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Optical and electrical feedback cooling of a silica nanoparticle levitated in a Paul trap
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All three motional modes of a charged dielectric nanoparticle in a Paul trap are cooled simultaneously by
direct feedback to temperatures of a few millikelvins. We test two methods, one based on electrical forces and
the other on optical forces; for both methods, we find similar cooling efficiencies. Cooling is characterized for
both feedback forces as a function of feedback parameters, background pressure, and the particle’s position.
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I. INTRODUCTION

The Paul trap, a long-established tool for trapping atomic
ions for quantum information science [1], has recently been
harnessed as an optomechanics platform with which to trap
charged dielectric micro- and nanoparticles and to cool their
motion toward the quantum regime. In contrast to levitated-
optomechanics experiments based on optical tweezers traps,
which require high laser intensities, in experiments based on
Paul traps, light is used only to probe the motion of a trapped
particle or to manipulate its internal and external degrees of
freedom. This probing field can be significantly weaker than
optical trapping fields, reducing both motional decoherence
induced by random scattering of photons [2] and internal
heating of the levitated dielectric particle [3–5], which in
turn increases trapping stability and avoids irreversible dam-
age to the sample. Moreover, Paul traps have deep potentials
(∼1 keV [6]) and extended trapping regions (∼1 cm3) with
respect to optical tweezers (∼1 eV, 1 μm3 [7]), making Paul
traps well suited for the study of multiparticle or multispecies
interactions [8–10]. These advantages establish Paul traps as a
promising quantum optomechanical platform for testing spon-
taneous wave-function collapse models [11,12], performing
quantum free-fall experiments [13], generating nonclassical
states of motion [14,15], and searching for evidence of the
quantum nature of linearized gravity [16], provided that these
experiments are performed in an ultrahigh-vacuum (UHV) or
cryogenic environment and that the particles are cooled to a
low-temperature state.

Cooling of dielectric micro- and nanoparticles, pioneered
in optical traps, has been achieved with several techniques, in-
cluding direct feedback via cold damping [17–21], parametric
feedback cooling [7], and cavity-assisted resolved-sideband
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cooling [22]. The quantum realm has now been reached in
optical-tweezers-based experiments, exploiting cavity cooling
via coherent scattering [23] as well as feedback cooling via
cold damping [24]. Beyond optical trapping experiments, cold
damping has been used to cool microspheres in a magneto-
gravitational trap [25] and has been applied to a wide range
of physical systems, including micromechanical cantilevers
[26,27], membranes [28], and single atomic ions [29]. In Paul
traps, cooling of dielectric particles has been demonstrated
via parametric feedback on levitated graphene flakes [30]
and nitrogen-vacancy (NV) centers [31], via spin cooling of
librational modes of NV centers [32], and via cavity cooling
of silica nanospheres [33]. To date, the best performance has
been reported in a hybrid trap formed by an optical cavity
overlapped with a Paul-trap potential [34].

In this paper, we report the lowest temperature to date
for a silica nanoparticle trapped in a Paul trap by using a
cold-damping technique. The particle is cooled simultane-
ously along all three trap axes using either an electrical or an
optical feedback force, and we measure temperatures of the
center-of-mass motion of a few millikelvins for both methods.
With regard to optical cooling, we exploit both the gradient
and the scattering forces of a single weak laser beam as a
novel feedback actuator for cooling all modes of oscillation.
Furthermore, we characterize both electrical and optical cool-
ing performance in terms of all relevant parameters to which
we have direct experimental access, namely, feedback gain
and phase, background pressure, and particle position, which
allows us to find an optimum regime to achieve the lowest
temperature possible in our setup. Understanding the cooling
process is important since it is an essential step for various
levitated-optomechanics experiments [35].

The paper is organized as follows: In Sec. II, we describe
optical detection of the nanosphere’s motion and the genera-
tion of electrical and optical feedback forces. In Sec. III, we
present results on three-dimensional (3D) feedback cooling,
the performance of which is ultimately limited by the back-
action of the particle-position measurement. We also show
how the single-axis cooling performance depends on the feed-
back gain, the feedback phase, and the background pressure.
In Sec. IV, exploiting the fact that the mechanisms for the
Paul trap and for optical detection are decoupled, we show
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FIG. 1. (a) Schematic view of the detection and cooling setup for nanospheres: a 978-nm detection laser is focused onto a trapped
nanosphere. Forward-scattered light is collected by a lens and equally split into three branches by a pair of beam splitters (BSs). Each beam is
sent to a balanced photodetector which measures the particle’s vertical or horizontal motion (with respect to the optical table), depending on the
orientation of the D-shaped mirror in front of each detector. The signals from the in-loop detectors are processed by feedback electronics, which
consist of three FPGA cards, and then sent to the feedback force actuators. For optical cooling, the feedback signal is sent to an acousto-optic
modulator (AOM), which modulates the intensity of a 1064-nm cooling laser. The cooling laser follows the same optical path used for the
detection laser up to the levitated particle, after which it is decoupled from the detection path with a dichroic mirror (DM). For electrical
cooling, the feedback signal is sent to the feedback electrodes of the Paul trap. A switch allows us to select which cooling method is applied.
(b) Orientation of the Paul trap’s axes with respect to the laser beams. (c) Image of the Paul trap’s electrodes and its mounting system in the
vacuum chamber. The horizontal tube is part of the particle’s loading apparatus [6]. (d) Example of the measured single-sided power spectral
density (PSD) of the particle’s motion obtained from the axial detector. The red curve is a fit to a Lorentzian function peaked at the axial
oscillation frequency ωz. (e) Example of the measured PSD of the particle’s radial motion. The red curve is a fit to a double-peaked Lorentzian
with the radial oscillation frequencies ωx and ωy. More details about the fits can be found in Appendix A. Exp., experimental; GND, ground.

how cooling along the Paul-trap axes depends on the position
of the particle with respect to both the detection laser beam
and the fields of feedback forces. We summarize our findings
in Sec. V.

II. DESCRIPTION OF THE EXPERIMENTAL APPARATUS

Figure 1(a) shows a sketch of the experimental setup. We
trap single silica nanospheres, 300 nm in diameter, in a four-
rod linear Paul trap. The mass of the particles is on the order
of 10−17 kg; our mass-measurement procedure for individ-
ual particles is described in Appendix B. A laser-induced
acoustic desorption (LIAD) technique [36,37], applied in a
time-controlled manner, is used to charge particles and to load
them into the trap in high vacuum [6].

The four cylindrical rods of the Paul trap are arranged in
a square configuration and provide confinement in the plane
perpendicular to the trap axis; we refer to this as the radial
or xy plane. The diagonal distance between electrodes is

2r0 = 1.8 mm. Two additional DC-biased electrodes, referred
to as end caps, provide confinement along the ion-trap axis,
z. The distance between the end caps is 2z0 = 3.4 mm. The
orientation of the trap axes is depicted in Fig. 1(b), and an
image of the trap mounted in the vacuum chamber is shown
in Fig. 1(c). For the results presented here, the trap is driven at
frequencies between 10 and 15 kHz, with amplitudes ranging
from 400 to 800 V. Typical end-cap voltages lie between +150
and +270 V. With these parameters, we obtain motional fre-
quencies of a few kilohertz along all three trap axes.

We measure a particle’s motion using homodyne detec-
tion [38]: 1 mW of 987-nm laser power is focused at the
particle’s position using an objective mounted outside of
the vacuum chamber on a three-axis translation stage. The
forward-transmitted light and the scattered light from the
particle are then collected by a 0.3-numerical-aperture (NA)
objective and divided into three paths by two beam splitters.
Each of the three beams is split by a D-shaped mirror, and
the two components of each beam are then steered to oppo-
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site ports of a balanced photodiode, such that the resultant
photocurrent is proportional to the particle’s displacement
from the trap center along a given axis. Two of the bal-
anced photodiodes are used for axial and radial detection as
part of the cooling feedback loop, while the third is used
as an out-of-loop detector to calibrate and measure the par-
ticle temperature. Typical power spectral densities (PSDs)
of the particle motion measured along the axial and radial
trap axes at 3.8 × 10−2 mbar are shown in Figs. 1(d) and
1(e), respectively. The resonant frequencies in this case are
(ωx, ωy, ωz )/(2π ) = (2.87, 3.63, 2.42) kHz.

The radial in-loop signal contains information about parti-
cle motion along both the x and y axes. In order to implement
individual feedback control along each axis, the radial sig-
nal is split in two, and tunable bandpass filters isolate the
x motion in one path and the y motion in the other. A fil-
ter is also implemented on the axial (z) signal. Each of the
three signals is then amplified and phase shifted to obtain a
feedback signal proportional to the particle’s velocity along
the respective axis. The feedback electronics are implemented
by field-programmable gate arrays (FPGAs) [39]. The three
feedback signals are then combined and sent to the feedback
force actuators.

Feedback forces on the particle are applied either electri-
cally or optically. Electrical feedback is provided via a pair
of electrodes oriented nearly parallel to the Paul-trap axis
[Fig. 1(b)]. When electrical cooling is on, the field gener-
ated by the electrodes is proportional to the amplitude of
the feedback signal set with the FPGAs. At maximum gain,
the voltage at the feedback electrodes does not exceed 10 V.
The electric field generated by the feedback electrodes has a
projection along all axes of motion, enabling cooling in three
dimensions. Optical feedback is achieved by modulating the
intensity of a 1064-nm laser beam with an acousto-optic mod-
ulator (AOM). This cooling beam is coupled to the particle via
the same objective used for the detection laser. As depicted in
Fig. 1(b), the cooling beam intersects both the x and y axes
at 45◦ and the z axis at 90◦, so that the radiation-pressure
force pushes the particle along both the x and y axes, while
the gradient force pulls it towards the beam focus along the z
axis. When cooling is off, the 1064-nm power at the particle
is 4 mW, and the intensity is 2 × 105 W/cm2, which can be
compared to typical values of 5 × 107 W/cm2 for particles
optically trapped in tweezers [7]. When optical cooling is on,
the cooling-beam power is modulated with an amplitude pro-
portional to the feedback gain, up to 100% of the unmodulated
beam power.

We emphasize that in the presence of both the cooling and
detection beams, the particle’s motional frequencies are mod-
ified by less than 1% due to the gradient forces of the beams,
ensuring that confinement is due to the Paul-trap potential and
that the optical forces act as small perturbations.

III. OPTICAL AND ELECTRICAL FEEDBACK COOLING

A. Cooling along three axes

There are three features of the experimental setup that
allow us to perform cooling in three dimensions. First, both
electrical and optical feedback forces have nonzero projec-

FIG. 2. (a) 3D cooling obtained with optical feedback. The figure
shows axial (blue) and radial (green) PSDs of the particle’s motion
taken at a pressure of 3.8 × 10−2 mbar with feedback off (dark) and
at 2.5 × 10−7 mbar with optical cooling on (light). Black curves are
fits to Lorentzian functions. Data taken at low pressure correspond to
temperatures of Tz = 31(4) mK, Tx = 8(1) mK, and Ty = 8(1) mK.
The additional sharp peak near 2 kHz in the cooled spectrum is due
to feedback electronics and laser-intensity noise. (b) Steady-state
temperature of the motion along the x axis (Tx) as a function of
feedback gain γfb under electrical (blue circles) and optical (red
diamonds) cooling, taken at different pressures. The error bars are
smaller than the data points. Curves are plots of Eq. (2) without any
free parameters. The discrepancy between the lowest-pressure data
and theory suggests that the buffer gas in this experimental situation
is no longer the main source of heating. For each data point, the phase
shift between the detection signal and the applied feedback force was
set to an optimum value as described in Sec. III 3.

tions along all trap axes. Second, we can individually tune
the phase and the gain of the feedback signal for each center-
of-mass mode of oscillation of the nanosphere. Third, each
mode of oscillation can be accessed individually, thanks to
the resonant interaction between the particle motion and the
feedback force.

Figure 2(a) shows typical PSDs of a nanosphere’s center-
of-mass motion with and without 3D optical feedback
cooling. The broader set of PSDs, shown in dark colors, are
taken at a pressure of 3.8 × 10−2 mbar with feedback off in
order to calibrate the detection system. At this pressure, the
particle thermalizes to an equilibrium temperature T0, which
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in the case of a simple harmonic oscillator would be equal to
the temperature of the buffer gas. However, because particles
in the Paul trap are subject to a time-dependent potential, T0

does not necessarily match the background-gas temperature
[40]. For the measurements presented in this paper, T0 in
the xy plane is 1.3 times higher than the temperature of the
gas, which is at 300 K. A more detailed discussion on the
equilibrium temperature in the absence of feedback cooling
can be found in Appendix C. The narrower set of PSDs, shown
in light colors, are taken at 2.5 × 10−7 mbar with feedback on.
From fits to the axial and radial PSDs, we extrapolate tempera-
tures of (Tx, Ty, Tz ) = [8(1), 8(1), 31(4)] mK. With electrical
feedback, we carry out a similar analysis and extrapolate tem-
peratures of (Tx, Ty, Tz ) = [9(1), 8(1), 7(1)] mK. More details
on the fits can be found in Appendix A. The larger value
of Tz obtained under optical cooling is due to a lower feed-
back gain used in that particular experimental realization,
which we found in retrospect was not optimized. These tem-
peratures are three orders of magnitude lower than those
previously reported for levitated-nanoparticle cooling exper-
iments performed in a Paul-trap potential [30–32] and similar
to temperatures achieved along one axis in hybrid electro-
optical traps [34].

B. Single-axis cooling performance

1. Dependence on the feedback gain

A particle’s motion along one axis is decoupled from its
motion along orthogonal axes, allowing us to focus on single-
axis performance to find optimal cooling parameters for each
axis. Here, we study single-axis cooling under both optical
and electrical feedback for a range of parameters, including
pressure, feedback gain, and feedback phase.

In Fig. 2(b), we plot the steady-state temperature Tx

reached using either electrical or optical feedback as a func-
tion of the cooling rate γfb and for three values of the
background-gas pressure. The cooling rate is defined as the
ratio of the feedback force Ffb to the particle’s momentum:

γfb = Ffb

mv(t )
, (1)

where m is the nanosphere’s mass and v(t ) is the nanosphere’s
velocity. We measure γfb as the linewidth of the out-of-loop
PSD of the particle’s motion along the x axis; this linewidth is
proportional to the feedback gain set with the FPGA card. We
find that the temperatures measured under optical cooling do
not significantly differ from those measured under electrical
cooling for the same pressure and feedback parameters. This
result suggests that the cooling laser does not introduce signif-
icant noise and, in particular, that neither radiation-pressure
shot noise nor laser-intensity fluctuations plays a significant
role.

We compare our single-axis experimental results with the
prediction of the cold-damping model of Ref. [21], which
states that

Tx = γ0T0

γ0 + γfb
+ πmω2

x

2kB

γ 2
fb

γ0 + γfb
Sδxil , (2)

where γ0 is the pressure-dependent natural linewidth of the
oscillator, kB is the Boltzmann constant, and Sδxil is the single-
sided PSD of the position-measurement noise as measured
by the in-loop detector. Note that this theory assumes that
collisions with the background gas are the reheating mecha-
nism by which the particle thermalizes at T0 in the absence of
feedback. Equation (2) is plotted with solid curves in Fig. 2(b)
for the three experimental pressure values.

All parameters that enter Eq. (2) are independently esti-
mated in our experiment: The mass m = 1.8(2) × 10−17 kg
is extracted from discrete jumps of the nanosphere’s charge,
a method that we describe in Appendix B. The PSD Sδxil is
directly measured by the in-loop detector, and the motional
frequency ωx is determined from the fit of the PSD measured
at the out-of-loop detector. The linewidth γ0 is measured at
the calibration pressure of 3.8 × 10−2 mbar with feedback
cooling off and then deduced for all other pressures P under
the assumption that in our system, the relation γ0 ∝ P [2,6,41]
holds.

At pressures of 3.5 × 10−4 and 3.5 × 10−5 mbar, the data
and theory curves are in excellent agreement. At all three
pressures shown in Fig. 2(b), the relation γ0 � γfb holds; in
this limit, the first term on the right-hand side of Eq. (2)
predicts a decrease in the temperature Tx inversely propor-
tional to γfb. This term acts to cool the particle below the
background temperature T0, and for low feedback gain, we
observe the inverse dependence on γfb for both sets of ex-
perimental data. For high feedback gain, the second term on
the right-hand side of Eq. (2) becomes dominant. In the limit
γ0 � γfb, this term predicts a temperature increase linearly
proportional to γfb and thus the appearance of a minimum of
Tx. The temperature increases because the feedback amplifies
not only the position measurement but also the unwanted
noise of the measurement, introducing heating into the sys-
tem. For the data taken at 3.5 × 10−5 mbar, we observe a
minimum of Tx, in accordance with the theoretical curve. We
also observe noise squashing at the in-loop detection system,
a known signature of the limit of the cold-damping technique
[20,21,26–29].

At 4.6 × 10−7 mbar, in contrast, the temperatures obtained
for low values of γfb are higher than expected from a theory
based solely on a gas reheating mechanism. This discrepancy
with Eq. (2) is not present on the detection-limited side of the
curve, for high values of γfb, suggesting that the extrapolated
γ0T0 coefficient may have been underestimated. Moreover,
we have found in subsequent measurements that the tem-
perature at this pressure for low values of γfb is sensitive
to the position of the nanoparticle in the trap. One possibil-
ity is that γ0 at these pressures is determined not only by
background-gas collisions but also by a position-dependent
heating mechanism, such as excess particle micromotion [42]
or radio-frequency noise of the Paul trap [43]. The micro-
motion analysis presented in Appendix D shows that for
our experimental parameters, the excess micromotion does
not significantly influence the effective temperature of the
secular motion. Moreover, in our experiments, the nanopar-
ticle position was optimized to minimize the micromotion.
Therefore we suspect the radio-frequency noise as a source
of the discrepancy in Fig. 2(b), but this effect needs further
investigation.
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2. Minimum temperature

The results in Sec. III A correspond to mean phonon oc-
cupation numbers n̄i = kBTi/h̄ωi between 4.6(8) × 104 and
3.4(4) × 105, where i ∈ {x, y, z} and h̄ is the reduced Planck
constant. Given the recent cooling of nanoparticles to the
quantum regime [23,24], it is important to understand what
limits further cooling in this setup.

Minimizing Tx in Eq. (2) with respect to γfb, we see that
the minimum temperature scales as T min

x ∝ √
γ0T0Sδxil . Re-

placing lossy optics in the detection path and substituting a
single quadrant photodetector for the three balanced detectors
would improve Sδxil by a factor of 102 and n̄i by a factor of
10. Moreover, we calculate that switching from detection of
forward-scattered light to a scheme based on self-interference
detection [44] would provide another two orders of magnitude
improvement in Sδxil [45]. To reduce the occupation num-
ber even further at room temperature, one could reduce the
background pressure γ0 or increase the trap frequency ωi.
In the latter case, increasing the number of charges on the
nanoparticle or decreasing the particle’s mass will allow us to
trap stably at higher frequencies. Finally, one could introduce
cryogenic buffer gas to reduce T0 and, therefore, the minimum
temperature.

3. Dependence on the feedback phase

We apply a feedback force that is proportional to the phase-
shifted position signal of the particle. The nanosphere cooling
performance depends not only on the amplitude of the force
but also on the tunable phase shift φ, which is controlled by
the output of the FPGA. Assuming the particle’s position can
be written as x(t ) = A cos(ωxt ), with A being the amplitude of
motion, and using Eq. (1), the feedback force can be written
as

Ffb = mγfbωxA cos(ωxt + φ)

= mω2
fb cos(φ)x(t ) + mγfb sin(φ)v(t ),

(3)

where we define ω2
fb = γfbωx and we have decomposed the

force into the x(t ) and v(t ) = ẋ(t ) quadratures of motion. The
same relationship holds for the y and z motion. From Eq. (3), it
can be seen that Ffb becomes a purely cooling force for φcool =
−π

2 and a purely heating force for φheat = − 3
2π . In all other

cases, Ffb acquires a term proportional to the particle’s po-
sition. The proportionality coefficient ω2

fb expresses the shift
of the nanosphere’s motional frequency along a given axis.
For all measurements shown in this paper, these frequency
shifts are small compared with the bare nanosphere’s motional
frequencies, and so we will neglect this effect from here on
and will consider only the term of Eq. (3) that is proportional
to the velocity of the particle. The radial temperature Tx as a
function of φ is given by

Tx(φ) = γ0T0

γ0 − γfb sin(φ)
; (4)

the derivation is outlined in Appendix E. An analogous for-
mula holds for the y mode.

We measured Tx(φ) and Ty(φ) at 4 × 10−3 mbar for both
electrical and optical feedback. For both kinds of feedback
forces, the phase is measured relative to the particle’s position
signal. The feedback gain was kept low to avoid losing the

FIG. 3. (a) Temperatures Tx and Ty of the x (red) and y (blue)
modes of the particle’s oscillation under electrical feedback cooling
as a function of the feedback force’s phase shift φ with respect to
the particle’s motion. (b) The electrical force Fel

fb due to the feedback
electrodes points along x̂ + ŷ. (c) Tx (red) and Ty (blue) under optical
cooling as a function of φ. (d) The force Fopt

fb due to radiation pressure
from the cooling laser has a projection along x̂ − ŷ. As a result, the
optimal phase for optical feedback along the y axis is shifted by π

with respect to the optimal phase for electrical feedback.

particle when the phase corresponds to particle heating. Data
for the case of electrical feedback are shown in Fig. 3(a).
The solid curves in the plot are fit to Eq. (4), with γfb as
the only free parameter. For both radial modes, we observe
cooling for −π < φ < 0 and heating otherwise. It is impor-
tant to note that the electrical feedback force points along
x̂ + ŷ [Fig. 3(b)]. The data for Tx and Ty as a function of
the optical force’s phase are shown in Fig. 3(c). In this case,
the optical feedback force points along x̂ − ŷ [Fig. 3(d)], due
to the fact that the radiation-pressure force of the cooling
beam points toward the beam’s propagation axis. As a conse-
quence, F opt

x ∝ x and F opt
y ∝ −y, so that for optical cooling,

φcool
x = φcool

y + π = −π
2 . This phase flip between electrical

and optical cooling is also included in the fit to the y-mode
data in Fig. 3(c).

For minimizing crosstalk between the optical feedback
forces on the two radial modes, it is crucial to filter the de-
tection signal at each radial mode frequency with a bandwidth
δBW small enough to fulfill the condition δBW < (ωy − ωx )/2.

IV. POSITION-DEPENDENT DETECTION AND
COOLING EFFICIENCY

In the previous section, we showed how the minimum tem-
perature achieved with feedback cooling is ultimately limited
by the back-action of the position measurement, which injects
noise into the system. One strategy for increasing the signal-
to-noise ratio for the position measurement, and therefore
for obtaining better cooling performance, is to optimize the
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alignment of the detection laser to the particle’s position in
the Paul trap. This problem is unique to experiments in which
the trapping mechanism (here, a Paul trap) and the detection
mechanism are decoupled; in contrast, in optical tweezers
experiments, the same optical beam traps a particle and de-
tects its motion, so that alignment is guaranteed. As discussed
below, we have found that when the particle is displaced from
the detection laser focus, the feedback-cooling performance
is reduced, and in some cases, the nanosphere is heated rather
than cooled.

A. Optimization of position detection

In order to maximize the particle signal, we have stud-
ied the response of the photodiodes to displacements of the
nanosphere. We align the detection laser to the particle in two
steps: First, we roughly align the laser to the nanosphere by
moving the focusing lenses with a 3D translation stage while
maximizing the scattered light of the particle imaged on a
complementary metal-oxide semiconductor (CMOS) camera.
Second, we finely adjust the particle’s position by applying
DC fields on two sets of Paul-trap electrodes: We displace
the nanosphere along the z axis by unbalancing the voltage
on the end-cap electrodes, and we displace the nanosphere
in the radial plane via a set of compensation electrodes. The
photodiodes are sensitive to particle movements in the laser’s
focal plane, so we focus on displacements in the (û, ẑ) plane,
where we define û ≡ (x̂ + ŷ)/

√
2.

The signal Vr (u) from the radial photodiode relative to the
instantaneous particle position u is [38]

Vr (u) ∝
[u − u0

w0
− 2

3

(u − u0

w0

)3]
e−[(u−u0 )/w0]2

, (5)

where w0 is the electric-field waist (1/e radius) of the laser
and u0 is the distance between the focus and the geometrical
center of the Paul trap. An analogous relationship exists for
the axial photodiode signal Vz(z). The functions Vr (u) and
Vz(z) give the value of the particle’s motional signal in volts
in response to particle displacements u and z, respectively, in
micrometers. For particle oscillations of amplitude δu smaller
than the waist w0, the response function can be linearized
around the particle’s center of oscillation ueq as

δVr (ueq) = ∂Vr

∂u

∣∣∣
ueq

δu. (6)

Equation (6) states that to first order, the slope of the de-
tector’s response function is the conversion factor between
the real amplitude of motion δu and the measured amplitude
δVr . Moreover, this conversion factor depends on the equi-
librium position ueq of the particle in the trap, meaning that
the measured amplitude of motion depends on the particle’s
displacement in the Paul trap. We refer to cr (ueq) = δVr/δu as
the radial-position-dependent conversion factor; an analogous
relation exists for the axial conversion factor cz(zeq) = δVz/δz.
In order to maximize both signals, δVr (ueq) and δVz(zeq), the
particle has to be displaced to a point at which both the
axial and radial conversion factors have a maximum, which
is fulfilled if ueq and zeq coincide with the laser focus.

We characterize our system by determining both Vr (u) and
Vz(z). To obtain Vr (u), we first displace the particle over a

(a
rb

. u
ni

ts
)

(a
rb

. u
ni

ts
)

FIG. 4. (a) Measured radial detector response V as a function
of the particle’s displacement along the u axis. The curve is a fit
to Eq. (5). (b) Axial detector response V (z) as a function of the
particle’s axial displacement z. The curve is a fit to Eq. (5) with u and
u0 replaced by z and z0. The position (u, z) = (0, 0) corresponds to
the geometrical center of the trap. Real displacements are calculated
from electrostatic simulations and from the known charge state of the
particle. (c) Steady-state temperature Tx (ueq) obtained under electri-
cal and optical cooling (blue circles and red diamonds, respectively).
Curves are fits to Eq. (7). (d) Steady-state temperature Tz(z) under
electrical and optical cooling, with fits to Eq. (7), with Tx , ueq, and cr

replaced by Tz, zeq, and cz.

range of equilibrium positions ueq and measure the conversion
factor cr for each value of ueq. The absolute value of each
conversion factor |cr | is determined from a fit to the PSD
of the particle’s motion [46], and the sign is determined by
measuring the phase response to a harmonic driving force
(Appendix F). Next, using Eq. (6), we extract the response
function Vr (u) = ∫ u

0 cr (ueq)du. An analogous procedure is
used to obtain Vz(z).

Figures 4(a) and 4(b) show the experimental results for
Vr (u) and Vz(z), respectively. The data are fitted to Eq. (5)
with w0, the laser focus position, and a global prefac-
tor as free parameters. The values for the displacements u
and z in micrometers are extrapolated from simulations of
the electric field generated by the compensation electrodes,
where we have independently determined the charge state of
the nanosphere (Appendix B). We see from Figs. 4(a) and
4(b) that the response functions are linear around the focus
for a range of particle amplitudes up to w0 ≈ 3 μm. For
comparison, when feedback cooling is off, the mean ampli-
tude of oscillation for the z mode is δz = √

kBT/(mω2
z ) =

0.9(1) μm, while for the radial modes, we have δux =
0.74(6) μm and δuy = 0.51(6) μm, where we have taken the
projection of the x and y modes along the detection direction
û. The fact that δz, δux, δuy < w0 ensures that when the parti-
cle is placed in the detection-beam focus, its motion along all
trap axes is linearly mapped to the detection signal.
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For amplitudes larger than w0, the response functions
become nonlinear. As a result, the particle signal becomes
smaller, and higher harmonics appear on the signal’s spec-
trum. Note that for |u|, |z| 
 w0, the response functions tend
to zero, given that the position signal vanishes in the limit that
the particle is pushed outside the detection beam. The signs
of the derivatives of Vr and Vz flip accordingly. In Figs. 4(a)
and 4(b), we observe, in agreement with Eq. (5), that Vr and
Vz each have two additional linear zones, for which the sign
of the slope is opposite to the sign of the slope around the
focus. Through Eq. (6), the sign flip of the response function
is mapped to a sign change in the conversion factor cr : The
feedback force flips sign as the particle is moved across the
border between two linear zones of the response function. An
equivalent statement holds for cz.

B. Position-dependent cooling performance

We observe that under fixed electrical and optical
feedback-cooling parameters, the steady-state temperature
varies as a function of the particle’s equilibrium position in-
side the Paul trap. To understand this dependence on position,
we have to take into account two position-related effects:
First, as described in Sec. IV A, the signal of the particle’s
center-of-mass motion depends on the position of the particle.
This position signal directly impacts the feedback signal. Sec-
ond, the electric and optical fields generated by the feedback
actuators have their own spatial distributions, which depend
on the feedback electrode geometry and on the 1064-nm laser
intensity profile, respectively. As a consequence, even for
a fixed feedback signal, the feedback force depends on the
particle position.

In Fig. 4(c), we plot Tx for different lateral displacement
ueq of the particle under both electrical and optical cooling at a
pressure of 2.1 × 10−2 mbar and a fixed feedback phase. The
feedback gain was fixed to a sufficiently low value that the
particle did not overheat in regions with negative damping.
For both electrical and optical feedback, the minimum tem-
perature corresponded to the particle being positioned at the
detection-beam focus. At this point, the position signal is at
its maximum, and with it, the feedback signal. Recall that the
cooling and the detection lasers follow the same optical path,
and thus the beams’ foci also coincide, under the assumption
that chromatic aberration of the focusing lens system can be
neglected. Therefore, at the position for optimal detection, we
also find the maximum of the radiation-pressure force, and
hence optimal optical cooling. Away from the focal point,
cooling is less effective, as the particle is displaced to a region
in which the detection response degrades. For both electrical
and optical cooling, we also observe two maxima of Tx above
T0, corresponding to heating in the region where the feedback
signal experiences a phase shift of π relative to the center of
the beam, as described in more detail in Appendix F.

To model Tx(ueq), we take into account an explicit posi-
tion dependence of the feedback force (see Appendix E). We
obtain

Tx(ueq) = γ0T0

γ0 + g cr (ueq) ffb(ueq)
, (7)

where ffb(ueq) is the spatial distribution of the feedback force
and g is the electronic gain set with the FPGA. The position
dependence of the detection amplitude and sign is expressed
through the term cr (ueq). The dependence of ffb(ueq) on ueq

differs for electrical and optical forces: From numerical sim-
ulations of the feedback electrodes’ fields, we find that the
electrical feedback force f el

fb (ueq) varies only by ∼1% over the
extent of the particle displacements explored here, and so we
consider it to be constant. In contrast, the radiation-pressure
force exerted by the cooling beam is modeled as Gaussian:
f opt
fb (ueq) ∝ exp[−2(ueq − u0)2/s2

0], where s0 is the electric-
field waist (1/e radius) of the 1064-nm laser.

We fit Eq. (7) to Tx(ueq) [solid curves in Fig. 4(c)] with g,
u0, and s0 as fit parameters. The model captures our exper-
imental findings: The best cooling performance is achieved
when the particle oscillates at the center of the detection
beam. Here, the detection efficiency and the optical and elec-
trical cooling strength are at their maximum. For particle
displacements |ueq| > w0, the detection slope changes sign,
and accordingly, the particle is heated by the feedback. For
even larger displacements from the focus, the position and
the feedback signals go to zero, and thus the particle ap-
proaches T0. Under optical cooling, T0 is reached earlier than
with electrical cooling, due to the exponential decay of the
radiation-pressure cooling force.

We performed the same measurements for the axial mode:
Fig. 4(d) shows Tz(zeq) obtained with electrical and optical
feedback cooling. For the case of optical cooling, the axial
feedback force experienced by the particle derives from the
beam’s gradient force rather than from radiation pressure
[Fig. 1(b)]. Accordingly, we fit Tz(zeq) to Eq. (7) with f opt

fb ∝
(zeq − z0) exp[−2(zeq − z0)2/s2

0], where z0 is the axial focus
position. The fit captures the sign flip of the axial gradient
force when the particle is displaced across the focus, which
has the consequence of switching f opt

fb from a cooling to a
heating force. Optical axial cooling is optimized at a position
displaced from the cooling-beam focus. At this point, the
amplitude of the particle’s motion lies entirely in a region
in which the direction of the optical gradient force remains
constant.

The electrical cooling force, as for the radial modes, is in-
dependent of particle displacement, and thus the steady-state
temperature as a function of position has the same character-
istic shape as in Fig. 4(c).

V. CONCLUSIONS

We have demonstrated 3D feedback cooling of a silica
nanosphere levitated in a Paul trap down to temperatures of
a few millikelvins in a room-temperature experiment, which
is three orders of magnitude lower than in previously re-
ported experiments [30–32] where cooling is also performed
in the Paul-trap potential. A cold-damping technique was
used, exploiting either electrical or optical forces as feed-
back actuators. We have characterized cooling performance
for different background pressures in terms of the feedback
force’s amplitude and phase. Optical and electrical cooling
yield similar results, with the temperature limit set by the
back-action of the motion measurement and, for pressures of
3.5 × 10−4 and 3 × 10−5 mbar, by background-gas collisions.
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For pressures of 4.6 × 10−7 mbar, we see evidence of an addi-
tional heating mechanism. Furthermore, a direct measurement
of the response functions of our position-detection system
reveals the relationship between the particle’s position and the
cooling efficiency.

We expect the degree of control over experimental pa-
rameters developed here to be beneficial in various levitated-
optomechanics applications. As one example, subwavelength
cooling and position control in a Paul trap would allow one
to localize the nanosphere inside an optical cavity, enabling
several optomechanics protocols [15,35,47–49]. Also, an op-
tically cooled silica sphere could be used to sympathetically
cool highly absorptive particles without the need for direct
laser illumination, similar to the sympathetic cooling demon-
strated for different ion species [50]. The highly absorptive
particles could be NV centers [51] or nanomagnets.

In a new vacuum chamber assembled after these mea-
surements, we use laser-induced acoustic desorption [6] to
load and trap nanoparticles at UHV pressures below 1 ×
10−10 mbar, an improvement of over three orders of magni-
tude with respect to the pressures discussed here. Together
with the steps outlined in Sec. III B 2, namely, more efficient
collection of scattered light and particle trapping at higher
frequencies, we expect that it should be possible to enter the
quantum regime.
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APPENDIX A: MOTION-DETECTION CALIBRATION

We model the nanosphere in the presence of feedback
cooling as a set of three damped harmonic oscillators, one for
each axis of the trap. We focus on the motion along x̂, where

ẍ + (γ0 + γx )ẋ + ω2
x x = Fth

m
+ γxδẋil. (A1)

Here, x represents the particle’s displacement, ωx is the angu-
lar frequency of oscillation, and m is the mass of the particle.
The interaction with background gas in the vacuum chamber
is accounted for as a viscous force with damping rate γ0 and
as a Langevin force Fth(t ). Analogously, the feedback force is
accounted for as a viscous force with damping rate γx and as a
Langevin force proportional to δẋil. In the main text, we refer
to the damping rate of the feedback force as γfb, but here we
explicitly consider the damping rates along each of the three
axes, and so we introduce the new terms γx, γy, and γz.

From Eq. (A1), one obtains Sx, the single-sided PSD of the
particle’s motion, in the absence of feedback cooling; that is,
for γx = 0,

Sx(ω) = |χx(ω)|2SFth , (A2)

where χx is the mechanical susceptibility of the damped har-
monic oscillator along the x axis,

χx(ω) = 1

m(ω2
x − ω2 − 2iγ0ω)

, (A3)

and SFth is the PSD of Fth. Using the fluctuation-dissipation
theorem, we obtain SFth = 4γ0mkBT0/π . The analogous equa-
tions to Eq. (A2) for ŷ and ẑ are Sy(ω) = |χy(ω)|2SFth and
Sz(ω) = |χz(ω)|2SFth , where

χy(ω) = 1

m(ω2
y − ω2 − 2iγ0ω)

, (A4)

χz(ω) = 1

m(ω2
z − ω2 − 2iγ0ω)

. (A5)

We would now like to calibrate our detection for the par-
ticle’s motion. We obtain PSD data from a spectrum analyzer
at a pressure of 3.8 × 10−2 mbar and with no cooling. In our
experiment, the Paul trap’s radial axes are oriented at θ ∼= 45◦

with respect to the radial photodiode axis of detection, as
depicted in Fig. 1. The radial detector thus measures a signal
Vr (t ) = cr[cos(θ )x(t ) + sin(θ )y(t )], where cr is the conver-
sion factor defined in Sec. IV A. Accordingly, the PSD Sr of
the detected radial motion driven by Fth is described by the
double-peaked response function

Sr(det) = [cos2(θ )Sx + sin2(θ )Sy] + Sn
r(ol), (A6)

where Sn
r(ol) is the single-sided PSD of the position-

imprecision noise of the out-of-loop radial detector. We fit the
measured radial PSD with

Sr(fit)(ω) = [|χx(ω)|2ax + |χy(ω)|2ay] + rnoise, (A7)

with ax, ay, ωx, ωy, γ0, and rnoise as fit parameters, from
which we obtain θ = 47.39(1)◦. We then extract the absolute
value of the radial calibration factor |cr | from the relation [46]
Sr(fit) = c2

r Sr(det).
In order to extract the axial calibration factor cz, we note

that the axial photodiode axis of detection is oriented parallel
to ẑ. The PSD of the detected axial motion is described by
Sz(det) = Sz + Sn

z(il), where Sn
z(il) is the single-sided PSD of the

position-imprecision noise of the in-loop axial detector. Note
that we do not use a second out-of-loop detector for the z axis.
We fit the measured axial PSD with

Sz(fit) = |χz(ω)|2az + znoise, (A8)

with az, ωz, γ0, and znoise as fit parameters, and we extract
the absolute value of the axial conversion factor |cz| from the
relation Sz(fit) = c2

z Sz(det).
We now return to Eq. (A1) and write down the PSD of the

particle’s motion in the presence of feedback cooling:

Sfb
r (ω) = cos2(θ )|χ fb

x |2(SFth + m2γ 2
x ω2Sn

r(il)/2)

+ sin2(θ )|χ fb
y |2(SFth + m2γ 2

y ω2Sn
r(il)/2) + Sn

r(ol),

(A9)

where we define the modified susceptibilities χ fb
i , with i =

{x, y, z}, by the substitutions γ0 → γ0 + γi in Eqs. (A3), (A4),
and (A5). The term Sn

r(il) is the PSD of the imprecision noise
as measured with the radial in-loop detector. In practice, the
two terms in Eq. (A9) proportional to Sn

r(il) can be considered
as constants inside the bandwidth of the radial susceptibilities,
since γx � ωx and γy � ωy within the range of the feedback
gains used in our experiments. Therefore we fit the measured
radial PSD with

Sfb
r(fit)(ω) = [|χ fb

x (ω)|2afb
x + |χ fb

y (ω)|2afb
y ] + bnoise, (A10)
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with ax, ay, ωx, ωy, γx, γy, and bnoise as fit parameters. For the
case of axial feedback cooling, we fit the PSD of the measured
signal with

Sfb
z(fit)(ω) = |χ fb

z (ω)|2afb
z + cnoise, (A11)

with az, ωz, γz, and cnoise as fit parameters. The radial and axial
temperatures under feedback cooling are then calculated as

Tx = γ0afb
x

γxax
× T0,

Ty = γ0afb
y

γyay
× T0,

Tz = γ0afb
z

γzaz
× T0.

(A12)

In Paul traps, T0 is not necessarily equal to the temperature of
the buffer gas. A more detailed discussion about the value of
T0 can be found in Appendix C.

APPENDIX B: CALCULATING MASS AND CHARGE
FROM FREQUENCY JUMPS

The mass of a particle trapped in a Paul trap can be de-
termined by varying the particle’s charge and measuring its
resonance frequencies [52,53]. After a nanoparticle has been
trapped, we increase its charge using a Pirani cold-cathode
pressure gauge. The operating principle of the cold-cathode
gauge is based on ionizing residual gas, and we hypothesize
that the ionized gas leaks from the gauge volume and reaches
the trapped particle [54,55]. When the gauge is turned on,
we observe discrete jumps in the motional frequencies of
a trapped nanoparticle, indicating that the particle’s charge
state has shifted. In Paul traps, the resonant frequencies of
oscillation ωx, ωy, and ωz are related to the charge Q on the
trapped particle as [42]

ωx
∼= 
d

2

√
ax + q2

x/2, (B1)

ωy
∼= 
d

2

√
ay + q2

y/2, (B2)

ωz
∼= 
d

2
√

az, (B3)

where

ax = − 4Q

m
2
d

(
κend

Vend

z2
0

+ κRF
Voff

r2
0

)
, (B4)

ay = − 4Q

m
2
d

(
κend

Vend

z2
0

− κRF
Voff

r2
0

)
, (B5)

az = κend
8QVend

mz2
0


2
d

, (B6)

qx = κRF
QVpp

mr2
0


2
d

, (B7)

qy = −qx, (B8)


d is the driving frequency of the trap electrodes, m is the
mass of the particle, κRF and κend are geometric factors, Vend

is the DC voltage applied to the trap end caps, Voff is a DC
offset voltage applied to the radial electrodes, z0 is half the

FIG. 5. Variation in time of the radial secular frequencies of a
trapped nanoparticle. The pressure gauge is turned on, charging the
particle. Negative values of δωx correspond to acquisition of negative
charges by the particle. Inset: Histogram of frequency jumps with an
amplitude δωx . The red curve is a sum of Gaussian fits centered at
the histogram’s maxima.

distance between the trap end caps, r0 is half the distance be-
tween opposing radial electrodes, and Vpp is the peak-to-peak
voltage applied to the trap electrodes. Our trap parameters are
κRF = 0.93, κend = 0.22, z0 = 1.7 mm, and r0 = 0.9 mm.

In Fig. 5, we plot the secular radial frequencies of a trapped
particle measured over several hundred seconds, with the
gauge kept on. We see a net increase of the frequencies, which
we identify with positive ions from the gauge. We observe that
as soon as the gauge is turned off, the frequencies remain con-
stant. In our experimental setup, we select positively charged
particles during the loading procedure by positively biasing
the end-cap electrodes. Subsequent charging with the pressure
gauge is then used to boost the secular frequency.

In the inset of Fig. 5, we plot the histogram of events that
shift the particle frequency by ωx → ωx + δωx as a function
of the jump magnitude δωx. The highest peak, at δω = 0, indi-
cates that for most of the measurement interval, the frequency
remained at a constant value. All other peaks occur at inte-
ger multiples of a fundamental frequency δωx = 3.9(6) Hz.
We interpret this discreteness in the magnitude of frequency
jumps as direct evidence of the quantization of the charges
gained or lost by the particle. We assume that the smallest
frequency jump is produced by the gain of a single elementary
charge e, which together with the total frequency shift �ωx

allows us to calculated the number of elementary charges
N = �ωx/δωx obtained during the particle-charging process.
If the change in charge �Q = Ne is small compared with the
initial charge Q0, then Q0 can be calculated as

Q0 = ωz(Q0)�Q

2�ωz
. (B9)
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By substituting the total charge Q0 and the trap parameters
into Eqs. (B6) and (B3), the mass of the particle can be
estimated. For example, for the particle used to obtain the data
shown in Fig. 2, the mass is 1.8(2) × 10−17 kg. This value is
two-thirds of the mass specified by the particle manufacturer.

APPENDIX C: STEADY-STATE TEMPERATURE T0 IN THE
ABSENCE OF FEEDBACK

The harmonic motion of a particle in a Paul trap is only
an approximation. In fact, the steady-state kinetic energy con-
tains the energy of the secular motion and the energy of the
micromotion. Moreover, even if we focus only on the secular
motion, T0 is not necessarily equal to the temperature of the
background gas [40] because the particle is subject to a time-
dependent potential.

For q � 1, the total kinetic energy is twice the energy of
the background gas and is equally split between the secular
motion and the micromotion. Therefore T0 = 300 K in this
case. Due to technical limitations of our experimental setup,
we had to work with relatively high q parameters in order to
obtain resonant frequencies on the order of a few kilohertz.
One reason to pursue these frequencies was that we needed
strong enough confinement to keep the particle within the
waist of the detection beam. Another reason was that we
needed to spectrally separate motional modes. Therefore, in
our experiments, the q parameter reached values of 0.7. An-
alytical expressions from Ref. [40] suggest that in this case,
the total average kinetic energy, which includes the energy
of the secular motion and the energy of the micromotion,
is three times higher than the average kinetic energy of the
background-gas molecules and that T0 has to be corrected by a
factor of 1.3. We have also performed more detailed numerical
simulations of the motion of the particle trapped in a Paul trap
and immersed in the background gas. The simulation gives us
the same correction factor of 1.3. Note that this correction fac-
tor does not apply for motion along the z axis since along this
axis, the particle is confined with the electrostatic potential.

APPENDIX D: MICROMOTION COMPENSATION

We compensate for excess micromotion [42] by aligning
the average position of the particle in the radial plane to the RF
null of the Paul trap with the help of the compensation elec-
trodes. The measure of the quality of the compensation is the
height of the peak at the drive frequency 
d in the spectrum
of the particle motion. By careful positioning of the particle
inside the trap, we bring the peak to the detection noise level,
which means ∼0.3 nm amplitude of the excess micromotion.
In practice, however, the stray fields may change over time,
and thus the particle may drift from the null point of the Paul
trap, resulting in excess micromotion.

Excess micromotion can couple to the secular motion via
collisions with the background gas. Therefore we have studied
numerically how sensitive the equilibrium secular center-of-
mass (CoM) temperature is to the quality of the micromotion
compensation. For this study, we displaced the particle from
the trap center by 4 μm (the range of displacements in
Sec. IV B), calculated the secular temperature, and compared
it with that of a particle exactly in the center of the trap. While

FIG. 6. (a) Radial PSD showing the broad thermally driven res-
onance of the particle motion centered at ωx and the narrow-peaked
response to the harmonic force drive close to resonance. (b) Blue:
absolute value of the radial conversion factor |cr (ueq)| as a function of
the lateral particle displacement ueq. Red: phase difference between
the harmonic force drive and the detected response of the particle at
the drive frequency as a function of ueq.

the energy in the excess micromotion increased, we found
no significant difference in the effective temperature of the
secular motion.

APPENDIX E: OPTIMAL COOLING PHASE AND
POSITION-DEPENDENT FEEDBACK FORCES

For low feedback gain, the temperature along the x axis of
motion is [18,56]

Tx = mω2
x

kB

∫ ∞

0
Sfb

x dω

= γ0T0

γ0 + γ
fb(φ,ueq )
x

, (E1)

where Sfb
x = χ fb

x SFth is the PSD of the particle’s motion along x
under feedback cooling, χ fb

x and SFth have been defined in Ap-
pendix A, and γ fb

x (φ, ueq) is the feedback gain, which depends
on the phase φ set with the FPGA and on the particle equi-
librium position ueq. Equation (4) in the text is obtained by
substituting γ fb

x (φ) = −γfb sin(φ) into Eq. (E1). Equation (7)
is obtained by substituting γ fb

x (ueq) = gcr (ueq) f fb
x (ueq) into

Eq. (E1).

APPENDIX F: CONVERSION FACTORS FOR
DIFFERENT POSITIONS

In Appendix A, we have shown how to determine the
absolute values of the conversion factors |cr | and |cz|. The
signs of the conversion factors are obtained by measuring the
phase response of the particle motion to a coherent driving
force: We drive the particle motion by supplying a sinusoidal
electric signal through feedback electrodes. The frequency of
this signal is tuned to one of the three trap resonances, chosen
such that the particle responds to the force it experiences only
along the corresponding axis of motion. An example PSD of
the radial particle motion under the influence of the drive is
shown in Fig. 6(a). The plot in Fig. 6(b) shows, in red, the
phase difference between the radial drive signal and the de-
tected particle’s motion at the drive frequency as a function of
the lateral displacement ueq relative to the detection beam. The
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blue curve in the same plot is the absolute value of the radial
calibration factor as measured for the same displacements ueq.
The plot was obtained by exciting the particle’s motion along
x, but similar results hold for the other two axes. We observe
phase shifts of π corresponding to the dips of |cr |. These
phase shifts do not originate from the particle motion, since

the response to the drive signal does not depend on the particle
position. Rather, we interpret a phase shift as a sign change of
the calibration factor cr . By knowing the conversion factor’s
sign and amplitude, we are able to reconstruct the detection
response functions shown in Figs. 4(a) and 4(b), as explained
in the text.
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