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Fast computation of dissipative quantum systems with ensemble rank truncation
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We introduce a new technique for the simulation of dissipative quantum systems. This method is composed
of an approximate decomposition of the Lindblad equation into a Kraus map, from which one can define an
ensemble of wave functions. Using principal component analysis, this ensemble can be truncated to a manageable
size without sacrificing numerical accuracy. We term this method ensemble rank truncation (ERT), and find
that in the regime of weak coupling, this method is able to outperform existing wave-function Monte Carlo
methods by an order of magnitude in both accuracy and speed. We also explore the possibility of combining
ERT with approximate techniques for simulating large systems [such as matrix product states (MPS)], and show
that in many cases this approach will be more efficient than directly expressing the density matrix in its MPS
form. We expect the ERT technique to be of practical interest when simulating dissipative systems for quantum
information, metrology, and thermodynamics.
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I. INTRODUCTION

In the emerging field of quantum technologies, environ-
ments play a crucial role. Their most obvious contribution
is to introduce noise which destroys the delicate coherences
necessary for truly quantum effects, but system-environment
interactions can also harbor some surprising benefits when
carefully controlled [1,2]. For example, one may use dissi-
pation to prepare entangled states [3,4], induce nonreciprocal
photon transmission [5] and amplification [6], exploit co-
operative effects to reduce entropy [7], as well as engineer
dynamics [2,8]. Given the manifold challenges and oppor-
tunities presented by open quantum systems, it is of vital
importance to have a fast and scalable method for simulating
them.

The first problem one encounters in modeling open sys-
tems is how to account for the fact that a full system
+environment amalgam exists in a Hilbert space far too large
to be simulated exactly. One must instead focus on an ef-
fective description of the system of interest, eliminating the
environmental degrees of freedom. A number of approaches
have been developed to tackle this problem, with one of the
earliest examples being the Redfield equation [9–11]. While
this equation provides a good approximation to dynamics at
weak coupling, it does not guarantee the positivity of the
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density matrix [12], and as such has remained controversial
[13].

Another fruitful avenue has been to approach the problem
of environmental coupling through the path-integral formal-
ism of the Feynman-Vernon influence functional [14,15].
This technique has produced a great number of important
results [16–23], including the derivation of a number of dis-
tinct dynamical equations, such as the quantum Langevin
[24–29], stochastic Schrödinger [30,31], quantum Smolu-
chowski [32,33], and stochastic Liouville-von Neumann
[34–38] equations.

While influence functional techniques (being nonperturba-
tive) are particularly useful at strong environmental coupling,
in the weak coupling regime it is far more common to employ
the Lindblad master equation [39–41]. This equation repre-
sents the most general description for a Markovian process
that preserves the essential features of the density matrix
(complete positivity and trace preservation) [42,43]. It is this
generality that has led to the Lindblad equation acquiring its
status as the “default” approach to simulating open systems
[44], and has found application in a very broad range of phys-
ical settings [45–50]. Indeed, it has recently been shown that
the secular approximation [51] used to derive the Lindblad
equation is unnecessary, giving the equation a much broader
regime of applicability than was previously supposed [13,52].
Recent work has also shown that the Lindblad equation can
be used for systems undergoing various kinds of broadband
control [53].

Given all this, an efficient scheme for computing Lindblad
dynamics is of great importance across the many disciplines
that use it, enabling the simulation of larger systems which
may in turn lead to new discoveries. Achieving this however
is problematic, as simulating this master equation requires the
density matrix, which for a Hilbert space of size NH has N2

H
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elements. This means that simulating the Lindblad equation
requires O(N3

H ) operations compared to the O(N2
H ) operations

required to evolve the Schrödinger equation.
Given the exponential increase in NH that occurs as one

adds particles to a many-body system, the difference between
O(N3

H ) and O(N2
H ) translates into a tremendous disparity in

simulation runtime between the Lindblad and Schrödinger
equations for even a moderately large system. While in the last
decade enormous strides have been made in the approximate
simulation of large systems (see for example recent work
simulating strongly interacting quantum thermal machines
[54]), the methods employed do not address the fundamen-
tal difference in scaling between density matrices and wave
functions. Instead, the density matrix is flattened into a vector
[55–57] and the power of tensor network decompositions [58]
are leveraged to efficiently evolve this large system. In this
sense, one has simply transposed the density matrix into a
wavefunction living in a Hilbert space of size N2

H rather than
NH . For this reason, there is a powerful motivation to express
the Lindblad equation using wave functions of size NH rather
than the full density matrix.

The standard solution to this issue has long been to em-
ploy a wave-function Monte Carlo (WMC) method (although
similar stochastic methods using classical noise have been
proposed [59]). This technique exploits the fact that the evo-
lution of the Lindblad equation is equivalent to averaging over
an ensemble of stochastic wave-function evolutions [60–65].
If the number of realizations ntraj needed to converge the aver-
aging to an accurate answer is much less than NH , then WMC
provides an efficient alternative to the exact evolution of the
Lindblad equation [66,67]. Of course, like all stochastic meth-
ods the number of trajectories needed to converge a WMC
result will depend on the specifics of the model system, as well
as the length of time being simulated. Consequently, there will
be circumstances in which the ntraj required will match or even
exceed NH , negating the advantages of employing WMC.

In this paper, we introduce a new wave-function based
method for describing Lindblad dynamics, which we term
ensemble rank truncation (ERT). This method is based on
deriving a general expression for the Kraus map of an in-
finitesimal evolution of the Lindblad equation [up to the
second-order error in the time step, O(dt2)]. This mapping
provides a deterministic procedure for constructing an en-
semble of wave functions which together accurately describe
system expectations. The size of the ensemble generated
through this method increases exponentially with time, ne-
cessitating a second procedure to counteract this. Once the
size of the ensemble has exceeded a prespecified rank R,
principal component analysis is performed to generate a trun-
cated set of wave functions in the basis which most efficiently
represents the density matrix. This method differs sharply
from WMC in two important respects; first, its dynamics
are entirely deterministic and do not require any stochastic
averaging. This leads to the second distinguishing property,
namely that the size of the ensemble produced in this method
tends to be much smaller than that required by WMC, with
R � ntraj. Our results show that these features allow ERT to
‘beat the house’, providing a great improvement over WMC
for systems with weak environmental noise (damping and/or
dephasing).

A full derivation of our ERT method is presented in Sec. II,
together with a formal demonstration that using ERT with
matrix product state (MPS) simulations of pure states is more
efficient than directly using an MPS representation for a
mixed-state evolution. Section III demonstrates the efficacy of
ERT in three separate systems—a Heisenberg spin chain, a set
of atoms in a cavity, and a dissipative Fermi-Hubbard model.
In particular, we show here that ERT can provide order of
magnitude improvements in both speed and accuracy simul-
taneously as compared to the standard WMF approach. We
conclude in Sec. IV with a discussion of the results presented
here, and suggest potential improvements and extensions to
the ERT method.

II. ENSEMBLE RANK TRUNCATION

In this section, we derive the approximation we term en-
semble rank truncation (ERT). This approximation consists
of two parts—an approximate Kraus map which allows the
dissipative evolution of the system to be represented with an
ensemble of wave functions, and a truncation of that ensemble
to its principal components, which is equivalent to excluding
components of the density matrix above a certain rank.

A. Approximate Kraus operators

It is well known that the time evolution of any system
(closed or open) must be a completely positive trace pre-
serving (CPTP) map [68], and that such maps on the density
matrix can always be decomposed into a Kraus form [69],
given by

ρ̂(t ) =
K∑

k=1

M̂k ρ̂(0)M̂†
k , (1)

where ρ̂(t ) is the density matrix and the M̂k are Kraus opera-
tors which must collectively satisfy

K∑
k=1

M̂†
k M̂k = I. (2)

Expressing a dissipative evolution in this way has obvi-
ous advantages compared to the usual master equation, for
which the Kraus form may be formally regarded as a solution.
Furthermore, if one begins with a pure state ρ̂(0) = |ψ〉〈ψ |,
it is possible to express the expectation of an operator Ô
purely in terms of wave functions, rather than the full density
matrix. To do so, one defines a set of wave functions {|ψk〉} =
{M̂k|ψ〉}K

k=1, with which expectations can be expressed as

〈Ô〉 =
K∑

k=1

〈ψk|Ô|ψk〉. (3)

The advantage of this form is that rather than an NH × NH

density matrix, one instead requires only K wave functions
of dimension NH . In the typical case NH � K , it is far more
efficient to calculate expectations via Eq. (3) than with the full
density matrix. Of course, this approach is only possible if one
knows the M̂k that describe the system of interest.

While there are many existence proofs for Kraus opera-
tors describing open system evolutions [70–72] (including for
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controllability of those systems [73]), the number and explicit
form of these operators are known only for a few special cases
[74]. This is a problem, as one often wishes to solve for the
dynamics of a system described by a Lindblad master equation
[41], given by

d ρ̂(t )

dt
= − i

h̄
[Ĥ, ρ̂(t )] + 1

2

K∑
k=1

(2Âk ρ̂(t )Â†
k − {ρ̂(t ), Â†

kÂk}),

(4)

where Ĥ is the Hamiltonian and the Âk are the environmental
dissipators. While procedures exist for deriving the Kraus
map equivalent to this master equation, deriving the operators
is a cumbersome process involving computations that grow
exponentially with the number of decay channels [75].

In order to exploit the appealing structure of the Kraus map
and avoid the difficulties in calculating the explicit form of the
operators, we instead construct an infinitesimal map. To do so,
we first discretize Eq. (4):

ρ̂(t + dt ) = ρ̂(t ) − dt
i

h̄
[Ĥ, ρ̂(t )] + O(dt2)

+ dt

2

K∑
k=1

(2Âk ρ̂(t )Â†
k − {ρ̂(t ), Â†

kÂk}). (5)

It is then possible to represent this expression as a Kraus map:

ρ̂(t + dt ) = 1

2K

K∑
k=1

(Ûk ρ̂(t )Û†
k + V̂k ρ̂(t )V̂†

k ) + O(dt2), (6)

where the operators Ûk and V̂k are defined as

Ûk = edt Ĵk−i
√

KdtÂk , (7)

V̂k = edt Ĵk+i
√

KdtÂk , (8)

Ĵk = − i

h̄
Ĥ + K

2
(Â2

k − Â†
kÂk ). (9)

Note that in the case of Hermitian dissipators Â†
k = Âk , the

Kraus operators are unitary, and the infinitesimal evolution
has the form of a random unitary channel [76].

In order to prove Eq. (6), we use the Zassenhaus [77]
approximation,

e�(X+Y ) = e�X e�Y e− �2

2 [X,Y ]+O(�3 ), (10)

and after substituting � = √
dt , X = Ĵk

√
dt and Y =

∓i
√

KÂk , we obtain the following representations for the op-
erators to O(dt2):

Ûk = eĴkdtU −
k + O(dt2), V̂k = eĴkdtU +

k + O(dt2), (11)

Ū ±
k = e±iÂk

√
Kdt e±dt

3
2

√
K

h̄ [Ĵk ,Âk ]. (12)

These approximations can be used to expand a single term in
the sum on the RHS of Eq. (6) to O(dt2) :

Ûk ρ̂(t )Û†
k + V̂k ρ̂(t )V̂†

k = edt Ĵk �̂k (t )edt Ĵ†
k + O(dt2), (13)

and after some tedious algebra, one finds

�̂k (t ) = ρ̂(t ) + Kdt (Âk ρ̂(t )Â†
k − Â2

k ρ̂(t )) + H.c. (14)

We now perform a final expansion of edt Ĵk to O(dt2) and
substitute both this and �̂k (t ) back into Eq. (13) to obtain

Ûk ρ̂(t )Û†
k + V̂k ρ̂(t )V̂†

k = 2ρ̂(t ) − 2dt
i

h̄
[Ĥ, ρ̂(t )]

+ Kdt
(
2Âk ρ̂(t )Â†

k − {
ρ̂(t ), Â†

kÂk
}) + O(dt2). (15)

Finally, inserting this equality into Eq. (6) recovers Eq. (5) to
O(dt2), proving that Ûk and V̂k are the sought-for approximate
Kraus operators for an infinitesimal evolution. Note also that
these operators approximately satisfy Eq. (2) with

1

2K

K∑
k=1

(
Û†

k Ûk + V̂†
k V̂k

) = I + O(dt2). (16)

B. Truncating the ensemble

For a single time step, the computational complexity of
performing the matrix-matrix calculation for the exact Lind-
blad equation is O(N3

H ), but employing the approximate
Kraus form, obtaining the set of wave functions {|ψk〉} =
{Ûk|ψ〉, V̂k|ψ〉}K

k=1 needed to calculate expectations has a
computational complexity of only O(KN2

H ). Furthermore,
using the approximate method one need only store KNH el-
ements, whereas the density matrix requires N2

H elements.
Clearly for a single step, if NH � K , both the speed and
storage requirements for the calculation will be improved by
approximately a factor of NH . Of course, the major problem
with this method is that after each step, the number of wave
functions increases by a factor of 2K , so that after M steps one
must store a set of (2K )M wave functions.

To overcome this bottleneck, we employ a further ap-
proximation, aimed at limiting the size of the wave-function
ensemble. First, let R denote the prespecified maximal rank of
the density matrix ρ̂. The choice of R is dictated by physics,
the desired accuracy, and the available memory. For simplicity
we assume that the initial density matrix is represented by

ρ̂(t ) = |ψ〉〈ψ |, (17)

although the generalization to a mixed density matrix is trivial.
The procedure is then as follows: we propagate according to
Eq. (6), saving the set {|ψk〉} at each step until there are L =
(2K )M > R wave functions. Now the size of this set exceeds
R, we orthogonalize them such that

ρ̂(t + Mdt ) =
L∑

k=1

|ψk〉〈ψk| =
L∑

k=1

|ψ̄k〉〈ψ̄k| (18)

with {|ψ̄k〉} being orthogonal but unnormalized. This orthog-
onalization is achieved by

|ψ̄k〉 =
L∑

l=1

Ulk|ψl〉, (19)

where U is a unitary matrix obtained from diagonalizing the
overlap matrix Si j = 〈ψi|ψ j〉, such that

U †SU = diag(w1, . . . ,wL ). (20)

Here we assume that the eigenvalues are arranged in descend-
ing order, w1 � · · · � wL. Note that obtaining the overlap
matrix involves L2 wave-function dot-products, meaning its
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|ψ(0)〉

|ψ2(dt)〉

|ψ4(2dt)〉

|ψ̄2
4(2dt)〉

|ψ3(2dt)〉

|ψ̄2
2(2dt)〉

|ψ2
4(3dt)〉

|ψ̄2
4(3dt)〉

|ψ2
3(3dt)〉

|ψ̄2
2(3dt)〉

Û V̂

Û V̂

Û V̂
|ψ1(dt)〉

|ψ2(2dt)〉

|ψ̄2
1(2dt)〉

|ψ2
2(3dt)〉

|ψ̄2
1(3dt)〉

Û V̂

|ψ2
1(3dt)〉

|ψ̄2
3(3dt)〉

Û V̂

|ψ1(2dt)〉

|ψ̄2
3(2dt)〉

Û V̂

Û V̂

|ψ̄R
k 〉 =

∑L
l=1 UR

lk|ψl〉〈Ô〉 =
∑R

k=1〈ψ̄R
k |Ô|ψ̄R

k 〉

|ψ̄R
k 〉 =

∑L
l=1 UR

lk|ψl〉〈Ô〉 =
∑R

k=1〈ψ̄R
k |Ô|ψ̄R

k 〉

FIG. 1. Schematic showing the ERT process for a single dis-
sipator and R = 2. The initial wave function is propagated by the
application of the U and V unitaries until the size of the set exceeds R.
Each time this occurs the orthogonalization procedure is performed
and the R largest components of the set are retained for propagation
to later steps.

computational cost is O(L2NH ). For NH � L2, this has a
negligible cost relative to other operations. Furthermore, since
the dimensionality of matrix S is L × L, its diagonalization
is also computationally “cheap” and does not depend on the
dimensionality NH of the Hilbert space.

Having calculated U , we can truncate it to an R × L ma-
trix U R, using the eigenvectors associated with the R largest
eigenvalues. U R can then be used to generate an orthogonal
ensemble of wave functions:

∣∣ψ̄R
k

〉 =
L∑

l=1

U R
lk|ψl〉. (21)

The generation of this truncated ensemble is akin to princi-
pal component analysis, a well-known statistical technique
where R is the number of principal axes [78]. Using this
procedure we need only store {|ψ̄R

k 〉}R
k=1, and after appropri-

ate normalization of this set we obtain the sought for ERT
approximation,

ρ̂(t + Mdt ) ≈
R∑

k=1

|ψ̄R
k 〉〈ψ̄R

k

∣∣. (22)

Propagating to later steps then simply repeats the same
process of orthogonalization followed by truncation to R
wave functions, as shown in Fig. 1. Finally, we empha-
size that stepping forward in time by generating the set
{Ûm|ψ̄R

k 〉, V̂m|ψ̄R
k 〉}K

m=1 is a fully parellelizable calculation, so
that if 2KR does not exceed the number of threads available,
the time required for stepping forward will be approximately
independent of the rank. Furthermore, in the case of large
systems where the calculation of matrix exponents is pro-
hibitively costly, the effect of applying any given Kraus
operator to a member of the ensemble can instead be char-
acterized as an ODE (with an explicit time step of

√
dt). A

repeated propagation via Eq. (6) can also be represented as a
noncommutative Newton binomial [79,80]. This insight offers
a potential route to speed up calculations.

C. Combining ensemble rank truncation with matrix
product states

It is worth taking a moment to place the ERT method
in its proper context. It is the product of two sepa-
rate approximations—an approximation for the infinitesimal
Kraus operators which allows one to characterize the dynam-
ics with a set of wave functions, and a truncation of that set
to its principal components at each time step. The former
approximation is to the best of our knowledge a novel repre-
sentation of the density matrix evolution, while the reduction
of the set of wave functions to their principal components is
designed to constrain the size of the ensemble to a manageable
size.

It is interesting to note that both ERT and the matrix-
product-state (MPS) representation [81–83] make use of a
singular-value decomposition to find the most efficient rep-
resentation for a state. In the case of MPS, it is used to
find minimal-rank Schmidt decompositions to minimize the
matrices that form the MPS representation for a pure state.
Here it is used to minimize the number of pure states that are
required to represent a mixed state.

In fact, there is no reason why ERT cannot be performed
on sets of wave functions evolved using time-dependent
MPS (time evolving block decimation (TEBD) [82]). MPS
has previously been combined with stochastic wave-function
methods to simulate spin chains in a cavity [84], and one
might ask whether combining ERT with an MPS represen-
tation for pure states provides any advantage versus directly
using MPS to represent the evolving vectorized density ma-
trix. To answer this, recall that in the MPS representation
[81,82], a quantum state |�〉 is written as

|�〉 =
d−1∑
i1=0

· · ·
d−1∑
in=0

ci1···in |i1〉 ⊗ · · · ⊗ |in〉,

ci1···in =
χ∑

α1,...,αn−1=1

�[1]i1
α1

λ[1]
α1

�[2]i2
α1α2

λ[2]
α1

· · · �[n]in
αn−1

, (23)

where {|i1〉 ⊗ · · · ⊗ |in〉} is a computational basis for an n-
body system, and χ is the Schmidt rank quantifying the degree
of entanglement. In other words, a state |�〉 is represented by
n tensors �[1], . . . , �[n] (each with χd elements) and n − 1
length χ vectors λ[1], . . . , λ[n−1].

We may apply the MPS representation directly to a density
matrix ρ̂ that has been flattened into a column vector |ρ̂〉
 [56].
Using Eq. (23) the vectorized density matrix is expressed as

|ρ̂〉
 =
d2−1∑
j1=0

· · ·
d2−1∑
jn=0

c

j1··· jn

| j1〉
 ⊗ · · · ⊗ | jn〉
,

c

j1··· jn

=
χ∑

α1,...,αn−1=1

�
[1] j1

α1

λ
[1]

α1

�
[2] j2

α1α2

λ[2]
α1

· · ·�[n] jn

αn−1

, (24)
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where {| jn〉
}d2−1
j=0 is a set of the vectorized matrices

{|kn〉〈ln|}d−1
k,l=0. In this case, the tensors �

[k]

 will each be com-

posed of χd2 elements. Consequently the vectorized density
matrix in Eq. (24) will possess nd times more parameters
than the wave function in Eq. (23). It therefore follows that
so long as 2KR < nd, it will be more efficient to capture the
system behavior using ERT to construct an ensemble of R MPS
wave functions rather than evolving a single vectorized density
matrix with MPS. The reason for this boost is that with the help
of principle component analysis ERT finds the optimal basis
to represent a given density matrix; whereas, MPS explores
the sparsity of the vectorized density matrix. Of course, by
combining ERT with MPS, one must now work under the
double assumption that the system has both low rank and low
entanglement.

III. SIMULATION RESULTS

We now demonstrate the utility of ERT over WMC by
applying it to two typical multi-body systems of enduring
interest (a Heisenberg spin-chain and a collection of two-level
systems coupled to a cavity mode). We choose these systems
to be small enough that the Linblad equation can be simulated
directly for comparison, but large enough that the ensemble
methods are significantly faster.

We also provide an example of applying ERT to fermionic
systems by calculating the power spectrum generated by a
driven dissipative Fermi-Hubbard system. The convergence of
ERT to the exact result is first checked at a smaller system
size, before being applied to a system too large to practically
calculate (on the hardware used) the exact dynamics.

In order to assess the performance of the method we intro-
duce an integrated error E for a set of observables {Ô j}:

E =
(∑

j

∫
dt (Oj (t ) − OA

j (t ))2∫
dtO2

j (t )

)1/2

, (25)

where Oj (t ) is the observable expectation from the exact
simulation and OA

j (t ) is the expectation calculated using an
approximate method. In the example simulations considered,
when the integrated error is on the order of 10−1 the accuracy
is more than adequate for most purposes, and an error of 10−2

represents an excellent reproduction of the exact dynamics.

A. Heisenberg spin chain

We first consider a simple N site spin-chain system, specifi-
cally a Heisenberg XXX model described by the Hamiltonian:

Ĥ = −πh
j=N∑
j=1

σ̂ ( j)
z − πJ

j=N−1∑
j=1

σ̂ ( j) · σ̂ ( j+1). (26)

Historically Hamiltonians of this type have been used to
model magnetic systems [85] in order to calculate their critical
points and phase transitions [86]. More recently, this class of
models has also been used to study exotic phenomena such as
many-body localization [87].

Given that our principal interest in this model is to as-
sess the performance of ERT, in all cases, we set h = J = 1,
and initialize the system with all spins in the +x direction

0 20 40 60 80 100

−0.001

0.000

0.001

〈σ̂
(j

)
z
〉

Exact 〈σ̂(j)
z 〉

ERT 〈σ̂(j)
z 〉

0 20 40 60 80 100

Time

−0.002
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0.001

〈σ̂
(j

)
z
〉

Exact 〈σ̂(j)
z 〉

Monte-Carlo 〈σ̂(j)
z 〉

FIG. 2. Dynamics of 〈σ̂ ( j)
z 〉 (without explicit labeling for indi-

vidual sites) for γ = 0, � = 10−3h, and μ = 0.9. The top panel
shows the rank 1 approximation, which runs in 159 seconds with an
integrated error E = 1.3 × 10−2. In comparison, a WMC simulation
(shown in the bottom panel) with 1000 trajectories sampled runs
in 4925 seconds with an integrated error of E = 3.3. The exact
dynamics runs in 9790 seconds, demonstrating that in this weak
environmental coupling regime, ERT significantly outperforms the
WMC method in both accuracy and efficiency.

(i.e., 〈σ̂ ( j)
x 〉 = 1). We choose N = 12 sites corresponding to

a Hilbert space dimension of NH = 212 = 4096.
In addition to the dynamics of the chain itself, we shall

include two types of dissipator: an onsite dephasing

Â j = √
γ σ̂ ( j)

z , (27)

and a set of spin injection/absorption operators at the chain
terminals:

Â′
1,2 =

√
�(1 ∓ μ)σ̂ (1)

± , Â′
3,4 =

√
�(1 ± μ)σ̂ (N )

± . (28)

For both types of dissipator, γ and � characterize the strength
of the environmental coupling to the spin system. For the
latter, μ biases the driving (analogously to a chemical poten-
tial). Lindblad master equations are only appropriate when the
damping is sufficiently slow compared to the internal dynam-
ics. We explore the performance of ERT for damping rates
� ∈ [10−3h, 10−1h], which covers essentially the full range
of dissipation strengths (relative to the size of the Hamiltonian
couplings) over which Lindblad equations are of interest. We
explore the behavior both without dephasing and with a weak
dephasing rate of γ = 10−3h. When evaluating the simulation
error using Eq. (25), we use the set of observables σ̂

( j)
x , σ̂

( j)
z .

The numerical simulations of this spin chain are performed
using the Quantum toolbox in PYTHON (QUTIP) [88,89], which
includes optimized implementations of both the exact Lind-
blad master equation, and a parallelized WMC approximation.
All simulations are performed using 4 cores of an Intel Xeon
8280 CPU (with eight hardware threads), and the ERT method
is implemented without any explicit parallelization. Despite
this, Figs. 2 and 3, show that even an unoptimized PYTHON

implementation of ERT is able to perfectly reproduce the
exact Lindbladian dynamics, improving upon the exact sim-
ulation runtime by almost two orders of magnitude. More
significantly, the same ERT implementation also significantly
outperforms the optimized C implementation of the QUTIP

WMC code in both accuracy and runtime.
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FIG. 3. Comparison of spin-chain simulation accuracy to run-
time for both WMC and ERTs over a variety of dissipative
parameters, using μ = 0.9. For (a)–(c), γ = 0, while (d)–(f) use
γ = 10−3h. For (a) and (d), � = 10−3h, (b) and (e) � = 10−2h, and
finally (c) and (f), � = 10−1h. Points are generated using the set
R = {1, 2, 4, 8, 12} for ERT, and ntraj = {100, 500, 1000, 5000} tra-
jectories for the WMC simulations. Exact simulations run in ∼9500
seconds on average.

A more systematic comparison of results is shown in Fig. 3,
demonstrating the relative performance of the low-rank and
WMC methods both with and without dephasing, while vary-
ing � between � = 10−3h and 10−1h.

The first conclusion that can be drawn is that ERT yields
larger advantages at weaker couplings. This fits with the natu-
ral intuition that at weaker couplings the set of wave functions
generated by the unitaries in Eq. (6) will be well characterized
by a relatively small set of orthogonal components. Never-
theless, even at the strongest damping considered, ERT offers
comparable accuracy to WMC. In the case of nonzero dephas-
ing, the presence of an additional 12 dissipators reduces the
relative accuracy of ERT at lower ranks (although it remains
more accurate than the equivalent WMC simulation for the
majority of points). Significantly, runtimes are increased by
the presence of additional dissipators, but this is to be ex-
pected when the calculation of the new wave functions at each
time step is run serially rather than in parallel. In this instance,
the runtime for a single time step will be roughly proportional
to 2KR, as one must apply each of the 2K unitaries to the
set of R wave functions. Since each of these operations is in-

dependent however, significant efficiencies could be achieved
by parallelising this process when more cores are available.

B. Ensemble of two-level systems in a cavity

Our second example is a hybrid system consisting of a
single cavity mode coupled to a number of otherwise indepen-
dent two-level systems (which represent, e.g., cold atoms [90],
color centers [91], or rare-earth dopants [92]). We assume that
all the emitters are coupled to the same zero-temperature bath,
and the cavity is coupled to a separate input/output port (e.g.,
a lossy end mirror).

In a recent development, a master equation in the Lindblad
form has been obtained that accurately describes open systems
regardless of the proximity (or otherwise) of the various tran-
sitions (and that is valid for all temperatures) [13]. Employing
this master equation, placing the two-level systems on reso-
nance with the cavity mode and working in the interaction
picture, the effective system Hamiltonian is given by

Ĥ =
∑

i j

σ̂
( j)
+ �i j σ̂

( j)
− + g

∑
j

(â†σ̂
( j)
− + aσ̂

( j)
+ ) (29)

+√
κβ(â + â†). (30)

Here �i j = �iδi j + √
λiλ j includes the detuning between

emitter i and the cavity, �i, as well as the respective bath-
induced Lamb shifts, λi. Here σ̂

( j)
− is the lowering operator for

the jth atom from its excited to its ground state and â is the
annihilation for the cavity mode. The term proportional to g
is the coupling between the emitters and the cavity mode, and
the last term describes driving of the cavity with a coherent
state at the rate of |β|2 photons per second [93]. The Lindblad
dissipators for the system are given by

Â1 = √
κ â, Â2 = √

γ
∑

j

σ̂
( j)
− , (31)

which describes output coupling of the cavity mode at rate κ

and collective decay of the exited states of all the emitters at
the rate γ .

Once again we focus on the regime of weak coupling,
setting g = 1, �i j = 20 jgδi j , and κ = β For all simulations
we take eight atoms and initialize each atom in an equal
superposition of its ground and excited states, along with an
empty cavity. Simulations are run with the same resources as
in the previous section, while the simulation error Eq. (25),
uses the observables σ̂

( j)
x , σ̂

( j)
z and â†a. As Fig. 4 demon-

strates, ERT is again able to outperform WMC in capturing
the decay of the atomic ensemble at a smaller computational
cost. When varying γ and κ , Fig. 5 shows once again that for
weak couplings ERT provides a clear advantage over WMC in
both efficiency and accuracy. Even at the largest γ considered,
we see that at higher ranks the performance of ERT becomes
comparable to WMC. This trend is repeated both when includ-
ing off-diagonal elements in �i j , and initialising the system
from different states (not shown).

C. Dissipative Fermi-Hubbard model

Finally we apply the ERT method to a fermionic system,
specifically the Fermi-Hubbard model [94]. This model is a
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FIG. 4. Dynamics of the atomic ensemble in a cavity for γ =
10−3g and β = κ = 10−1g, with the exact, rank 1 ERT, and 1000
trajectory WMC dynamics shown. The top panel shows the collective
atomic dynamics while the bottom panel demonstrates the cavity
occupation numbers. The exact simulation takes 5975 seconds to
compute, while the WMC simulation runs in 736 seconds, with an
integrated error over all expectations of E = 0.3. In comparison the
ERT computation completes in 32 seconds with an integrated error
of E = 2.0 × 10−2, improving on WMC by over an order magnitude
in both accuracy and runtime.

useful benchmark, given its status as one of the paradigmatic
models for strongly correlated electronic systems. Its Hamil-
tonian is given by

Ĥ (t ) = − t0
∑

jσ

(
ĉ†

jσ ĉ j+1σ + ĉ†
j+1σ ĉ jσ

)

+ U
∑

j

ĉ†
j↑ĉ j↑ĉ†

j↓ĉ j↓, (32)

where ĉ jσ is the fermionic annihilation operator for the jth site
and spin σ , t0 is the hopping parameter and U is the onsite
potential. The Fermi-Hubbard model is of particular interest
as under coherent external driving it exhibits a high degree of
complexity in its dynamics [95,96]. When dissipation is added
this model contains a number of intriguing features, including
symmetry breaking phase transitions [97] and dynamic rever-
sals of magnetic correlations [98].

To incorporate dissipation, we apply fermion
injection/absorption operators for each species to the
terminals of an N site chain

Â′
1,2 =

√
�(1 − μ)ĉ1{↑,↓}, Â′

3,4 =
√

�(1 + μ)ĉ†
1{↑,↓},

Â′
5,6 =

√
�(1 + μ)ĉN{↑,↓}, Â′

7,8 =
√

�(1 − μ)ĉ†
N{↑,↓}

(33)

and use these dissipators to drive the system from its (isolated)
half-filled ground state.

In order to simulate this model, we use the PYTHON

package QUSPIN [99,100], which is capable of efficiently
simulating fermionic systems. Note that as QUSPIN lacks an
efficient WMC solver for dissipative systems, in this example
we forgo comparison to approximate methods.
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FIG. 5. Accuracy vs runtime results for the two-level systems in
a cavity over a variety of dissipative parameters. For (a)–(c), κ =
10−1g, while (d)–(f), use κ = g. For (a) and (d), γ = 10−3g, (b) and
(e), γ = 10−2g, and finally (c) and (f), γ = 10−1g. Once again we
see that ERT provides a decisive advantage at weak couplings, but
requires higher ranks to properly capture dynamics at stronger cou-
plings. Points are generated using the set R = {1, 2, 4, 8, 16, 32} for
ERT, and ntraj = {100, 500, 1000, 5000} trajectories for the WMC
simulations. Exact simulations run in ∼5500 seconds on average.

In the case of a coherently driven, nondissipative system,
the electronic current

Ĵ (t ) = −t0
∑

jσ

(
ĉ†

jσ ĉ j+1σ − ĉ†
j+1σ ĉ jσ

)
(34)

may exhibit an optical phenomenon known as high harmonic
generation (HHG). HHG occurs when the dipole acceleration
a(t ) = dJ (t )

dt spectrum has a a highly nonlinear response to
driving, generating frequencies many multiples larger than
the driving field [101–103]. It is therefore natural to ask if
similar nonlinearities are present when one uses incoherent
dissipative driving. As an initial test of the applicability of
ERT to this model, we calculate the dipole acceleration a(t ) in
a U = t0, N = 6 (NH = 46 = 4096) system and compare it to
the results of an exact simulation. As Fig. 6 shows, once again
ERT is able to obtain good accuracy while still significantly
improving on the time taken to run the calculation via exact
methods.

Using ERT we are able to investigate whether or not non-
linear effects are present in this dissipatively driven model
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FIG. 6. Calculation of the dipole acceleration a(t ) = dJ (t )
dt in a

U = t0, N = 6 site system at a relatively strong coupling � = 0.03t0

and bias μ = 0.9. The top panel shows the time dynamics of a(t ),
while the bottom panel demonstrates the relative accuracy and effi-
ciency of the approximation using R = {16, 32, 64, 128, 256}.

at larger system sizes than can be practically calculated us-
ing exact methods. As an example, we consider the U = 0,
N = 14 Fermi-Hubbard model with dissipative driving. In this
free case, Hamiltonian symmetries reduce the effective size of
the Hilbert space to NH = 16384, but this is still well beyond
the dimension at which an exact master equation calculation
is practical without significant computational resources. One
can test the accuracy of the approximation in this scenario in
a number of ways—the most straightforward being to check
that as the rank R is increased, simulation results converge.
A second check in this instance is utilising the fact that the
Hubbard model is known to exhibit diffusive transport when
dissipatively driven [104]. From this, one would expect that
the steady state currents Jf should depend linearly on the cou-
pling strength. Figure 7 shows that at sufficiently large ranks
this is the case, providing a further check for the accuracy of
ERT.
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10−1

J
f

(b)

FIG. 7. Plotting steady state currents Jf against coupling
strength, using (a) R = 128 and (b) 16. One finds that at higher ranks
the expected linear relationship is recovered, while lower ranks do
not capture the final state sufficiently well to maintain this linearity.
Note however that at weaker couplings results agree reasonably well
between both R = 16 and 128, and it is only at stronger couplings
that one is required to use a larger rank to obtain accurate results.
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FIG. 8. Dipole acceleration and its frequency spectrum for a
U = 0, N = 14 site system with a relatively strong coupling � =
0.1t0. One finds good convergence at R = 128, with the spectrum
displaying a number of prominent frequencies.

Figure 8 demonstrates that incoherent dissipative driving
generates nonlinear effects in the transient dipole acceleration,
analogously to the coherent external driving which produces
HHG. In this instance, without an external driving frequency
to compare to, we instead define a “fundamental frequency”
ω0 as the most strongly represented frequency by taking
S(ω) = |FFT {a(t )}|2 and setting

max
ω

S(ω) = S(ω0). (35)

Examining the dipole acceleration spectrum, we find that
the transient current contains number of distinct frequencies.
This is particularly interesting when contrasted to the case of
an isolated U = 0 system driven by an external transform-
limited pulse, where overtones only appear at odd integer
multiples of the driving frequency [105]. In the present case,
while we observe a prominent peak in the spectrum at the third
harmonic, there are also a number of off-integer and sublinear
frequencies present. The position of these peaks (including
ω0) remain constant over a wide range of � and μ, indicating
that while the transient system response to constant incoherent
driving is nonlinear, the dissipative parameters meaningfully
affect only the size of that response rather than its spectral
character.

IV. DISCUSSION

We have introduced an approximate method for the fast
simulation of dissipative quantum systems. This technique is
based upon first representing an infinitesimal Lindblad evo-
lution in a Kraus form, from which one can construct an
ensemble of wave functions which capture the full dynam-
ics of the system. When the size of the ensemble exceeds a
prespecified rank R, it is truncated in the space of its princi-
pal components. We have termed this method ensemble rank
truncation (ERT), and have found a number of significant
results. First, this method may employed in combination with
matrix product state (MPS) wave-function decompositions,
and under certain easily satisfiable conditions ERT + MPS
will in principle be more efficient than either MPS alone or
MPS + WMC in simulating large dissipative systems.
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The performance of ERT was investigated in a number of
physically distinct systems, allowing for direct comparison to
WMC simulations. Here it was found that in the regime of
weak dissipative coupling, ERT offered order of magnitude
improvements in both accuracy and computing time compared
to WMC. This result is at least partially due to the differ-
ence between ERT and WMC in their rate of convergence
to the true solution. In the latter case, WMC asymptotically
converges at O(

√
ntraj ), while the convergence of ERT with R

will depend upon the specifics of the system dynamics. While
one cannot determine a priori the appropriate rank to use with
ERT, it should be possible to use system identification tech-
niques [106–108] to ascertain the effective rank of the system
before beginning an ERT simulation. As we have seen in all
the cases considered, the rank R required to accurately model
a system with ERT is much lower than either the Hilbert space
dimension NH or the number of trajectories ntraj required by
WMC.

An important question is how ERT will scale in parallel
implementations using many processors. For WMC each tra-
jectory is independent, and the speedup from multiprocessing
will be approximately linear [88]. For ERT, each infinitesi-
mal Kraus map may also be independently applied to each
element of the ensemble. This part of the scheme is therefore
trivially parallelizable and we would expect a similar linear
scaling. Although the orthogonalization step requires some
cross-communication to calculate the overlap matrix S, we
found in Sec. II that the cost of this step compared to evolving
an individual element of the ensemble will be small when
NH � L2. We therefore expect that in this scenario, a properly
parallelized ERT implementation will scale with number of
processors approximately as well as WMC.

While the advantages of ERT have already been demon-
strated, there remains a good deal of scope for improving the
method. For instance, one might choose to adopt an adap-
tive rank R at each step. As a simple example, one could
improve accuracy by choosing R at each step such that the
sum of discarded eigenvalues in Eq. (20) is below some tol-
erance. Furthermore, it should be possible to improve on the
O(dt2) error found in Eq. (6). This could be achieved either
by rederiving Ûk, V̂k using higher order Suzuki-Trotter de-
compositions [109], or through the application of Richardson
extrapolation to Eq. (6). A final avenue for extension would
be to improve the domain of applicability of the ERT, deriv-
ing the infinitesimal Kraus operators for the non-Markovian
generalization of the Lindblad equation [110].

In summary, ERT is a novel technique for the simulation of
dissipative quantum systems that is capable of outperforming
existing techniques, and can in principle be alloyed to state-
of-the-art methods for approximating large quantum systems.
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