+

ion is completely lifted into thirteen single states [22]. The
lowest energy states are thus two closely spaced singlets.
As already mentioned, TbGG is, however, reported to order
magnetically at TN ≈ 290 mK [23,24]. The observed antifer-
romagnetic structure is of the AFA type [23,24,33] [inset of
Fig. 2(b)], that is, multiaxial, with the Tb3+ spins forming six
sublattices parallel or antiparallel to the 〈100〉 crystallographic
directions of the cubic unit cell [the magnetic space group
being Ia3̄d ′ (BNS 230.148)]. This AFA structure is specific to
rare-earth garnets with Ising anisotropy and dominant dipolar
interactions [23,34–36].

As illustrated in Fig. 2(a), neutron powder diffraction ex-
periments confirm this AFA magnetic order for TbGG. The
peculiar temperature evolution of the Tb3+ ordered moment
[Fig. 2(b)] is very similar to that reported in [37], with TN ≈
280 mK, and with the Tb3+ moment reaching only ≈ 4.5 μB

at 45 mK.

FIG. 3. (a) and (b): Temperature evolution of E scans at con-
stant Q = (110), measured in single-crystal TbGG, above and below
500 mK, respectively. (c) Color plot of the same data as (a) and
(b) [top x axis: reduced temperature (T/TN ) scale]. The dashed ver-
tical line shows TN , below which a strong elastic signal is observed.
(d) Corresponding calculation, for the model described in the text,
with xdip = 1. The shaded area around the elastic line indicates the
50 μeV instrumental resolution. The elastic contribution is not shown
for clarity in (d).

B. Spin dynamics

To clarify the formation of this magnetic ground state, the
TbGG crystalline electric field (CEF) excitations were studied
by INS at 10 K on both polycrystalline and single-crystal sam-
ples. For both, the observed levels are in perfect agreement
with a recent and comprehensive neutron scattering study
of TbGG by Wawrzynczak et al. [24]. In particular, a very
broad signal is seen for an energy transfer E ranging between
4 and 7 meV, which is attributed to 4 distinct CEF modes
[24], alongside a very low-energy mode around 0.2 meV [see
Fig. 3(a) at 5 K]. Note that this CEF scheme confirms the
strong Ising anisotropy of the Tb3+ ion in TbGG [24], as
well as the two-singlet ground state, made of two closely
spaced singlets (� ≈ 0.2 meV). More details can be found
in Appendix B.

Low-energy excitations (E � 2 meV) were further stud-
ied below 1 K on the TbGG single crystal to investigate
the behavior of this two-singlet system through and below
TN (TN being about 300 mK in the TbGG single crystal).
As already observed experimentally on polycrystalline TbGG
[33], the low-energy CEF level around 0.2 meV becomes
dispersive when T approaches TN [38], i.e., when correlations
grow, which indicates that the high-temperature single-ion
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excitation has been replaced by a (propagating) exciton. The
evolution with temperature of energy scans at the magnetic
Bragg Q = (110) is illustrated in Figs. 3(a) and 3(b), with
the corresponding color plot in Fig. 3(c). It shows that, far
above TN , a single CEF mode is observed at 0.2 meV. This
mode splits into two branches with decreasing temperature,
one branch softening down to the elastic line (within the in-
strumental resolution) at TN , and the other branch hardening to
reach 0.25 meV at 100 mK. Experimentally, it is not possible
to affirm whether there is a complete softening or not of the
exciton at the transition; if there is a gap, however, it has to be
less than 50 μeV.

This softening fits the theoretical picture of induced mag-
netism, as explained in Refs. [23,25,26]. If one labels the two
singlets as |1〉 and |2〉, the singlet nature imposes 〈1|Ji|1〉 =
〈2|Ji|2〉 ≡ 0 (Ji is the total angular momentum), with how-
ever 〈1|Ji|2〉 nonzero. If magnetic interactions overcome the
energy separation � between the singlets, the system can take
advantage of the finite 〈1|Ji|2〉 matrix element to mix the |1〉
and |2〉 wave functions, to form a magnetic ground state (see
also Appendix C). This can be modeled quantitatively using
the following Hamiltonian:

H = HCEF +
∑
〈i, j〉

∑
a,b=x,y,z

Kab
i, j Ja

i Jb
j, (1)

where Ki, j describes the interaction tensor between the com-
ponents of Ja=x,y,z at Tb3+ sites i and j of the hyperkagome
network of TbGG. In what follows, it is assumed that Ki, j

identifies with the dipolar interaction term Di, j , which is tuned
artificially by a parameter labeled xdip, Ki, j = xdipDi, j ,

Ka,b
i, j = xdip

μo

4π

(gJμB)2

r3
i, j

(
δa,b − 3

ra
i, j rb

i, j

r2
i, j

)
, (2)

and is truncated to nearest neighbors. ri j is the vector join-
ing sites i and j. Using the nearest-neighbor distance dnn =
a
4

√
3/2 (a is the cubic lattice spacing, dnn ≈ 3.78 Å in TbGG

[27]), this gives D ≈ 0.02 K. HCEF is based on the parameters
proposed by [24] to describe TbGG. There is no magnetic
exchange term.

On the basis of this minimalist Hamiltonian, spin dynamics
was then calculated in the framework of the RPA approxima-
tion (see also Appendix D 1). S(Q, E ) maps of the exciton
dispersion along [hh0], calculated at various temperatures us-
ing this model Hamiltonian, are given in Fig. 4. Cooling from
10 K, calculations clearly show that the CEF mode at about
0.2 meV becomes dispersing, being now rather an exciton
than a local crystal field excitation. Further decreasing temper-
ature, several modes can be identified, one of them softening
progressively before condensing at the Néel temperature. In
the ordered phase, the latter hardens again, as a result of the
strong anisotropic nature of the dipolar interaction.

For easier comparison with the experimental data of
Fig. 3(c), Fig. 3(d) displays the temperature dependence of
the calculated excitation spectrum at Q = (110), as extracted
from Fig. 4. The model accounts very well for the softening
of the exciton at TN which is seen experimentally, and gives
a very reasonable value for the energy of the dispersive exci-
tons below TN . It predicts another mode of weak amplitude,
at ≈ 0.3 meV, which is not seen in the experimental data,

FIG. 4. Reduced temperature evolution of the calculated S(Q, E )
spectra of TbGG, along [hh0] (E � 2 meV). Calculations are carried
out using the Hamiltonian described in the main text, with the CEF
parameters of [24], a dipolar interaction parameter xdip = 1, and no
magnetic exchange.

presumably owing to the limited resolution and/or to the low
intensity of the mode itself.

The temperature evolution of the group of CEF levels at
higher energies, between 4 and 7 meV, is shown in Fig. 5.
In this energy range, the excitonic character of the CEF ex-
citations is not observed anymore, since the strength of the
magnetic interactions is negligible compared with the bare
energies of the CEF levels, and only a slight change of the
levels’ energy positions is seen below TN .

The moment at saturation calculated from the admixture of
states is Ms = 4 μB, in very good agreement with the ordered
moment value at 45 mK refined from the diffraction data. It is
also noteworthy that there is no need to introduce hyperfine
coupling into the Hamiltonian to drive the magnetic order,
an issue which was still open in TbGG to date [39], and in
contrast, for instance, to Ho3Ga5O12, another non-Kramers
garnet [40]. The main discrepancies between this model and
the experimental results are the value of TN , calculated to
be 950 mK (against 280 mK experimentally), and the shape
of the ordered moment temperature evolution, which reaches
saturation below T/TN = 0.5, that is, much faster than ex-
perimental observations [Fig. 2(b)]. Discrepancies between
the observed and calculated intensity of the modes around

FIG. 5. TbGG S(Q, E ) spectra along [hh0], calculated below
(T/TN = 0.1) and above (T/TN = 5.3) TN , shown between 4 and
7 meV.
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FIG. 6. (a) Experimental S(Q, E ) at 10 K along [hh8]. (b) Fitting
of the phonon branch intensity versus E, at different temperatures.
(c) and (d): Calculations performed assuming a magnetoelastic cou-
pling of 0.3 K with a single acoustic phonon branch. (c) shows the
total neutron intensity (magnetic and phononic), while (d) shows
the phononic contribution only, to emphasize the variations of the
intensity of the phonon branch as it crosses the different CEF levels
(pictured by horizontal lines).

0.25 meV can also be seen when comparing Figs. 3(c) and
3(d). These are indications that mean-field theory with the
chosen Hamiltonian, although it leads to an overall correct
description of TbGG, is likely not accurate enough to describe
finer details, and that a more complex Hamiltonian, or a more
sophisticated theoretical approach, is necessary.

C. Lattice dynamics

To go further into the understanding of TbGG magnetoe-
lastic properties, phonon dynamics was investigated by INS at
10 K; experimentally this study was performed at rather large
Q values, to increase the phonon form factor, and in an energy
range up to 20 meV. Several tests were performed around
different zone centers, but Q = (008) was eventually chosen
to enhance as much as possible the phonon cross section.
The (Q, E ) space was then mapped out, probing both the
longitudinal and transverse acoustic modes stemming from
the corresponding Bragg peak. The energy resolution did not
allow one to study the 0.2 meV level, the latter being buried
into the elastic line. The results are illustrated in Fig. 6(a),
which shows the INS spectrum S(Q, E ) of TbGG built from

constant-E Q scans, mapped along [hh8]. A steep transverse
acoustic phonon branch, propagating along [hh0] and polar-
ized along [001], is clearly visible, linearly stemming from the
(008) Bragg position, and crossing the group of CEF levels
located between 4 and 7 meV. The intensity of those modes
is still strong, despite the large wave vectors. An additional
scattering is visible around 12 meV, a feature which is seen
also on the polycrystalline TbGG S(Q, E ) spectrum at 5 K.
It is tentatively attributed to an optical phonon mode, as its
intensity increases with Q.

The intensity of the phonon mode was fitted using the
following equation:

I (E , Q = (hh8)) = c +
(

1 + 1

eE/kBT − 1

)
× A(E )[g(h, hE ) + g(h,−hE )],

where c is an effective flat background and g(h, hE ) =
e−4 log(2)(h−hE )2/γ 2

is a Gaussian profile centered on hE (γ is
its FWHM). This analysis, repeated at 4, 30, and 93 K, leads
to the results displayed in Fig. 6(b). Strikingly, the A(E ) am-
plitude shows a dip when crossing the 4–7 meV CEF levels,
when a classical 1/E behavior would have been expected.
Furthermore, this dip progressively fills up with increasing
temperature, to become barely observable at 100 K. The same
fitting, repeated for the longitudinal phonon mode propagating
and polarized along [001], did not reveal the same anomaly.

D. RPA modeling

To qualitatively interpret these measurements, it seems
straightforward to add a magnetoelastic coupling term to
Eq. (1). The simplest way is to couple an atomic displace-
ment to the quadrupolar moments of the Tb 4 f electronic
distribution. The latter writes Qi = ∑

a,b qabX ab
i , where X ab

i =
|a, i〉〈b, i| denote the transitions between the CEF eigenstates
|a〉 and |b〉 at site i, and where the qab coefficients depend on
the details of HCEF (see Appendix B and [24]). The atomic
displacements write as (a+

−ks + ak,s) in terms of phonon cre-
ation and annihilation operators (s labels the band index, k
the momentum, and �k,s the phonon energy), so that the new
Hamiltonian becomes

H′ = H +
∑
k,s

�k,sa
+
ksak,s

+
∑
k,s,i

vi,k,s(a
+
−ks + ak,s)

(
X ab

i + X ba
i

)
. (3)

It includes a direct coupling vi,k,s between phonons and elec-
tronic transitions, which, because of resonant coupling, leads
to hybrid magnetoelastic modes. This interaction was thus
incorporated into the RPA code used previously (Appendix D
1). In the calculations, a simple transverse acoustic mode �k,s

is considered and an identical effective coupling v is assumed
between this mode and the CEF transitions. Figures 6(c) and
6(d) display the calculated spin and lattice contributions to the
neutron cross section, respectively, and evidence the expected
mixing of the bare phonon and CEF excitations. Owing to
the proximity of several CEF modes in the 4–7 meV range,
this hybridization manifests itself as a decrease of the phonon
spectral weight, in agreement with what is observed experi-
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mentally [Fig. 6(b)]. To reproduce the experimental data, the
strength of the effective coupling was adjusted to 0.3 K.

IV. DISCUSSION

From an analysis of the temperature and field dependence
of the thermal conductivity of TbGG, it had been previously
inferred [20] that including in the data modeling resonant
scattering of phonons with CEF transition frequencies corre-
sponding to transitions X 12 and X 34 was giving a satisfactory
agreement (with the addition of resonant scattering from a
few impurities). Scattering from the X 34 was also found ac-
countable in a broad temperature range, from 8 K to 200 K.
The present study goes further, and now provides microscopic
evidence for the coupling between acoustic phonons and at
least four of the Tb3+ six lowest excited states.

With regard to the phonon Hall effect at 5 K, the mean
free path of phonons with frequencies close to the resonant
frequencies of the X 12 and X 34 transitions is on the order
of the phonon wavelength; when the splitting between levels
becomes too large, like when a field is applied in a specific
direction such as [111], the resonant scattering rate decreases
and thermal conductivity peaks. Moreover, the magnetoelastic
interaction is also expected to change the topology of the
phonon bands, giving rise to “anomalous” velocities and thus
to off-diagonal heat conductivity. Because of the field depen-
dence of the CEF, those bands will strongly depend on the
field amplitude, leading to a significant thermal Hall effect.
Furthermore, owing to the strong Ising character of Tb3+ on
its site, this splitting differs depending on the orientation of
the local Ising axis with respect to the applied magnetic field.

While a detailed microscopic derivation of the magnetoe-
lastic Hamiltonian would likely give a more reliable value of
the coupling constants v, it is important to mention that H′
describes, at low energies, a two-level system (|1〉 and |2〉)
coupled to a bath of harmonic oscillators, a very difficult
problem relevant to many areas of physics, from quantum
decoherence to polaron formation [41,42]. The physical effect
of the coupling is the “polarization” of a given state by the
other one: |1〉 (resp. |2〉) becomes dressed by an admixture of
|2〉 (resp. |1〉), surrounded by a cloud of phonons. Within the
mean-field framework, this may translate into the formation
of a static distorted structure if the coupling v overcomes the
energy separation �. This is indeed the case in the above
RPA calculations, which yields v ≈ 0.3 K, a very large value,
likely an artifact of a too crude approximation, neglecting zero
point fluctuations especially. It remains that the coupling to
the phonon bath results in a mixing of the |1〉 and |2〉 states,
leading to new electronic states which can be written, for
the sake of illustration, |1′〉 = u|1〉 + v|2〉 and |2′〉 = −v|1〉 +
u|2〉. Interestingly this mechanism may confer an emergent
fluctuating magnetic moment to the new electronic states
〈1′|Ji|1′〉 = −〈2′|Ji|2′〉 = 2uv 〈1|Ji|2〉, which could prevent
the formation of any static order, or compete with the dipolar
interaction induced mechanism. In the case of TbGG, such
a competition could be the reason behind the discrepancy
between the experimental TN of 280 mK and the theoretical
one of 950 mK calculated considering a bare singlet-singlet
model, that is, decoupled from the phonon bath. Within this
scenario, magnetoelastic coupling delays the AFA magnetic

ordering, possibly explaining the peculiar temperature evolu-
tion of the Tb3+ ordered magnetic moment below TN as well.

Such physics may be relevant to other Tb compounds,
such as the pyrochlores Tb2Ti2O7 or Tb2Sn2O7 [43–45]. In
both, a similar coupling between the quadrupolar moments
of the electronic density and the lattice degrees of freedom
is also at play [46–50]. In contrast with TbGG, the multiplet
degeneracy is not totally lifted, so that the low-energy CEF
scheme is described by a degenerate Ising magnetic doublet
m = 〈1|Ji|1〉 = −〈2|Ji|2〉 	= 0 and characterized by a strictly
zero matrix element 〈1|Ji|2〉 ≡ 0 [51,52]. However, the cou-
pling to the phonon bath may still favor the formation of
perturbed states made of a mixing of |1〉 and |2〉. This would
not only confer a fluctuating reduced magnetic moment to the
new electronic states 〈1′|Ji|1′〉 = −〈2′|Ji|2′〉 = m(u2 − v2),
but also a fluctuating nonzero matrix element 〈1′|Ji|2′〉 =
2uv m 	= 0, with two consequences: (i) to prevent, or com-
pete with, the formation of magnetic long-range order, and
(ii) to give rise to low-energy dynamics, taking the form of
an exciton built on the new electronic states. The facts that
Tb2Ti2O7 remains disordered down to 50 mK while INS data
provide evidence for very low energy spin dynamics both in
Tb2Ti2O7 [47] and Tb2Sn2O7 [45] are two features which
have eluded proper understanding up to now, but which could
be understood in this framework.

V. CONCLUSIONS

Neutron scattering measurements combined with RPA cal-
culations have shed light on the intriguing properties of
Tb3Ga5O12. They confirm the picture of TbGG as an archety-
pal two-singlet system, in which dipolar interactions are
strong enough to mix the two singlets and lead to a magnetic
state. Magnetoelastic coupling has a major role in addition, re-
sulting in the formation of magnetoelastic hybrid modes with
arguably direct consequences on the phonon heat-carrying
properties including PTHE. Whether this coupling along with
lattice zero point motion also influences low-energy dynamics
still remains to be studied. More generally, our results suggest
that eigenstates coupled with harmonic oscillators could be a
pertinent physical approach to Tb systems.
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APPENDIX A: TOF DATA REDUCTION

Reduction of the TOF data from IN6-SHARP was per-
formed using a homemade code which applies a transforma-
tion which relates the Cartesian coordinates of the instrument
to the rotated reciprocal lattice coordinates. The procedure
assumes that two reciprocal lattice vectors u and v are identi-
fied, and that their Cartesian coordinates ũ and ṽ (along with
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w̃ = ũ × ṽ) are known. The transformation matrix thus writes

M =
⎛
⎝ũx ṽx w̃x

ũy ṽy w̃y

ũz ṽz w̃z

⎞
⎠.

For instance, if ũ and ṽ are defined with Euler angles α and β

(being the azimuth), those coordinates write

ũ = ||ũ||
⎛
⎝cos αu cos βu

sin αu cos βu

sin βu

⎞
⎠,

ṽ = ||ṽ||
⎛
⎝cos αv cos βv

sin αv cos βv

sin βv

⎞
⎠,

w̃ = ũ × ṽ.

Any wave vector written as Q = λu + μv + νw has thus
Cartesian coordinates given by

Q̃ = M · Q.

During the experiment, the sample is rotated step by step
around the vertical axis by the angle φk . This rotation depends
on an offset �, which encodes how the sample was positioned
on the dilution stick. Accordingly, we have to consider, for
each φk , a Mk matrix, consisting of the collection of the three
vectors ũ, ṽ, w̃ rotated around the vertical axis by the angle
φk + �; hence,

Q = M−1
k · Q̃.

In these conditions, the recorded intensity I (E , θ, φ = φk ) is
associated with a scattering process with the incoming wave
vector ki = 2π/λ, the outgoing wave vector

k f =
√

k2
i − E/a, a ≈ 2.0 meV Å2,

and the scattering wave vector Q defined by its Cartesian
coordinates Q̃:

Q̃x = ki − k f cos θ,

Q̃y = −k f sin θ,

Q̃z = 0.

The reasoning is here restricted to the horizontal plane, but
a generalization is straightforward if considering the z axis.
Back to the physical reciprocal lattice, the wave vector writes

Q = M−1
k · Q̃.

It remains to integrate the recorded intensity on a user-defined
(Q, E ) grid and determine the offset � while identifying the
Bragg peaks.

APPENDIX B: Tb3Ga5O12 CRYSTAL ELECTRIC FIELD
CHARACTERIZATION

INS measurements carried out on 2T and IN6 confirm ex-
isting experimental data, as illustrated in Fig. 7, for instance.
We thus did not attempt to determine the crystal field scheme
and used the results of Ref. [24] instead. The energy levels
are given in Table I and the lowest energy wave functions are

FIG. 7. E scan at constant Q = 2.2 Å−1 of the powder neutron
scattering spectrum of TbGG at 10 K. Green vertical lines indicate
the positions of the CEF excitations calculated by [24]. The four CEF
levels are not resolved because of the �E ≈ 1.2 meV resolution of
the experimental setup. Inset: Corresponding temperature evolution.

given by

|1〉 ≈ −0.09|Jz = ±5〉 + 0.70|Jz = ±1〉,
|2〉 ≈ −0.18|Jz = ±6〉 − 0.12|Jz = ±4〉 + 0.32|Jz = ±2〉

+0.83|Jz = 0〉.

As in rare-earth pyrochlores, it is convenient to work in
local bases. In the garnet structure, the subset of magnetic ions
is composed of 2 × 12 atoms, which form two intertwined hy-
perkagome networks. The 24c site occupied by magnetic ions
in the Ia3̄d space group has D2 orthorhombic local symmetry;
the main axis is one of the cubic axes. Those local bases
are identical for the two networks. Each block of 12 ions is
constructed on two equivalent groups of 6 atoms, separated by
a translation (1/2, 1/2, 1/2). Atomic positions, numbering,
and local CEF axes are given in Table II.

TABLE I. TbGG energy levels determined in Ref. [24]. The
quantization axis is given in Table II.

n Energy levels (meV)

2 0.21
3 4.48
4 5.24
5 6.01
6 6.54
7 26.41
8 28.28
9 34.27

10 34.75
11 35.65
12 36.39
13 38.22
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TABLE II. Rare-earth atom labels, positions, and local CEF axes
in the garnet Ia3̄d crystal structure.

N Position y axis z axis x axis

1 ( 1
8 , 0, 1

4 ) (0, 1, 1̄) (0,1,1) (1,0,0)

2 ( 3
8 , 0, 3

4 ) (0, 1̄, 1̄) (0, 1̄, 1) (1̄, 0, 0)

3 ( 1
4 , 1

8 , 0) (1̄, 0, 1) (1,0,1) (0,1,0)

4 ( 3
4 , 3

8 , 0) (1̄, 0, 1̄) (1, 0, 1̄) (0, 1̄, 0)

5 (0, 1
4 , 1

8 ) (1, 1̄, 0) (1,1,0) (0,0,1)

6 (0, 3
4 , 3

8 ) (1̄, 1̄, 0) (1̄, 1, 0) (0, 0, 1̄)

7 ( 5
8 , 1

2 , 3
4 ) (0, 1, 1̄) (0,1,1) (1,0,0)

8 ( 7
8 , 1

2 , 1
4 ) (0, 1̄, 1̄) (0, 1̄, 1) (1̄, 0, 0)

9 ( 3
4 , 5

8 , 1
2 ) (1̄, 0, 1) (1,0,1) (0,1,0)

10 ( 1
4 , 7

8 , 1
2 ) (1̄, 0, 1̄) (1, 0, 1̄) (0, 1̄, 0)

11 ( 1
2 , 3

4 , 5
8 ) (1, 1̄, 0) (1,1,0) (0,0,1)

12 ( 1
2 , 1

4 , 7
8 ) (1̄, 1̄, 0) (1̄, 1, 0) (0, 0, 1̄)

13 ( 7
8 , 0, 3

4 ) (0, 1, 1̄) (0,1,1) (1,0,0)

14 ( 5
8 , 0, 1

4 ) (0, 1̄, 1̄) (0, 1̄, 1) (1̄, 0, 0)

15 ( 3
4 , 7

8 , 0) (1̄, 0, 1) (1,0,1) (0,1,0)

16 ( 1
4 , 5

8 , 0) (1̄, 0, 1̄) (1, 0, 1̄) (0, 1̄, 0)

17 (0, 3
4 , 7

8 ) (1, 1̄, 0) (1,1,0) (0,0,1)

18 (0, 1
4 , 5

8 ) (1̄, 1̄, 0) (1̄, 1, 0) (0, 0, 1̄)

19 ( 3
8 , 1

2 , 1
4 ) (0, 1, 1̄) (0,1,1) (1,0,0)

20 ( 1
8 , 1

2 , 3
4 ) (0, 1̄, 1̄) (0, 1̄, 1) (1̄, 0, 0)

21 ( 1
4 , 3

8 , 1
2 ) (1̄, 0, 1) (1,0,1) (0,1,0)

22 ( 3
4 , 1

8 , 1
2 ) (1̄, 0, 1̄) (1, 0, 1̄) (0, 1̄, 0)

23 ( 1
2 , 1

4 , 3
8 ) (1, 1̄, 0) (1,1,0) (0,0,1)

24 ( 1
2 , 3

4 , 1
8 ) (1̄, 1̄, 0) (1̄, 1, 0) (0, 0, 1̄)

To investigate the coupling between quadrupolar moments
and phonons, it is useful to evaluate the matrix of the corre-
sponding operators in the basis formed by the eigenvectors.
For the sake of simplicity, we restrict ourselves to the 6 lowest
energy states. Interestingly, the largest matrix elements occur
for transitions X 16 (mediated by Oxy), X 23 and X 25 (Oxy), and
X 24 (O20). A relatively smaller coupling exists for X 12 and
mediated by Oyz. This indicates that at 10 K, the 6 lowest
energy states are potentially coupled to phonons:

O20 =

⎛
⎜⎜⎜⎜⎜⎝

−37.8 . . . . .

. −30.8 . 25.6 . .

. . 38.8 . 42.7 .

. 25.6 . 59.1 . .

. . 42.7 . −1.3 .

. . . . . −26.9

⎞
⎟⎟⎟⎟⎟⎠,

O22 =

⎛
⎜⎜⎜⎜⎜⎝

19.4 . . . . .

. 20.3 . −3.6 . .

. . 0.5 . −2.7 .

. −3.6 . −0.2 . .

. . −2.7 . 5.8 .

. . . . . 8.4

⎞
⎟⎟⎟⎟⎟⎠,

Oxz =

⎛
⎜⎜⎜⎜⎜⎝

. . 6.2 . −5.4

. . . . . 8.4
6.2 . 0.5 . .

. . . . . −1.5
−5.4 . . . .

. 8.4 . −1.5 .

⎞
⎟⎟⎟⎟⎟⎠,

Oxy =

⎛
⎜⎜⎜⎜⎜⎝

. . . . . 29.7i

. . 16.5i . −23.1i .

. −16.5i . 3.8i . .

. . −3.8i . 5.0i .

. 23.1i . −5.0i . .

−29.7i . . . . .

⎞
⎟⎟⎟⎟⎟⎠,

Oyz =

⎛
⎜⎜⎜⎜⎜⎝

. 1.1i . 2.3i . .

−1.1 . . . . .

. . . . . 0.1i
−2.3i . . . . .

. . . . . −1.1i

. . −0.1i . 1.1i .

⎞
⎟⎟⎟⎟⎟⎠.

APPENDIX C: SIMPLE CONSIDERATIONS ABOUT
TWO-LEVEL SYSTEMS

1. Induced magnetization

In this section, we explain the notion of induced magneti-
zation. For the sake of simplicity, the discussion is restricted to
the subspace spanned by the two low-energy singlets (labeled
|1〉 and |2〉) of the full CEF scheme. In this subspace, the CEF
Hamiltonian writes

HCEF =
(−�/2 0

0 �/2

)
,

and � is the energy gap between |1〉 and |2〉. Since those states
are singlets, we have 〈1|J|1〉 = 〈2|J|2〉 ≡ 0, and we further
assume that the transverse matrix elements are Ising-like, with
only 〈1|Jz|2〉 = w 	= 0. The matrix of the magnetic moment
thus writes

Jx = 0, Jy = 0, Jz =
(

0 w

w 0

)
.

As a result, an external magnetic field, which we shall identify
later on with a (self-consistent) molecular field, allows for
transitions between the two states, yielding

H = HCEF + h · J =
(−�/2 y

y �/2

)
.

Here, y stands for y = hw. It is straightforward to show that
this Hamiltonian is diagonalized in the basis of eigenvectors(

cos θ − sin θ

sin θ cos θ

)

with

tan 2θ = −2y

�

and eigenvalues ε+ and ε−:

ε± = ±
√

�2 + 4y2

2
.
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FIG. 8. Neutron spectral weight as a function of energy, for
different angles θ , ranging from the weakly coupled (θ = 0.1)
to the strongly coupled case (θ = 0.9). The left and right panels
show the two-singlet case and the Ising non-Kramers doublet case,
respectively.

In this basis, the matrix of the magnetic moment writes

Jx = 0, Jy = 0, Jz = w

(
sin 2θ cos 2θ

cos 2θ − sin 2θ

)
.

In other words, a soon as θ 	= 0, the new states get a finite
magnetic moment and a reduced off-diagonal element:

|1′〉 = cos θ |1〉 + sin θ |2〉,
|2′〉 = − sin θ |1〉 + cos θ |2〉,

〈1′|Jz|1′〉 = w sin 2θ,

〈2′|Jz|2′〉 = −w sin 2θ,

〈1′|Jz|2′〉 = w cos 2θ.

The averaged magnetization writes

m = 1

Z
Tr

(
e−H/T J

)
, Z = e−ε+/T + e−ε−/T ,

mz = −w
2y√

�2 + 4y2
tanh

√
�2 + 4y2

2T
.

It is interesting to further examine the neutron cross section
in this simplified model. Owing to the matrix of the magnetic
moment, this quantity is proportional to

I = (w sin 2θ )2δ(E )

+ 1

Z
(w cos 2θ )2

[
δ(E − ε) + e−ε/T δ(E + ε)

]
and thus shows an elastic contribution along with inelastic
peaks at E = ±ε. If the elastic peak is weak, the weight
of the inelastic transitions saturates up to w2. In contrast,
if the elastic peak goes up to w, the weight of the inelastic
transitions vanishes (see Fig. 8).

At the mean-field level, the magnetic field will be replaced
by a molecular field, directly related to the magnetization
itself via a coefficient J , which physically describes the
strength of the interactions, yielding h = Jmz hence y =
Jmzw. The previous equation is thus a self-consistent equa-

FIG. 9. Mean-field phase diagram of the two-singlet problem.
Calculations are carried out with � = 1. The color scale encodes the
value of y/Jw2.

tion for y:

y = −y
2Jw2√
�2 + 4y2

tanh

√
�2 + 4y2

2T
.

Beyond the trivial solution y = 0, another solution might ex-
ist, depending on temperature and on the actual value of J .
At low temperature, one obtains

y ≈ Jw2

√
1 −

(
�

2Jw2

)2

.

As shown in Fig. 9, a magnetic state is thus stabilized (or
“induced”) if the magnetic energy gain overcomes the energy
gap �, more precisely if Jw2 > �/2.

2. Connection with the problem of a degenerate
non-Kramers doublet

Interestingly, this problem is dual to the problem of a non-
Kramers magnetic CEF ground doublet in a molecular field. In
this case, we have 〈1|Jx,y,z|2〉 ≡ 0, 〈1|Jz|1〉 = −〈2|Jz|2〉 = μ,
so that the matrix of the magnetic moment writes

Jx = 0, Jy = 0, Jz =
(−μ 0

0 μ

)
.

We shall also add fluctuations taking the form of the y matrix
element, induced for instance by a quadrupolar molecular
field. For the sake of simplicity, we introduce one of the
quadrupolar operators, written as

O =
(

0 w

w 0

)
,

so that the Hamiltonian writes

H = h.J + qO =
(−�/2 y

y �/2

)
,
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which is identical to the two-singlet case, yet � now stands
for � = 2μh and y = qw. Hence, the matrix of O writes

O = w

(
sin 2θ cos 2θ

cos 2θ − sin 2θ

)
,

and the magnetic moment

Jx = 0, Jy = 0, Jz = μ

(− cos 2θ sin 2θ

sin 2θ cos 2θ

)
.

In other words, a soon as θ 	= 0, the new states get a reduced
magnetic moment and an emergent off-diagonal matrix ele-
ment. This situation is the dual of the two-singlet problem:

|1′〉 = cos θ |1〉 + sin θ |2〉,
|2′〉 = − sin θ |1〉 + cos θ |2〉,

〈1′|Jz|1′〉 = −μ cos 2θ,

〈2′|Jz|2′〉 = μ cos 2θ,

〈1′|Jz|2′〉 = μ sin 2θ,

with the following averaged magnetization and quadrupolar
moment:

mz = −μ
�√

�2 + 4y2
tanh

√
�2 + 4y2

2T
,

o = −w
2y√

�2 + 4y2
tanh

√
�2 + 4y2

2T
.

The neutron cross section writes
I = (μ cos 2θ )2δ(E )

+ 1

Z
(μ sin 2θ )2

[
δ(E − ε) + e−ε/T δ(E + ε)

]
and thus also has inelastic peaks at E = ±ε and a contribution
at zero energy. At low temperature, we recover the same
result as in the two-singlet model: the weight of the inelastic
signal and of the elastic peak have opposite variations.

At the mean-field level, h is replaced by a molecular field,
h = Jmz, and q = Ko, so that the previous equations form
a set of self-consistent equations. Depending on the relative
strength of the two interactions J and K, a magnetic or a
nonmagnetic quadrupolar ground state may appear. In the
low-temperature limit, one obtains

� = −2μ2J �√
�2 + 4y2

tanh

√
�2 + 4y2

2T
,

y = −2w2K y√
�2 + 4y2

tanh

√
�2 + 4y2

2T
.

APPENDIX D: RPA CALCULATIONS

1. Hamiltonian, definitions, and conventions

a. Magnetic degrees of freedom

In the following, we consider the generalized Heisenberg
Hamiltonian:

H = HCEF + 1

2

∑
i, j

Ji, jJiJ j +
∑

i

g jμBJi.h

+1

2

∑
i, j

Ki, jOiO j .

HCEF is the crystal field Hamiltonian, h is the magnetic field,
J is a (3 × 3) interaction tensor which couples magnetic mo-
ments, and Ki, j is the interaction tensor between multipoles
written as Oi for the sake of simplicity. The site index i is
recast into an index m denoting the unit cell and i denoting the
atomic site within the unit cell. Since the largest term in H is
the crystal field Hamiltonian HCEF, it is convenient to use the
basis formed by the set of wave vectors |a〉,

HCEF|a〉 = Ea|a〉,
and the projection operators defined on this basis:

|a〉〈b| = X ab.

They are characterized by the commutation rules:[
X ab

i , X cd
j

] = δi, j (X
adδbc − X cbδd,a).

Fourier-transformed operators are defined as

X ab
k,i =

∑
m

X ab
m,ie

ikRm ,

[
X ab

k,i , X cd
k′, j

] = δk′,−kδi, j
(
X ad

k,i δbc − X cb
k,iδd,a

)
.

b. Lattice degrees of freedom

To take into account the interactions with lattice degrees of
freedom (phonons), we consider the elastic Hamiltonian:

Hel =
∑
m,i

p2
m,i

2Mi
+ 1

2

∑
m,i,n, j

um,i�m,i,n, jun, j,

where �m,i,n, j denote the force constants, Mi the masses, and
u and p the positions and momentum, respectively. In Fourier
space, the dynamical matrix writes as

(Dk )i, j =
∑
�m,n

�m,i,n, j (�m,n)/
√

MiMje
ik�m,n .

�m,n joins the unit cells labeled m and n. We shall denote
�2

k,s the eigenvalues and ek,s the eigenvectors of the dynamical
matrix Dk . The index s runs over the 3L phonon modes of the
unit cell containing L atoms. The normal coordinate ũ and its
conjugated momentum p̃ are defined as

uk,i =
∑

s

ek,i,s

√
1

Mi
ũk,s,

pk,i =
∑

s

ek,i,s
√

Mi p̃k,s.

Since the {ek,s} form an orthogonal basis, one obtains

Hel =
∑
k,s

p̃k,s p̃−k,s

2
+ 1

2

∑
k,s

ũk,s�
2
k,sũ−k,s.

Using standard annihilation and creation operators,

ũk,s =
√

1

2�k,s
(a+

−k,s + ak,s),

p̃k,s = i

√
�k,s

2
(a+

k,s − a−k,s),

013030-10



SPIN AND LATTICE DYNAMICS IN THE TWO-SINGLET … PHYSICAL REVIEW RESEARCH 3, 013030 (2021)

with

[ũk,s, p̃k,s] = i,

the elastic Hamiltonian eventually becomes

Hel = 1

2

∑
k,s

(a+
k,s + a−k,s)

(
�k,s

�k,s

)(
ak,s

a+
−k,s

)
.

c. Coupling

The interaction between these degrees of freedom is mod-
eled by a local coupling akin to a generalized Jahn-Teller
effect:

Hcpl =
∑
m,i,t

vi,t=(a,b)um,i
(
X ab

m,i + X ba
m,i

)
.

It involves the displacement of the atom at site i combined
with an electronic transition from state |a〉 to state |b〉 at the
same site; v is a tensor (independent of m), whose microscopic
origin remains to be described, and which carries the strength
of this process. t labels the transition from state |b〉 to |a〉, in
Fourier space:

Hcpl =
∑

m,i,t,q,k

vi,t e
i(q+k)Rm uq,i

(
X ab

k,i + X ba
k,i

)

=
∑
k,i,t

vi,t u−k,i
(
X ab

k,i + X ba
k,i

)

=
∑
k,i,t

ṽk,i,s,t (a−k,s + a+
k,s)

(
X ab

k,i + X ba
k,i

)
.

ṽ is thus an effective tensor giving the strength of the coupling
at site i with the mode s and transition t :

ṽk,i,s,t = vi,t ek,i,s

√
1

2Mi�k,s
.

2. Mean-field approximation

Our approach is based on a mean-field approximation,
performed on electronic and lattice degrees of freedom:

H ≈ HCEF +
∑
m,i

(∑
n, j

〈Jn, j〉Jm,i,n, j + g jμBh

)
Jm,i

+
(∑

n, j

〈On, j〉Km,i,n, j

)
Om,i

+
∑
m,i,t

vi,t=(a,b)〈um,i〉
(
X ab

m,i + X ba
m,i

)

+
∑
m,i,t

vi,t=(a,b)um,i
〈
X ab

m,i + X ba
m,i

〉
.

The average value 〈um,i〉 can be determined in a self-consistent
way by minimizing the classical elastic energy E (taking into
account the contribution from force constants only and not the

inertia):

E =
∑
m,i,t

vi,t=(a,b)um,i
〈
X ab

m,i + X ba
m,i

〉

+1

2

∑
m,i,n, j

um,i�m,i,n, jun, j .

This mean-field step renormalizes the eigenvalues Ea and
eigenvectors |a〉, hence the projection operators. In terms of
these new operators, the mean-field Hamiltonian writes

H =
∑
k,i,a

Ei,aX aa
k,i + V + Hcpl + Hel,

V = 1

2

∑
m,i,n, j,a,b,c,d

Vm,i,n, j,a,b,c,d X ab
m,iX

cd
n, j,

with

Vm,i,n, j,a,b,c,d = 〈i, a|Jm,i − 〈Jm,i〉|i, b〉Jm,i,n, j〈 j, c|Jn, j

−〈Jn, j〉| j, d〉 + 〈i, a|Om,i − 〈Om,i〉|i, b〉Km,i,n, j

×〈 j, c|On, j − 〈On, j〉| j, d〉.

3. Green’s function formalism

To study this problem, we shall use the response function
formalism. From a general point of view, the RAB response
function is defined by

RAB = 〈〈A, B〉〉 = iθ (t )〈[A(t ), B]〉.
Deriving with respect to time, one obtains

dRAB

dt
= iδ(t )〈[A, B]〉 + iθ (t )

〈[
dA(t )

dt
, B

]〉
= iδ(t )〈[A, B]〉 + iθ (t )〈[−i[A,H], B]〉
= iδ(t )〈[A, B]〉 − iR[A,H]B.

Using the Fourier-transformed function,

RAB(ω) = lim
η→0+

∫
dteiωt−ηtχAB(t ),

the equation of motion becomes

(ω + iη)RAB = 〈[A, B]〉 − R[A,H],B.

Importantly, the magnetic susceptibility (and its imaginary
part measured by neutron scattering) can be written in terms
of these response functions as

χi, j =
∑
t,t ′

(〈i, a|Ji − 〈Ji〉|i, b〉〈J, a′|Jj − 〈Jj〉|J, b′〉)Ri,s| j,s′

with

Ri,t=(a,b)|J,t ′=(a′,b′ ) = 〈〈
X ab

k,i , X a′b′
−k, j

〉〉
.

With the matrix elements

Wi,t = 〈i, a|Ji − 〈Ji〉|i, b〉,
one obtains

χi, j =
∑
t,t ′

Wi,t WJ,t ′Ri,t | j,t ′ ,
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and in Fourier space,

χ (Q, ω) =
∑

i, j,t,t ′
eiQ.(�ri−�r j )Wi,t WJ,t ′Ri,t | j,t ′ .

Q is a reciprocal lattice vector (with respect to the mean-field
unit cell). The �ri denote the equilibrium atomic positions in
the same frame.

4. Formal solution of the equations of motion

a. No interactions: The bare susceptibility

Using the above formalism for A = X ab
ki and B = X a′b′

−kJ, we
get [

X ab
ki , EJ,μX μμ

qJ

] = Ei,μ
(
X aμ

k,i δμ,b − X μb
k,i δμ,a

)
= (Ei,b − Ei,a)X ab

ki .

Meanwhile,〈[
X ab

k,i , X a′b′
−k, j

]〉 = δi, j
〈(

X ab′
k,i δb,a′ − X a′b

k,i δb′,a
)〉

= δi, j
〈(

X ab′
k,i δa,b′δb,a′ − X a′b

k,i δb′,aδb,a′
)〉

= δi, jδa,b′δb,a′ (pi,a − pi,b)

with

pi,a = exp (−Ei,a/T )/
∑

b

exp (−Ei,b/T ).

With the convention

γi,t = pi,a − pi,b,

�i,t = Ei,a − Ei,b,

t = b → a,

t̄ = a → b,

we have

Rk,i,t |−k, j,t ′ = γi,t

ω + iη − �i,t
δi, jδt ′,t̄ .

Defining the diagonal operators γ , �, and L with Li, j,t,t ′ =
δi, jδt ′,t̄ , we get

R = γ

ω + iη − �
L.

b. The effect of magnetic interactions

To take into account the effect of magnetic interactions,
one can now calculate [X νμ

k,i ,V]:

[
A, X ab

q,�X cd
−q,�′

] = [
X νμ

k,i , X ab
q,�X cd

−q,�′
]

= [
δi,�δq,−k

(
X νb

k,i δμ,a − X aμ

k,i δb,ν
) + X ab

q,�X νμ

k,i

]
X cd

−q,�′ − X ab
q,�X cd

−q,�′X νμ

k,i

= [
δi,�δq,−k

(
X νb

k,i δμ,a − X aμ

k,i δb,ν
)
X cd

−q,�′ + X ab
q,�X νμ

k,i X cd
−q,�′

] − X ab
q,�X cd

−q,�′X νμ

k,i

= δi,�δq,−k
(
X νb

k,i δμ,a − X aμ

k,i δb,ν
)
X cd

−q,�′

+X ab
q,�

[
δi,�′δq,k

(
X νd

k,i δμ,c − X cμ
k,i δd,ν

) + X cd
−q,�′X νμ

k,i

] − X ab
q,�X cd

−q,�′X νμ

k,i

= δi,�δq,−k
(
X νb

k,i X
cd
−q,�′δμ,a − X aμ

k,i X cd
−q,�′δb,ν

)
+δi,�′δq,k

(
X ab

q,�X νd
k,i δμ,c − X ab

q,�X cμ
k,i δd,ν

)
,

which is further approximated by [
A, X ab

q,�X cd
−q,�′

] = δi,�δq,−k
(〈

X νν
k,i

〉 − 〈
X μμ

k,i

〉)
δν,bδμ,aX cd

−q,�′

+δi,�′δq,k
(〈

X νν
k,i

〉 − 〈
X μμ

k,i

〉)
δν,dδμ,cX ab

q,�,

to write

[A,V] =
(〈

X νν
k,i

〉 − 〈
X μμ

k,i

〉)
2

(∑
�′,c,d

Vi,�′,μ,ν,c,d X cd
k,�′ +

∑
�,a,b

V�,i,a,b,μ,νX ab
k,�′

)

= (〈
X νν

k,i

〉 − 〈
X μμ

k,i

〉)∑
�′,t ′

Vi,�′,t̄,t ′X cd
k,�′ .

In a more compact form,

{(ω − � + iη)I + γ LV}R = γ L,

where the operators L and γ are defined using the generalized
t index. Indeed, we notice that

(LV )i, j,t,t ′ =
∑
�,t ′′

Li,�,t,t ′′V�, j,t ′′,t ′ =
∑

t ′′
δt ′′,t̄Vi, j,t ′′,t ′ = Vi, j,t̄ ,t ′ .

c. Lattice degrees of freedom

The same reasoning applies to lattice degrees of freedom,
using either A = aki or a+

−ki, B = a+
k, j , and the standard boson

commutation rules. Since

Hel = 1

2

∑
k,s

(a+
k,s + a−k,s)

(
�k,s

�k,s

)(
ak,s

a+
−k,s

)
,
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we get

[ak,s,Hel] = �k,sak,s,

[a+
−k,s,Hel] = −�k,sa

+
−k,s.

As a result, the full matrix of the response function writes⎛
⎝γ L

I
−I

⎞
⎠ =

⎛
⎝(ω + iη)I +

⎛
⎝−� + γ LV

�k,s

−�k,s

⎞
⎠

⎞
⎠R

with

R =
⎛
⎝

〈〈
X ab

k,i X
cd
−k, j

〉〉 〈〈
X ab

k,i a
+
k,s′

〉〉 〈〈
X ab

k,i a−k,s′
〉〉〈〈

ak,sX cd
−k, j

〉〉 〈〈ak,sa
+
k,s′ 〉〉 〈〈ak,sa−k,s′ 〉〉〈〈

a+
−k,sX

cd
−k, j

〉〉 〈〈a+
−k,sa

+
k,s′ 〉〉 〈〈a+

−k,sa−k,s′ 〉〉

⎞
⎠.

These equations describe a resonant process where the phonon
and the exciton hybridize to form new modes. The interaction
is especially strong when the bare energies of the excitons and
of the phonons are close to each other. At low temperature,

coupling arises between the phonons and the first CEF tran-
sitions from the ground state. With increasing temperature,
however, more and more transitions are thermally activated,
hence increasing the possible coupling.
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