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Minimal model of many-body localization
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We present a fully analytical description of a many-body localization (MBL) transition in a microscopically
defined model. Its Hamiltonian is the sum of one- and two-body operators, where both contributions obey a
maximum-entropy principle and have no symmetries except Hermiticity (not even particle number conservation).
These two criteria paraphrase that our system is a variant of the Sachdev-Ye-Kitaev model. We will demonstrate
how this simple zero-dimensional system displays numerous features seen in more complex realizations of
MBL. Specifically, it shows a transition between an ergodic and a localized phase, and nontrivial wave-function
statistics indicating the presence of nonergodic extended states. We check our analytical description of these
phenomena by a parameter-free comparison to high performance numerics for systems of up to N = 15 fermions.
In this way, our study becomes a test bed for concepts of high-dimensional quantum localization, previously
applied to synthetic systems such as Cayley trees or random regular graphs. The minimal model describes a
many-body system for which an effective theory is derived and solved from first principles. The hope is that the
analytical concepts developed in this study may become a stepping stone for the description of MBL in more
complex systems.
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I. INTRODUCTION

Quantum wave functions subject to strong static ran-
domness may show nonergodic localized behavior. To date,
we distinguish between two broad universality classes of
quantum localization: Anderson localization [1] in low-
dimensional single-particle systems and many-body local-
ization (MBL) in random many-particle systems [2,3]. In
principle, there is no fundamental distinction between these
two. They both reflect the lack of ergodicity of wave functions
on random lattices due to massive quantum interference. How-
ever, the all important difference is that the lattice structure is
defined in the former case by a low-dimensional solid and in
the latter by the high-dimensional Fock-space lattice formed
by the occupation number states of a many-particle system.

Many-body localization is traditionally discussed in the
context of spatially extended many-body systems, such as
interacting quasi-one-dimensional electron systems [2,3] or
random spin chains [4–13]. However, that spatial extension
is an added layer of complexity to a problem that manifests
itself already in spatially confined geometries: a competi-
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tion between hopping and randomness on the complex lattice
structure defined by an interacting particle problem. In fact,
there appears to be a paradigm shift in the field away from
studying the quantum critical phenomena of the localiza-
tion transition in extended systems towards manifestations of
MBL in systems of mesoscopic extension, such as interacting
quantum dots [14–18], small-size optical lattices [19–21], or
small-size superconducting qubit arrays [22,23]. This devel-
opment is driven in part by pragmatism. The explosion of
Fock-space dimensions with increasing system size makes nu-
merical access infamously hard and classical computers may
never be powerful enough to probe the scaling regime of the
MBL transition with sufficient reliability. Another motivation
lies in the fascinating and only partly understood physics of
localization in many-body systems of intermediate size.

At this point, even basic aspects of MBL remain enigmatic,
including in small-size systems. Among these, one of the most
controversial topics concerns the presence or absence of a
phase of nonergodic but extended (NEE) states intermediate
between the regime of ergodic wave functions at weak and
localized wave functions at strong disorder. If existent, such
a phase must be born out of the main principles distinguish-
ing MBL from low-dimensional Anderson localization: the
high coordination number of Fock space lattices, the strong
correlation of their disorder potentials, and the sparsity of the
hopping matrix elements in Fock space (see the next section
for a more detailed discussion). Reflecting the complexity of
the problem, the physics of NEE states is often discussed for
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synthetic [24–28] or phenomenological models [29], sidestep-
ping one or several of the above complications. (However,
even for these, the existence of NEE phases is discussed
controversially.)

Clearly, a numerically and analytically solvable minimal
model defined by a microscopic Hamiltonian would provide
an important contribution to our understanding of MBL. It
would provide a test bed for the validity of analytical ap-
proaches by comparison to numerical diagonalization and
might turn into a building block in the study of more com-
plex systems. In this paper we report on the definition and
solution of such a system. Here the term “solution” refers
to the following: (a) the construction of an effective theory
of the microscopically defined system by parametrically con-
trolled approximation, (b) the computation of observables
(many-body wave function and spectral statistics) from that
theory, and (c) parameter-free comparison to numerics. In
this hierarchy, the perhaps most important element is (a).
The effective theory we derive assumes the form of a matrix
path integral in Fock space; see Eq. (40) for an impression.
From this representation, observables can be extracted by
powerful methods developed in the localization theory of
high-dimensional lattices. [For a pioneering previous compar-
ison between analytical and numerical results for a concrete
model system we refer to Ref. [30]. However, that work was
based on scaling theory for a specific class of observables.
Lacking element (a), it did not have the scope of the present
analysis.]

The model we consider is implicitly defined by the follow-
ing criteria: Its Hamiltonian Ĥ = Ĥ2 + Ĥ4 contains the sum of
a one-body and a two-body part. Both are maximally entropic
and have no symmetries besides Hermiticity (not even particle
number conservation). In the noninteracting case Ĥ4 = 0, the
product eigenstates of Ĥ2 define a basis in which the system
is trivially localized. The Hamiltonian Ĥ4 acts as a hopping
operator and at a critical strength will induce a many-body
localization transition. In a manner detailed in the next sec-
tion, the criteria listed above state that Ĥ is the Majorana
Sachdev-Ye-Kitaev (SYK) Hamiltonian.

The maximum-entropy criterion makes the SYK model
much simpler than MBL systems with spatial extension. At
the same time, it displays a wealth of phenomena charac-
teristic of MBL. Foremost among these is a change from
delocalized to localized behavior. For finite N , this is a
crossover. However, the exponential dependence of the Fock-
space lattice extension on N implies that it rapidly acquires
signatures of a transition as N increases. Second, the model
supports a regime (not a phase) of NEE states prior to the
onset of localization. We will discuss how the diminishing
support of these states upon approaching the transition reflects
the structure of the system’s Fock space and how this differs
from phenomenological models. However, the most important
point of all is that the spectral and wave-function statistics of
the model can be computed analytically and that these results
can be numerically tested in a parameter-free comparison. The
analytical approach is based on matrix integral techniques im-
ported from the theory of high-dimensional random lattices.
We apply these techniques subject to a number of assumptions
which should generalize to other many-body systems of small
spatial extension and/or a high degree of connectivity. We

therefore hope that the approach discussed in this paper may
become a stepping stone for the solution of more complex
manifestations of MBL.

Plan of the paper. In the next section we introduce our
model system, qualitatively discuss its physics, and summa-
rize our main results. The remaining parts of the paper discuss
the derivation of these findings, where we try to keep the
technical level at a bare minimum. In Sec. III we map the com-
putation of disorder-averaged correlation functions onto that
of an equivalent matrix integral. In Sec. IV a stationary-phase
approach is applied to reduce the matrix integral to an effec-
tive theory describing physics at large timescales. In Secs. V
and VI we apply this representation to the discussion of wave-
function statistics and the localization transition, respectively.
We conclude in Sec. VII with a discussion comparing our
results to those obtained for other models and on possible
generalizations to other MBL systems. Technical parts of our
analysis are relegated to a number of Appendixes.

II. MODEL AND SUMMARY OF RESULTS

In this section we first introduce the SYK model and
then discuss its physics of quantum localization in qualitative
terms. Much of this outline is formulated in general terms
which should carry over to similar models. In the remaining
parts of the section we get more concrete and summarize our
results in comparison to numerics.

A. The SYK model

The SYK Hamiltonian [31,32]

Ĥ4 = 1

4!

2N∑
i, j,k,l=1

Ji jkl χ̂iχ̂ jχ̂kχ̂l (1)

describes a system of 2N Majorana fermions {χ̂i, χ̂ j} = 2δi j ,
subject to an all-to-all interaction, with matrix elements {Ji jkl}
drawn from a Gaussian distribution of variance 〈|Ji jkl |2〉 =
6 J2/(2N )3. Defined in this way, it defines an ideal of a
massively interacting quantum system lacking any degree of
internal structure. Due to the least information principle re-
alized through the stochastic interaction, all single-particle
orbitals i stand on equal footing and the absence of a continu-
ous U(1) symmetry prevents the fragmentation of the Fock
space into sectors of conserved particle number. Reflecting
these features, the physics of the SYK Hamiltonian at large
timescales becomes equivalent to that of random matrix the-
ory (RMT), with wave functions homogeneously distributed
over the full Hilbert space.

A tendency to Fock-space localization is included by
adding to Ĥ4 a free-particle contribution [33,34]

Ĥ2 = 1

2

2N∑
i, j=1

Ji j χ̂iχ̂ j, (2)

with a likewise random antisymmetric matrix Ji j = −Jji, with
matrix elements {Ji j} drawn from a Gaussian of variance
〈|Ji j |2〉 = δ2/2N . Without loss of generality, we may assume
{Ji j} to be diagonalized into a form Ĥ2 = i

∑N
i viχ̂2i−1χ̂2i,

where ±vi are the eigenvalues of the Hermitian matrix i{Ji j}.
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FIG. 1. Hypercubical Fock space of a 2N = 14 Majorana sys-
tem. The numbers indicate the bit depth of states in the computational
fermion basis and the lines are a qualitative representation of the con-
nectivity of the reference state |0, 0, 0, 1, 1, 0, 0〉. For large values of
N , the pattern of connections becomes sparse. However, there remain
exponentially many, proportional to D connections, statistically cor-
related due to the small number, order of N4, independent random
amplitudes.

For the above distribution of the matrix elements Ji j these
eigenvalues are random numbers with variance order of δ.

We next translate from the Majorana many-body Hamil-
tonian formulation to one in terms of a fermion Fock space
(lattice). To this end, we define N complex fermion annihi-
lation operators ĉi = 1

2 (χ̂2i−1 + iχ̂2i ) satisfying {ĉi, ĉ†
j } = δi j .

With the number operators n̂i = ĉ†
i ĉi, we then have

Ĥ2 =
N∑

i=1

vi(2n̂i − 1), var(vi ) = δ2. (3)

Representing this Hamiltonian in the basis of 2N occupation
number states |n〉 = |n1, n2, . . . , nN 〉, ni = 0, 1, it assumes the
form of a random potential vn = ∑

i vi(2ni − 1) on the hy-
percube defined by all sites n = (. . . , 0, 0, 1, 0, 0, 1, 0, . . .).1

In the same basis, the interaction Ĥ4 assumes the role of a
fermion number conserving hopping operator Ĥ4 connecting
sites of bit separation 2 and 4.2 This hopping introduces a

1Although the eigenvalues {±vi} of Ji j are correlated, their sums,
i.e., the eigenvalues of Ĥ2, become uncorrelated for large N .

2For two states |n〉 and |m〉 we define the Hamming distance
|n − m| as the number of bits in which the states differ. Containing

complex connectivity pattern on the two decoupled sublattices
of definite (even, say) parity, containing

D = 2N−1 (4)

sites each. Figure 1 illustrates this structure for a Fock space of
14 Majorana fermions. The lines indicate the states connected
to the arbitrarily chosen site |0, 0, 0, 1, 1, 0, 0〉. Notice the
high coordination number and the absence of lattice period-
icity, symptomatic for this and for other Fock-space lattices.
The competition between the localizing random potential Ĥ2

and the delocalizing hopping Ĥ4 defines the MBL problem,
regardless of their detailed realization.

B. Qualitative discussion

In this section we discuss the physics of the above random
system in qualitative terms. Specific topics include the exis-
tence of a localization-delocalization transition, its signatures
in spectral and wave-function statistics, and a regime of noner-
godically extended states. Most parts of this discussion do not
make specific reference to the SYK model and should equally
apply to other systems.

The single most important system quantity relevant to the
understanding of the above observables at a specific energy,
say, E , is the local density of states in Fock space

νn ≡ − 1

π
Im

〈
〈n| 1

E+ − Ĥ2 − Ĥ4
|n〉

〉
J

, (5)

where E+ ≡ E + iε and 〈· · · 〉J indicates that we consider νn

averaged over realizations of Ĥ4, but at a single realization
of Ĥ2. (The discussion above shows that the large coordina-
tion number of the lattice makes νn a largely self-averaging
quantity. Averaging over Ĥ4 is largely a matter of technical
convenience.) From the perspective of site n, the large number
of nearest neighbors represents an environment and on this
basis one expects a Lorentzian profile

νn = 1

π

κn

v2
n + κ2

n

, (6)

where we have set E = 0 for definiteness and the broaden-
ing κn = κn(�4, δ, α) must be self-consistently determined
[cf. Eq. (32) below] in dependence on the following param-
eters: (a) the many-body band width �4 of the interaction
operator (�4 =

√
J2N/2 for the SYK Hamiltonian Ĥ4),3 (b)

the disorder strength δ or, equivalently, the distribution width
�2 of the on-site random potential (3) (for large N , the central-
limit theorem implies �2 = δN1/2),4 and (c) the number
order of Nα of nearest neighbors m connected to Fock-space

four fermion creation/annihilation operators and conserving fermion
number parity, the matrix elements of the interaction operator couple
states of Hamming distance 0, 2, and 4.

3Here we ignore corrections of O( 1
N ). However, for numerically

accessible sizes it is important to keep in mind the full expression for

the H4 band width �4 =
√

3J2

4N3

(2N
4

)
.

4In order to compare the analytical predictions with numerical
results without any fitting parameters it is important to use the full

expression for the H2 band width �2 =
√

δ2

2N

(2N
2

)
.
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FIG. 2. Four regimes I–IV of increasing disorder strength. The
band width �4 of the interaction operator is shown in comparison to
the band width of the on-site randomness �2. The distance between
neighboring levels is order of δ = �2N−1/2 and the relative magni-
tude of these scales defines the regimes discussed in the text.

sites n by the interaction Ĥ4 (α = 4 for the SYK Hamiltonian).
On this basis, we must distinguish between four regimes of
qualitatively different level hybridization κ (see Fig. 2).

Regime I: δ < �4N−1/2. In this regime, the Ĥ2 band width
�2 < �4 is below that of Ĥ4. The on-site randomness is
largely irrelevant and states are ergodically spread over the
full Fock-space lattice. Hybridization of levels over the full
�4 band width implies κn = �4.

Regime II: �4N−1/2 < δ < �4. The Ĥ2 band width �2

exceeds �4, implying that the majority of sites become inac-
cessible. States of fixed energy now populate only a fraction
of Hilbert-space sites. However, for a given site with energy
vn inside the accessible window �4, the hopping nearest
neighbors have accessible energy vn ± O(δ) and thus are
also accessible. As a consequence, κn = �4 for all sites with
energy |vn| � �4.

Regime III: �4 < δ < �4Nα/2. In this regime, the en-
ergetic separation even between nearest neighbors δ > �4

exceeds the interaction band width. In the consequence, the
hybridization of levels with energy vn ≈ 0 is suppressed down
to κn ∼ �4 × (�4/δ) and the band of accessible sites narrows
to this width. For a given site n inside the resonant window,
nearest neighbors of energy approximately O(δ) typically lie
outside it. However, a fraction order of (�2

4/δ)/δ = (�4/δ)2

of the nearest neighbors does satisfy the resonance condi-
tion. With order of Nα neighbors, this gives a number of
Nα (�4/δ)2 > 1 of hybridizing partner sites, which safeguards
the extension of states.

Regime IV: Nα/2�4 < δ. The number of nearest neighbors
satisfying the resonance condition becomes lesser than unity,
which implies strong localization of states in Fock space.

Regimes I–IV cover the entire spectrum from fully ex-
tended states I over NEE states II and III to localization IV.
(In regimes II and III states cover only a fraction of the Fock-
space sites. In this paper we are following the convention to
call such nonuniformly distributed states nonergodic. This is
a misnomer in that the states do remain uniformly distributed
over an energy shell of resonant sites.) The level broaden-
ing characterizing the local spectral density in the respective

regimes is described by the universal formula

κn ≈ κe−v2
n/κ2

, (7)

where the value of the hybridization parameter and the corre-
sponding disorder strengths are summarized in Table I.

Before leaving this section, it is worthwhile to com-
ment on various phenomenological approaches to MBL. We
distinguish between three categories of phenomenological
formulations. The most phenomenological class models Fock
space by a random matrix. For example, the Rosenzweig-
Porter model contains a Gaussian distributed random matrix
(as a proxy of the interaction operator Ĥ4) perturbed by a
likewise random diagonal representing Ĥ2 [29,35]. The sec-
ond class replaces Fock space by a high-dimensional synthetic
lattice, such as the Bethe lattice [24,25,36], or a random reg-
ular graph [26,27,37,38]. Finally, there is the random energy
model, which retains the microscopic structure of Fock space
but replaces the amplitudes vn by 2N uncorrelated random
variables (see our previous publication [39] for an applica-
tion of this idea to the SYK Hamiltonian). These models
are designed to mimic specific aspects of localization and
wave-function statistics in high-dimensional environments.
However, they fall short of describing the characteristic cor-
relations between site energies and high lattice coordination
number essential to the distinction of regimes I–IV and their
statistical properties reviewed in the next section.

One of the main messages of this paper is that the analytical
theory for real systems need not be more difficult than that
for synthetic models. What at first sight looks like a com-
plication,i.e., the combination of high coordination numbers
and correlations in the microscopic Fock space, actually is a
resource and leads to self-averaging (a source of simplicity) at
several stages of our computations below.

On this basis, we now discuss quantitative results obtained
for the description of regimes I–IV. For notational simplicity,
we work in units where the variance of the Ĥ4 matrix elements
equals J = (2/N )1/2. At this value, the band width of the
interaction operator �4 ≡

√
J2N/2 = 1.

C. Spectral statistics

We describe the statistics of the system’s many-body spec-
trum in terms of the spectral two-point correlation function at
the band center

K (ω) ≡ 1

ν2

〈
ν
(ω

2

)
ν
(
−ω

2

)〉
c
, (8)

where ν = ν(E = 0), with ν(E ) = ∑
ψ 〈δ(E − εψ )〉J the Ĥ4

averaged many-body density of states at zero energy E � 0,
and the subscript c stands for the cumulative average 〈AB〉c =
〈AB〉J − 〈A〉J〈B〉J .

1. Regimes I–III

In these regimes, wave functions are extended and their
eigenenergies are correlated and described by Wigner-Dyson
statistics. Assuming an odd number N of complex fermions
(for which the SYK model is in the unitary symmetry class A),
this reflects in the spectral statistics of the Gaussian unitary
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TABLE I. Different regimes of disorder strength, the associated level hybridization, spectral statistics, and eigenfunction support in
Fock space.

Regime Disorder δ Level broadening κ Spectral statistics State extension

I RMT δN1/2 = �2 < �4 κ ∼ �4 Wigner-Dyson D
II NEE1 �4N−1/2 < δ < �4 κ ∼ �4 Wigner-Dyson D�4/

√
Nδ

III NEE2 �4 < δ < �4Nα/2 κ ∼ �2
4/δ Wigner-Dyson D�2

4/
√

Nδ2

IV localization �4Nα/2 < δ κ = 0 Poisson O(1)

ensemble (GUE),

K (s) = 1 − sin2 s

s2
+ δ

( s

π

)
, s = πων, (9)

where ν = ∑
n νn is the average density of states. With the

local densities given by Eq. (6) and the vn distributed over a
range N1/2δ, we find

ν ≡
∑

n

νn = cD ×
{

1 in regime I
1√
Nδ

in regimes II and III. (10)

Here and throughout, c = O(1) represents numerical con-
stants. The second line of Eq. (10) states that in the regimes of
intermediate disorder strength, only a fraction D/

√
Nδ of ac-

tive sites contributes to the spectral support of wave functions.

2. Regime IV

In the regime of strongly localized states, eigenenergies
become uncorrelated and we expect Poisson statistics. In this
paper we use the change from Wigner-Dyson to Poisson statis-
tics as one of two indicators for the Anderson transition at the
boundary between regimes III and IV. Referring for a more
detailed discussion of the localization transition to Sec. II E
below, we note that in the literature [5], the difference between
the two types of statistics is often monitored by analysis of
r ratios [40], i.e., numerical comparison of the ratios rk ≡
εk+1−εk

εk−εk−1
between nearest-neighbor many-body energy levels εk

with the expected ratios for Poisson and Wigner-Dyson statis-
tics. However, we have observed that naked eye comparisons
can easily trick one into premature and qualitatively wrong
conclusions. Instead, we adopt a more sophisticated entropic
procedure detailed in Sec. V C and compute Kullback-Leibler
divergences, where the latter are defined as relative entropies
of the numerically observed distribution to the Poisson and
Wigner-Dyson distribution, respectively. Figure 3(b) shows
how this entropic measure changes abruptly at the localization
transition.

D. Wave-function statistics

The second class of observables considered in this paper is
the moments of wave functions |ψ〉 of zero energy εψ = 0,

Iq ≡ 1

ν

∑
n

〈|〈ψ |n〉|2qδ(εψ )〉J . (11)

The statistics of these moments not only indicate the localiza-
tion transition but, unlike spectral statistics, also differentiate
between the three weak-disorder regimes I–III.

1. Regime I

Wave functions are ergodically distributed over the
full Fock space, with moments given by those of the

FIG. 3. (a) Scaling of the inverse participation ratio I2 for system
sizes N = 11, 13, 15 as a function of the dimensionless disorder
strength δ/δc, where δc is the critical strength obtained by analytical
solution of the model in Eq. (F3). (b) Plot of the relative Kullback-
Leibler entropies KL between the numerical spectral statistics and
the Wigner-Dyson (dashed lines) and Poisson distributions (dotted
lines), respectively, for the same set of system sizes. In either case,
the analytically obtained δc overestimates the critical strength by an
N-independent factor of O(1). (c) and (d) Scaling of I2 and KL,
respectively, as a function of δ/δc, employing Eq. (16) with two
adjusted numerical parameters (see the discussion in the text).

013023-5



MONTEIRO, MICKLITZ, TEZUKA, AND ALTLAND PHYSICAL REVIEW RESEARCH 3, 013023 (2021)

FIG. 4. Comparison of the numerical computation of the inverse participation ratio I2 as a function of the disorder strength δ for system
sizes (a) N = 11, (b) N = 13, and (c) N = 15 with the analytical prediction I2 = 8

√
Nδ2/πD [see Eq. (E8)]. Vertical dashed lines mark the

end of region I, the beginning of region III, and the scale δc at which Fock-space localization sets in [estimated from Eq. (F3)]. (Notice that the
inverse participation ratio here has not been normalized by its value at δ = 0, as in our previous publication [39].)

Porter-Thomas distribution

Iq = q!D1−q in regime I, (12)

otherwise found for the wave functions of random matrix
Hamiltonians. The result states that the complex ampli-
tudes 〈n|ψ〉 are independently distributed Gaussian random
variables.

2. Regimes II and III

The wave functions no longer ergodically occupy the full
Fock space. The bulk of their support is concentrated on the
subset of resonant sites vn ∼ κn. This behavior reflects in the
moments

Iq = cq

(
D√
Nδ

)1−q 2q(2q − 3)!!

κq−1
in regimes II and III,

(13)

where c = O(1). To make the connection of this expression to
Eq. (12) more transparent, consider the case of large q, where

Iq = cq!D1−q
res , q 	 1,

Dres = D ×
{

1√
Nδ

in regime II
1√
Nδ2 in regime III.

(14)

These moments again coincide with those of a Gaussian
distribution, now defined on the diminished number Dres of
resonant sites in Fock space, over which the wave functions
are uniformly spread.

Noting that δ ∼ Nη, η < 2, the dependence of Dres on D is
approximated as

Dres = D/ ln Dβ, β =
{

η + 1
2 in regime II

2η + 1
2 in regime III.

(15)

This suggests an interpretation in terms of a fractal whose
dimension differs from the naive dimension by a factor
D/ ln Dβ ∼ D/D0, rather than the more usual D/Dγ with
some γ > 0. Alternatively, we may interpret the wave func-
tions as ergodically or thermally extended over an energy shell
of sites defined by the condition vn ≈ κn.

Figures 4 and 5 show a comparison of our analytical
predictions for the wave-function moments dependence on
δ (Fig. 4) and on q and N (Fig. 5) to numerical simulations
for 2N = 22, 26, 30 Majorana fermions. Vertical dashed lines

FIG. 5. Verification of the scaling of our analytical prediction
(13) in q and N , respectively. In both panels we consider δ =
3 deep in regime III and Ĩq ≡ Iq/q(2q − 3)!! = (4

√
Nδ2/πD)q−1,

where the constants are taken from the accurate result for Iq in
regime III [Eq. (E8)].
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in Fig. 4 mark the boundaries between different regimes and
δc is the scale at which Fock-space localization sets in [see
Eq. (16) and the refined expression (F3) accounting for 1/N
corrections]. For the numerically accessible N values, regime
II, N−1/2 
 δ 
 1, lacks the width required for the compari-
son with power laws and we concentrate on regime III. Given
that there is no fitting of numerical parameters and numerical
error bars are smaller than symbol size, the comparison is
good. We notice a slight deviation in the q scaling, increasing
for large moments q. However, this mismatch does not show
consistent system size dependence and we cannot attribute a
clear trend to it. Starting from N = 13, we also see deviations
of the predicted δ scaling at large values, which is a first
indication of the proximity of the Anderson transition. At
first sight, it may seem paradoxical that these signatures are
first seen for larger N , where the parametric dependence of
the localization threshold δ � N2 increases in N . However,
the situation becomes clearer when we represent the inverse
participation data as a function of a scaled parameter, as we
will discuss next.

E. Strong localization

The wave functions describing random hopping on a lattice
are localized on small-size clusters if statistically the nearest-
neighbor hopping matrix elements become smaller than the
variations of the local site energies. In this work we numer-
ically and analytically compute the threshold strength of the
disorder where this happens.

1. Analytical approach

Above we reasoned that the problem of MBL is defined
by a competition of localizing on-site disorder and delocal-
izing hopping in a complex high-dimensional lattice. Unlike
in previous work on Anderson localization in high dimen-
sions, which is formulated on simplified synthetic lattice
structures such as the Bethe lattices [41,42] or random regular
graphs [24,41,43,44], here we directly work in Fock space.
What helps to keep this more complicated problem under con-
trol is the huge effective lattice coordination number of O(N4)
and a simplification known as the effective-medium approx-
imation [45]. This approximation is commonly applied in
the discussion of Anderson localization on high-dimensional
lattices and backed by their large coordination numbers. It
describes transport as a process avoiding local loops (see
Fig. 6), while multiple link traversals [Fig. 6(a)] are included.
The rationale behind this simplification is that at any given
order in hopping perturbation theory, amplitudes with the low-
est number of statistically independent energy denominators
contribute the strongest. Its application to the SYK lattice, de-
tailed in Sec. VI, sums these processes via recursion relations
[such as Eq. (44)] whose solution leads to prediction (F3) for
the critical disorder strength. For large N 	 1 this formula
simplifies to

δc � N2

4
√

3
ln N, N 	 1. (16)

The characteristic δc ∼ N2 ln N scaling was first predicted in
Ref. [14], where the logarithmic correction relative to the

FIG. 6. (a) Cartoon representation of a subset of sites in Fock
space connected by a hopping amplitude containing a loop inser-
tion. The four hopping amplitudes constituting the loop come with
four independent energy denominators. (b) This fourth-order hop-
ping amplitude with site revisits has only two independent energy
denominators and contributes parametrically stronger. (c) Hopping
amplitudes resumed according to the procedure shown in (d).

naive estimate δc ∼ N2 mentioned in the Introduction ac-
counts for resonant hybridization with sites beyond nearest
neighbors.

However, our aim here is to compare to the real world
of small-size systems N = O(10) where things get more
complicated. For one, the difference between the asymptotic
result and the more precise expression (F3) becomes notice-
able. Second, various approximations in the execution of the
effective-medium program rely on the largeness of N and
again may lead to errors in terms subleading in N . These
uncertainties must be kept in mind when we compare to the
numerical computation of the threshold.

2. Numerical approach

As indicated above, we detect the onset of localization via
two indicators. The first is the wave-function statistics, where
I2 serves as a transition order parameter jumping between
the values I2 ∼ D−1 in the ergodic weak-disorder regime to
I2 ∼ 1 in the localized phase. Here the first value must be
taken with a grain of salt, again due to finite system size. Our
discussion in the preceding section shows that before reaching
the transition, in regimes II and III, we have deviations away
from the ergodic limit I2 ∼ 1/D. In the thermodynamic limit,
these are inessential [because D is exponential in N while
the corrections of Eq. (14) are in powers of N]. However,
for system sizes in numerical reach, we cannot expect an
actual jump in the order parameter. The best one can hope
for is gradual steepening of the curve I2(δ) for δ → δc upon
increasing system size.

The second diagnostic is spectral statistics, where we mon-
itor the proximity to a Wigner-Dyson or Poisson distribution
via the Kullback-Leibler entropy as discussed in Sec. V A.
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Ideally, one would hope that both signatures, inverse partic-
ipation ratio and spectral statistics, reveal a phase transition
via a crossing point when subjected to appropriate finite-size
scaling and that these crossing points sit at the same value.
In reality, we almost, but not fully, observe this behavior.
In Fig. 3 we show the inverse participation ratio I2 and the
Kullback-Leibler entropy as a function of the scaled variable
δ/δc, where δc is given by the analytical prediction (F3) in
terms of the Lambert W function. We observe that (i) both
observables show reasonably well defined crossings with a
tendency of sharpening behavior for increasing system size,
however, (ii) these crossings deviate from the analytically
predicted value δ/δc = 1 by a numerical factor of O(1) and
by a factor of similar magnitude among themselves. Turning
to different scaling variables, one may sharpen the finite-size
scaling of either one of the two observables. For example,
Fig. 3(c) shows I2 as a function of δ/δc, with δc from Eq. (16)
with two numerical parameters outside and inside the loga-
rithm adjusted to improve visibility of the crossing point.5

However, this comes at the expense of a more diffuse scal-
ing of the entropy, as shown in Fig. 3(d). We observe that
the numerically obtained scaling for small systems responds
sensitively to the finite-N corrections [Eq. (F3) vs Eq. (16)].

All in all, we consider the agreement with the numerics
quite favorable. We see clear evidence of critical behavior in
two observables and the position of the transition is obtained
without free fit parameters from the analytical solution of an
effective lattice model. This is a genuine Fock-space localiza-
tion problem where a first-principles solution of this kind is
possible.

In the following sections we discuss the derivation of the
analytical results mentioned above. Hoping that elements of
this computation might become blueprints for the analysis of
other models of MBL, we try to be as pedagogical as we can.
Various technical details are relegated to the Appendixes.

III. MATRIX MODEL

We start the derivation of the results summarized above
by constructing an exact matrix integral representation of the
correlation functions introduced above to describe many-body
wave functions and spectra. The unconventional perspective
of this approach is that there will be no second quantized
representation of Fock space: We think of the SYK Hamil-
tonian as a big matrix and treat it like that. In this section
we discuss the construction of a matrix integral representing
the theory averaged over Ĥ4 disorder. The physics behind this
formulation and that of a subsequent stationary-phase analysis
of the theory will be discussed in the next section.

All information on spectra and wave functions of the
system is contained in the Fock-space matrix elements of
resolvent operators

G±
nm = 〈n|(z± − Ĥ )−1|m〉, (17)

where z± = ±( ω
2 + iη) and, here and throughout, η is in-

finitesimal (with a limit η ↘ 0 to be taken in the final step of

5More specifically, we used δc =
√

πZ
2
√

ρ
ln(

√
πZ

32π2 ).

all calculations). Specifically, the correlation functions above
are obtained as

Iq = (2iη)q−1

2iπν

∑
n

〈G+(q−1)
nn G−

nn〉J ,

K (ω) = 1

2π2ν2

∑
nm

Re〈G+
nnG−

mm〉J , (18)

where Iq is computed at ω = 0 and 〈· · · 〉J denotes the average
over coupling constants {Ji jkl} of Ĥ4.

A. Construction of the matrix integral

Following standard protocols, we raise the Green’s
functions to an exponential representation before perform-
ing the Gaussian average. The basic auxiliary formula
in this context is M−1

nm = ∫
D(ψ̄, ψ )e−ψ̄Mψψσ

mψ̄σ
n , where

M is a general L × L matrix and the 2L-dimensional
graded vector ψ = (ψb, ψ f )T contains L-commuting compo-
nents ψb

n and an equal number of Grassmann components
ψ f

n . The double integral over these variables cancels un-
wanted determinants det(M ), while the preexponential fac-
tors, either commuting or anticommuting, σ = b, f, isolate
the inverse matrix element. With the identification M =
diag(−i[G+]−1, i[G−]−1) = −iσ3(E + z − Ĥ ), we are led to
consider the generating function

Z[ j] =
∫

D(ψ̄, ψ )〈e−ψ̄ (E+z−Ĥ− j)ψ 〉J . (19)

Here z ≡ ( ω
2 + iη)σ3 contains the energy arguments of the

Green’s functions and σ3 is a Pauli matrix distinguishing
between advanced and retarded components. The matrix
j acts as a source for the generation of the required moments
of Green’s-function matrix elements. Specifically, we define

jK (α, β ) = απb ⊗ π+ + βπ f ⊗ π−, (20)

jI,n(α, β ) = jK (α, β ) ⊗ |n〉〈n|, (21)

where πb,f is a projector onto commuting and anticommuting
variables, respectively, ψ̄πσψ = ψ̄σψσ , and π± projects in
causal space ψ̄π sψ = ψ̄ sψ s, s = ±. With these definitions,
an elementary computation shows that

K (ω) = 1

2π2ν2
Re∂2

βαZ[ jK ]|α,β=0, (22)

Iq = cq(2iη)q−1
∑

n

∂β∂q−1
α Z[ jI,n]|α,β=0, (23)

with cq ≡ 1/2iπν(q − 1)!. In the following, we consider the
sources absorbed in a redefined energy matrix z → z − j and
recall their presence only when needed.

At this point, the averaging over Ĥ4 can be performed and
it generates a quartic term

Z =
∫

D(ψ̄, ψ ) exp

(
−ψ̄Ĝ−1ψ + w2

2

∑
a

(ψ̄X̂aψ )2

)
, (24)

where we defined w2 = 6J2/(2N )3 ≡ 3
2 N−4 for the scaled

variance of the SYK Hamiltonian Ĥ4, Ĝ ≡ (E + z − Ĥ2)−1,

X̂a ≡ χ̂iχ̂ jχ̂kχ̂l , (25)
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and a = (i, j, k, l ) with i < j < k < l . We next perform an
innocuous but physically meaningful (see the next section)
rearrangement (ψ̄X̂aψ )2 = STr[(ψψ̄X̂a)2], where the super-
trace [45] STr(X ) ≡ tr(X bb) − tr(X ff ) accounts for the minus
sign caught when exchanging anticommuting variables. The
next step is a Hubbard-Stratonovich transformation decou-
pling the matrices ψψ̄X̂a ∼ Aa in terms of (2N )4/4! auxiliary
matrix fields Aa. Referring for details of the procedure to
Appendix A, we note that after the decoupling the integral
over ψ variables has become Gaussian and can be carried
out. A more interesting statement is that of the ρ ≡ (2N

4

)
Hubbard-Stratonovich fields Aa, all but one can be removed
too by straightforward Gaussian integration. Upon restricting
to E = 0 this leaves us with a single integration

Z =
∫

DYe−S[Y ],

S[Y ] = −1

2
STr(YPY ) + STr ln(z − Ĥ2 + iPY ), (26)

over a (2 × 2 × D)-dimensional matrix Y = {Y σσ ′,ss′
nn′ } carry-

ing indices in causal space, superspace, and Fock space. The
information on the SYK system now sits in the site-diagonal
one-body term Ĥ2 and the hopping operator P , which rep-
resents the interaction and acts on matrices Z = {Znm} in
Fock space as

PZ ≡ 1

ρ

∑
a

X̂aZX̂ †
a . (27)

Finally, γ = wρ1/2 = 1 represents the Ĥ4 band width, which
we have set to unity. To simplify formulas, we will consider
energies Ĥ2 → γ Ĥ2 and ω → γω scaled by this parameter
and suppress it throughout.

B. Discussion of the matrix integral

This is now a good point to discuss the meaning of the
above Hubbard-Stratonovich transformation and of the ma-
trix representation. The two-fermion vertices ψ̄X̂aψ entering
the theory after disorder averaging describe the scattering
of Fock-space states off the four Majorana operators con-
tained in the Hamiltonian and in this way introduce the
lattice connectivity indicated in Fig. 1. While a direct anal-
ysis of individual Fock-space amplitudes seems hopeless,
progress can be made if the propagators are paired to two-
amplitude composites as indicated in Fig. 7. For two reasons,
the pair amplitudes Y ss′,σσ ′

nn′ = ψ sσ
n ψ̄ s′σ ′

n′ are more convenient
degrees of freedom. First, the pair action Y → ∑

a X̂aY X̂a =
ρPY governing scattering in the two-state channel [cf. the
structure of the action (26)] is relatively easy to describe
(discussed below). Second, the advanced/retarded combina-
tions Y −+,σσ ′

nn = ψ−σ
n ψ̄+σ ′

n appear as terminal vertices in the
computation of Green’s functions G+

·nG−
n·, where the dots stand

for the unspecified final points of the correlation function.
With the exact identity (G+)−1 − (G−)−1 = ω+ ≡ ω + 2i0,
we have 〈G+

mnG−
nm〉J = 〈tr(G+G−)〉J = 1

ω+ 〈tr(G+)[(G+)−1 −
(G−)−1]G−〉J = 1

ω+ 〈tr(G− − G+)〉J � 2π i
ω+ ν, where ν is the

density of states at the band center. The way to read this
(Ward) identity is that the product of Green’s functions
contains a singularity, provided tr(G− − G+) ∼ ν is a struc-

FIG. 7. Composite matrix degree of freedom Y ss′,σσ ′
nn′ representing

the pair propagation of Fock-space scattering amplitudes. See the text
for discussion.

tureless quantity. (The latter condition does not hold in
systems with localization, where the isolated eigenstates sup-
port a point spectrum with poles rather than a uniform cut.)
This argument indicates that the soft mode G+G− ∼ ω−1 is
key to the understanding of observables probing the spectrum
and eigenfunctions of the system.

In the matrix integral framework, the above singularity
shows in the presence of a soft mode in the integration over the
variables Y −+,σσ ′

nn . To isolate this mode, we note that Eq. (26)
has an approximate symmetry

Y → TY T −1, T = {T ss′,σσ ′ } (28)

under rotations homogeneous in Fock space. The set of these
transformations defines GL(2|2), i.e., the group of invertible
4 × 4 matrices with anticommuting entries. Invariance under
this symmetry is weakly broken only by the frequency/source
matrix z, which, ignoring the infinitesimal sources, transforms
as ω

2 σ3 → ω
2 T −1σ3T . This reduces the symmetry down to

the transformations diagonal in advanced-retarded (s-index)
space GL(1|1) × GL(1|1).

The essential question now is whether the above weak
explicit symmetry breaking is spontaneously broken in the
matrix integral (much as a weak explicit symmetry breaking
by a finite magnetic field gets upgraded to spontaneous sym-
metry breaking in a ferromagnetic phase). In the latter case,
we expect a soft Goldstone mode whose mass is set by the
symmetry-breaking parameter ω and ω−1 singularities in line
with the observation above. To investigate this question and
the consequences in the observables K (ω) and Iq, we next
subject the theory to a stationary-phase analysis.

IV. EFFECTIVE THEORY

In this section we map the exact theory (26) to an approx-
imate but more manageable effective theory. The conceptual
steps are standard and consist of a saddle-point analysis, fol-
lowed by a Ginzburg-Landau-style expansion (see Sec. VI)
of the exact action in fluctuations around a homogeneous
saddle point.

We have already established the presence of an exact (in
the limit ω → 0) rotational soft mode isotropic in Fock space.
Since much of the analysis below will focus on strong Ĥ2

with eigenvalues vn of Ĥ2 comparable to or exceeding the Ĥ4,

013023-9



MONTEIRO, MICKLITZ, TEZUKA, AND ALTLAND PHYSICAL REVIEW RESEARCH 3, 013023 (2021)

we anticipate that fluctuations of lowest action cost will be
commutative in the sense [Ĥ2,Y ] = 0. We thus start from an
ansatz 〈n|Y |m〉 = Ynδnm where fluctuations are diagonal in the
occupation basis. In view of the fermion parity conservation of
both Ĥ2,4, we focus on a sector of definite parity, chosen to be
even. The locality of Ĥ2 in the occupation number basis is in
competition with the hopping described by P . However, what
works to our advantage is that the action of P on the states Y
is remarkably simple: Thinking of Ynm as the matrix elements
of a density matrix Yn represents a state without off-diagonal
matrix elements. It is a nontrivial feature of P that it preserves
this structure, (PY )m = ∑

n P|n−m|Ym, i.e., the adjoint action
X̂aY X̂a on Fock-space diagonal matrices Y does not generate
superpositions of off-diagonal states. A straightforward com-
binatorial exercise shows that (see Appendix B for details)

P0 = N (N − 1)

2ρ
, P2 = 4(N − 2)

ρ
, P4 = 16

ρ
, (29)

with all other matrix elements vanishing, and normalization∑
m Pm,n = 1. Notice that for a given n, we have

(N
4

)
neigh-

bors with hamming distance 4, connected to n by
(N

4

)
P4

N	1∼
1. This shows that distance 4 hopping is the most important
by phase volume.

With these structures in place, a variation of action (26)
leads to

−iY = 1

z − Ĥ2 + iPY
. (30)

Notice that Y resembles −i times the local propagator (see the
inset of Fig. 7) of site n, dressed with a self-energy iPY due
to hopping via P to neighboring sites. It is this term which
makes the stationary-phase equation nontrivial. In a first step
towards the solution, we neglect imaginary contributions to Y
and focus on the local spectral density Re(Y ) instead. (In the
effective action, the imaginary part of Y describes an energy
shift vn → vn + ImYn, which is inessential to our problem.)
Causality requires sgnY = sgn Imz, i.e., the sign of the self-
energy is dictated by that of the imaginary part contained in
the energy arguments. Otherwise the saddle-point equation is
rotationally invariant in the internal indices of the theory. This
motivates an ansatz

ReY =
∑

n

(ReY )n|n〉〈n| ≡
∑

n

πνn|n〉〈n| ⊗ σ3 ⊗ 1bf (31)

with real coefficients νn. Inspection of Eq. (30) shows that
these coefficients afford an interpretation as a mean-field local
density of states.

Substituting this expression into the equation and tem-
porarily ignoring the small energy argument z as small
compared to both Ĥ2 and Y , we obtain the variational equation

νn = 1

π
Im

1

vn − iκn
,

κn ≡ π (P ν̂)n ≡ π
∑

m

P|n−m|νm, (32)

where ν̂ denotes the matrix diagonal in the occupation basis,
with elements νn, and where we introduce the variational
level hybridization κn. The structure of this equation con-
tains the key to its solution: For vn = 0, the normalization

∑
m P|n−m| = 1 implies that it is solved by κn = 1. In the

chosen units, this is π times the density of states at the SYK
band center. For finite vn, the summation over m implements
an effective average over the connected states, which now
carry random energy. In Appendix C we show that the average
stabilizes the solution (33),

κn � κ�(C − |vn|),

(κ,C) =
{

(1, 1), δ < 1 (regimes I and II)
(δ−1, δ), δ > 1 (regimes III and IV),

(33)

where � stands for equality up to corrections exponentially
small in exp[−(vn/δ)2]. We interpret this result as the spectral
density of sites with energy vn and decay rate κn into neigh-
boring sites. The latter is finite for states below a threshold
|vn| < C. For δ > 1, the rate is given by the energy denom-
inator κ ∼ δ−1 of neighboring sites. In the opposite regime
δ < 1, the energy denominators of states vn ∼ 1 in resonance
with the SYK band width are of O(1), leading to the second
line in Eq. (33).

The saddle-point solutions discussed thus far are distin-
guished for their diagonality in all matrix indices. However,
we now recall that the z = 0 action is invariant under Fock-
space uniform rotations (28), implying that uniformly rotated
saddle-point configurations Yn → TYnT −1 are solutions too.
(Technically, this follows from the cyclic invariance of the
trace.) Next to this uniform Goldstone mode, configurations
Yn → TnYnT −1

n with site-diagonal rotations commutative with
Ĥ2 are expected to cost the least amount of action. With Yn =
πνnσ3, this makes Yn → πνnQn, Qn = Tnσ3T −1

n , the effective
degrees of freedom of the theory, and substitution into Eq. (26)
defines the Goldstone mode integral

Z =
∫

DQ e−S[Q],

S = −π2

2
STr[(ν̂Q̂)P (ν̂Q̂)] + STr ln[z − Ĥ2 + iπP (ν̂Q̂)],

(34)

where Q̂ again denotes the matrix diagonal in the occupation
basis, with elements Qn. In the next two sections, we investi-
gate what this integral indicates about wave-function statistics
and Fock-space localization, respectively.

V. SPECTRAL AND WAVE-FUNCTION STATISTICS

In this section we explore the spectral and wave-function
statistics in regimes I–III. The presumption is that wave
functions are not yet localized and correlated with each
other. This should lead to Wigner-Dyson spectral statistics
and wave-function moments reflecting the extended nature
on the subsets of Fock space corresponding to active or
resonant sites.

To test these hypotheses it is sufficient to consider the in-
tegral (34) in the presence of effectively infinitesimal explicit
symmetry breaking z: Besides the sources j, this parameter
contains a frequency argument ω ∼ D−1 of the order of the ex-
ponentially small inverse many-body level spacing in the case
of spectral statistics, Eq. (22), or the infinitesimal parameter η

in the case of wave-function statistics, Eq. (23). On general
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grounds, we expect the smallness in the explicit symmetry
breaking in a Goldstone mode integral to lead to singular
contributions order of z−n proportional to the inverse of that
parameter after integration. (Inspection of the prefactors ηq−1

in the definition of the wave-function statistics shows that
such singularities are actually required to obtain nonvanishing
results.) These most singular contributions to the integral must
come from the Goldstone mode fluctuations of least action,
which are fluctuations homogeneous in Fock space,

Qn = Tnσ3Tn → T σ3T −1 ≡ Q. (35)

With [T,P] = 0, the substitution ν̂Q̂ → ν̂Q into the action
(34) leads to

S0[Q, j] = STr ln(z − j − Ĥ2 + iκ̂Q), (36)

where we made the dependence z → z − j of the action on the
sources j ≡ jI,n required to calculate moments via Eq. (21)
explicit again and we used that πP ν̂ = κ̂ .

Before proceeding, we note that the structure of this action
is identical to that describing the Rosenzweig-Porter model,
a single random matrix of dimension D containing Gaussian
distributed disorder on the matrix diagonal [46]. An impor-
tant difference is however that the diagonal disorder in the
latter is uncorrelated, while the Fock-space diagonal disorder
induced by Ĥ2 is highly correlated. As a consequence, the
effective action for the Rosenzweig-Porter model only allows
for homogeneous saddle-point solutions [39,46], while here
we encounter solutions that become inhomogeneous in Fock
space once on-site disorder exceeds the Ĥ4 band width. The
inhomogeneity accounts for a site-dependent broadening κn,
induced by correlations in the disorder amplitudes and also
manifests in a separation into regimes II/III of the regime
of nonergodic extended states. In the following, we discuss
what this reduction of the model reveals about spectral and
wave-function statistics.

A. Spectral statistics

To obtain a prediction for spectral correlations based on the
representation (34) with Fock-space zero mode, we consider
the correlation function (8), represented through matrix inte-
gral Green’s functions as in Eqs. (18) and (22). To compute
these quantities from the effective theory, we need to expand
the action (36) to lowest order in the parameter ω/κ ∼ 1/D
and to second order in the sources (20). The straightforward
ω expansion yields [cf. Eq. (D3)]

Sω[Q] ≡ −i
πν(ω + iη)

2
STr(Qσ3), (37)

where ν is the zero-energy density of states (10). What re-
mains is the source differentiation and the integration over
the matrix Q. To get some intuition for the integral, note that
the nonlinear degree of freedom Q = T σ3T −1 affords a rep-
resentation Q = UQ0U −1, where U contains various compact
angular variables (cf. Appendix E) and

Q0 =
(

cos θ̂ i sin θ̂

−i sin θ̂ − cos θ̂

)
, (38)

a rotation matrix in causal space. Diagonal in superspace,
this matrix is parametrized in terms of the two Bogoliubov

angles θ̂ = (iθb, θf )T , where θf ∈ [0, π ] is a compact rotation
variable and θb ∈ R+ a noncompact real variable. This rep-
resentation reveals the geometry of the integration manifold
as the product of a sphere θf and a hyperboloid θf (coupled
by variables contained in U ). Where the physics of nonpertur-
bative structures in spectral and wave-function statistics and
localization is concerned, the most important player is the
noncompact variable θb as only this one has the capacity to
produce singular results. Heuristically, one may think of the
model reduced to its dependence on this variable as a noncom-
pact version of a Heisenberg model, containing hyperboloidal
rather than compact spins as degrees of freedom.

Referring for details of the source differentiation and
the subsequent integration over the matrix Q [45] to
Appendix E, the above reduction of the model yields the
GUE spectral correlation function (9) for the spectral statistics
on scales of the many-body level spacing in regimes I–III.
With increasing energies, the assumption of homogeneity of
fluctuations in Fock space breaks down (cf. the next section)
beyond a Thouless energy whose value depends on the spe-
cific observable under consideration.6 However, the detailed
investigation of Thouless thresholds for the present model is
beyond the scope of the paper.

B. Wave-function statistics

In the same manner, we may consider the local moments
of wave functions (11), represented via Green’s functions
(18) and obtained from the matrix integral through Eq. (23).
A key feature of this expression is that it contains a limit
limη→0 ηq−1(· · · ); the factor ηq−1 must thus be compensated
for by an equally strong singularity η1−q from the inte-
gral, where η couples through z = iησ3. Setting ω = 0 in
Eq. (37) and integrating over the functional differentiated in
sources (a calculation detailed in Appendix E) then yields the
moments (12)–(14).

The support of wave functions in regimes II and III is dif-
ferent [as indicated by the different value of Dres in Eqs. (14)],
while the density of states (DOS) (10) assumes the same
value. The reason for this is that, in regime II, there is no
distinction between active and resonant sites: There are order
of D/

√
Nδ active sites contributing with unit weight to the

DOS. By contrast, in regime III, the dominant contribution to
the DOS comes from the smaller number of Dres ∼ D/

√
Nδ2

resonant sites, with sharply peaked spectral weight order of δ,
ν ∼ Dresδ ∼ D/

√
Nδ.

C. Comparison to numerics

To numerically check the predictions for the statistics
of many-body wave functions and spectra, we calculated
eigenfunctions and spectrum from exact diagonalization of

6Unlike with low-dimensional single-particle problems, the ef-
fectively high dimension of Fock space implies nonuniversality of
the Thouless energy. For example, nonzero-mode corrections to
the spectral form factor (the Fourier transform of the two-point
correlation function in energy) and the two-point function itself,
respectively, become visible at different energy scales.
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the Hamiltonian Ĥ = Ĥ4 + Ĥ2 [see (1) and (3)] for {vi} ob-
tained by diagonalizing (2) as a one-body problem, for 2N =
22, 26, 30 Majorana fermions and varying values of δ. We
kept 1

7 of the total spectrum and verified both a nearly constant
density of states and that results remain unchanged when we
restrict to a smaller energy window. From the selected eigen-
functions in the center of the band, we calculated the statistics
of the moments of the wave function according to Eq. (11).
The eigenfunctions are normalized in each definite parity sub-
space. For the spectrum we compared the numerical statistical
distribution with both Wigner-Dyson and Poisson distribu-
tions by calculating the Kullback-Leibler divergence KL ≡
D(P||Q) = ∑

k pk ln( pk

qk
), where pk is the spectral statistics

from numerical data and qk the respective distribution. In or-
der to avoid level unfolding, we followed Ref. [40] and studied
the statistics of ratios of energy spacings r j = min( s j

s j−1
,

s j−1

s j
),

where s j = ε j+1 − ε j is the nearest-neighbor spacing of the
eigenenergies {ε j}. The qk are then given by numerically
integrating either the Wigner-Dyson or the Poisson distribu-
tion for the variable r over each bin centered at rk , given
by Ref. [47],

P(r) =
{

81
√

3
2π

(r+r2 )2

(1+r+r2 )4 + δP(r) [Wigner-Dyson (GUE)]

2
(1+r)2 (Poisson),

(39)

where δP is a numerical correction given by δP = 2C
(1+r)2 [(r +

1/r)−2 − c2(r + 1/r)−3], with c2 = 4(4 − π )/(3π − 8) and
C = 0.578 846 is obtained from fitting numerical results in
the GUE [47].

In all figures the numerical values result from averaging
over eigenvectors and the spectrum, taken from the band cen-
ter and from both parity sectors, of at least 1000 independent
realizations of the model. In computing the Kullback-Leibler
divergence, the numerical distribution for r j is obtained by
splitting the interval [0, 1] into 50 bins of equal widths.

VI. EXTENDED-TO-LOCALIZED TRANSITION

In regimes II and III, the dominant contribution to the ma-
trix integral at the lowest energies comes from homogeneous
contributions Q. Upon approaching the localization threshold
III/IV, inhomogeneous fluctuations Q → Q̂ = {Qn} gain in
importance and eventually destabilize the mean-field theory.
To describe this physics, we need an effective action gener-
alized for inhomogeneous fluctuations and more manageable
than Eq. (34). We derive it in Appendix D under the assump-
tion that the sum over a large number of fluctuating terms
represented by the term P (ν̂Q̂) is largely self-averaging. An
expansion to lowest order in fluctuations around the homoge-
neous average then leads to the effective hopping action

S[Q] = SP [Q] + Sω[Q],

SP [Q] = π2

2

∑
n,m

νnνmPn,mStr(QnQm), (40)

Sω[Q] = −iπ
∑

n

νnStr(zQn), (41)

where Qn = T −1
n σ3Tn and Str traces only over internal degrees

of freedom. Equations (40) and (41) are the main result of this
section. Depending on the value of κn [Eq. (33)], this action
describes the entire range from vanishing to large deforma-
tions Ĥ2. We next discuss what this action reveals about the
ergodic-to-localization transition.

The key element in this problem is the hopping term (40),
where Q matrices at Ĥ4-neighboring sites are coupled, subject
to a weight which contains the local spectral densities. In an-
alytic approaches to localization on high-dimensional lattices,
it is common to set these weights to unity. However, in view
of the massive site-to-site fluctuations of νn, we prefer not to
make this assumption and work with a given realization {νn}
for as long as possible. Approaching the transition from the
localized side where the integration over Q’s is subject to only
small damping νn, the essential degrees of freedom are once
again the noncompact variables θb contained in Q0 [Eq. (38)].

To better understand the significance of this structure,
we write QnQm = (Qn − σ3)(Qm − σ3) + σ3Qn + σ3Qm − 1

to represent the hopping part of the action as

SP [Q] = π
∑

n

�nStr(Qnσ3)

+ π2

2

∑
n,m

νnνmPn,mStr[(Qn − σ3)(Qm − σ3)],

where �n ≡ νn
∑

m Pn,mνm. Consider a situation where the
accumulate hopping weights �n out of site n are small. In
this case, large fluctuations of the noncompact angles λb,n ≡
cosh(θb,n) dominate the functional integral. To understand the
consequences, we note that the measure of the Q integration
in the angular representation is given by [45]∫

dQ =
∫

dU
∫ 1

−1
dλf

∫ ∞

1
dλb

1

(λb − λf )2
,

where λf = cos(θf ). For small typical values � ∼ �n 
 1, the
exponential weights effectively cut off the integration over
λb at ∼�−1 	 1. Individual terms in the second line of the
above representation of SP are smaller than the accumulated
weights in the first line, and so the integral can be approached
by perturbative expansion in the hopping terms. As an ex-
ample, consider the sixth-order expansion indicated via the
highlighted links in Fig. 6. Retaining only the information on
the noncompact integrations λ ≡ λb, the contribution with a
loop (left) and that with doubly occurring links evaluate to∫ �−1

1

dλ1

λ2
1

dλ2

λ2
2

dλ3

λ2
3

dλ4

λ2
4

λ3
1λ

3
2λ

2
3λ

2
4 ∼ �−6 (loop),

∫ �−1

1

dλ1

λ2
1

dλ2

λ2
2

dλ3

λ2
3

λ3
1λ

5
2λ

2
3 ∼ �−7 (no loop), (42)

where the indices refer to the participating Q matrices Q1,...,4.
This estimate shows that the contribution of loops in the
perturbation expansion is suppressed. At the same time,
the largeness of the individual contributions signals that
infinite-order summations are required. The effective-medium
approximation achieves this summation, loops excluded. The
approximation is called an effective medium because from the
perspective of individual sites in Fock space the contribution
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FIG. 8. Idea of the effective-medium approximation. Sites n are
connected to the stems of coral-like structures, each labeled by a con-
nected neighbor m, which represent the summation over all hopping
terms excluding loops. The recursive nature of the structure allows
for a self-consistent resummation.

of all hopping processes terminating at that site adds up to the
influence of an effectively homogeneous background medium,
transmissive or not depending on the strength of the couplings.

To see how this comes about, consider a site n with local
configuration Qn and let �n,m(Qn) = ∫

coral m,Q DQ e−S[Q] be
the contribution to the functional integrated over all links con-
nected to n via the neighbor m, through the loopless coral-like
structure indicated in Fig. 8. The essence of the approximation
is the recursion relation

�nm(Q) =
∫

dQ′Nwnm (Q, Q′)e−S0(Q′ )
∏

o

�mo(Q′),

Nw(Q, Q′) = ew Str(QQ′ ),

where the product extends over all sites o connected to m by
hopping, S0(Q) ≡ Sω→iδ (Q) acts as a convergence generating
factor, and we defined

wnm ≡ π2

2
νnνmPn,m (43)

for the coupling constants weighting the hopping kernel. If
we now take the product �n(Q) ≡ ∏

m �n,m(Q) [assuming
self-averaging in the sense that the fully integrated amplitude
�n depends on the terminal site n but not on the detailed val-
ues of the O(N4) neighbor amplitudes], the equation assumes
the form

�n(Q) =
∏

m

∫
dQ′Nwn,m (Q, Q′)�m(Q′),

where the presence of the convergence generator exp(−S0)
is left implicit. In the deeply localized regime Nwn,m ≈ 1, the
integral decouple and �n = 1 is a solution by supersymme-
try (i.e., the unit normalization of all sourceless integrals
in the present formalism). This suggests [45] a linearization
�n(Q) = 1 − �n(Q), where the emergence of a nontrivial
solution �n is taken as a criterion for the localization transi-
tion. Substituting this ansatz into the equation and again using
supersymmetry

∏
m

∫
dQ′Nw(Q, Q′) = 1, we obtain

�n(Q) =
∑

m

∫
dQ′Nwnm (Q, Q′)�m(Q′). (44)

This is a linear integral equation governed by a random lattice
structure in Fock space via the couplings wnm and an internal
structure encoding the randomness of the Ĥ4 system via the Q′
integrals. Although the integral equation may look helplessly
complicated, progress is possible recalling our previous ob-
servation: We again have a situation where the Q integrations
extend over wide parameter intervals such that the leading
noncompact variable is the key player. Assuming that the so-
lutions depend on the noncompact variable as �(Q) → �(t ),
t ≡ ln(λ1/δ), and referring to Ref. [48] for details of the
integration over remaining variables, the reduction of Eq. (44)
to the regime of interest t 
 0 and wmn 
 1 reads

�n(t ) =
∑

m

∫
dt ′Lwmn (t − t ′)�m(t ′),

Lw(t ) =
( w

2π

)1/2
e−w cosh(t )+t/2

(
w cosh t + 1

2

)
. (45)

Reference [48] contains a pedagogical discussion of the solu-
tion of the homogeneous variant wmn = const of this equation,
including the somewhat subtle issue of boundary conditions.
It turns out that the key to the stability of the localized solution
� = 1 lies in the spectrum of the linear kernel {Lwmn (t − t ′)}:
A spectrum with lower bound ε > 1 means that perturba-
tions δψ will grow under the application of the linearized
kernel, signifying destabilization of the null solution � = 1.
We thus declare the existence of a minimal eigenvalue ε = 1
as a delocalization criterion. Due to translational invariance
in t − t ′ eigenstates are of the form eθ (t−t ′ )�n, where the
coefficients are determined by the reduced equation �n =∑

m Lθ,nm�m, with

Lθ,nm =
∫ ∞

−∞
dtLwmn (t )e−θt .

Substitution of the kernel in Eq. (45) followed by differen-
tiation in θ shows that the positive matrix Lθ,nm assumes its
smallest values at θ = 1/2 and the straightforward integration
at that value defines the matrix

Lnm ≡ L1/2,nm

=
(wnm

2π

)1/2
∫

dt e−wnm cosh t

(
wnm cosh t + 1

2

)

�
(wnm

2π

)1/2
ln

(
2

wmn

)
.

We thus arrive at the eigenequation

�n = 2
√

π√
ρ

∑
|n−m|=4

anm�m,

anm = √
νnνm ln

(
ρ

(2π )2νnνm

)
, (46)

where the sum extends over Z ≡ (N
4

)
sites in Hamming dis-

tance 4 to the reference site7 n and we recall that ρ ≡ (2N
4

)
. We

7We here neglect the parametrically smaller number of sites with
|n − m| = 2 connected to n by matrix elements changing the occu-
pation of just two fermion orbitals.
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read Eq. (46) as an equation for the existence of a unit eigen-
value whose solvability depends on the value of δ determining
the local density of states νn. In Appendix F we show that the
summation in this equation is dominated by resonant sites and
how this simplifies its logarithmic dependence. Once again us-
ing the self-averaging feature to replace the sum by an average
over the distribution of νm, we find that Eq. (46) has a solu-
tion for δ = δc determined by the criterion (F3). In the limit
N 	 1 the latter simplifies to Eq. (16). However, as discussed
in Sec. II E, the numerical data for small values N = 101

responds sensitively to such approximations and improved
agreement is obtained by working with the solution (F3).

VII. DISCUSSION

In this paper we have presented a first-principles analysis
of Fock-space localization in the Majorana SYK4+2 model,
describing a competition of the two-body interaction and one-
body potential. Within this setting, we provided a complete
description from an ergodic regime, over an intermediary
regime of nonergodic extended states to the localized phase,
all formulated in the eigenbasis of the one-body Hamiltonian.
Our main results are the identification of the MBL transition
point and the quantitative characterization of wave functions,
particularly in regimes where they are neither localized nor
trivially extended.

We compared the analytical results to numerical data
for systems of size N = 11–15 without fitting parameters.
For systems of this size, the intermediate regime II is too
narrow for a reliable comparison. However, in the ergodic
regimes I and the strongly nonergodic regime III we obtained
good agreement between analytical and numerical results.
The finite-size scaling of both wave-function and spectral
statistics revealed an Anderson transition at a critical point
which agreed with the theoretically predicted value up to
a size-independent numerical constant of O(1). In view of
the numerous large-N approximations involved in the con-
struction of the theory, we consider this a reassuring test for
the applicability of localization theory on high-dimensional
lattices to realistic systems.

Conceptually, the main contribution of the present work is
an analytical description which actually is not more complex
than theories for phenomenological models of MBL. The
high coordination number of the microscopic Fock space gave
the system self-averaging properties facilitating its analytic
description. The resulting theory was tested for small-size
systems N = O(10). However, it is expected to work better
the larger N is, while the situation with computers is the other
way around. On this basis, one may be cautiously optimistic
that the concepts discussed here may become building blocks
for the description of more complex MBL problems, including
those with spatial structure.
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APPENDIX A: DERIVATION OF THE ACTION (26)

We here derive the action (26) from the averaged
functional (24). We start by rewriting the quartic term
as (ψ̄X̂aψ )2 = STr[(ψψ̄X̂a)2]. To decouple this nonlinear-
ity, we multiply the functional with the unit normalized
Gaussian integral 1 = ∫

DA exp[− 1
2

∑
a STr(AaX̂a)2], where

DA ≡ ∏
a dAa and Aa = {Ass′,σσ ′

nn′ } are 4D-dimensional matri-
ces. A shift Aa → Aa + wψψ̄ then removes the quartic term
and the subsequent integration over ψ leads to

Z[ j] =
∫

DA exp

[
− 1

2

∑
a

STr(AaX̂a)2

− STr ln

(
Ĝ−1 + w

∑
a

Aa

)]
,

where Ĝ−1 = z − Ĥ2 and we changed Aa �→ X̂aAaX̂a. We
now observe that the nonlinear part of the action couples
only to the combination

∑
a Aa. This motivates the defini-

tion Aa = i
ρ

(Y + Ya), where the factor of i is included for
later convenience and

∑
a Ya = 0. Adding a Lagrange mul-

tiplier i
ρ

∑
a STr(Ya�) to enforce the constraint, we are led

to consider the functional Z[ j] = ∫
DY D� exp(−S[Y,�]),

with action

S[Y,�] = − 1

2ρ2

∑
a

STr[(Y + Ya)Pa(Y + Ya)]

+ i

ρ

∑
a

STr(�Ya) + STr ln(Ĝ−1 + iwY ),

where ρ = (2N
4

)
and we defined the operator P̂aB = X̂aBX̂a.

Note that P̂a is self-inverse, P̂2
a B = X̂ 2

a BX̂ 2
a = B, and Hermi-

tian in the sense that STr(CP̂aB) = STr(P̂aCB). We now do
the Gaussian integrals over Ya to obtain

S[Y,�] = −STr

(
ρ

2
�P� + i�Y

)
+ STr ln(Ĝ−1 + iwY ),

where P = 1
ρ

∑
a P̂a. The Gaussian integration over � may

now be performed and after rescaling Y → ρ1/2Y and defin-
ing γ = wρ1/2 = J

2 (2N )1/2 we obtain the action S[Y ] =
− 1

2 STr(YP−1Y ) + STr ln(z − Ĥ2 + iγY ). In a final step, we
perform a linear transformation P−1Y → Y and recall that in
our units J2 = 2/N and γ = 1 to arrive at Eq. (26).

APPENDIX B: OPERATOR P

In this Appendix we discuss the action of the operator
P states |n〉〈n| diagonal in the occupation number basis. To
this end, note that for a state |n〉 = |n1, . . . , ni, . . . , nN 〉, the
action of the Majorana operator χ̂2i = ci + c†

i produces the
state |ni〉 ≡ χ̂2i|n〉 = |n1, . . . , n̄i, . . . , nN 〉, where n̄ is 0 for
n = 1 and vice versa. Similarly, χ̂2i−1|n〉 = i(−)ni |ni〉. Except
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for ni all other occupation numbers remain unchanged and
no superpositions of states are generated. The adjoint ac-
tion thus generates χ̂2i|n〉〈n|χ̂2i = χ̂2i−1|n〉〈n|χ̂2i−1 = |ni〉〈ni|,
which we interpret as nearest-neighbor hopping in Fock
space. Notice that (χ̂2iχ̂2i−1)|n〉〈n|(χ̂2i−1χ̂2i ) = |n〉〈n| leaves
the state unchanged.

With these structures in place, it is straightforward to
describe the action of P|n〉〈n| = 1

ρ

∑
a X̂a|n〉〈n|X̂a. The sum-

mation contains contributions changing the particle number
|n| by 0, 2, and 4. With Pn,m = 〈m|(P|n〉〈n|)|m〉, the diagonal
contribution P0 is obtained from the

(N
2

)
terms of the struc-

ture χ̂2iχ̂2i+1χ̂2βχ̂2β+1. Similar counting for the contributions
changing |n| by 2 and 4 gives the matrix elements in (29) and
it is verified that∑

m

Pm,n =
(

N

0

)
N (N − 1)

2ρ
+

(
N

2

)
4(N − 2)

ρ
+

(
N

4

)
16

ρ

= 1. (B1)

APPENDIX C: SADDLE-POINT EQUATIONS

In this Appendix we address the solution of the saddle-
point equation (32). The nontrivial element in this equation
is the quantity κn ≡ π (P ν̂)n in the denominator. In terms of
this quantity, Eq. (32) becomes the simple algebraic equation
(33). A closed yet site nonlocal equation for κ is obtained by
acting on Eq. (32) with the operator P ,

κn =
∑

m

P|n−m|Im
1

vm − iκm

=
∑

m

P|n−m|Re
∫ ∞

0
dt eivmt−κmt ,

where in the second line we switch to a temporal Fourier rep-
resentation to facilitate the treatment of the argument vm. The
solution of this equation relies on two conceptual elements,
first the ansatz (33) and second a replacement of the sum over
the ρ neighboring sites m by a Gaussian average over energies
vm. Specifically, we note that up to corrections small in N−1,
the neighbor sites m are separated by Hamming distance 4
from n and each change in ni changes vn �→ vn ± 2vi. This
means that vm = vn + v, where we assume v to be Gaussian
distributed with width

√
42δ = 4δ. Substituting the ansatz

κm = κ�(C − |vm|) into the equation and splitting the inte-
gral over v into regions with C − |vm| = C − |vn + v| smaller
and larger than zero, respectively, we obtain, after shifting
v �→ v − vn,

κn = 1√
32πδ

Re
∫ ∞

0
dt

(∫
dv e−(v−vn )2/32δ2

+
∫ C

−C
dv e−(v−vn )2/32δ2

(e−κt − 1)

)
eivt .

With Re
∫ ∞

0 dt eivt = πδ(v), the first and the third term in the
second line cancel out, and the t integration of the second
term gives

κn =
√

π√
32δ

∫ C

−C
dv e−(v−vn )2/32δ2 κ

π (v2 + κ2)
, (C1)

where the notation emphasizes that the κ-dependent term
effectively represents a δ function δκ (v) = κ

π (v2+κ2 ) in v,
smeared over scales order of κ . This expression defines the
mean-field amplitude κn at site n, in dependence on the toler-
ance window C for the energy vn, and κ itself. We now explore
for which configurations (C, κ ) it represents a self-consistent
solution.

The details of this analysis depend on whether we work
with weakly (I and II) or strongly (III and IV) distributed
on-site energies.

Strong on-site disorder regimes III and IV. Anticipating
that all solutions satisfy κ 
 1, the width of δκ (v) is much
smaller than that of the Gaussian weight δ. The function δκ

thus collapses the integral and we obtain

κn =
√

π√
32δ

e−v2
n/32δ2

. (C2)

This is consistent with our ansatz with C = 2δ and κ ∼ δ−1.
Narrow on-site disorder regimes I and II. In these regimes,

we test for the validity of the ansatz with C = 1 and
κ = 1. First assume |vn| > 1 = C 	 δ. In this case, the
ansatz requires exponentially suppressed κ , the δv function
again becomes effective, and the integral collapses to κn =√

π√
32δ

exp(− v2
n

32δ2 ), consistent with the assumed smallness of κ .
Conversely, for |vn| < 1 = C, the ansatz requires κ = 1. The
function δκ = δ1 is now much wider than the width of the
Gaussian, order of δ, and the integration boundaries can be
extended to infinity. Doing the integral, we obtain κn ≡ κ =
1/κ , or κ = 1, consistent with Eq. (33).

APPENDIX D: EFFECTIVE MATRIX THEORY

In this Appendix we discuss the derivation of Eqs. (40) and
(41) from Eq. (26). In Eq. (26) we substitute Y → πν̂Q̂ with
Qn = Tnσ3T −1

n . The expansion of the action in fluctuations
then comprises three parts: the Gaussian weight, the expan-
sion of the Str ln in site-to-site fluctuations, and the expansion
of the Str ln in small frequency arguments z (reflecting the
noncommutativity [z, Tn] �= 0).

Gaussian weight. A straightforward substitution yields

− 1

2
STr(YPY ) → −π2

2
STr[ν̂Q̂P (ν̂Q̂)]

= −π2

2

∑
nm

νnνmP|n−m|StrQnQm, (D1)

where STr includes the Fock-space trace, while Str is only
over internal degrees of freedom.

Fluctuation action. Substituting the ansatz into the Str ln
and temporarily neglecting the frequency arguments z,
we obtain

STr ln[−Ĥ2 + iπP (ν̂Q̂)]

= STr ln[−Ĥ2 + iT̂ −1πP (ν̂Q̂)T̂ ]

= STr ln{−Ĥ2 + iπP (ν̂σ3)

+ iπ [T̂ −1P (ν̂Q̂)T̂ − P (ν̂σ3)]}
� STr ln{1 + π2ν̂σ3[T̂ −1P (ν̂Q̂)T̂ − P (ν̂σ3)]}
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� π2STr{ν̂σ3[T̂ −1P (ν̂Q̂)T̂ − P (ν̂σ3)]}
= π2STr[ν̂Q̂P (ν̂Q̂)], (D2)

identical to (−2×) the Gaussian weight. In the sec-
ond line we used the cyclic invariance STr ln(· · · ) =
STr ln[T̂ −1(· · · )T̂ ] and in the fourth the saddle-point equation
[−Ĥ2 + iπP (ν̂σ3)]−1 = −iπν̂σ3.

Frequency action. In a similar manner, we obtain

STr ln[−Ĥ2 + iπP (ν̂Q̂) + z]

� STr ln{T̂ [−Ĥ2 + iπP (ν̂σ3)]T̂ −1 + z}
= STr ln[−Ĥ2 + iπP (ν̂σ3) + T̂ −1zT̂ ]

� −iπSTr(ν̂σ3T̂ −1zT̂ ) = −iπSTr(ν̂Q̂z), (D3)

where in the second line we neglected local fluctuations
P(ν̂T̂ σ3T̂ −1) � T̂ P(ν̂σ3)T̂ −1, in the third we used cyclic in-
variance, and in the fourth we used the saddle-point condition.
Combining terms, we obtain the effective action (40).

APPENDIX E: WAVE-FUNCTION AND SPECTRAL
STATISTICS FROM THE MATRIX MODEL

In this Appendix we provide details on the computation
of wave-function and spectral statistics in the deformed Ĥ4

model. The starting point for both statistics is Eq. (36), with
sources j = JK or J = JI,n, respectively, given in Eq. (20).
Using the commutativity [T, Ĥ2] = 0, we represent the
action as

S[T ] = STr ln(1 + ĜOT ) =
∞∑

k=1

(−1)k

k
STr(ĜOT )k,

where OT ≡ T −1[z − j(α, β )]T is an operator in which we
need to expand to the order required by the correlation func-
tion and we have made the source contribution j(α, β ) to the
matrix z = ω+iη

2 σ3 explicit again. Concerning the resolvent
Ĝ−1 ≡ iκ̂σ3 − Ĥ2, we notice that fluctuation variables com-
mute through the real part of Ĝ and keep only i ImĜ = −iπν̂,
with local components νn defined in Eq. (32). Specifically, to
zeroth order in the sources and first order in an expansion in
zνn ∼ ω/�, the action assumes the form (37).

For the computation of the spectral and wave-function
statistics, we need the expansion in sources to first order in
β and higher orders in α. With the above definitions, the
expansion of the action assumes the form

S[T ] = −π

∞∑
k=1

(−iνnα)k

(
1

k
[Q++

bb ]k + β

α
[Q++

bb ]k−1Q−−
ff

)
,

(E1)

where in the terms k > 2 we used the approximation
Q+−

bf Q−+
fb � Q++

bb Q−−
ff valid in the limit η → 0 implied in

the calculation of wave-function moments [45]. Doing the
derivatives in the source parameters, we arrive at

∂q−1
α ∂βZ|α,β=0 = (−iπνn)qq!〈[Q++

bb ]q−1Q−−
ff 〉, (E2)

where 〈· · · 〉 = ∫
dQ e−Sz[Q](· · · ).

The remaining integral over the four-dimensional matrix Q
is conceptually straightforward but technically the hardest part

of the calculation. Referring for details to Ref. [45], here we
review the main steps. The starting point is a polar coordinate
representation Q = UQ0U −1, with Q0 defined in Eq. (38), and
θ̂ = diag(iθ̂b, θ̂f ) containing compact and noncompact angles
0 < θf < π and θb > 0, respectively [45]. The matrix U is
block diagonal in causal space and contains four Grassmann
variables η± and η̄± and two more commuting variables
0 � φ and χ̂ < 2π . More specifically, U = diag(u1u2, v)ra,
where u2 = diag(eiφ, eiχ̂ )bf and supermatrices u1 = e−2η̂+

and v = e−2iη̂−
, generated by η̂± = (

0 η̄±
−η± 0 )bf . In this

representation, the matrix elements entering the correlation
function are given by Q++

bb = cosh θbb(1 − 4η̄+η+) and
Q−−

ff = cos θff (1 − 4η̄−η−) and the integration measure reads
dQ = 1

26π2
sinh θb sin θf

(cosh θb−cos θf )2 dφdχ̂dθbdθfd η̄+dη+d η̄−dη− [45].
The essential advantage of the polar representation is
that the action only depends on the radial variables
Sη[Q] = −i2πν(ω + iη)(cosh θb − cos θf ).

Wave-function statistics. In the calculation of the wave-
function moments, we may set ω = 0. The integration over
the noncompact angle is then cut by the parameter η at values
1 � cosh θb � 1/η, while the integration over the compact an-
gles θf is free. With this simplification, the integration over all
variables except the noncompact one θ becomes elementary
and one obtains [45]

G+(q−1)
nn G−

nn = 2q(q − 1)(−iπνn)q

×
∫ ∞

0
dθb sinh θb(cosh θb)q−2e−2πνη cosh θb .

(E3)

The final integral gives (2πνη)1−qq! and collecting all factors
we arrive at

Iq = q!

νq

∑
n

νq
n . (E4)

This result expresses the qth moment of the local wave-
function amplitudes through that of the local density of states
individually averaged over Ĥ4 fluctuations. The energies vn

at each individual site are obtained as sums of N random
coefficients vi [cf. Eq. (3)]. For large N , this makes the sum
self-averaging, and we replace Iq → 〈Iq〉v by its average over
single-particle energies vi. Using Eq. (32), we thus obtain

Iq = (−)q−1q

(πν)q

∑
n

(κn)q

〈
∂

q−1
(κn )2

1

v2
n + (κn)2

〉
.

The evaluation of this expression now depends on which
on-site disorder regime we are in. In regime I, δ < N−1/2

or |vn| < 1, the mean-field broadening assumes the uniform
value κ = 1. In this case, the dependence of Iq on site ener-
gies vn is weak. This implies ν � 1

π

∑
n 1 = D/π . Doing the

κ derivatives, we obtain

Iq = q!D1−q in regime I, (E5)

which is the RMT result for a matrix of dimension D.
For larger disorder, only a fraction of sites have finite decay

width. Using Eq. (33) and assuming self-averaging to replace
the n sum to an average over a distribution of site energies of
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width δN , the DOS is evaluated as

ν � 1

π

D√
2πNδ2

∫ C

−C
dv e−v2/2Nδ2 κ

v2 + κ2

� 1

π

D√
2πNδ2

∫ C

−C
dv

κ

v2 + κ2

= 1

π

2D√
2πNδ2

arctan(C/κ ),

where in the second line we used that the distribution of ener-
gies is much wider than the tolerance window C. Substituting
the values specified in Eq. (33), this leads to

ν = c
D√
Nδ

, (E6)

where c is of order unity and the suppression relative to
ν = cD in regime I accounts for the improbability to find
resonant sites.

In the same manner, we obtain

Iq � (−)q−1q

(πν)q

D√
2πNδ2

κq∂
q−1
κ2

∫ C

−C
dv e−v2/2Nδ2 1

v2 + κ2

� (−)q−1q

(πν)q

D√
2πNδ2

κq∂
q−1
κ2

∫ C

−C
dv

1

v2 + κ2

= 2
(−)q−1q

(πν)q

D√
2πNδ2

κq∂
q−1
κ2

1

κ
arctan(C/κ )

� 2
(−)q−1q

(πν)q

D√
2πNδ2

κq∂
q−1
κ2

1

κ

= 1

(πν)q

D√
2πNδ2

2q(2q − 3)!!

(2κ )q−1
,

where � means equality up to some constant c ∼ O(1). In-
sertion of Eq. (E6) leads to Eq. (13). Using Eq. (33), we
finally obtain

Iq = cqq!

(
D√
N

)1−q

×
{
δq−1 in regime II
δ2(q−1) in regime III

(E7)

for q 	 1. Finally, for a quantitative comparison to numerical
simulations in regime III without fitting parameter we trace all
constants c ∼ O(1) in ν and Iq. Noting that in regime III we
can substitute arctan(C/κ ) = π/2, we arrive at

Iq = q(2q − 3)!!

(2πνκ )q−1
= q(2q − 3)!!

δ2(1−q)

(
πD

4
√

N

)1−q

in regime III,

(E8)

where in the second equality we used Eq. (C2) for κ .
Level statistics. For the level statistics we need to keep

finite ω and differentiate the functional to first order in
α and β [Eq. (22)]. Application of Eq. (E2) then leads to [45]

K (ω) = 1

2
Re

∫ ∞

0
dθb

∫ π/2

−π/2
dθf

× sinh θb sin θf e
iπνω(cosh θb−cos θf ), (E9)

where θb and θf are the noncompact bosonic and compact
fermionic angle, respectively. These integrals can be carried

out in closed form and yield the two-point correlation function
of the Gaussian unitary ensemble (9).

APPENDIX F: LOCALIZATION CRITERION

In this Appendix we demonstrate how the solution of the
eigenvalue equation (46) reduces to the criterion (16). We
write the sum as

�n = 2
√

π√
ρ

∑
|n−m|=4

anm�m,

anm = √
νnνm ln

(
ρ

(2π )2νnνm

)
and make the self-consistent assumption that the sum over
neighboring sites m is dominated by resonant sites and that
the solution �n too is peaked at those sites. Under these
conditions it makes sense to consider a zeroth-order ap-
proximation anm � a0

nm ≡ √
νnνm2 ln(

√
ρ/2πνm), neglecting

site-to-site fluctuations of the logarithm. In a final step we
will refine the result by perturbation theory in δanm ≡ anm −
a0

nm = √
νnνm ln(νm/νn). Making the replacement anm → a0

nm,
we observe that the equation is solved by �n ∝ √

νn, provided

1 = 4
√

π√
ρ

∑
m

νm ln

( √
ρ

2πνm

)
, (F1)

where the sum extends over the Z ≡ (N
4

)
sites in Hamming

distance 4 to n (i.e., the parameter Z defines the effective coor-
dination number of the Fock-space lattice). We note that with
the above eigenstates the first-order perturbative correction
to the unit eigenvalue equation (F1) is given by 〈�|δα|�〉 ∝∑

nm νnνm ln(νn/νm) = 0, which we take as a self-consistent
justification to work with the zeroth-order approximation.
Turning to the consistency equation for the eigenvalue, we
again replace the sum over nearest neighbors by an average
over their distribution of energies (cf. a similar operation in
Appendix C)

∑
m

νm f (νm) � Z〈ν(v) f (ν(v))〉v � Z
f
(√

32δ√
π

)
√

32πδ
,

〈· · · 〉v = 1√
2π4δ

∫
dv e−v2/32δ2

(· · · ).

Here the second equality is based on the observation that on
the subset of active sites v < δ, where ν(v) is nonvanishing,
and ν(v) = π

δ(v2+δ−2 ) becomes a δ function of width order of

δ−1 and height ν(0) = π/κ with κ =
√

π√
32δ

[cf. Eq. (C2)].
The integral collapses to this resonance region, leading to the
stated result. (Effectively, this is saying that only resonant sites
contribute to the nearest-neighbor sum.)

Application of this auxiliary identity to the eigenvalue
equation (F1) leads to

1 = 1√
2ρ

Z

δ
ln

(√
8ρ

π
δ

)
, (F2)

which is solved by

δc = Z√
2ρ

W (2Z
√

π ), (F3)
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with W the Lambert W function. For N 	 1, we may ap-
proximate Z = (N

4

) � N4/24 and ρ = (2N
4

) � (2N )4/4!. The
asymptotic expansion for large arguments W (x) � ln(x) +
· · · then leads to the estimate (16).
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