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Critical scaling of the ac conductivity and momentum dissipation
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I. INTRODUCTION AND SUMMARY

Critical behavior, scaling, and universality are landmarks
that stand out from the messy reality of materials. It is well
known that criticality and scaling can appear in both weakly
coupled and strongly coupled theories. In the first case the
simplest scale invariant theories are free massless theories
and are obviously very easy to handle. Critical points at
weak nonzero coupling are more rare to come by, as they
need a special context for the β-function to vanish reliably in
perturbation theory. Well-known examples are Wilson-Fisher
fixed points in d − ε dimensions with ε � 1 [1], and more
nontrivial examples are found in the Banks-Zaks variety [2].
For strongly coupled theories, however, our tools have been
so far anecdotal and usually consist of pushing the Wilson-
Fisher idea to ε ∼ 1. A concrete example where quantum
criticality, and scaling, may be realized, while the underlying
theories are mostly strongly coupled, is in strange metals
that include high-Tc superconductors [3–7]. The scaling of
the direct current (DC) conductivity in the cuprates has been
since the start one of the basic hallmarks, exhibiting linear
resistivity at optimal doping over a large range of temperatures
[8–14]. More recent and refined data on the DC conductivity
in clean materials and a novel parametrization, indicated an
unusual low-temperature asymptotic behavior and suggested
the existence of a line of quantum critical points [11]. Sim-
ilar evidence for a line of critical points was found in other
cases [15,16], although this interpretation is contentious in the
strange metal community.

The magnetoresistance of related materials has indicated
also exotic behavior and a different scaling of the Hall angle
in the overdoped regime [17–27]. New measurements of the
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magnetoresistance in strong magnetic fields also indicated
scaling both in pnictides [28,29] and cuprates [30].

Studies of the alternating current (AC) conductivity [31]
also produced scaling in ω in an intermediate range of fre-
quencies. Although, it is typical for critical theories to induce
a scaling in the AC conductivity in the far infrared (IR), it
is unusual that such scaling should survive and be visible
at higher frequencies. Further experiments showed similar
scaling of the AC conductivity in other strange metals [32,33].

Despite the wealth of experimental indications of scaling
phenomena in strongly coupled materials, progress in theory
has been slower. The main reason is that few scale-invariant
quantum critical points were known in two spatial dimensions
and only one that is non-Gaussian. This has changed with the
anti–de-Sitter/conformal field theory (AdS/CFT) correspon-
dence [34], also known as holography. This emerged in string
theory and provided a valuable tool in analyzing quantum field
theories at strong coupling and was especially successful in
describing scale invariant, strongly coupled theories at finite
density. This has led to a classification of quantum critical
behavior at strong coupling, as a function of the symmetries
[35–39]. Moreover, holography provides techniques for cal-
culating the quantum effective potential at finite density and
temperature [40] that provides a powerful tool in studying
phase transitions. A wide spectrum of condensed matter prob-
lems was addressed using these techniques, and this progress
is summarized in reviews and lectures [41–44] as well as in
books [45–48]. A recent overview of the progress in the field
can be found in [49].

In the context of holography, studies indicated that the
behavior of fermions and their correlations at strong coupling
may be radically different from that at weak coupling [50,51].
This gave, in particular, a class of realizations of the marginal
Fermi liquid [50], realizing correlators that were associated
with the linear behavior of the DC conductivity [52]. Further
holographic studies analyzed the constraints on the realiza-
tion of a linear in T DC conductivity and provided explicit
examples [53–55]. In particular, in [54], the model exhibits
nonrelativistic z = 2 Schrödinger symmetry and reproduces
the T + T 2 behavior of the DC conductivity [11] and a Hall
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angle and magnetoresistance that are in agreement with data
at very low temperatures [21]. Moreover, it realized the idea
of a line of quantum critical points, suggested in [11] and
predicted scaling relations in the presence of the magnetic
field.

The scaling properties in the presence of magnetic fields
are nicely described by holographic critical theories. In gen-
eral, charge dynamics is described by the Dirac-Born-Infeld
(DBI) action, and its scaling analysis in the presence of
magnetic fields has yielded a rich collection of scaling behav-
iors [54,56]. In one particular case, such a scaling behavior
matches the one seen in the pnictides and cuprates [28–30].

The scaling of the AC conductivity observed in [31] has
been tougher to crack. A conventional approach suggested
that it may arise from the interaction of the fermions with a
Bose sector other than the phonons [57]. In holography it has
been studied since the authors of [35] observed that in scaling
critical geometries there is also a scaling AC conductivity
and computed the scaling exponent as a function of the other
critical exponents for the case where the EM gauge boson is
the same as the one that seeds the scaling IR geometry. This
issue was further studied in [38] and more recently in [58]. It
was then shown that one could also have intermediate regimes
which also have scaling properties, and they may affect the
intermediate scaling of the AC conductivity [59].

A definitive study was done in [60]. There, the model of
[54] was analyzed by computing its AC conductivity in its
various regimes. A related study of scaling was done in [61].
Furthermore, in [62,63], theories were studied where the AC
conductivity was controlled by irrelevant deformations and
where the scaling arguments are more complex to implement.

A. On the scaling of the holographic AC conductivity

In this section, we will briefly summarize the results found
in [60] to set the framework for our current work.

The first theory that was analyzed in [60] was the holo-
graphic DBI theory of a strange metal, proposed in [54].
This theory has several parameters, but the physics depends
only on two scaling variables t , that is proportional to the
temperature, and J , that is proportional to the charge density.
They both take all positive real values. The doping parameter
is a combination of both scaling variables.

The T + T 2 behavior of the resistivity in [11] and the
T + T 2 behavior of the inverse Hall angle, observed in [21]
at very low temperatures T < 30 K, where a single scattering
rate is present, were successfully described in this theory. The
model is also in accord with the distinct origin of the criticality
at very low temperatures advertised in [12], while the higher
temperature, T > 100 K, scaling has different behaviors be-
tween the linear temperature resistivity and the quadratic
temperature inverse Hall angle, signaling two scattering rates
[22]. This regime in the model is different, however, from
what experiments show about the cuprates.

In addition to the resistivity and inverse Hall angle, very
good agreement was also found with experimental results
of the Hall coefficient, magnetoresistance, and Köhler rule
on various high-Tc cuprates [11,17–27]. The model provided
also a change of paradigm from the notion of a quantum
critical point, as it is quantum critical at T → 0 on the entire

FIG. 1. The parameter landscape of the DBI Theory and the
regimes for the DC conductivity. Figure reused from [60] under
license https://creativecommons.org/licenses/by/4.0/.

overdoped region as suggested by the data found in [11]. The
DC conductivity of this theory, as is usual in quantum critical
theories, has two contributions [54]. One, which we call the
Drude contribution, is related to momentum dissipation in the
standard fashion, although here there are no weakly coupled
quasiparticles. The other is independent of the momentum
relaxing scattering time and survives at zero charge density
and is the quantum critical contribution.1

There are two main regimes on the (t, J ) plane. They are
best described by a parameter q that is a function of t, J
and distinguishes between the two regimes. When q � 1 the
DC conductivity is dominated by the Drude (drag) contri-
bution. When q � 1 the DC conductivity is dominated by
the quantum critical (QC) contribution. As the drag contri-
bution to the conductivity is proportional to charge density,
it follows that at zero charge density (J = 0) we are al-
ways in the QC/PP regime. These two regimes are shown in
Fig. 1.

(1) In the Drude regime (q � 1), when t � 1 the resistiv-
ity is linear in t (and consequently in the temperature). This is
the linear regime. When t � 1, the resistivity is quadratic in
t . This is the quadratic regime.

(2) In the QC regime (q � 1), when t � 1, the resistivity
behaves as ρ ∼ t− 3

2 . This is regime I. When t � 1 the resis-
tivity behaves as ρ ∼ t− 1

2 . This is regime II.
In the t → 0 limit the theory has an effective Lifshitz

exponent z = 2 while as t → ∞ it crosses over to an effective
relativistic Lifshitz exponent z = 1 [54]. What we find in our
analysis is as follows.

1This is also known as the Lindard continuum contribution.
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(1) A generalized relaxation time τ can be defined by the
IR expansion of the AC conductivity

σ (ω) ≈ σDC[1 + i τ ω + O(ω2)]. (1)

In the presence of a Drude peak, this is the conventional
definition of an associated relaxation time. When there is no
Drude peak present, τ is still well defined via (1), although in
that case the interpretation as a relaxation time is lost.

In [60] an analytical formula for τ was given. It simplifies
for large and small values of the scaling temperature variable
t . In the regime I

τ ∼ √
t, (2)

while in the regime II (with t � 1) τ is set by the inverse of
the temperature

τ 	 1

t
. (3)

(2) In the Drude regime (q � 1) where the dominant
mechanism for the conductivity is momentum dissipation,
there is a clear Drude peak in the AC conductivity.

In the QC regime there is no Drude peak and we have an
incoherent AC conductivity.

(3) In the QC regime there is a scaling tail for the AC
conductivity that behaves as

|σ | ∼
(

ω

teff

)− 1
3

, Arg(σ ) 	 π

6
. (4)

At finite charge density, this tail survives not only in the QC
regime but also in parts of the Drude regime.

(4) This scaling tail of the AC conductivity, generalizes to
more general scaling holographic geometries, as previously
described in [35,38]. In this case, the theory was taken to have
T = 0 and no momentum dissipation.

In particular, for a metric with Lifshitz exponent z, hy-
perscaling violation exponent θ , and conduction exponent ζ

[37,38] with d spatial boundary dimensions, we find that, in
general,

|σ | ∼ ωm, Arg(σ ) 	 −π m

2
, (5)

with

m =
∣∣∣∣ z + ζ − 2

z

∣∣∣∣ − 1 . (6)

There are several constraints in the parameters of this formula
that are detailed in [60]. This formula is valid when the as-
sociated charge density does not support the IR geometry. In
this case the scaling exponent can become negative but is also
m � −1.

(5) In the special case where the associated gauge field
seeds the IR scaling geometry, the exponent m takes the value

m =
∣∣∣∣3z − 2 + d − θ

z

∣∣∣∣ − 1 (7)

and is always positive.
(6) An important question is whether the scaling of the AC

conductivity described above, for the general scaling geome-
tries, is controlled by the dynamics of the charge density, or
it is decided by the neutral system. What was found in [60] is

that it is the neutral system that decides the exponent m. The
charged contribution is almost always subdominant.2

The results of [60] have positively indicated that holo-
graphic QC theories at finite density and T = 0, in the absence
of momentum dissipation, have a scaling IR AC conductivity,
roughly of the type seen in experiments.

There is, however, an important difference, with the AC
conductivity seen in experiments as one needs to turn on
nonzero temperature and momentum dissipation and see to
what extent this scaling survives these effects. It must also ap-
pear in the midfrequency range roughly T � ω � μ, where
μ is the chemical potential.

B. Results and outlook

In this paper we take the first step towards understanding
how the scaling of the AC conductivity survives the effects of
temperature and momentum dissipation. The example we an-
alyze is the simplest possible one: the ultraviolet (UV) theory
is a conformal field theory3 (CFT). The holographic theory
this is associated with is the four-dimensional anti00de Sitter
geometry (AdS4). The IR theory is also a CFT but dominated
by charge density and has scale invariance in time only. It is
associated with the two-dimensional anti-de Sitter geometry
(AdS2).

There is a characteristic scale that controls the passage
from AdS4 to AdS2 (at T = 0) and this is the charge density
(or its thermodynamic dual, the chemical potential μ). We also
add momentum dissipation. This introduces a new character-
istic (mass) scale k that competes with the charge density. We
have, in total, three scales: μ, T , and k. Therefore this theory
depends on two dimensionless ratios, τ and κ that control the
importance of temperature and momentum dissipation

τ = 2π
T

μ
, κ ≡ k

μ
. (8)

Moreover, we define the following quantity, related to mo-
mentum dissipation:

λ ≡
√

k

2μ
=

√
κ

2
. (9)

The theory at τ = κ = 0 has two scaling regimes. In the
UV regime the scaling exponent is m = 0 [z = 1, ζ = 0 in
(6)]. It is a well-known result that in a Lorentz-invariant and
scal-invariant theory at zero density, in d = 2 the conductivity
is a (dimensionless) constant. We normalize, without loss of
generality this constant to 1. In the IR, m = 2 [z → ∞, d = 2,
θ = 0 in (7)].

We generically find four distinct regimes.
(1) The Drude regime for

ω

μ
� λ .

2See also [62,63] for a careful analysis of cases where the AC
conductivity depends on irrelevant data in the IR.

3The UV theory is assumed to be Lorentz invariant. The charge
density breaks the Lorentz-invariance. The IR theory has an emergent
scale invariance in time only.
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TABLE I. Summary of the regimes in the optical conductivity at
finite density, temperature and momentum dissipation.

Regime frequency Re[σ ]

Drude ω

μ
� λ κ2

κ4+12ω2/μ2

Temperature-dominated λ � ω

μ
� τ 1

3 τ 2

Scaling max {τ, λ} � ω

μ
� 1 1

3 ( ω

μ
)2

UV ω

μ
� 1 1

In this regime momentum dissipation produces a Drude peak.4

(2) The temperature-dominated regime

λ � ω

μ
� τ .

Here thermal effects dominate the AC conductivity.
(3) The scaling (intermediate) regime

max {τ, λ} � ω

μ
� 1 .

In this regime, if it exists, the AC conductivity is showing
its ω2 IR scaling, unmasked. It exists only if max {τ, λ} is
sufficiently smaller than 1.

(4) The UV regime

ω

μ
� 1 .

In this regime the AC conductivity is that of the UV theory,
i.e., a constant. It has been normalized to 1.

The four regimes along with the real part of the AC con-
ductivity are summarized in the Table I.

We conclude that our expectations are verified in the simple
example that has been analyzed here. The next step is a choice
of theory with nontrivial scaling exponents that provide a
negative value for the AC exponent m, and study similarly
the effects of temperature and momentum dissipation on the
visibility of scaling of the AC conductivity. Moreover, this
mechanism must be implemented in the more complex context
of a theory which contains the competition of phases, giving
rise to the strange metal phase diagram, along the lines of [64].

The paper is organised as follows, In Sec. II we intro-
duce the holographic model in consideration and discuss its
black-hole solution and equilibrium properties. In Sec. III
we compute the frequency dependence of the conductivity
in three different regimes, the first case corresponds with
the momentum conserving zero temperature case. Then, we
switch temperature on and study the conditions for scaling
conductivities in the IR regime. As a last step we include
relaxation of momentum and study all the possibilities in the
IR conductivity. We close our analysis with Sec. IV, where
our conclusions are presented and where we discuss possible
generalizations.

4As before, this is despite the fact that there are no quasiparticles in
the holographic theory.

II. REISSNER-NÖRDSTROM BLACK-HOLE AND AdS2

IR-SCALING ASYMPTOTICS

We consider a 2 + 1 (scale invariant) CFT with a (global)
conserved U (1) charge in a flat Minkowski space-time. The
conserved charge allows us to consider the theory at finite
charge density, a context relevant for addressing many-body
problems. Our scale-invariant QFT is not a generic relativistic
theory: it is a large-N theory at nearly infinite coupling con-
stant. Here N is the number of colors and unlike other large-N
examples used in condensed matter physics, it includes an
SU (N ) gauge interaction that makes the theory much more
complex.

Such large-N gauge theories at strong coupling are known
as “holographic,” as they are dual to gravitational theories in
higher dimensions (typically one-higher dimension) on non-
trivial geometric spaces that are asymptotic to anti–de Sitter
space. In our example the dual gravitational theory will have
3 + 1 dimensions. The (3 + 1)-dimensional spaces that are
relevant have always a boundary that has the same geometry
as the space on which the QFT lives. In our case the bound-
ary will be flat (2 + 1)-dimensional Minkowski space. The
AdS/CFT correspondence and the associated applications to
condensed matter problems are treated in several extensive
references [41–48].

As a starting point, we introduce the gravitational action
for the system in consideration, which consists of a (bulk)5

gravitational Einstein-Maxwell theory in 3 + 1 space-time di-
mensions, coupled to a set of axion fields6 responsible for the
nonconservation of momentum in the boundary field theory
[65–69].

Einstein-Maxwell theory in 3 + 1 dimensions is the holo-
graphic (bulk) description of the universal sector of a
holographic (2 + 1)-dimensional CFT. It contains a metric
gμν , dual to the energy-momentum tensor of the CFT, and a
gauge field Aμ, dual to the conserved U (1) current. We also
introduced a source of momentum dissipation in the theory
that is generated by two scalar fields φ1,2 without a potential.
Such fields, which we call axions, implement a source of
momentum dissipation in the continuum limit.

The action for the bulk theory is

S = 1

16πGN

∫
d4x

√−g

(
R + 6

L2
− L2

4
FμνFμν

−1

2

2∑
n=1

∂μφn∂
μφn

)
, (10)

where R is the Ricci scalar of the bulk metric and

Fμν = ∂μAν − ∂νAμ (11)

is the field strength of the bulk gauge field.
The equations of motions are shown in Appendix A. So-

lutions to the equations of motion which are asymptotically

5In this work, by bulk we mean the (3 + 1)-dimensional space
where the gravitational theory lives, whereas the boundary is (2 + 1)-
dimensional and is the space on which the dual QFT lives.

6In this work, we refer to axion fields as scalar bulk fields without
a potential.
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AdS, and have specific boundary conditions at the AdS bound-
ary, are interpreted as saddle points of the CFT.

The theory in (10) admits a charged black-hole solution of
the form

ds2 = L2

r2

(
− f (r)dt2 + dx2 + dy2 + 1

f (r)
dr2

)
, (12)

At = ψ (r), φ1 = k x, φ2 = k y , (13)

where

f (r) = 1 + 1

4
q2r4 − 1

2
k2r2 − mr3 , (14)

ψ (r) = μ − q r , (15)

and q, m are proportional to the charge and energy density of
the system, respectively.7 Here, x, y are Cartesian coordinates
in space, t is the time, and r is the holographic coordinate. The
boundary of the bulk space is at r = 0.

The two scalars have linear solutions that break transla-
tional invariance in the spatial directions and therefore provide
a source of momentum dissipation. We chose the parameters
of that solution so that rotational invariance remains intact
(mostly for simplicity). We can generalize this to a solution
where momentum dissipation is different along different spa-
tial directions. The regularity condition at the horizon implies
that

q = μ

r0
, (16)

where r0 is the horizon radius.
At this point, it is important to review the parameters that

enter in the solution.8 First of all, the gravitational action
has two-dimensional parameters. One is the bulk Newton’s
constant GN and the other is the AdS curvature length L. The
dimensionless number is

L2

GN
∼ N2 � 1, (17)

where N2 is the number of adjoint degrees of freedom of the
quantum field theory. Only L enters the solution. The rest of
the parameters involve the following.

(1) The mass of the black-hole m, which gives the energy
of the canonical ensemble.

(2) The charge q, with dimension of mass2, that deter-
mines the charge density of the dual CFT.

(3) The parameter μ with dimension of mass that deter-
mines the chemical potentials of the dual CFT. It is related to
the charge density via the relation in (16).

(4) The parameter k, with dimension of mass (or inverse
length), that controls the breaking of translation invariance
and therefore the rate of momentum dissipation in the system.

(5) The temperature T of the ensemble is fixed and related
to the other parameters in a way we shall describe below.

The horizon radius r0 is related also to other parameters of
the solution. To fix the value of r0 in terms of the physical

7This black-hole solution is the saddle point that described the
ground state of the theory at finite temperature and U (1) charge.

8We use units where c = h̄ = 1.

scaling parameters T, μ, k we need to solve for the condition
f (r0) = 0, where r0 is given by the smallest positive solution9

of the polynomial in x,

1 + 1

4
q2x4 − 1

2
k2x2 − mx3 = 0 . (18)

For q �= 0, the polynomial (18) always has exactly two pos-
itive real roots r1, r2. As long as the following inequality is
satisfied:

108m2 > k2(k4 − 36q2) + (k4 + 12q2)3/2, (19)

the other two roots are complex. If (19) is not satisfied, the
other two roots are also real, but negative, hence they do not
affect us since r is nonnegative in our coordinate system. We
can now factorize the blackening factor as follows:

f (r) =
(

1− r

r1

)(
1− r

r2

)(
1+ r1+r2

r1r2
r+ r2

1 + r1r2 + r2
2

r2
1r2

2

r2

)
,

(20)

where the two positive real roots r1, r2 satisfy

1

2
k2 + 1

4
q2r1r2 = 1

r2
2

+ 1

r1r2
+ 1

r2
2

, (21)

m = r3
1 + r2

1r2 + r1r2
2 + r3

2

r3
1r3

2

. (22)

Finally we identify r0 = min(r1, r2) with the black-hole hori-
zon, and r� = max(r1, r2) as the interior (Cauchy) horizon10

characteristic of charged black holes. The Hawking tempera-
ture for such a black hole reads

T = 1

4πr0

(
3 − 1

2
k2r2

0 − 1

4
q2r4

0

)
, (23)

which can be shown to be positive definite, after using (21) to
construct the following relation:

1

2
k2r2

0 + q2r4
0

4
� 1

2
k2r2

0 + q2r3
0r�

4
= r2

0

r2
�

+ r0

r�

+ 1 � 3.

(24)

The inequality is saturated at extremality (r0 = r�) where the
temperature vanishes. In addition, the black-hole mass can be
written as

m = 4 − 2r2
0k2 + r2

0μ
2

4r3
0

. (25)

Considering we are interested in exploring the low tempera-
ture properties of the geometry and the optical conductivity,
it is convenient to introduce the scaling (dimensionless) vari-
ables

τ = 2π
T

μ
, κ = k

μ
. (26)

In terms of the dimensionless temperature τ and momentum
relaxing parameter κ , the black-hole horizon radius r0 can be

9Notice that the boundary is sitting at r = 0, and the outer horizon
corresponds with the smallest positive solution of f (r0 ).

10Notice that in our coordinates the boundary sits at r = 0.
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written as

μr0 ≡ F (τ, κ ) = 6√
6κ2 + 4τ 2 + 3 + 2τ

. (27)

Therefore, the corresponding thermodynamic quantities, en-
ergy density ε, entropy density s, and charge density q, take
the following form:

μ−3ε = 2F (τ, κ )−3 + 1 − 2κ2

2
F (τ, κ )−1,

μ−2s = 4πF (τ, κ )−2,

μ−2q = F (τ, κ )−1. (28)

IR (near-extremal) AdS2 geometry

As it is well known [50] that the zero temperature near-
horizon geometry of this black hole is AdS2 × R2. To make
this manifest, we rewrite the blackening factor f as follows

f (R) = 2τF 2 R

L2μ
+ F 3[(κ2 + 1)F − 4τ ]

2

R2

μ2L4

+ F 4[2τ − (κ2 + 2)F ]

3

R3

μ3L6
+ F 6

4

R4

μ4L8
, (29)

with

R = L2

r2
0

(r0 − r), (30)

and F the function defined in (27). In terms of the new radial
coordinate R, the metric reads

ds2 = L6

r2
0 (L2 − r0R)2

(
− f (R) dt2 + r4

0

L4

dR2

f (R)

)

+ L6

r2
0 (L2 − r0R)2

d�x2 . (31)

At zero temperature (τ = 0) and in the region where R �
μL2, the space-time is approximately AdS2 × R2:

ds2 = − R2

L2
IR

dt2 + L2
IR

R2
dR2 + L2

r2
0

d�x2 , (32)

with the AdS2 radius given by

L2
IR = 1 + 2κ2

1 + κ2

L2

6
. (33)

If τ is finite but small, in the region near the horizon

R

μL2
� 1, (34)

we obtain an AdS2 × R2 black hole

ds2 = −g(R)dt2 + dR2

g(R)
+ L2

r2
0

d�x2, (35)

where

g(R) = R2

L2
IR

(
1− (6 + 8κ2)τ

(1 + κ2)
√

3 + 6κ2
−2τ

√
3 + 6κ2

3R(1 + κ2)

)
+O(τ 2).

(36)

In the intermediate region

τ
L2

IR

L2
� R

μL2
� 1, (37)

we have

g(R) ≈ R2

L2
IR

(
1 − τ

2(4κ2 + 3)

(1 + κ2)
√

3 + 6κ2

)
= R2

L′2
IR

, (38)

where we defined

L′2
IR = L2

IR

(
1 + τ

2(4κ2 + 3)

(1 + κ2)
√

3 + 6κ2
+ O(τ 2)

)
. (39)

Therefore in the region (37) we still have an AdS2 × R2

geometry

ds2 = − R2

L′2
IR

dt2 + L′2
IR

R2
dR2 + L2

r2
0

d�x2, (40)

with a modification to the AdS2 radius stemming from the
blackening factor of the AdS2 black hole.

III. AC CONDUCTIVITY AND ITS CRITICAL IR SCALING

We now study the AC conductivity of our theory, and in
particular its scaling form in appropriate frequency ranges.

To understand the conditions under which scaling tails
appear in the system, we consider first the zero temperature
(τ = 0) and momentum conserving case (κ = 0).

To compute the AC conductivity, we introduce per-
turbations propagating on the extremal (τ = 0) Reissner-
Nördstrom black-hole solution, and use linear response,
following the prescription introduced in [70].

After studying the zero temperature case, we turn-on a
small temperature in the system. In the last step, in addition
to the temperature, we also include momentum relaxation.

A. IR scaling of the AC conductivity

We begin with vanishing temperature and absence of
momentum relaxation. The background is equivalent to the
extremal AdS-Reissner-Nördstrom black hole which has no
independent dimensionless parameters. The fluctuation equa-
tion relevant for the computation of the electrical conductivity
reads (see Appendix B for the derivation)

f a′′
x + f ′a′

x + 12

(
w2

f
− ρ2

)
ax = 0 , (41)

where the frequency is measured in units of chemical potential

w = ω

μ
(42)

and

f (ρ) = (1 − ρ)2(1 + 2ρ + 3ρ2), ρ = r/r0 . (43)

For the extremal black-hole, the horizon is located at (μr0)2 =
12. In particular, (41) has an irregular singular point at ρ = 1,
implying a near-horizon behavior given by

ax ∼ (1 − ρ)−4
√

3/9iwe
iw√

3(1−ρ) . (44)

After numerically solving the differential equation with the
near-horizon condition (44), the frequency dependence of the
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FIG. 2. Frequency dependence of the conductivity at τ = κ = 0. The real part (left) shows the scaling behavior Re[σ ] ∼ w2. On the
contrary, the imaginary part (right) shows a Im[σ ] ∼ w−1 divergence, indicating the presence of a δ(w) in the real part, as required by
momentum conservation. The black dashed line corresponds to the fitting Re[σ ] = w2/3 and Im[σ ] = 1/(2

√
3w).

conductivity can be computed. The results are shown in Fig. 2.
As expected, for w � 1 the AdS2 geometry dominates and an
IR scaling emerges.

To understand the intuition behind this, we must present
some facts in the holographic (gravitational) description of
strongly coupled theories. First, the bulk space where gravity
lives has an extra dimension that plays roughly the role of
the renormalization group scale of the dual quantum field
theory. Near the boundary, the region corresponds to the UV
regime. As we move towards the interior of the geometry, we
are moving towards the IR limit of the dual quantum field
theory. The ultimate interior is bounded by the horizon of
the bulk black hole. Therefore, the region near the horizon is
controlling the IR physics of the dual quantum field theory.
In our example, this region has the AdS2 geometry and is
therefore an AdS2 black hole.

By fitting the numerical data, the conductivity can be writ-
ten as

σ (w) = 1

3
w2 + 1

2
√

3

(
δ(w) + i

w

)
+ · · · , w → 0,

(45)

in agreement with the general scaling exponents derived in
[60]. We also included the δ-function in the real part, which
is there due to the 1/w pole in the imaginary part. To finish
the numerical analysis of the conductivity, we proceed to plot
the absolute value |σ | and the argument arg σ as shown in
Fig. 3. In the left plot, the 1/w pole of the imaginary part

dominates over the w2 scaling of the real part. In the right plot,
the argument takes the value arg σ = π/2 in the IR, consistent
with

arg σ ≈ arctan

√
3

2w3
≈ π

2
− 2w3

√
3

+ · · · . (46)

On the contrary in the UV region (w � 1) the behavior is
determined by the asymptotic AdS4 region

σ (w) = 1, Arg(σ ) = 0. (47)

B. Temperature versus critical IR scaling of the AC conductivity

Having understood the zero temperature conductivity, we
now introduce a nonvanishing τ , while keeping κ = 0. In this
case τ is the only dimensionless parameter. Therefore, the
conductivity depends parametrically only on the dimension-
less temperature τ .

The equation of motion for the fluctuating gauge field reads
(see Appendix B)

f a′′
x + f ′a′

x + F 2

(
w2

f
− z2

)
ax = 0 , (48)

with the blackening factor

f (ρ) = 1 − ρ3 + 1

4
F 2ρ3(ρ − 1). (49)

The IR conductivity can be studied analytically for w � 1.
For concreteness we show here the result and refer the reader

FIG. 3. Absolute value (left) and argument of the conductivity (right) at zero temperature and zero momentum breaking parameter (τ =
κ = 0). The dashed line shows a fitting with |σ | = 1

2
√

3w
and arg[σ ] = π

2 , respectively.
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FIG. 4. Finite temperature conductivity at zero momentum relaxation parameter (κ = 0). In the left plot we show the real part for several
values of the temperature τ . The δ(w) in the real part is not drawn. In the right plot the imaginary part is shown. The dots represent numerical
data, while the continuous lines are given by (53). The black lines correspond to Re[σ ] = 1

3 w2 and Im[σ ] = 1/(2
√

3w).

to Appendix B for the details of the computation. In the
regime w � 1, the conductivity reads

σ (w) ≈ σQ + D

(
δ(w) + i

w

)
, (50)

where

σQ =
(

12 − F 2

3(4 + F 2)

)2

, D = 4F

3(4 + F 2)
. (51)

In particular, in the regime of interest (τ � 1), the low-
frequency conductivity takes the simple form

σ (w) ≈ 1

3
τ 2 + i

2
√

3w
. (52)

Having understood the small frequency analysis, we proceed
to solve numerically (48), and show the results in Figs. 4
and 5. In the left plot, we observe how temperature intro-
duces the constant offset (σQ) to the real part. We shall refer
to the regime where this constant value dominates as the
temperature-dominated regime. If the condition τ � w � 1
is satisfied, we notice the emergence of the AdS2 scaling ∼w2.
For high-enough temperatures, the temperature-dominated
regime “covers” the scaling regime and, thus, the latter is not
visible. Given this behavior, we propose the following form
for the low-frequency conductivity:

σ (w) ≈ σQ + D

(
δ(w) + i

1

w

)
+ 1

3
w2, (53)

which is shown as continuous lines in Figs. 4 and 5.

In addition, we plot the absolute value and argument of the
conductivity for different temperatures in Fig. 5. In this case,
as it also happens at zero temperature, the 1/w imaginary part
of the conductivity always dominates in the IR part of the
absolute value of the conductivity. This is easy to see from
(53). For the w2 term to “win” over D/w we need D � w3.
However, for τ � 1, we have D ≈ 0.29 � w3. Finally, the
argument has a similar behavior to the zero-temperature case
at small frequencies. For τ � 1 it reads

arg(σ ) = π

2
− 2√

3
w(w2 + τ 2) + · · · . (54)

C. Momentum dissipation versus IR scaling
of the AC conductivity

The last case to be considered is the general case of finite
temperature and momentum relaxing parameter. The system
is controlled by the two dimensionless parameters τ, κ . For
the present case, the gauge field couples to the scalar and
metric sector (see Appendix B), therefore we need to solve
the system of equations

wF 2

ρ2 f
(wχ − iκhx

t ) + (ρ−2 f χ ′)′ = 0 , (55)

− iρ2F 2w

f
ax + iw

f
hx′

t − κχ ′ = 0 , (56)

−hx′
t + w2F 2ax

f
+ ( f a′

x )′ = 0 , (57)

FIG. 5. The absolute value and argument of the conductivity at κ = 0 and at various value of τ . The dots show the numerical data, while
the continuous lines are given by (53). The black line shows a fitting with the zero temperature result |σ | = 1

2
√

3w
and arg[σ ] = π

2 − 2√
3
w3.
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FIG. 6. The real and imaginary parts of the conductivity at τ = 2π × 10−3 and for various values of κ . The dots show the numerical data,
while the continuous lines are given by (62). Note that the peaks that appear in the real part as w → 0 are not visible in this plot for most
values of κ . As we further decrease the frequency, the lines cross and the peaks appear in reverse order.

where the blackening factor takes the form

f (ρ) = (1 − ρ)

(
1 + ρ + ρ2 − 1

2
κ2F 2ρ2 − 1

4
F 2ρ3

)
. (58)

In Appendix B we solve the fluctuation equation perturba-
tively for wF � 1 and κF � 1, where F was defined in (27).
The conductivity in this limit is given by

σ (w) ≈ D + O(wF, κ2F 2)

� − iw + O(w2F 2,wκ2F 3, κ4F 4)

+ σQ + O(wF, κ2F 2), (59)

where

σQ =
(

12 − F 2

3(4 + F 2)

)2

, D = 4F

3(4 + F 2)
, � = κ2D .

(60)
Actually, in the κ � 1 and τ � 1 limit, the leading behavior
of the coefficients is given by

D = 1

2
√

3
, � = κ2

2
√

3
, σQ = τ 2

3
. (61)

Since for κ � 1, τ � 1 we have F−1 	 0.3, the approxima-
tion is valid in the region of interest (w � 1).

The term of order κ2 in the numerator of (59) was calcu-
lated in [71] and is included in (62). This term is important to

obtain the exact DC conductivity in the w → 0 limit, however,
it is negligible in the parameter range we are interested in.

After the approximate analytic analysis, we solve numer-
ically for the conductivity, and show the results in Figs. 6
and 7. For the computation of the conductivity we fixed τ =
2π × 10−3, and analyze the transport coefficient for several
values of κ . To fit the numerical data, in addition to the
analytically computed conductivity (59) we add to the real
part the power law 1/3w2, and show the function as contin-
uous lines in Figs. 6 and 7. In particular, we observe that
for κ = 0.1 the fit is not very good. This is because we are
approaching the boundary of the validity region of the formula
(59) (κ � F−1 ∼ 0.3).

We observe that the formula

σ (w) ≈ D + �(1 − σQ)

� − iw
+ σQ + 1

3
w2 (62)

approximates well the numerical data as long as
κ � F−1 ∼ 0.3.

We study now the conditions for the scaling of the AC
conductivity to be visible. To do so, we write the real part
for τ � 1, κ � 1,w � 1 as follows:

Re[σ ] ≈ κ2

κ4 + 12w2︸ ︷︷ ︸
Drude

+ τ 2

3︸︷︷︸
temperature

+ w2

3︸︷︷︸
scaling

. (63)

FIG. 7. The absolute value and argument of the conductivity at τ = 2π × 10−3 and for various values of κ . The dots show the numerical
data, while the continuous lines are given by (62).
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FIG. 8. Real part of the conductivity as a function of the frequency at τ = 2π × 10−3. Left plot (κ = 10−7) shows the conductivity for the
case in which λ � τ � 1. The Drude peak turns into the “flat” temperature-dominated behavior, which gives its turn to the scaling behavior
∼w2, before reaching the UV at w > 1. The vertical lines correspond to κ

(2τ ) and τ from left to right. On the contrary the right plot (κ = 10−4)
corresponds to regime τ � λ � 1. The Drude peak shows a transitions directly to the ∼w2 scaling behavior. The dashes show the numerical
data, while the continuous line is given by (63). The vertical line corresponds to λ = √

κ

2 .

We observe a “Drude peak” as long as κ �= 0, which domi-
nates for small-enough frequency. As w increases, either the
scaling or temperature terms starts to dominate. Therefore we
divide the analysis in the following two cases.11

(1) Temperature dominated λ � τ � 1: In this case, as
we turn the frequency on, the temperature term in (63) is the
first one to start dominating over the Drude term at frequencies
of order w ∼ κ/(2τ ). Then, as we keep increasing w, the
scaling term becomes dominant. The temperature-dominated
behavior appears for frequencies κ/(2τ ) � w � τ , while the
scaling in the conductivity is visible for τ � w � 1. In par-
ticular, in the left plot of Fig. 8 we tuned the parameters
to sit within this regime (κ = 10−7 , τ = 2π × 10−3) and we
notice the three well-defined regions, Drude, temperature-
dominated, and scaling, respectively, in consistency with this
classification.

(2) Drude dominated τ � λ � 1: This case is character-
ized by the “Drude peak” covering the flat region, but not the
scaling regime. In fact, when w ∼ λ the scaling contribution
in the conductivity starts dominating as can be seen in the right
plot of Fig. 8.

The previous analysis suggests that as long as τ � 1 and
λ � 1, the critical scaling will be visible within the window

max {τ, λ} � w � 1. (64)

Finally, to extract the behavior of the absolute value and
argument of the conductivity we proceed to write the full
conductivity as follows:

σ = D�

�2 + w2
+ σQ + 1

3
w2 + i

Dw

�2 + w2
+ · · · . (65)

However, in the region given by (64) where the scaling is
visible, the conductivity takes the approximate form

σ ≈ 1

3
w2 + i

D

w
+ · · · , (66)

11We only study the cases where the scaling survives. If either the
temperature or the momentum relaxing parameter are large enough,
the critical scaling power law is no longer visible in the AC conduc-
tivity.

which automatically implies that the imaginary part will be
dominant in the absolute value of the conductivity because
D ≈ 1

2
√

3
and the frequency is w � 0.1. On the other hand,

the argument at zero frequency vanishes as

Arg[σ ] ≈ arctan
2
√

3w

κ2
, (67)

and approaches Arg[σ ] ≈ π/2 when the frequency is within
the values given by the interval (64).

IV. CONCLUSION

There are several strange metals that exhibit special scaling
laws in their AC conductivities as functions of frequency
[31–33]. There are also other systems that are strongly cou-
pled and exhibit criticality, like fermions at unitarity [72] (see
[73] for a recent review). Such systems are nonrelativistic
and scale invariant with Lifshitz exponent z = 2 and extended
Schrödinger symmetry, that is, the analog of conformal sym-
metry in relativistic systems.12 They have been experimentally
realized in terms of cold atomic gases [74]. Scaling AC spin
conductivities were calculated and observed in such systems,
[75]. The behavior is similar to the cuprates, but the scaling
exponent is different. A second class of examples encom-
passes Dirac materials. Their zero density phase can be seen as
a semimetal quantum critical point, connecting metallic elec-
tron and hole phases. Strictly speaking, these systems are not
scale invariant since long-range interactions break the sym-
metry, introducing logarithmic corrections to the power law in
their corresponding conductivities. In 2 + 1 dimensions, scale
invariance requires a constant conductivity, whereas in 3 + 1
the conductivity should grow linearly. In fact, such power
laws have been predicted in [76], and experimentally seen in
graphene and Dirac/Weyl semimetals [77].13

The two conditions, strong coupling and criticality, are
combined in strongly coupled holographic theories. Such
theories were shown to exhibit an AC conductivity that is

12There are holographic (strongly coupled) theories exhibiting
Schrödinger symmetry [78].

13For a holographic description, see also [79].
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a scaling function of the frequency ω in the IR regime
[35,59,60].

We embarked here in a study of how nonzero temperature
and momentum dissipation affect the visibility of scaling in
the AC conductivity. In this paper, we studied perhaps the sim-
plest holographic theory at finite density, a 2 + 1 dimensional
(relativistic) CFT.

Such a theory is known to exhibit an unexpected one-
dimensional scale invariance in the IR at finite density [50].
This invariance is intimately tied to the appearance of the
AdS2 geometry in the near-horizon region of the near-
extremal AdS-Reissner-Nördstrom black hole.

We studied the effects that temperature and relaxation of
momentum have on near-extremal black-holes with AdS2 ge-
ometry. We showed, that as long as the condition

max {τ, λ} � w � 1, (68)

is satisfied, the real part of the electrical conductivity will
show the critical scaling behavior determined by the AdS2

near-horizon geometry. In (68), τ is the dimensionless tem-
perature λ = √

κ/2, where κ is the dimensionless momentum
dissipation coefficient and w is the rescaled frequency, as
defined in (26), (9), and (42). The imaginary part of the
conductivity is generically dominated by the Drude peak in
this example.

From this example we conclude that the visibility of the
mid-range scaling of the AC conductivity depends crucially
on the detailed scales of the material that determine whether
the temperature and momentum dissipation mask the scaling
region. We found the conditions for this to happen. This may
explain why in some cuprates such a scaling is visible exper-
imentally while in others it is not. It would be interesting to
combine independent experimental data on quantifying mo-
mentum dissipation in various cuprate materials and correlate
this with the visibility of scaling in the AC conductivity.

The next step is to investigate more complex holographic
systems that have a closer resemblance to strange metals,
where σ (ω) ∼ ω−a with 0 < a < 1 [60]. As was shown in
[60], the exponent a is bounded by the unitarity limit a = 1,
while the contribution of the Drude peak provides a 1/ω tail
as ω → 0. Therefore, at higher values of ω we expect the
critical conductivity to dominate over the Drude peak. More-
over, as shown in [60], the phase of the complex AC critical
conductivity is constant and coincides with that suggested by
the real part ω−a. Therefore, we expect that if and when this
part dominates, it will have the form seen in experiments.
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APPENDIX A: EQUATIONS OF MOTION

Taking variations of the action respect to the metric, gauge,
and scalar fields we obtain the following set of equations of
motion:

Rμν = − 3

L2
gμν + 1

2
(∂μφ1∂νφ1 + ∂μφ2∂νφ2)

+ 1

2

[
F ρ

μ Fνρ − gμν

4
F 2

]
, (A1a)

∇μFμν = 0, (A1b)

∇μ∇μφi = 0, i = 1, 2, (A1c)

where the covariant derivatives are defined with the Christof-
fel connection.

We consider static, rotationally symmetric (in the x-y
plane) solutions, with translational symmetry broken only by
the axion fields

ds2 = − D(r)dt2 + B(r)dr2 + C(r)dxidxi,

φi = kxi, Aμ = [At (r), 0, 0, 0],
(A2)

where i = x, y above. Substituting the ansatz (A2) into (A1)
we obtain the following set of independent equations (the
scalar equation of motion are identically satisfied):

6

L2
B + L2 A′2

t

2D
+ B′D′

2BD
− C′D′

CD
+ D′2

2D2
− D′′

D
= 0 (A3a)

−2
C′′

C′ + C′

C
+ B′

B
+ D′

D
= 0, (A3b)

k2 B

C
− 6

L2
B + L2A′2

t

2D
− B′C′

2BC
+ C′D′

2CD
+ C′′

C
= 0, (A3c)(

CA′
t√

BD

)′
= 0. (A3d)

We are interested in asymptotically AdS4 solutions. Under
this requirement, the regular solution of (A3) is given by

ds2 = L2

r2

(
− f (r)dt2 + dx2 + dy2 + 1

f (r)
dr2

)
, (A4)

At = ψ (r), φ1 = k x, φ2 = k y , (A5)

where

f (r) = 1 + 1

4
q2r4 − 1

2
k2r2 − mr3 , (A6)

ψ (r) = μ − q r , (A7)

and q, m are proportional to the charge and energy density of
the system, respectively

APPENDIX B: DERIVATION AND ANALYSIS
OF THE AC CONDUCTIVITY

In this Appendix, we derive the equations that determine
the AC conductivity in our theory. This is done by deriving the
equations of the linear fluctuations around the solutions that
perturb the charge density, solving them and then extracting
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the IR limit of the current-current correlator from the near-
boundary expansion.

To study the linear response of the system, we introduce
the relevant fluctuating fields [80]

δAx = ax(r)e−iωt , δgx
t = r2

L2
hx

t (r)e−iωt , δφ1 = χ (r)e−iωt .

(B1)

The linearized equations of motion, for the fluctuations, stem-
ming from the equations (A1), are

ω

r2 f (r)
[ωχ (r) − ikhx

t (r)] + [r−2 f (r)χ ′(r)]′ = 0, (B2a)

ir2ωA′
t (r)

f (r)
ax(r) + iω

f (r)
hx′

t (r) − kχ ′(r) = 0, (B2b)

A′
t (r)hx′

t (r) + ω2ax(r)

f (r)
+ [ f (r)a′

x(r)]′ = 0. (B2c)

1. Small frequency solution without momentum dissipation

Starting from (B2), we set k = 0 and define the following
dimensionless variables:

τ = 2π
T

μ
, w = ω

μ
. (B3)

As we write all physical quantities in units of the chemical
potential, for simplicity we will set μ = 1 from now on and
for the rest of this section. Equations (B2) can be decoupled
to obtain a single equation that governs the fluctuation of the
gauge field

f a′′
x + f ′a′

x + r2
0

(
w2

f
− ρ2

)
ax = 0, (B4)

where we are using the rescaled radial coordinate

ρ = r

r0
, (B5)

and the blackening factor is

f (ρ) = (1 − ρ)

(
1 + ρ + ρ2 − 1

4
r2

0ρ
3

)
. (B6)

We now change variables by transforming ax as follows:

ax = g(ρ)Y (ρ), g(ρ) = 1 − 4r2
0

12 + 3r2
0

ρ (B7)

to obtain

( f g2Y ′)′ + r2
0
w2

f
g2Y = 0. (B8)

We now set

Y = f (ρ)iwr0/ f ′(1)X (ρ), (B9)

to remove the leading behavior at the horizon and obtain an
equation for X (ρ)

X ′′ +
[(

1 + iw

τ

) f ′

f
+ 2g′

g

]
X ′

+
(

r2
0
w2

f 2
− w2 f ′2

4τ 2 f 2
+ iw f ′g′

τ f g
+ iw f ′′

2τ f

)
X = 0. (B10)

Once the solution for X (ρ) is found, then the conductivity
is obtained from the near-boundary behavior, and is given by

σ (w) = − i

wr0

(
g′(0) + X ′(0)

X (0)

)
. (B11)

We can find a perturbative solution in the IR by expanding
X for small w as follows:

X (ρ) = X0(ρ) + wX1(ρ) + w2X2(ρ) + w3X3(ρ) + · · · .

(B12)
The equation at each order in w is

( f g2X ′
n)′ = − i

(
g2X 2

n−1 f ′)′
/Xn−1

− g2Xn−2
[
(4πτ )2r2

0 − f ′2]/ f ,
(B13)

with the first two given by(
f g2X ′

0

)′ = 0, (B14)(
f g2X ′

1

)′ = −i
(
g2X 2

0 f ′)′
/X0. (B15)

We define the following function:

Hn =
∫ ρ

1

{−i
(
g2X 2

n f ′)′
/Xn − g2Xn−1

[
(2τ )2r2

0 − f ′2]/ f
}

dρ.

(B16)
Then the solution for Xn can be found recursively by

Xn =
∫ ρ

0

Hn−1

g2 f
dρ. (B17)

The solution for X0 which is regular at the horizon is just a
constant X0 = c. Then X1 is

X1(ρ) = −ic
∫ ρ

0

2τg(1)2 + g(ρ ′)2 f ′(ρ ′)
f (ρ ′)g(ρ ′)2

dρ ′. (B18)

To first order in w, the conductivity is given by

σ (ω) = −i
g′(0)

r0w
+ g(1)2 + O(w). (B19)

The real part reads

Re[σ (ω)] = (2τ )2

(
2(

√
(2τ )2 + 3 − 2τ )

3
(
4 + 2(2τ )2 − 4τ

√
(2τ )2 + 3

)
)2

+ O(w2). (B20)

2. Small frequency behavior with weak momentum dissipation

Starting with the system (B2) we define the dimensionless
variables

ω̃ = ωr0, k̃ = kr0, q̃ = −qr2
0 , (B21)

the radial coordinate

ρ = r

r0
, (B22)

and rescaling ax(r) → ax(r)/r0 to make it dimensionless, we
obtain

f ( f a′
x )′ + q̃ f h′x

t + ω̃2ax = 0, (B23a)

ρ2 f ( f ρ−2χ ′)′ + ω̃2χ − iω̃k̃hx
t = 0, (B23b)

iω̃h′x
t − k̃ f χ ′ + iq̃ω̃ρ2ax = 0, (B23c)

013028-12



CRITICAL SCALING OF THE AC CONDUCTIVITY AND … PHYSICAL REVIEW RESEARCH 3, 013028 (2021)

where

f (ρ) = (1 − ρ)

(
1 + ρ + ρ2 − 1

2
κ2r2

0ρ
2 − 1

4
r2

0ρ
3

)
. (B24)

To decouple (B23b), we define the following functions
[81]:

φ± = h′x
t

ρ2
+ q̃ax + C±

ρ
ax, (B25)

where

C± = 6k̃2 − 3q̃2 − 12

8q̃
±

√
64k̃2q̃2 + (12 − 6k̃2 + 3q̃2)2

8q̃
.

(B26)
We obtain a decoupled system for φ±

(ρ2 f φ′
±)′ +

(
ρ2ω2

f
+ λ±ρ

)
φ± = 0, (B27)

where

λ+ = C+ f ′ + ρ(C− + q̃ρ)(k̃2 − C+q̃ρ)

C+ − C−
, (B28)

λ− = −C− f ′ − ρ(C+ + q̃ρ)(k̃2 − C−q̃ρ)

C+ − C−
. (B29)

To first nontrivial order in k̃ we have

λ+ = k̃2

(
ρ(−12 − 3q̃2 + 4ρq̃2)

12 + 3q̃2

)
+ O(k̃4), (B30)

λ− = −3

4
ρ2(4 + q̃2) + k̃2

(
ρ[−24 − 6q̃2 + (36 + q̃2)ρ]

24 + 6q̃2

)
+ O(k̃4). (B31)

We also write f as follows:

f (ρ) = f0(ρ) + k̃2 f1(ρ), (B32)

where

f0(ρ) = (1 − ρ)

(
1 + ρ + ρ2 − 1

4
q̃2ρ3

)
,

f1(ρ) = −1

2
ρ2(1 − ρ). (B33)

(1) We start from the equation for φ+ (B25). Using

φ+ = ψ f
iω

f ′ (1) (B34)

removes the leading behavior at the horizon. Now ψ must be
regular at the horizon.

We expand ψ for small ω̃, k̃ as follows:

ψ = ψ0 + ω̃ψ1 + k̃2ψ2 + O(ω̃2, k̃4, ω̃k̃2). (B35)

The equation for ψ0 is

ρ2 f0ψ
′
0 = c0 (B36)

for which regularity at the horizon implies c0 = 0, hence ψ0

is constant. Using this fact we obtain the following equations

for ψ1, ψ2:

(ρ2 f0ψ
′
1)′ + iψ0

f ′
0(1)

(ρ2 f ′
0)′ = 0, (B37a)

(ρ2 f0ψ
′
2)′ + ρψ0B1 = 0, B1 = ρ(−12 − 3q̃2 + 4ρq̃2)

12 + 3q̃2
.

(B37b)

From (B37a) we find

ψ1 = iψ0

∫ ρ

1

1

f0

(
1

ρ2
− f ′

0

f ′
0(1)

)
dρ ≡ iψ0P1(ρ). (B38)

From (B37b) we find

ψ2 = −ψ0P2(ρ), P2(ρ) = 4(ρ − 1)

(12 + 3q̃2)ρ
. (B39)

(2) Now we find a perturbative solution for φ−. We first
use the transformation

φ− = gY (B40)

with

g = 1

ρ
− 4q̃2

3(4 + q̃2)
(B41)

so that the coefficient of Y vanishes at the limit ω̃ → 0, k̃ →
0. We use

Y = X f
iω

f ′ (1) (B42)

to remove the leading behavior at the horizon. We require that
X is regular at the horizon and expand it as follows:

X = X0 + ω̃X1 + k̃2X2 + O(ω̃2, k̃4, ω̃k̃2). (B43)

For X0 we find

ρ2 f0g2X ′
0 = c, (B44)

which, by regularity at the horizon, implies that X0 is constant.
Using this fact we obtain the following equations:

(ρ2 f0g2X ′
1)′ + iX0

f ′
0(1)

(ρ2 f ′
0g2)′ = 0, (B45a)

(ρ2 f0g2X ′
2)′ + ρX0B2 = 0, (B45b)

B2 = 2ρq̃2(36 + q̃2)[q̃2(4ρ − 3) − 12]

27(4 + q̃2)3
. (B45c)

From (B45a) we obtain

X1 = iX0

∫ ρ

0

(
g(1)2

ρ2 f0g2
− f ′

0

f0 f ′
0(1)

)
≡ iX0Q1(ρ). (B46)

From (B45c) we find

X2 = −X0Q2(ρ),

Q2(ρ) = 8q̃2(36 + q̃2)

3(4 + q̃2)[−12 + q̃2(−3 + 4ρ)]2
.

(B47)

(3) We now need to fix the integration constants X0, ψ0 in
terms of the boundary values

a(0)
x = ax(0), χ (0) = χ (0), hx(0)

t = hx
t (0). (B48)
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The system (B23) implies the equation

f ρ2(ρ−2h′x
t + q̃ax )′ − k̃2hx

t − ik̃ω̃χ = 0. (B49)

Using (B25) and (B49) we find

f (ρ2φ′
± − C±a′

xρ + C±ax ) = k̃2hx
t + ik̃ω̃χ. (B50)

Near the boundary we obtain

lim
ρ→0

(ρ2φ′
±) = −C±a(0)

x + k̃2hx(0)
t + ik̃ω̃χ (0). (B51)

The expansion of φ± near the boundary is14

φ± = −W±
ρ

+ D± + · · · , (B52)

where

W+ = ψ0

(
iω̃ − 4k̃2

12 + 3q̃2

)
+ O(ω̃2, ω̃k̃2, k̃4), (B53a)

W− = −X0 + O(ω̃2, ω̃k̃2, k̃4), (B53b)

D+ = ψ0 + O(ω̃, k̃4), (B53c)

D− = X0

(
− 4q̃2

12 + 3q̃2
+ iω̃

(q̃2 − 12)2

(12 + 3q̃2)2

− k̃2 32q̃4(36 + q̃2)

(12 + 3q̃2)4

)
+ O

(
ω̃2, ω̃k̃2, k̃4

)
. (B53d)

Then (B51) implies

W± = −C±a(0)
x + k̃2hx(0)

t + ik̃ω̃χ (0) + O(ω̃2, ω̃k̃2, k̃4),

(B54)

therefore

ψ0 = −C+a(0)
x + k̃2hx(0)

t + ik̃ω̃χ (0) + O(ω̃2, ω̃k̃2, k̃4)

iω̃ − k̃2 4
12+3q̃2 + O(ω̃2, ω̃k̃2, k̃4)

,

(B55)

X0 = C−a(0)
x − k̃2hx(0)

t − ik̃ω̃χ (0) + O(ω̃2, ω̃k̃2, k̃4). (B56)

From (B25) we can solve for ax:

ax = ρ
φ− − φ+
C− − C+

, (B57)

14There are no logarithms in the expansion; one can check from the
solution that φ′

± do not contain any 1/ρ terms.

which implies

a′
x(0) = D− − D+

C− − C+
, (B58)

where D± are given in (B53). Using also (B26), we obtain the
terms relevant to the electric conductivity

δa′
x(0)/δa(0)

x = − 4iω̃q̃2 + O(ω̃2, ω̃k̃2)

(12 + 3q̃2)iω̃ − 4k̃2 + O(ω̃2, ω̃k̃2, k̃4)

+ iω̃
(12 − q̃2)2

(12 + 3q̃2)2
+ O(ω̃2, ω̃k̃2). (B59)

To obtain the conductivity, we divide (B59) by iω̃. Note that in
the fist term and in the numerator of the first term, the terms
of order k̃2 cancel out. This must also be true for terms of
order k̃4, k̃6 and so on. This is consistent with the fact that the
conductivity has no 1/ω̃ poles.

The conductivity is, therefore,

σ (ω̃) = q̃2 + O(ω̃, k̃2)

k̃2 − (12+3q̃2 )
4 iω̃ + O(ω̃2, ω̃k̃2, k̃4)

+ (12 − q̃2)2

(12 + 3q̃2)2
+ O(ω̃, k̃2). (B60)

Now using (B21) we can write (B60) as follows:

σ (ω̃) = D

� − iω̃
+ σQ, (B61)

where

D = 4q̃2

12 + 3q̃2
, � = k̃2

q̃2
D, σQ =

(
12 − q̃2

12 + 3q̃2

)2

. (B62)

For completeness, we should mention that to obtain the
correct conductivity in the limit ω → 0, we also need the term
of order O(ω̃k̃2) in the numerator of the second term in (B59).
The result was calculated in [71] and is the following:

σ (ω̃) = D + �(1 − σQ)

� − iω̃
+ σQ. (B63)
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